Sample records for adversely affect soil

  1. Do shrubs reduce the adverse effects of grazing on soil properties?

    USGS Publications Warehouse

    Eldridge, David J.; Beecham, Genevieve; Grace, James B.

    2015-01-01

    Increases in the density of woody plants are a global phenomenon in drylands, and large aggregations of shrubs, in particular, are regarded as being indicative of dysfunctional ecosystems. There is increasing evidence that overgrazing by livestock reduces ecosystem functions in shrublands, but that shrubs may buffer the negative effects of increasing grazing. We examined changes in water infiltration and nutrient concentrations in soils under shrubs and in their interspaces in shrublands in eastern Australia that varied in the intensity of livestock grazing. We used structural equation modelling to test whether shrubs might reduce the negative effects of overgrazing on infiltration and soil carbon and nitrogen (henceforth ‘soil nutrients’). Soils under shrubs and subject to low levels of grazing were more stable and had greater levels of soil nutrients. Shrubs had a direct positive effect on soil nutrients; but, grazing negatively affected nutrients by increasing soil bulk density. Structural equation modelling showed that shrubs had a direct positive effect on water flow under ponded conditions but also enhanced water flow, indirectly, through increased litter cover. Any positive effects of shrubs on water flow under low levels of grazing waned at high levels of grazing. Our results indicate that shrubs may reduce the adverse effects of grazing on soil properties. Specifically, shrubs could restrict access to livestock and therefore protect soils and plants beneath their canopies. Low levels of grazing are likely to ensure the retention of soil water and soil carbon and nitrogen in shrubland soils.

  2. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  3. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  4. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  5. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture

    PubMed Central

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  6. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...

  7. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...

  8. The bioavailability and adverse impacts of lead and decabromodiphenyl ether on soil microbial activities.

    PubMed

    Chen, Lei; Zhang, Wei; Zhang, Rong; Lin, Kuangfei; He, Lei; Wu, Liqun

    2015-08-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main pollutants at electronic waste (e-waste) recycling sites (EWRSs), and their potential toxic effects on soil organisms have received extensive attention. However, the impact on soil microorganisms of joint exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed to explore the adverse impacts of Pb and BDE209 on soil microbial activities and chemical transformation for the first time. The results have demonstrated that BDE209 was barely degraded in all treated groups, indicating that the presence of Pb hardly affected BDE209 dissipation. The fractions analysis according to Tessier suggested that Pb gradually transformed towards more stable fractions in the slightly alkaline soil, thus reducing the bioavailability of Pb. Additionally, increased Pb doses caused significantly higher bioavailability (p < 0.05), and the same trend was clearly observed after simultaneous exposure to BDE209. Generally, single Pb or BDE209 exposure markedly inhibited (p < 0.05 or 0.01) soil microbial biomass C (C mic), while soil basal respiration (SBR) indicated the opposite response trend (inhibition or stimulation for BDE209 or Pb alone, respectively). Compared to the controls, Pb dramatically (p < 0.01) facilitated soil metabolic quotient (qCO2) during the incubation period. After joint exposure to Pb and BDE209, C mic generally declined with increasing exposure concentration, following certain dose-response relationships. However, SBR and qCO2 were highly significantly stimulated (p < 0.01), and more doses of Pb and BDE209 resulted in higher values. The results of these observations have provided a basic understanding of the potential ecological risk of Pb and BDE209 in soil at EWRSs.

  9. Diagnosis of potential stressors adversely affecting benthic ...

    EPA Pesticide Factsheets

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being

  10. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    PubMed

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  11. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  12. No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    PubMed Central

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  13. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.

    PubMed

    Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo

    2007-05-01

    To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.

  14. [Contents of different soil fluorine forms in North Anhui and their affecting factors].

    PubMed

    Yu, Qun-ying; Ci, En; Yang, Lin-zhang

    2007-06-01

    By the method of consecutive extraction, this paper studied the contents and vertical distribution of soil fluorine (F) forms in North Anhui, with their relations to the soil physical and chemical properties analyzed. The results showed that the soil total F (T-F) content in North Anhui was ranged from 265.8 mg . kg(-1) to 612.8 mg . kg(-1), with an average of 423.7 mg . kg(-1), and decreased in the sequence of vegetable soil > fluvo-aquic soil > paddy soil > shajiang black soil > yellow brown soil. Among the T-F, residual F (Res-F) was the main form, occupying > 95% of total F, followed by water soluble F (Ws-F), being about 1.5% of the total, and organic-F (Or-F), Fe and Mn oxide-F (Fe/Mn-F) and exchangeable-F (Ex-F) only had very small amount. The Ws-F content in test soils ranged from 1.35 mg . kg(-1) to 17.98 mg . kg(-1), with a mean value of 6.62 mg . kg(-1). Vegetable soil, fluvo-aquic soil and shajiang black soil had a relatively higher content of Ws-F, while yellow brown soil was in adverse. Soil pH and the contents of soil organic matter, total and available phosphorus, and physical clay were the main factors affecting the contents of various F forms. Soil Ws-F was significantly positively correlated with soil pH and soil total and available phosphorus, soil Ex-F was significantly positively correlated with soil clay ( < 0.01 mm and <0.001 mm), soil Fe/Mn-F was significantly positively correlated with soil total phosphorus, and soil Or-F had a significant positive correlation with soil organic matter. Soil Ws-F content also had a close connection to the parent material. The soil developed from shallow lacustrine and marsh sediments usually had the highest Ws-F content, followed by those developed from Huang River alluvial deposit, Q3 loess, Huaihe River alluvial deposit, and light-texture yellow brown soil, with the mean Ws-F content being 9.05, 8.12, 2.97, 2.05 and 1.91 mg . kg(-1), respectively. The contents of soil Or-F and Fe/Mn-F decreased with

  15. Biochar application for the remediation of salt-affected soils: Challenges and opportunities.

    PubMed

    Saifullah; Dahlawi, Saad; Naeem, Asif; Rengel, Zed; Naidu, Ravi

    2018-06-01

    Soil salinization and sodification are two commonly occurring major threats to soil productivity in arable croplands. Salt-affected soils are found in >100 countries, and their distribution is extensive and widespread in arid and semi-arid regions of the world. In order to meet the challenges of global food security, it is imperative to bring barren salt-affected soils under cultivation. Various inorganic and organic amendments are used to reclaim the salt-affected lands. The selection of a sustainable ameliorant is largely determined by the site-specific geographical and soil physicochemical parameters. Recently, biochar (solid carbonaceous residue, produced under oxygen-free or oxygen-limited conditions at temperatures ranging from 300 to 1000°C) has attracted considerable attention as a soil amendment. An emerging pool of knowledge shows that biochar addition is effective in improving physical, chemical and biological properties of salt-affected soils. However, some studies have also found an increase in soil salinity and sodicity with biochar application at high rates. Further, the high cost associated with production of biochar and high application rates remains a significant challenge to its widespread use in areas affected by salinity and sodicity. Moreover, there is relatively limited information on the long-term behavior of salt-affected soils subjected to biochar applications. The main objective of the present paper was to review, analyze and discuss the recent studies investigating a role of biochar in improving soil properties and plant growth in salt-affected soils. This review emphasizes that using biochar as an organic amendment for sustainable and profitable use of salt-affected soils would not be practicable as long as low-cost methods for the production of biochar are not devised. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil.

    PubMed

    Jiang, Yuji; Jin, Chen; Sun, Bo

    2014-10-01

    Nitrification plays a central role in global nitrogen cycle, which is affected by interaction between soil microfauna and microorganisms. The impact of synchronized changes in nematodes and ammonia oxidizers within aggregate fractions on nitrification was investigated in an acid soil under 10-year manure application. Nematodes, ammonia oxidizers and potential nitrification activity (PNA) were examined in three soil aggregate fractions under four fertilization regimes. Pyrosequencing data revealed that the dominant bacterial amoA operational taxonomic units (OTUs) were related to Nitrosospira species, while archaeal OTUs were affiliated with Nitrososphaera and Nitrosotalea species. PNA was more strongly correlated with ammonia-oxidizing bacteria (AOB) abundance than ammonia-oxidizing archaea (AOA) abundance, although AOA were dominant in the acid soil. Plant parasites had a negative effect on AOB abundance; however, bacterivores stimulated AOB abundance and contributed more to PNA than plant parasites. Aggregate fractions exerted significant impacts on AOA abundance and AOB community composition. Total carbon content strongly affected the abundance and composition of AOA community, while soil pH primarily affected that of AOB community. Soil variables explained 62.7% and 58.1% variations, and nematode variables explained 11.7% and 19.5% variations in the AOA and AOB community composition respectively. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  18. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  19. Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation.

    PubMed

    Ippolito, J A; Barbarick, K A; Paschke, M W; Brobst, R B

    2010-05-01

    Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha(-1)) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0-8 cm depth pH, EC, NO(3)-N, NH(4)-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO(3)-N and NH(4)-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem. Published by Elsevier Ltd.

  20. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. High-resolution mapping and spatial variability of soil organic carbon storage of permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias; Hugelius, Gustaf

    2017-04-01

    Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support

  2. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  3. The chemistry of salt-affected soils and waters

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  4. Interpretation of in situ tests as affected by soil suction.

    DOT National Transportation Integrated Search

    2013-07-01

    Soil moisture conditions are subject to change depending on the season in which they are tested. In : unsaturated soils the moisture at which a soil is tested can directly affect strength and stiffness of the : material. In situ testing is commonly u...

  5. [Phosphorus availability in cropland soils of China and related affecting factors].

    PubMed

    Wang, Yong-Zhuang; Chen, Xin; Shi, Yi

    2013-01-01

    Soil phosphorus (P) availability directly determines cropland productivity. Based on the long-term fertilization experiments in different climatic zones of China, this paper summarized the P content, its availability, and the factors affecting the P transformation in China cropland soils. The total and available P contents in different types of China cropland soils were 0.31-1.72 g x kg(-1) and 0.1-228.8 mg x kg(-1), respectively. Soil parent material, soil physical and chemical prosperities, and fertilization practices were the main factors affecting the soil P availability. It was suggested that more attentions should be paid on the mixed application of organic manure and chemical fertilizers to improve the P availability of cropland soils and on the potential environmental impacts of this fertilization.

  6. The nature and classification of Australian soils affected by sodium

    NASA Astrophysics Data System (ADS)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups

  7. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  8. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  9. Childhood adversity predicts reduced physiological flexibility during the processing of negative affect among adolescents with major depression histories.

    PubMed

    Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan

    2017-11-01

    Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA

    Treesearch

    K.R. Hubbert; H.K. Preisler; P.M. Wohlgemuth; R.C. Graham; M.G. Narog

    2006-01-01

    Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency,...

  11. Rethinking infiltration in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2013-01-01

    Wildfires frequently result in natural hazards such as flash floods (Yates et al., 2001) and debris flows (Cannon et al., 2001a,b; Gabet and Sternberg, 2008). One of the principal causes of the increased risk of post-wildfire hydrologically driven hazards is reduced in filtration rates (e.g. Scott and van Wyk, 1990; Cerdà, 1998; Robichaud, 2000; Martin and Moody, 2001). Beyond the reduction in peak infiltration rate, there is mounting evidence that the fundamental physics of infiltration in wild fire-affected soils is different from unburned soils (e.g. Imeson et al., 1992; Moody et al., 2009; Moody and Ebel, 2012).Understanding post-wildfire hydrology is critical given the increasing wildfire incidence in the western USA (Westerling et al., 2006) and elsewhere in the world (Kasischke and Turetsky, 2006; Holz and Veblen, 2011; Pausas and Fernández-Muñoz, 2012). Wildfire is a disturbance event with global distribution (Bowman et al., 2009; Krawchuk et al., 2009; Pechony and Shindell, 2010; Moritz et al., 2012), and with increasing populations moving into fire-prone areas, understanding post-wildfire infiltration is of increasing importance for predicting post-wildfire consequences. Runoff is generally controlled by the infiltration-excess mechanism in fire-affected soils (e.g. Mayor et al., 2007; Onda et al., 2008; Kinner and Moody, 2010). It is essential that the fire community have conceptual models, physical equations and tools (i.e. numerical models) to predict infiltration and thus excess rainfall (after Horton, 1933), which can provide estimates of peak discharge, start of runoff, time to peak and total runoff for hydroclimatic scenarios after wildfires. Reductions in saturated hydraulic conductivity Ksat [LT-1] are common for fire-affected soils, and the relatively low values observed explain the elevated flash flood hazards (e.g. Ksat of 1–100 mm h-1 , Robichaud, 2000; Yates et al., 2000; Martin and Moody, 2001; Robichaud et al

  12. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soils may involve the use of harsh chemicals that generate waste streams and may adversely affect the soil's integrity and ability to support vegetation. his paper reviews the promise of benign reagents such as biopolymers to extract metals. he biopolymers...

  13. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  14. Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions

    PubMed Central

    Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto

    2007-01-01

    Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979

  15. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Transformation-Dissolution Reactions Partially Explain Adverse Effects of Metallic Silver Nanoparticles to Soil Nitrification in Different Soils.

    PubMed

    Bollyn, Jessica; Willaert, Bernd; Kerré, Bart; Moens, Claudia; Arijs, Katrien; Mertens, Jelle; Leverett, Dean; Oorts, Koen; Smolders, Erik

    2018-04-25

    Risk assessment of metallic nanoparticles (NP) is critically affected by the concern that toxicity goes beyond that of the metallic ion. This study addressed this concern for soils with silver (Ag)-NP using the Ag-sensitive nitrification assay. Three agricultural soils (A,B,C) were spiked with equivalent Ag doses of either Ag-NP (d = 13 nm) or AgNO 3 . Soil solution was isolated and monitored over 97 days with due attention to accurate Ag fractionation at low (∼10 µg L -1 ) Ag concentrations. Truly dissolved (<1 kDa) Ag in the AgNO 3 -amended soils decreased with reaction half-lives of 4 to 22 days depending on the soil, denoting important Ag-ageing reactions. In contrast, truly dissolved Ag in Ag-NP-amended soils first increased by dissolution and subsequently decreased by ageing; the concentration never exceeding that in the AgNO 3 -amended soils. The half-lives of Ag-NP transformation-dissolution were about 4 days (soils A&B) and 36 days (soil C). The Ag toxic thresholds (EC10, mg Ag kg -1 soil) of nitrification, either evaluated at 21 or 35 days after spiking, were similar between the two Ag forms (soils A&B) but were factors 3 to 8 lower for AgNO 3 than for Ag-NP (soil C), largely corroborating with dissolution differences. This fate and bio-assay showed that Ag-NPs are not more toxic than AgNO 3 at equivalent total soil Ag concentrations and that differences in Ag-dissolution at least partially explain toxicity differences between the forms and among soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    PubMed

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional F IO 2 while pediatric/adult therapy is administered with high F IO 2 . We suspected a connection between F IO 2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively ( P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively ( P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a

  18. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO 3 - ) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L 16 design, comprising 16 experimental units. Within this L 16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO 3 - addition were the main factors affecting N 2 O fluxes, whilst glucose, NO 3 - and soil temperature were the main factors affecting CO 2 and CH 4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

  19. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  20. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  1. Herbicide-resistant weeds threaten soil conservation gains: finding a balance for soil and farm sustainability

    USDA-ARS?s Scientific Manuscript database

    Tillage has been an integral part of agriculture since the dawn of civilization. Growers and scientists have long recognized both beneficial and detrimental aspects to tillage. There is no question that most tillage promotes soil loss, adversely affects surface water quality and negatively impacts...

  2. Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.

    2015-01-01

    A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.

  3. Soil respiration as affected by long-term broiler litter application to a udult in the ozark highlands.

    PubMed

    McMullen, Richard L; Brye, Kristofor R; Gbur, Edward E

    2015-01-01

    The United States produced 8.4 billion broiler chickens () and an estimated 10.1 to 14.3 million Mg of broiler litter (BL) in 2012. Arkansas' production of 1 billion broilers in 2012 produced an estimated 1.2 to 1.7 million Mg of BL, most of which was concentrated in the Ozark Highlands region of northwest Arkansas. Increased CO release from soils associated with agricultural practices has generated concerns regarding the contribution of certain agricultural management practices to global warming. The objectives of this study were to evaluate the effects of long-term (>6 yr) BL application to a Udult on soil respiration and annual C emissions and to determine the predictability of soil respiration based on soil temperature and moisture in the Ozark Highlands region of northwest Arkansas. Soil respiration was measured routinely between May 2009 and May 2012 in response to annual BL application rates of 0, 5.6, and 11.2 Mg dry litter ha that began in 2003. Soil respiration varied ( < 0.01) with BL rate, measurement date, and year. Additions of BL stimulated respiration after application, and rainfall events after dry-soil conditions stimulated respiration in all years. Soil temperature at the 10-cm depth, 0- to 6-cm soil volumetric water content (VWC), and annual CO-C emissions were unaffected ( > 0.05) by BL application rate but differed ( < 0.01) among study years. Multiple regression indicated that soil respiration could be reasonably predicted using 2-cm-depth soil temperature (T) and the product of T and VWC as predictors ( = 0.52; < 0.01). Results indicate that organic amendments, such as BL, can stimulate release of CO from the soil to the atmosphere, potentially negatively affecting atmospheric greenhouse gas concentrations; thus, there may be application rates above which the benefits of organic amendments may be diminished by adverse environmental effects. Improved BL management strategies are needed to lessen the loss of CO from BL-amended soils. Copyright

  4. Spatial and temporal variability of soil hydraulic properties of topsoil affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Klement, Ales; Fer, Miroslav

    2014-05-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. In order to include variable morphological and soil properties along the slope three sites - Brumovice, Vidim and Sedlčany were selected. Two transects (A, B) and five sampling sites along each one were chosen. Soil samples were taken in Brumovice after the tillage and sowing of winter wheat in October 2010 and after the wheat harvest in August 2011. At locality Vidim and Sedlčany samples were collected in May and August 2012. Soil hydraulic properties were studied in the laboratory on the undisturbed 100-cm3 soil samples placed in Tempe cells using the multi-step outflow test. Soil water retention data points were obtained by calculating water balance in the soil sample at each pressure head step of the experiment. The single-porosity model in HYDRUS-1D was applied to analyze the multi-step outflow and to obtain the parameters of soil hydraulic properties using the numerical inversion. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (Kw) for the pressure head of -2 cm of topsoil were also measured after the harvest using Guelph permeameter and Minidisk tensiometer, respectively. In general soil water retention curves measured before and after vegetation period apparently differed, which indicated soil material consolidation and soil-porous system rearrangement. Soil water retention curves obtained on the soil samples and hydraulic conductivities measured in the field reflected the position at the elevation transect and the effect of erosion/accumulation processes on soil structure and consequently on the soil hydraulic properties. The highest Ks values in Brumovice were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation of eroded soil particles. The change of the Kw values along transects didn't show

  5. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  6. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  7. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  8. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    PubMed

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm(-3)) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  9. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    PubMed

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  11. Aggregate Stability and Erodibility of Purple Soil on Sloping Farmland as affected by different Soil Thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed

    2017-04-01

    Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility

  12. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  13. Empirical modeling of the impact of Mollisol soils variation on performance of Cuphea: A potential oilseed crop

    USDA-ARS?s Scientific Manuscript database

    Production potential of many soils is affected by low supply of nutrients due to adverse constraints or spatio-temporal variation of soil physical and chemical properties. New oilseed crops differ in their nutrient needs for maximum performance in different soils and may not be able to economically ...

  14. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  15. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  16. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth.

    Treesearch

    Scott D. Roberts; Constance A. Harrington; Thomas A. Terry

    2005-01-01

    Decisions made during stand regeneration that affect subsequent levels of competing vegetation and residual biomass can have important short-term consequences for early stand growth, and may affect long-term site productivity. Competing vegetation clearly affects the availability of site resources such as soil moisture and nutrients. Harvest residues can also impact...

  17. Fluensulfone sorption and mobility as affected by soil type.

    PubMed

    Morris, Kelly A; Li, Xiao; Langston, David B; Davis, Richard F; Timper, Patricia; Grey, Timothy L

    2018-02-01

    Fluensulfone is a fluoroalkenyl chemical with activity against multiple genera of plant-parasitic nematodes. The adsorption, desorption, and mobility of fluensulfone were evaluated on multiple soils from the USA in laboratory and column experiments. Adsorption data regressed to the logarithmic Freundlich equation resulted in isotherm values of 1.24 to 3.28. Soil adsorption of fluensulfone correlated positively with organic matter (0.67) and clay (0.34), but negatively with sand (-0.54). Fluensulfone soil desorption correlated to pH (0.38) and cation exchange capacity (0.44). Fluensulfone desorption from Arredondo sand soil was 26%, and from other soils ranged from 43 to 70%. In mobility experiments, fluensulfone in the leachate peaked at 3 h, gradually declining and becoming undetectable after 9 h. Recovery from leachate was 45% of the initial fluensulfone applied to the soil surface. In separate experiments, 30-cm-long soil columns were saturated with 1 L of water, and then segregated into three 10-cm sections. Fluensulfone recovery was 41, 34, 29, and 13% in Chualar sandy loam, Arredondo sand, Greenville sandy clay loam, and Tifton loamy sand, respectively, in the top 10-cm section. Data indicated that soil organic matter and clay contents will affect sorption, mobility, and dissipation of fluensulfone. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe

    NASA Astrophysics Data System (ADS)

    Knicker, H.; González Vila, F. J.; Clemente Salas, L.

    2012-04-01

    Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.

  19. Smoking Adversely Affects Survival in Acute Myeloid Leukemia Patients

    PubMed Central

    Varadarajan, Ramya; Licht, Andrea S; Hyland, Andrew J; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Barcos, Maurice; Baer, Maria R.; Wang, Eunice S.; Wetzler, Meir

    2011-01-01

    Summary Smoking adversely affects hematopoietic stem cell transplantation outcome. We asked whether smoking affected outcome of newly diagnosed acute myeloid leukemia (AML) patients treated with chemotherapy. Data were collected on 280 AML patients treated with high-dose cytarabine and idarubicin-containing regimens at Roswell Park Cancer Institute who had smoking status data at diagnosis. Patients’ gender, age, AML presentation (de novo vs. secondary), white blood cell (WBC) count at diagnosis, karyotype and smoking status (never vs. ever) were analyzed. Among the 161 males and 119 females with a median follow-up of 12.9 months, 101 (36.1%) had never smoked and 179 (63.9%) were ever smokers. The proportion of patients between never and ever smokers was similar with respect to age, AML presentation, WBC count at diagnosis or karyotype based on univariate analysis of these categorical variables. Never smokers had a significantly longer overall survival (60.32 months) compared to ever smokers (30.89; p=0.005). In multivariate analysis incorporating gender, age, AML presentation, WBC count, karyotype, and smoking status as covariates, age, karyotype and smoking status retained prognostic value for overall survival. In summary, cigarette smoking has a deleterious effect on overall survival in AML. PMID:21520043

  20. Thallium isotope variations in anthropogenically-affected soils

    NASA Astrophysics Data System (ADS)

    Vanek, Ales; Chrastny, Vladislav; Penizek, Vit; Mihaljevic, Martin; Komarek, Michael; Cabala, Jerzy

    2014-05-01

    Our preliminary data from soils impacted by long-term Tl deposition in the vicinity of a primary/secondary Zn smelter at Olkusz (Poland) indicate apparent variability of ɛ205Tl within soil profiles. The identified ɛ205Tl values presented for the forest soil profile reached -1.7 in the surface/organic horizon, +1.9 in the organo-mineral horizon (Ap), and +1.0 in the mineral horizon (C). This finding suggests both the enrichment of 203Tl isotope in the topsoil, as well as its preferential release during smelting operations, as "lighter" Tl tends to enter the emissions during a high-temperature process. The maximum ɛ205Tl value in the subsurface horizon Ap is in accordance with the concentration peak of oxalate-extractable Mn, indicating the presence of amorphous/poorly-crystalline Mn oxides with a potential to isotopically fractionate Tl toward the "heavier" fraction. The Tl isotope signature in the bottom horizon probably reflects the composition of a local geochemical anomaly of Tl. However, a portion of mobile (anthropogenic) Tl with negative ɛ205Tl moving downwards in the soil profile cannot be neglected. In general, there is no detailed information about the biogeochemical cycling and variations of Tl isotopes in areas affected by significant anthropogenic inputs of the metal (e.g., coal burning and primary metallurgy); the questions of the degree to which the factors such as soil (and sediment) chemistry, mineralogy, local biota, and pollution source control Tl isotope fractionation remain unresolved. Therefore, further research on the topic is needed before any principal conclusions will be made.

  1. Legacy Chlordane in Soils from Housing Areas Treated with Organochlorine Pesticides

    DTIC Science & Technology

    2009-12-01

    indicated that chlordane did not adversely affect seed germination, root length, or shoot length. The plants did uptake chlordane from the soil and...translocate it to the shoots. The presence of chlordane did not affect earthworm mortality, but did affect weight loss and reproductive success...exposure, or inhalation of vapors. Chlordane primarily affects the nervous and digestive systems causing headaches, irritability, confusion and vision

  2. Soil Moisture Controls the Thermal Habitat of Active Layer Soils in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Adams, B. J.

    2018-01-01

    Antarctic soil ecosystems are strongly controlled by abiotic habitat variables. Regional climate change in the McMurdo Dry Valleys is expected to cause warming over the next century, leading to an increase in frequency of freeze-thaw cycling in the soil habitat. Previous studies show that physiological stress associated with freeze-thaw cycling adversely affects invertebrate populations by decreasing abundance and positively selecting for larger body sizes. However, it remains unclear whether or not climate warming will indeed enhance the frequency of annual freeze-thaw cycling and associated physiological stresses. This research quantifies the frequency, rate, and spatial heterogeneity of active layer freezing to better understand how regional climate change may affect active layer soil thermodynamics, and, in turn, affect soil macroinvertebrate communities. Shallow active layer temperature, specific conductance, and soil moisture were observed along natural wetness gradients. Field observations show that the frequency and rate of freeze events are nonlinearly related to freezable soil moisture (θf). Over a 2 year period, soils at θf < 0.080 m3/m3 experienced between 15 and 35 freeze events and froze rapidly compared to soils with θf > 0.080 m3/m3, which experienced between 2 and 6 freeze events and froze more gradually. A numerical soil thermodynamic model is able to simulate observed freezing rates across a range of θf, reinforcing a well-known causal relationship between soil moisture and active layer freezing dynamics. Findings show that slight increases in soil moisture can potentially offset the effect of climate warming on exacerbating soil freeze-thaw cycling.

  3. How grazing affects soil quality of soils formed in the glaciated northeastern United States.

    PubMed

    Cox, Alissa H; Amador, José A

    2018-02-21

    Historically, much of the New England landscape was converted to pasture for grazing animals and harvesting hay. Both consumer demand for local sustainably produced food, and the number of small farms is increasing in RI, highlighting the importance of characterizing the effects livestock have on the quality of pasture soils. To assess how livestock affect pasture on Charlton and Canton soils series in RI, we examined soil quality in farms raising beef cattle (Bos taurus), sheep (Ovis aries), and horses (Equus ferus caballus), using hayed pastures as a control. We sampled three pastures per livestock type and three control hayed pastures in May, August, and October 2012. Hay fields and pastures grazed by sheep had statistically significant (P < 0.001) better soil quality than pastures grazed by beef cattle or horses. This was driven by parameters including penetration resistance, bulk density, aggregate stability, and infiltration rate. Hayfields also showed higher soil quality measures than grazed pastures for organic matter content and active C. In addition, significant differences in nitrate and phosphate concentrations were observed among livestock types. Respiration and infiltration rates, pH, and ammonium concentrations, on the other hand, did not differ significantly among pasture types. When all soil quality indicators in this study were weighed equally, soil quality scores followed the order: hay > sheep > beef cattle > horses. The results of our study provide baseline data on the effect different types of livestock have on pasture soil quality in RI, which may be useful in making sound land use and agricultural management decisions.

  4. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    PubMed

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  5. Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.

    2016-12-01

    Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.

  6. Is there evidence that recent consolidation in the health insurance industry has adversely affected premiums?

    PubMed

    Kopit, William G

    2004-01-01

    James Robinson suggests that recent consolidation in the insurance market has been a cause of higher health insurance prices (premiums). Although the recent consolidation among health insurers and rising premiums are indisputable, it is unlikely that consolidation has had any adverse effect on premiums nationwide, and Robinson provides no data that suggest otherwise. Specifically, he does not present data showing an increase in concentration in any relevant market during the past few years, let alone any resulting increase in premiums. Health insurance consolidation in certain local markets could adversely affect premiums, but it seems clear that it is not a major national antitrust issue.

  7. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  8. Microbial biodiversity in arable soils is affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-04-01

    The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.

  9. How internal drainage affects evaporation dynamics from soil surfaces ?

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  10. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  11. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, John A.; David Kinner,; Xavier Úbeda,

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(θi), as a function of initial soil moisture content, θi, ranging from extremely dry conditions (θi < 0.02 cm3 cm−3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(θi).Values of Kf ranged from 4.5 × 10−3 to 53 × 10−3 cm s−1 for ash; from 0.93 × 10−3 to 130 × 10−3 cm s−1 for reference soils; and from 0.86 × 10−3 to 3.0 × 10−3 cm s−1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(θi) could be represented by an empirical non-linear function of θi with a sorptivity maximum of 0.18–0.20 cm s−0.5, between 0.03 and 0.08 cm3 cm−3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(θi) for rainfall–runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(θi) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly

  12. Soil pollution by petroleum products, III. Kerosene stability in soil columns as affected by volatilization

    NASA Astrophysics Data System (ADS)

    Galin, Ts.; Gerstl, Z.; Yaron, B.

    1990-05-01

    The stability of kerosene in soils as affected by volatization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50-day period. Seven major compounds ranging between C 9 and C 15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions — air-dairy soil and no subsequent addition of water—excluded both biodegradative and leaching. losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (>4.5 μm) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.

  13. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Spectroscopic analyses of soil samples outside Nile Delta of Egypt

    NASA Astrophysics Data System (ADS)

    Fakhry, Ahmed; Osman, Osama; Ezzat, Hend; Ibrahim, Medhat

    2016-11-01

    Soil in Egypt, especially around Delta is exposed to various pollutants which are affecting adversely soil fertility and stability. Humic Acids (HA) as a main part of soil organic matter (SOM) represent the heart of the interaction process of inorganic pollutants with soil. Consequently, Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonances (NMR) were used to characterize soil, sediment and extracted HA. Resulting data confirmed that the HA was responsible for transporting inorganic pollutants from surface to subsurface reaching the ground water, which may represent a high risk on public health. The transport process is coming as carboxyl in surface soil changed into metal carboxylate then transferred into the carboxyl in bottom soil.

  15. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  16. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  17. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  18. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  19. Role of soil microbial processes in integrated pest management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenicmore » microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.« less

  20. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    PubMed

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  1. Effects of land preparation and artificial vegetation on soil moisture variation in a loess hilly catchment of China

    NASA Astrophysics Data System (ADS)

    Feng, Tianjiao; Wei, Wei; Chen, Liding; Yu, Yang

    2017-04-01

    In the dryland regions, soil moisture is the main factor to determine vegetation growth and ecosystem restoration. Land preparation and vegetation restoration are the principal means for improving soil water content(SWC). Thus, it is important to analyze the coupling role of these two means on soil moisture. In this study, soil moisture were monitored at a semi-arid loess hilly catchment of China, during the growing season of 2014 and 2015. Four different land preparation methods (level ditches, fish-scale pits, adverse grade tablelands and level benches)and vegetation types(Prunus armeniaca, Platycladus orientalis, Platycladus orientalis and Caragana microphylla) were included in the experimental design. Our results showed that: (1)Soil moisture content differed across land preparation types, which is higher for fish-scale pits and decreased in the order of level ditches and adverse grade tablelands.(2) Rainwater harvesting capacity of fish-scale pits is greater than adverse grade tablelands. However the water holding capacity is much higher at soils prepared with the adverse grade tablelands method than the ones prepared by fish-scale pits methods. (3) When land preparation method is similar, vegetation play a key role in soil moisture variation. For example, the mean soil moisture under a Platycladus orientalis field is 26.72% higher than a Pinus tabulaeformis field, with the same land preparation methods. (4)Soil moisture in deeper soil layers is more affected by changes in the vegetation cover while soil moisture in the shallower layers is more affected by the variation in the land preparation methods. Therefore, we suggest that vegetation types such as: Platycladus orientalisor as well as soil preparation methods such as level ditch and fish-scale pit are the most appropriate vegetation cover and land preparation methods for landscape restoration in semi-arid loess hilly area. This conclusion was made based on the vegetation type and land preparation with the

  2. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    NASA Astrophysics Data System (ADS)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  3. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    PubMed

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (P<0.01) while it only had a significant effect on S W and S E for the artificial soil (P<0.01). (3) The artificial soil had a greater WRI and β than the natural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Factors affecting HCH and DDT in soils around watersheds of Beijing reservoirs, China.

    PubMed

    Hu, Wenyou; Lu, Yonglong; Wang, Tieyu; Luo, Wei; Zhang, Xiang; Geng, Jing; Wang, Guang; Shi, Yajuan; Jiao, Wentao; Chen, Chunli

    2010-04-01

    The factors that influence the dynamics of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in soils around the watersheds of Beijing reservoirs were examined. Compared with other studies on HCH and DDT in soils and established reference values, the concentrations of HCH and DDT in soils around our study area were relatively low. The relationships between HCH and DDT concentrations and land use, soil texture, and soil properties were discussed. HCH and DDT concentrations were higher in arable soils than those in uncultivated fallow soils. Although land use was the most important factor affecting HCH and DDT residues, additional factors such as soil texture and soil total organic carbon were also involved in pesticide retention in soils. The results indicated that the historical agricultural applications of HCH and DDT were the major source of their residues. Atmospheric deposition, as well as long-distance transportation and inputs from surrounding weathered agricultural soils may also serve as important sources of HCH and DDT residues in the watersheds.

  5. Potential Adverse Effects of Violent Video Gaming: Interpersonal- Affective Traits Are Rather Impaired Than Disinhibition in Young Adults.

    PubMed

    Kimmig, Ann-Christin S; Andringa, Gerda; Derntl, Birgit

    2018-01-01

    The increasing trend of mass shootings, which were associated with excessive use of violent video games, fueled the debate of possible effects violent video games may have on adolescents and young adults. The aim of this study was to investigate the possible link between violent video gaming effects and the disposition of adverse behavior traits such as interpersonal-affective deficits and disinhibition. Data of 167 young adults, collected by an online questionnaire battery, were analyzed for lifetime video game exposure differences (i.e., non-gamers, non-violent video gamers, stopped violent video game users, and ongoing violent video game users) as well as for recent exposure effects on adverse behavior traits (Levenson's Psychopathy Scale), while controlling for other potentially confounding lifestyle factors. While interpersonal-affective deficits were significantly higher in participants with ongoing violent video game exposure compared to non-gamers and non-violent video gamers, disinhibition was significantly higher in both - stopped and ongoing - violent video game exposure groups compared to non-gamers. Recent violent video game exposure was a stronger predictor for interpersonal-affective deficits, but was also significant for disinhibition. Considering that we observed small to medium effects in a sample of young adults with little to moderate use of violent video games highlights the importance of further investigating the potential adverse effects of violent video games on quality of social relationships.

  6. Potential Adverse Effects of Violent Video Gaming: Interpersonal- Affective Traits Are Rather Impaired Than Disinhibition in Young Adults

    PubMed Central

    Kimmig, Ann-Christin S.; Andringa, Gerda; Derntl, Birgit

    2018-01-01

    The increasing trend of mass shootings, which were associated with excessive use of violent video games, fueled the debate of possible effects violent video games may have on adolescents and young adults. The aim of this study was to investigate the possible link between violent video gaming effects and the disposition of adverse behavior traits such as interpersonal-affective deficits and disinhibition. Data of 167 young adults, collected by an online questionnaire battery, were analyzed for lifetime video game exposure differences (i.e., non-gamers, non-violent video gamers, stopped violent video game users, and ongoing violent video game users) as well as for recent exposure effects on adverse behavior traits (Levenson’s Psychopathy Scale), while controlling for other potentially confounding lifestyle factors. While interpersonal-affective deficits were significantly higher in participants with ongoing violent video game exposure compared to non-gamers and non-violent video gamers, disinhibition was significantly higher in both – stopped and ongoing – violent video game exposure groups compared to non-gamers. Recent violent video game exposure was a stronger predictor for interpersonal-affective deficits, but was also significant for disinhibition. Considering that we observed small to medium effects in a sample of young adults with little to moderate use of violent video games highlights the importance of further investigating the potential adverse effects of violent video games on quality of social relationships. PMID:29867689

  7. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  9. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke

  10. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  11. Antibiotic effects on microbial community characteristics in soils under conservation management practices

    USDA-ARS?s Scientific Manuscript database

    Veterinary antibiotics (VAs) administered to livestock are introduced to agroecosystems via land application of manure, posing a potential human and environmental health risk. These Antibiotics may adversely affect soil microbial communities. The objectives of this research were to investigate poten...

  12. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  13. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    PubMed

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  15. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  16. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  17. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks

    USDA-ARS?s Scientific Manuscript database

    Rootstocks are the foundation of a healthy and productive orchard. They are the interface between the scion and the soil, providing anchorage, water, nutrients, and disease protection that ultimately affect the productivity and sustainability of the orchard. Recent advances in the science of genet...

  18. Theoretical considerations of soil retention. [dirtying of solar energy devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1980-01-01

    The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.

  19. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  20. Hepatitis C virus adversely affects quality of life.

    PubMed

    Cillo, Umberto; Amodio, Piero; Ronco, Claudio; Soni, Sachin S; Zanus, Giacomo; Minazzato, Lina; Salari, Annalisa; Neri, Daniele; Bombonato, Giancarlo; Schiff, Sami; Bianco, Tonino

    2011-01-01

    Chronic liver disease secondary to hepatitis C virus (HCV) infection is a common clinical problem. HCV is likely to adversely affect the quality of life (QoL) of the patient. This effect is said to be disproportionate to the severity of the disease. The aim of our study was to evaluate QoL in HCV-positive patients focusing both on health status and subjective satisfaction. Twenty-four patients with combined HCV and alcoholic liver disease (ETOH-HCV) were enrolled in the study. We adopted two generic tools: SF-36 (a health status questionnaire) and SAT-P (a satisfaction profile) for psychological assessment of the patients. SF-36 and SAT-P scores of ETOH-HCV patients were compared with scores of 23 patients with alcoholic liver disease (ETOH). The scores obtained from the study groups were also compared with the reference scores of the healthy Italian population. Both the groups were comparable with respect to age, histological and clinical severity of liver disease (as assessed by MELD and Child Pugh scores). Patients with ETOH-HCV scored less in the vitality and role emotional status domains of the SF-36 scores and the psychological function, social function and free time domains of the satisfaction profile. These results show a significant impact of HCV infection on health status and subjective satisfaction. Copyright © 2011 S. Karger AG, Basel.

  1. Soil and surface layer type affect non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  2. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    PubMed

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.

    PubMed

    Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir

    2017-04-01

    Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

  4. Assessment of nitrogen ceilings for Dutch agricultural soils to avoid adverse environmental impacts.

    PubMed

    de Vries, W; Kros, H; Oenema, O; Erisman, J W

    2001-11-09

    In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.

  5. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  6. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  7. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  8. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  9. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  10. Feasibility trial of a scalable psychological intervention for women affected by urban adversity and gender-based violence in Nairobi.

    PubMed

    Dawson, Katie S; Schafer, Alison; Anjuri, Dorothy; Ndogoni, Lincoln; Musyoki, Caroline; Sijbrandij, Marit; van Ommeren, Mark; Bryant, Richard A

    2016-11-18

    Living in conditions of chronic adversity renders many women more vulnerable to experiencing gender-based violence (GBV). In addition to GBV's physical and social consequences, the psychological effects can be pervasive. Access to evidence-based psychological interventions that seek to support the mental health of women affected by such adversity is rare in low- and middle-income countries. The current study evaluates a brief evidence-informed psychological intervention developed by the World Health Organization for adults impacted by adversity (Problem Management Plus; PM+). A feasibility randomised control trial (RCT) was conducted to inform a fully powered trial. Community health workers delivered the intervention to 70 women residing in three peri-urban settings in Nairobi, Kenya. Women, among whom 80% were survivors of GBV (N = 56), were randomised to receive five sessions of either PM+ (n = 35) by community health workers or enhanced treatment as usual (ETAU; n = 35). PM+ was not associated with any adverse events. Although the study was not powered to identify effects and accordingly did not identify effects on the primary outcome measure of general psychological distress, women survivors of adversity, including GBV, who received PM+ displayed greater reductions in posttraumatic stress disorder symptoms following treatment than those receiving ETAU. This feasibility study suggests that PM+ delivered by lay health workers is an acceptable and safe intervention to reach women experiencing common mental disorders and be inclusive for those affected by GBV and can be studied in a RCT in this setting. The study sets the stage for a fully powered, definitive controlled trial to assess this potentially effective intervention. ACTRN12614001291673 , 10/12/2014, retrospectively registered during the recruitment phase.

  11. Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents.

    PubMed

    Nóbrega, G N; Otero, X L; Macías, F; Ferreira, T O

    2014-09-01

    Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.

  12. Effects of Wastewater from Oil Exploration on Soil Mesofauna.

    PubMed

    Ferreira, Raimundo N C; Weber, Olmar B; Correia, Maria E F; Benazzi-Ikeda, Eloísa S; Scoriza, Rafael N; Mesquita, Antonio L M

    2015-12-01

    Wastewater from oil exploration may contain substances that can alter the diversity of soil organisms. This study evaluated whether produced water treated by filtration or reverse osmosis and glutaraldehyde from reverse osmosis treatments negatively affected the mesofauna in an irrigated area. In the field, irrigation with produced water treated by reverse osmosis and filtration influenced Hymenoptera and Cosmochthonius sp., while Entomobryomorpha springtails were affected only by the reverse osmosis water. In the ecotoxicological tests, reproduction in the springtail Folsomia candida was inhibited by the reverse osmosis treatment, while reproduction in the earthworm Enchytraeus crypticus was affected by both water treatments. Although glutaraldehyde did not affect the survival of F. candida, the reproduction was inhibited (EC50 = 44.4 mg/L). No adverse effect of glutaraldehyde was observed on reproduction or survival of E. crypticus. These results indicate that produced water, when used in irrigated agriculture, may affect soil functional mesofauna.

  13. Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of Populus

    Treesearch

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2005-01-01

    In addition to genetic control, responses to environmental stimuli affect the success of rooting. Our objectives were to: 1) assess the variation in rooting ability among 21 Populus clones grown under varying soil temperatures and amounts of precipitation and 2) identify combinations of soil temperature and precipitation that promote rooting. The...

  14. Do root traits affect a plant's ability to influence soil erosion?

    NASA Astrophysics Data System (ADS)

    Burak, Emma; Quinton, John; Dodd, Ian

    2017-04-01

    With the ever increasing global population the agricultural sector is put under increasing pressure. This pressure is imposed on the soil and results in wide spread degradation that ultimately decreases productivity. Soil erosion is one of the main features of this degradation. Much focus has been put on the ability of plant canopies to mitigate soil erosion but little research has assessed the impact of below ground biomass. It is understood that woody roots reinforce slopes and lateral roots are believed to support the soil surface but the impact of root hairs is completely unknown. This study used two root hairless mutants one of barley (brb) and one of maize (rth3) along with their wild types (WT) to assess the capacity of different root traits to bind soil particles to the root system, creating a physical coating called a rhizosheath. The two genotypes were grown in a clay loam and periodically harvested during vegetative development. Rhizosheath weight was used to measure the ability of the root system to effectively bind soil particles, while root length was measured to standardise the results between genotypes. Overall, rhizosheath weight increased linearly with root length. When compared to WT plants of the same age, the root length of brb was, on average, 37% greater, suggesting that they compensated for the absence of root hairs by proliferating lateral roots. However, WT plants were far superior at binding soil particles as the rhizosheath weights were 5 fold greater, when expressed per unit root length. Thus root hairs are more important in binding soil particles than lateral roots. Whether these genotypic differences in root traits affect soil erosion will be assessed using mesocosm and field trials. Keywords: Soil erosion, Roots, Barley, Rhizosheath

  15. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  16. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China.

    PubMed

    Gao, Zeyong; Niu, Fujun; Wang, Yibo; Luo, Jing; Lin, Zhanju

    2017-01-01

    The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (S L ) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd -1 ) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau. Copyright © 2016 Elsevier B.V. All

  17. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2018-04-30

    Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    PubMed

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  20. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    PubMed Central

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  1. Land preparation techniques and vegetation type commonly determine soil conditions in a typical hilly watershed, Loess Plateau of China.

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Wei, Wei; Chen, Liding; Feng, Tianjiao; Qin, Wei

    2017-04-01

    Soil is a key component of the earth, it plays important role in regulating the chemical, hydrological and biological cycles. Land preparation techniques (e.g., leveled ditches, leveled benches, adversely graded tableland and fish-scale pits) is one of the most effective ecological engineering practices to reduce water erosion. Land preparation greatly affects soil physicochemical properties, soil moisture variation, runoff and sediment prevention. This study investigated the influence of different land preparation techniques on soil conditions, runoff and erosion during vegetation restoration, which remained poorly understand to date. Soil samples were collected from depths of 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm, in the typical hilly watershed of Dingxi City, Loess Plateau. Soil bulk density (BD), soil organic matter (SOM) and total nitrogen (TN) were determined for different land preparations and vegetation type (Caragana korshinskii, Platycladus orientalis, Pinus tabulaeformis and Prunus armeniaca) combinations. Fractal theory was used to analyze the soil particle size distribution (PSD). Redundancy analyses were conducted to distinguish the relationships between soil conditions and the factors influencing them (land preparation and vegetation). The analysis of runoff coefficient and erosion rates were calculated considering the monitoring time. The results indicated that: 1) the effect of land preparation on soil properties and PSD varies with soil depth. For each land preparation category, SOM and TN values showed a significant difference between the top soil layer and the underlying soil depth. 2) The 20 cm soil layer was a boundary that distinguished the explanatory factors, with land preparation and vegetation type as the controlling factors in the 0-20 cm and 20-100 cm soil layers, respectively. Land preparation and vegetation significantly affected soil properties in the surface soil layer, while land preparation (41.6%) was the

  2. 7 CFR 11.5 - Informal review of adverse decisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Soil Conservation and Domestic Allotment Act, 16 U.S.C. 590h(b)(5), before NAD will accept an appeal of... NAD under § 11.6(b). (b) Optional informal review. With respect to adverse decisions issued at the... agency informal review of an adverse decision of that agency prior to appealing to NAD. Procedures for...

  3. Factors Affecting Performance of Soil Termiticides

    USDA-ARS?s Scientific Manuscript database

    Applying liquid insecticide to soil under and around structures is one of the most widely used methods of subterranean termite prevention and control. Failure of soil termiticide treatments is often related to factors other than the active ingredient. Efficacy and longevity of soil treatments vary g...

  4. Adverse childhood experiences and health anxiety in adulthood.

    PubMed

    Reiser, Sarah J; McMillan, Katherine A; Wright, Kristi D; Asmundson, Gordon J G

    2014-03-01

    Childhood experiences are thought to predispose a person to the development of health anxiety later in life. However, there is a lack of research investigating the influence of specific adverse experiences (e.g., childhood abuse, household dysfunction) on this condition. The current study examined the cumulative influence of multiple types of childhood adversities on health anxiety in adulthood. Adults 18-59 years of age (N=264) completed a battery of measures to assess adverse childhood experiences, health anxiety, and associated constructs (i.e., negative affect and trait anxiety). Significant associations were observed between adverse childhood experiences, health anxiety, and associated constructs. Hierarchical multiple regression analysis indicted that adverse childhood experiences were predictive of health anxiety in adulthood; however, the unique contribution of these experience were no longer significant following the inclusion of the other variables of interest. Subsequently, mediation analyses indicated that both negative affect and trait anxiety independently mediated the relationship between adverse childhood experiences and health anxiety in adulthood. Increased exposure to adverse childhood experiences is associated with higher levels of health anxiety in adulthood; this relationship is mediated through negative affect and trait anxiety. Findings support the long-term negative impact of cumulative adverse childhood experiences and emphasize the importance of addressing negative affect and trait anxiety in efforts to prevent and treat health anxiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance

    USGS Publications Warehouse

    Means, Mary M.; Ahn, Changwoo; Noe, Gregory

    2017-01-01

    The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1–4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.

  6. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  7. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  8. Structured vs. Unstructured: Factors Affecting Adverse Drug Reaction Documentation in an EMR Repository

    PubMed Central

    Skentzos, Stephen; Shubina, Maria; Plutzky, Jorge; Turchin, Alexander

    2011-01-01

    Adverse reactions to medications to which the patient was known to be intolerant are common. Electronic decision support can prevent them but only if history of adverse reactions to medications is recorded in structured format. We have conducted a retrospective study of 31,531 patients with adverse reactions to statins documented in the notes, as identified with natural language processing. The software identified statin adverse reactions with sensitivity of 86.5% and precision of 91.9%. Only 9020 of these patients had an adverse reaction to a statin recorded in structured format. In multivariable analysis the strongest predictor of structured documentation was utilization of EMR functionality that integrated the medication list with the structured medication adverse reaction repository (odds ratio 48.6, p < 0.0001). Integration of information flow between EMR modules can help improve documentation and potentially prevent adverse drug events. PMID:22195188

  9. Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA.

    PubMed

    Pelletier, Marguerite; Ho, Kay; Cantwell, Mark; Perron, Monique; Rocha, Kenneth; Burgess, Robert M; Johnson, Roxanne; Perez, Kenneth; Cardin, John; Charpentier, Michael A

    2017-02-01

    Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC. © 2016 SETAC.

  10. Salvage logging effect on soil properties in a fire-affected Mediterranean forest: a two years monitoring research

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, Jorge; Moltó, Jorge; Arcenegui, Vicky; García-Orenes, Fuensanta; Chrenkovà, Katerina; Torres, Pilar; Jara-Navarro, Ana B.; Díaz, Gisela; Izquierdo, Ezequiel

    2015-04-01

    In the Mediterranean countries, forest fires are common and must be considered as an ecological factor, but changes in land use, especially in the last five decades have provoked a modification in their natural regime. Moreover, post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging is a traditional management in most fire-affected areas. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation make this management potentially very agresive to soil, and therefore to the ecosystem. Very little research has been done to study how this treatment could affect soil health. In this research we show 2 years of monitoring of some soil properties in an area affected by a forest fire, where some months later this treatment was applied. The study area is located in 'Sierra de Mariola Natural Park' in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment consisting in a complete extraction of the burned wood using heavy machinery was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, and then used as control (C) for comparison. Soil samplings were done immediately after treatment and every 6 months. Some soil properties were analysed, including soil organic matter (SOM) content, basal soil respiration (BSR), microbial biomass carbon (MBC), bulk density (BD), soil water repellency (SWR), aggregate stability (AS), field capacity, nitrogen, etc. After two years of

  11. Can aircraft noise less than or equal 115 to dBA adversely affect reproductive outcome in USAF women?

    NASA Astrophysics Data System (ADS)

    Brubaker, P. A.

    1985-06-01

    It has been suggested, mainly through animal studies, that exposure to high noise levels may be associated with lower birth weight, reduced gestational length and other adverse reproductive outcomes. Few studies have been done on humans to show this association. The Air Force employs pregnant women in areas where there is a high potential for exposure to high noise levels. This study proposes a method to determine if there is an association between high frequency noise levels or = 115 dBA and adverse reproductive outcomes through a review of records and self-administered questionnaires in a case-comparison design. Prevelance rates will be calculated and a multiple logistic regression analysis computed for the independent variables that can affect reproduction.

  12. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  13. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  14. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  15. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    USDA-ARS?s Scientific Manuscript database

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  16. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  17. Microbial community composition affects soil fungistasis.

    PubMed

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  18. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  19. Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material.

    PubMed

    Zaller, Johann G; König, Nina; Tiefenbacher, Alexandra; Muraoka, Yoko; Querner, Pascal; Ratzenböck, Andreas; Bonkowski, Michael; Koller, Robert

    2016-08-17

    Seed dressing with pesticides is widely used to protect crop seeds from pest insects and fungal diseases. While there is mounting evidence that especially neonicotinoid seed dressings detrimentally affect insect pollinators, surprisingly little is known on potential side effects on soil biota. We hypothesized that soil organisms would be particularly susceptible to pesticide seed dressings as they get in direct contact with these chemicals. Using microcosms with field soil we investigated, whether seeds treated either with neonicotinoid insecticides or fungicides influence the activity and interaction of earthworms, collembola, protozoa and microorganisms. The full-factorial design consisted of the factor Seed dressing (control vs. insecticide vs. fungicide), Earthworm (no earthworms vs. addition Lumbricus terrestris L.) and collembola (no collembola vs. addition Sinella curviseta Brook). We used commercially available wheat seed material (Triticum aesticum L. cf. Lukullus) at a recommended seeding density of 367 m(-2). Seed dressings (particularly fungicides) increased collembola surface activity, increased the number of protozoa and reduced plant decomposition rate but did not affect earthworm activity. Seed dressings had no influence on wheat growth. Earthworms interactively affected the influence of seed dressings on collembola activity, whereas collembola increased earthworm surface activity but reduced soil basal respiration. Earthworms also decreased wheat growth, reduced soil basal respiration and microbial biomass but increased soil water content and electrical conductivity. The reported non-target effects of seed dressings and their interactions with soil organisms are remarkable because they were observed after a one-time application of only 18 pesticide treated seeds per experimental pot. Because of the increasing use of seed dressing in agriculture and the fundamental role of soil organisms in agroecosystems these ecological interactions should

  20. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments.

    PubMed

    Lindsey, Alexander J; Kilgore, Jason S

    2013-08-01

    Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  1. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    PubMed Central

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C. B.; Jacobsen, Carsten S.

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha-1. We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha-1 to alkaline at 167 t ha-1. Bacterial numbers significantly increased up to a wood ash dose of 22 t ha-1 followed by significant decrease at 167 t ha-1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha-1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha-1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha-1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly

  2. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    PubMed

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be

  3. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Understanding Dynamic Soil Water Repellency and its Hydrological Implications

    NASA Astrophysics Data System (ADS)

    Beatty, S. M.; Smith, J. E.

    2009-05-01

    The adverse effects of water repellent soils on vadose zone hydrology are being increasingly identified worldwide in both rural and urban landscapes. Among the affected landscapes are agricultural fields, forests, effluent application sites, golf greens, wetlands, and wildfire sites. In spite of cross-discipline research efforts put forth in recent years, understanding of fundamental parameters controlling soil water behaviour in these systems is lacking. This is due, in part, to inherent complexities of water repellent soil systems and logistical shortcomings of methods commonly used by researchers in-situ and in the lab. As a result, modeling flow in these systems has further proven to be a difficult task. The objectives of our study were 1) to systematically measure and quantify water infiltration and distribution in dynamic water repellent systems and 2) to identify fundamental hydraulic behaviours that lead to the expression of changes in soil water repellency. To achieve this, we combined techniques to elucidate soil- water interactions at a post-wildfire site. Field tests and subsequent lab work reveal essential hydrological information on fire-affected water repellent soils at variable scales and under different burn conditions. Through the use of traditional and newer techniques, our work shows unique and previously unreported behaviour of soil water in these systems. We also address limitations of current field methods used to study repellency and associated infiltration behaviours.

  5. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  6. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami.

    PubMed

    Hiraoka, Satoshi; Machiyama, Asako; Ijichi, Minoru; Inoue, Kentaro; Oshima, Kenshiro; Hattori, Masahira; Yoshizawa, Susumu; Kogure, Kazuhiro; Iwasaki, Wataru

    2016-01-14

    The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.

  7. How mycorrhizal plant-soil interactions affect formation and degradation of soil organic matter in boreal forest

    NASA Astrophysics Data System (ADS)

    Adamczyk, Bartosz; Sietiö, Outi-Maaria; Ahvenainen, Anu; Strakova, Petra; Heinonsalo, Jussi

    2017-04-01

    Forest soil organic matter (SOM) contains more carbon (C) than all the flora and atmosphere combined and that is why C release as CO2 from SOM may have drastic consequences for climate globally. SOM is enormous C sink which has the potential to become C source (IPCC 2013). To predict long-term soil C storage and climate feedbacks we need profound understanding of dynamics and drivers of SOM decomposition. Ecosystem processes associated with C cycle are constrained by C and N interactions. At the level of ecosystem boreal forest is N-limited, as most of soil N is stored in recalcitrant organic form bound or complexed with soil compounds such as polyphenols. To improve N uptake, also from less available pools, plant species form symbioses with mycorrhizal fungi able to degrade recalcitrant N and sharing it with plants. As a feedback, plants provide to fungal symbiont assimilated C. Climate change through elevated CO2 level led to increases in photosynthesis which enhance the C flow belowground accelerating N uptake by plants also from more recalcitrant N pools. Increased SOM decomposition would possibly result also in increase of CO2 production from soil. Our field experiment was conducted at Hyytiälä forestry field station (SMEAR II, University of Helsinki) located in southern Finland (61°84'N, 24°26'E). In this 3-year long experiment, we discriminated SOM decomposition with different mesh bags filled with humus. These mesh bags allowed for the entrance of mycorrhiza and fine roots (1mm mesh size), or only mycorrhiza (50µm), or both were excluded (1µm). We followed changes in SOM content, N pools and enzymatic activity. The results suggests that plant-mycorrhiza interactions increase recalcitrant pool of organic N in SOM due to root-derived tannins, but mycorrhizal plants have still access to this N. Although mycorrhizal plant-soil interaction seems to strongly affect the formation of recalcitrant SOM, the net decomposition is not hindered by these chemical

  8. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  9. Soil contamination with olive mill wastes negatively affects microbial communities, invertebrates and plants.

    PubMed

    Hentati, Olfa; Oliveira, Vanessa; Sena, Clara; Bouji, Mohamed Seddik Mahmoud; Wali, Ahmed; Ksibi, Mohamed

    2016-10-01

    The aim of the present study was to evaluate the ecotoxicological effects of olive mill waste (OMW) on soil habitat function. To this end, soil samples from OMW evaporating ponds (S1-S5) located at Agareb (Sfax, Tunisia) and a reference soil (R) were collected. The effects of OMW on the springtails Folsomia candida (F.c.), the earthworm species Eisenia fetida (E.f.), Enchytraeus crypticus (E.c.) reproduction and on the soil living microbial communities were investigated. E.f. reproduction and tomato growth assays were performed in the reference soil amended with 0.43 to 7.60 % (w OMW /w ref-soil ) mass ratios of dried OMW. Changes in microbial function diversity were explored using sole-carbon-source utilization profiles (BiologEcoPlates ® ). E.f. absolutely avoided (100 %) the most polluted soil (S4) while the F.c. moderately avoided (37.5 ± 7.5 %) the same soil. E.c. reproduction in S4 was significantly lower than in S1, S2, S3 and S5, and was the highest in R soil. Estimated effect concentration EC 50 for juveniles' production by E.f., and for tomato fresh weight and chlorophyll content were 0.138, 0.6 and 1.13 %, respectively. Community level physiological profiles (CLPPs) were remarkably different in R and S4 and a higher similarity was observed between soils S1, S2, S3 and S5. Principal component analysis (PCA) revealed that differences between soil microbial functional diversity were mainly due to high polyphenol concentrations, while the salinity negatively affected E.c. reproduction in OMW contaminated soils. These results clearly reflect the high toxicity of dried OMW when added to agricultural soils, causing severe threats to terrestrial ecosystem functions and services provided by invertebrates and microbial communities.

  10. Advance Care Planning Does Not Adversely Affect Hope or Anxiety Among Patients With Advanced Cancer.

    PubMed

    Green, Michael J; Schubart, Jane R; Whitehead, Megan M; Farace, Elana; Lehman, Erik; Levi, Benjamin H

    2015-06-01

    Many physicians avoid advance care planning (ACP) discussions because they worry such conversations will lead to psychological distress. To investigate whether engaging in ACP using online planning tools adversely affects hope, hopelessness, or anxiety among patients with advanced cancer. Patients with advanced cancer and an estimated survival of two years or less (Intervention group) and a Control group were recruited at a tertiary care academic medical center (2007-2012) to engage in ACP using an online decision aid ("Making Your Wishes Known"). Pre/post and between-group comparisons were made, including hope (Herth Hope Index), hopelessness (Beck Hopelessness Scale), and anxiety (State Trait Anxiety Inventory). Secondary outcomes included ACP knowledge, self-determination, and satisfaction. A total of 200 individuals completed the study. After engaging in ACP, there was no decline in hope or increase in hopelessness in either the Control or Intervention group. Anxiety was likewise unchanged in the Control group but decreased slightly in the Intervention group. Knowledge of ACP (% correct answers) increased in both the groups, but more so in the Intervention group (13% increase vs. 4%; P<0.01). Self-determination increased slightly in both groups, and satisfaction with the ACP process was greater (P<0.01) in the Intervention than Control group. Engaging in ACP with online planning tools increases knowledge without diminishing hope, increasing hopelessness, or inducing anxiety in patients with advanced cancer. Physicians need not avoid ACP out of concern for adversely affecting patients' psychological well-being. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  11. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    PubMed

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  12. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  13. Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.

    2017-12-01

    Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.

  14. Moderately haloalkaliphilic actinomycetes in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2009-12-01

    It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1-3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8-9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.

  15. Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils.

    PubMed

    Meers, Erik; Unamuno, Virginia; Vandegehuchte, Michiel; Vanbroekhoven, Karolien; Geebelen, Wouter; Samson, Roeland; Vangronsveld, Jaco; Diels, Ludo; Ruttens, Ann; Du Laing, Gijs; Tack, Filip

    2005-03-01

    Total metal content by itself is insufficient as a measure to indicate actual environmental risk. Understanding the mobility of heavy metals in the soil and their speciation in the soil solution is of great importance for accurately assessing environmental risks posed by these metals. In a first explorative study, the effects of general soil characteristics on Cd mobility were evaluated and expressed in the form of empirical formulations. The most important factors influencing mobility of Cd proved to be pH and total soil content. This may indicate that current legislation expressing the requirement for soil sanitation in Flanders (Belgium) as a function of total soil content, organic matter, and clay does not successfully reflect actual risks. Current legal frameworks focusing on total content, therefore, should be amended with criteria that are indicative of metal mobility and availability and are based on physicochemical soil properties. In addition, soil-solution speciation was performed using two independent software packages (Visual Minteq 2.23 and Windermere Humic Aqueous model VI [WHAM VI]). Both programs largely were in agreement in concern to Cd speciation in all 29 soils under study. Depending on soil type, free ion and the organically complexed forms were the most abundant species. Additional inorganic soluble species were sulfates and chlorides. Minor species in solution were in the form of nitrates, hydroxides, and carbonates, the relative importance of which was deemed insignificant in comparison to the four major species.

  16. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation

    PubMed Central

    Herring, Stephanie L.; Heitman, Joshua L.

    2010-01-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation. PMID:22736865

  17. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation.

    PubMed

    Herring, Stephanie L; Koenning, Stephen R; Heitman, Joshua L

    2010-12-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.

  18. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf

  19. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1994-01-01

    The measurement of concentrations of volatile species in soil gases has potential for use in geochemical exploration for concealed ore deposits and for monitoring of subsurface contaminants. However, the interpretation of anomalies in surficial gases can be difficult because soil-gas concentrations are dependent on both meteorological and environmental conditions.For this study, concentrations of He, CO2, O2 and N2 and meteorological conditions were monitored for 10–14 months at eight nonmineralized sites in both humid and dry environments. Gases were collected at 0.6–0.7-m depth at seven sites. At one site, gases were collected from 0.3-, 0.6-, 1.2-, and 2.0-m depths; diurnal monitoring studies were conducted at this site also. Rain and snowfall, soil and air temperatures, barometric pressure, and relative humidity were monitored at all the sites. The sand, silt and clay content, and the organic carbon content of surficial soil were measured at each site.Meteorological conditions generally affected He and CO2 concentrations in the same way at all the sites; however, these effects were modified by local environmental conditions. Both seasonal and diurnal concentration changes occurred. The most important seasonal concentration changes were related to rain and snowfall and soil and air temperatures. Seasonal changes tended to be larger then the diurnal changes, but both could be related to the same processes. Local conditions of soil type and organic content affected the amount of pore space and moisture present in the soil and therefore the soil-gas concentrations.

  20. Pyrene fate affected by humic acid amendment in soil slurry systems.

    PubMed

    Liang, Yanna; Sorensen, Darwin L; McLean, Joan E; Sims, Ronald C

    2008-09-10

    Humic acid (HA) has been found to affect the solubility, mineralization, and bound residue formation of polycyclic aromatic hydrocarbons (PAHs). However, most of the studies on the interaction between HA and PAH concentrated on one or two of the three phases. Few studies have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in soil systems for all three phases. In this study, three doses of standard Elliott soil HA (ESHA), 15, 187.5, and 1,875 mug ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems along with non-radiolabeled pyrene; 14C and 14CO2 were monitored for each system for a period of 120 days. The highest amendment dose significantly increased the 14C fraction in the aqueous phase within 24 h, but not after that time. Pyrene mineralization was significantly inhibited by the highest dose over the 120-day study. While organic solvent extractable 14C decreased with time in all systems, non-extractable or bound 14C was significantly enhanced with the highest dose of ESHA addition. Amendment of the highest dose of ESHA to pyrene contaminated soil was observed to have two major functions. The first was to mitigate CO2 production significantly by reducing 14CO2 from 14C pyrene mineralization. The second was to significantly increase stable bound 14C formation, which may serve as a remediation end point. Overall, this study demonstrated a practical approach for decontamination of PAH contaminated soil. This approach may be applicable to other organic contaminated environments where active bioremediation is taking place.

  1. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio

  2. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    PubMed Central

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli

    2014-01-01

    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  3. Experimental Study of Factors Affecting Soil Erodibility

    NASA Astrophysics Data System (ADS)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  4. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    PubMed

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  5. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  6. Grazing by reindeer in subarctic coniferous forests - how it is affecting three main greenhouse gas emissions from soils.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, strongly affecting Arctic lichen dominated ecosystems. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics, and little is known about reindeer and their impact on greenhouse gas (GHG) emissions between the soil and atmosphere. In a field experiment in northern boreal subarctic coniferous forests in Finnish Lapland, we investigated the influence of reindeer grazing on soil GHG (CO2, CH4 and N2O) fluxes, ground vegetation coverage and biomass, soil temperature and water content. The study was carried out in the growing season of the year 2014. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the non-grazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that grazing by reindeer significantly affected lichen and moss biomasses. Lichen biomass was significantly lower in the grazed. We also observed that when lichens were removed, mosses were quickly overtaking the areas and moss biomass was significantly higher in grazed areas compared to non-grazed areas. Our results indicated that grazing by reindeer in the northern boreal subarctic forests affects the GHG emissions from the forest floor and these emissions largely depend on changes in vegetation composition. Soil was always a source of CO2in our study, and soil CO2 emissions were significantly smaller in non-grazed areas compared to grazed areas. The soils in our study areas were CH4 sinks through entire measurement period, and grazed areas consumed

  7. Wood decay fungi restore essential calcium to acidic soils in northern New England

    Treesearch

    Walter C. Shortle; Kevin T. Smith

    2015-01-01

    The depletion of root-available calcium in northern forests soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost calcium to the rooting zone of trees. This study reports changes in concentrations of Ca, Mg, and K during decay of sapwood of...

  8. Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain.

    PubMed

    Kochergina, Yulia V; Udatný, Martin; Penížek, Vít; Mihaljevič, Martin

    2017-10-18

    Early efforts at remediation of contaminated soils involve overturn or removal of the uppermost soil horizons. We find that such disruption is counterproductive, as it actually increases the mobility of the heavy metals involved. In our study, we sought to replicate in a controlled manner this commonly used remediation strategy and measure Pb, Zn, Cu and As concentrations in all soil horizons-both prior to and 1 year after disruption by trenching. BCR analyses (sequential leaching) indicate that Pb is affected to the greatest degree and is most highly mobile; however, Zn and As remain insoluble, thus partially ameliorating the detrimental effect. Differences in vegetation cover (i.e. spruce vs. beech forest) have little influence on overall element mobility patterns. The Krušné hory (Ore Mts., Czech Republic) study area is one of the more heavily contaminated areas in Central Europe, and thus the results reported here are applicable to areas affected by brown-coal-burning power plants.

  9. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  10. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    PubMed Central

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  11. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Treesearch

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  12. Effects of mining-associated lead and zinc soil contamination on native floristic quality.

    PubMed

    Struckhoff, Matthew A; Stroh, Esther D; Grabner, Keith W

    2013-04-15

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident. Published by Elsevier Ltd.

  13. Effects of mining-associated lead and zinc soil contamination on native floristic quality

    USGS Publications Warehouse

    Struckhoff, Matthew A.; Stroh, Esther D.; Grabner, Keith W.

    2013-01-01

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident.

  14. Why Does Military Combat Experience Adversely Affect Marital Relations?

    ERIC Educational Resources Information Center

    Gimbel, Cynthia; Booth, Alan

    1994-01-01

    Describes investigation of ways in which combat decreases marital quality and stability. Results support three models: (1) factors propelling men into combat also make them poor marriage material; (2) combat causes problems that increase marital adversity; and (3) combat intensifies premilitary stress and antisocial behavior which then negatively…

  15. Potential of decaying wood to restore root-available base cations in depleted forest soils

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Jody Jellison; Jonathan S. Schilling

    2012-01-01

    The depletion of root-available Ca in northern forest soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost Ca. This study presents changes in concentration of Ca, Mg, and K in sapwood of red spruce (Picea rubens Sarg.),...

  16. Pesticide interactions with soil affected by olive mill wastewater (OMW): how strong and long-lasting is the OMW effect?

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda

    2017-04-01

    Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears

  17. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environmental Effects § 285.816 What must I do if environmental or other conditions adversely affect a cable... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do if environmental or other... EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety Management, Inspections, and...

  18. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.

    PubMed

    Feng, Mingbao; He, Qun; Shi, Jiaqi; Qin, Li; Zhang, Xuesheng; Sun, Ping; Wang, Zunyao

    2016-06-01

    In the present study, the toxic effect of decabromodiphenyl ether (BDE-209), an important brominated fire retardant, on soil was evaluated by amending with different concentrations (0 mg/kg, 1 mg/kg, 10 mg/kg, and 500 mg/kg dry wt) for 40 d. The activities of 3 soil enzymes (urease, catalase, and alkaline phosphatase) were measured as the principal assessment endpoints. Meanwhile, the effects of natural environmental factors, such as light conditions and soil biota, on BDE-209 intoxication were studied. For the latter, 30 earthworms (Metaphire guillelmi) with fully matured clitella or ryegrass (Lolium perenne) with fully matured leaves were exposed in soil amended with BDE-209. The activities of the soil enzymes were adversely affected by BDE-209, especially for the high-concentration treatments, with greater adverse effects in the dark than in the light. The presence of earthworms reduced toxicity to BDE-209, whereas ryegrass did not. The calculated integrated biomarker response index, which provides a general indicator of the health status of test species by combining different biomarker signals, further validated these findings. Moreover, the antioxidant status (oxidant-antioxidant balance) of these 2 biota was assessed. Results indicated that BDE-209 significantly affected the activities of antioxidant enzymes (superoxide dismutase and catalase) and enhanced the levels of malondialdehyde in both species. The present study may facilitate a better understanding of the toxicity of BDE-209 toward the soil environment. Environ Toxicol Chem 2016;35:1349-1357. © 2015 SETAC. © 2015 SETAC.

  19. Factors affecting emission of AITC and subsequent disease control efficacy of Brassica juncea seed meal soil amendment

    USDA-ARS?s Scientific Manuscript database

    Soil physical conditions demonstrably affected allyl isothiocyanate (AITC) emitted from Brassica juncea cv Pacific Gold seed meal (SM) amended soil. The AITC concentration detected increased with an increase in temperature from 10 oC to 30 oC. AITC concentration also increased with an increase in so...

  20. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  1. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  2. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  3. [Characteristics of soil respiration in Phyllostachys edulis forest in Wanmulin Natural Reserve and related affecting factors].

    PubMed

    Wang, Chao; Yang, Zhi-Jie; Chen, Guang-Shui; Fan, Yue-Xin; Liu, Qiang; Tian, Hao

    2011-05-01

    By using Li-Cor 8100 open soil carbon flux system, the dynamic changes of soil respiration rate in Phyllostachys edulis forest in Wanmulin Natural Reserve in Fujian Province of China were measured from January 2009 to December 2009, with the relationships between the dynamic changes and related affecting factors analyzed. The monthly variation of soil respiration rate in the forest presented a double peak curve, with the peaks appeared in June 2009 (6. 83 micromol x m(-2) x s(-1)) and September 2009 (5.59 micromol x m(-2) x s(-1)), and the seasonal variation of the soil respiration rate was significant, with the maximum in summer and the minimum in winter. The soil respiration rate had significant correlation with the soil temperature at depth 5 cm (P < 0.05), but no significant correlation with soil moisture (P > 0.05). The monthly variation of litter fall mass in the forest was in single peak shape, and there was a significantly positive correlation between the monthly litter fall mass and soil respiration rate (P < 0.05). Two-factor model of soil temperature and litter fall mass could explain 93.2% variation of the soil respiration rate.

  4. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  6. Land use change affects biogenic silica pool distribution in a subtropical soil toposequence

    NASA Astrophysics Data System (ADS)

    Unzué-Belmonte, Dácil; Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Cornelis, Jean-Thomas; Barão, Lúcia; Minella, Jean; Meire, Patrick; Struyf, Eric

    2017-07-01

    Land use change (deforestation) has several negative consequences for the soil system. It is known to increase erosion rates, which affect the distribution of elements in soils. In this context, the crucial nutrient Si has received little attention, especially in a tropical context. Therefore, we studied the effect of land conversion and erosion intensity on the biogenic silica pools in a subtropical soil in the south of Brazil. Biogenic silica (BSi) was determined using a novel alkaline continuous extraction where Si / Al ratios of the fractions extracted are used to distinguish BSi and other soluble fractions: Si / Al > 5 for the biogenic AlkExSi (alkaline-extractable Si) and Si / Al < 5 for the non-biogenic AlkExSi. Our study shows that deforestation can rapidly (< 50 years) deplete the biogenic AlkExSi pool in soils depending on the slope of the study site (10-53 %), with faster depletion in steeper sites. We show that higher erosion in steeper sites implies increased accumulation of biogenic Si in deposition zones near the bottom of the slope, where rapid burial can cause removal of BSi from biologically active zones. Our study highlights the interaction of erosion strength and land use for BSi redistribution and depletion in a soil toposequence, with implications for basin-scale Si cycling.

  7. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  8. How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.

    PubMed

    Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier

    2018-01-15

    Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the

  9. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikova TJ; Hosman DC; Grote EE

    2011-03-21

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundancemore » of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.« less

  10. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    PubMed

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  11. Microbial activity in organic soils as affected by soil depth and crop.

    PubMed

    Tate, R L

    1979-06-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.

  12. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  13. Factors affecting metribuzin retention in Algerian soils and assessment of the risks of contamination.

    PubMed

    Oukali-Haouchine, Ouzna; Barriuso, Enrique; Mayata, Yamina; Moussaoui, Khadija M

    2013-05-01

    Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty-clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F = 1.25) compared to pure metribuzin (K F = 2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥ 2.8 for a DT50 ≥ 30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.

  14. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  15. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    PubMed

    Juracek, K E; Drake, K D

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  16. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation

    NASA Astrophysics Data System (ADS)

    Juracek, K. E.; Drake, K. D.

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  17. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    USGS Publications Warehouse

    Juracek, Kyle E.; Drake, K. D.

    2016-01-01

    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  18. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  19. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.

  20. Does S-Metolachlor Affect the Performance of Pseudomonas sp. Strain ADP as Bioaugmentation Bacterium for Atrazine-Contaminated Soils?

    PubMed Central

    Viegas, Cristina A.; Costa, Catarina; André, Sandra; Viana, Paula; Ribeiro, Rui; Moreira-Santos, Matilde

    2012-01-01

    Atrazine (ATZ) and S-metolachlor (S-MET) are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g−1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD)), the presence of pure S-MET significantly affected neither bacteria survival (∼107 initial viable cells g−1 of soil) nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50×RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days) and extensively (>96%) removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil. PMID:22615921

  1. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  2. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  3. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil.

    PubMed

    El-Temsah, Yehia S; Joner, Erik J

    2012-09-01

    Although nano-sized zero-valent iron (nZVI) has been used for several years for remediation of contaminated soils and aquifers, only a limited number of studies have investigated secondary environmental effects and ecotoxicity of nZVI to soil organisms. In this study we therefore measured the ecotoxicological effects of nZVI coated with carboxymethyl cellulose on two species of earthworms, Eisenia fetida and Lumbricus rubellus, using standard OECD methods with sandy loam and artificial OECD soil. Earthworms were exposed to nZVI concentrations ranging from 0 to 2000 mg nZVI kg soil(-1) added freshly to soil or aged in non-saturated soil for 30 d prior to exposure. Regarding avoidance, weight changes and mortality, both earthworm species were significantly affected by nZVI concentrations ≥500 mg kg(-1)soil. Reproduction was affected also at 100 mg nZVI kg(-1). Toxicity effects of nZVI were reduced after aging with larger differences between soils compared to non-aged soils. We conclude that doses ≥500 mg nZVI kg(-1) are likely to give acute adverse effects on soil organisms, and that effects on reproduction may occur at significantly lower concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control.

    PubMed

    Mayerhofer, Johanna; Eckard, Sonja; Hartmann, Martin; Grabenweger, Giselher; Widmer, Franco; Leuchtmann, Adrian; Enkerli, Jürg

    2017-10-01

    The release of large quantities of microorganisms to soil for purposes such as pest control or plant growth promotion may affect the indigenous soil microbial communities. In our study, we investigated potential effects of Metarhizium brunneum ART2825 on soil fungi and prokaryota in bulk soil using high-throughput sequencing of ribosomal markers. Different formulations of this strain, and combinations of the fungus with garlic as efficacy-enhancing agent, were tested over 4 months in a pot and a field experiment carried out for biological control of Agriotes spp. in potatoes. A biocontrol effect was observed only in the pot experiment, i.e. the application of FCBK resulted in 77% efficacy. Colony counts combined with genotyping and marker sequence abundance confirmed the successful establishment of the applied strain. Only the formulated applied strain caused small shifts in fungal communities in the pot experiment. Treatment effects were in the same range as the effects caused by barley kernels, the carrier of the FCBK formulation and temporal effects. Garlic treatments and time affected prokaryotic communities. In the field experiment, only spatial differences affected fungal and prokaryotic communities. Our findings suggest that M. brunneum may not adversely affect soil microbial communities. © FEMS 2017.

  5. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research.

    PubMed

    García-Orenes, F; Arcenegui, V; Chrenková, K; Mataix-Solera, J; Moltó, J; Jara-Navarro, A B; Torres, M P

    2017-05-15

    Post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging (SL) is a common practice in most fire-affected areas. The management of burnt wood can determine microclimatic conditions and seriously affect soil properties. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation can make this management potentially aggressive to soil. Research was done in "Sierra de Mariola Natural Park" (E Spain). A forest fire (>500ha) occurred in July 2012. In February 2013, SL treatment was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, used as control (C). Soil samplings were done immediately after treatment and every 6months during two years. Some soil properties were analysed, including organic matter (OM) content, nitrogen (N) available phosphorous (P) basal soil respiration (BSR), microbial biomass carbon (C mic ), bulk density (BD), water repellency (WR), aggregate stability (AS) and field capacity (FC). SL treatment caused an increase in BD, a decrease of AS, FC, OM and N. In the control area, in general the soil properties remained constant across the 2years of monitoring, and the microbial parameters (BSR and C mic ), initially affected by the fire, recovered faster in C than in the SL area. Plant recovery also showed some differences between treatments. No significant differences were observed in the number of plant species recorded (richness) comparing C versus SL plots, but the number of individuals of each species (evenness) was significantly higher in C plots. In conclusion, we can affirm that for the conditions of this study case, SL had a negative effect on the soil-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biochar and soil properties affecting microbial transport through biochar-amended soils

    USDA-ARS?s Scientific Manuscript database

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. We have recently conducted a series of experiments t...

  7. Using (137)Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China.

    PubMed

    Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang

    2008-12-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.

  8. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  9. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Effect of Bt rice straw returning in soil on the growth and reproduction of Eisenia fetida.

    PubMed

    Cheng, Miao Miao; Shu, Ying Hua; Wang, Jian Wu

    2016-11-18

    Bacillus thuringiensis (Bt) protein can enter the soil through Bt crops straw returning to field, which may affect the growth and reproduction of soil animals, such as earthworms. Here, Bt rice (b2B138) and conventional rice (Anfeng A) straw were returned in soil to evaluate the impact of Bt rice on Eisenia fetida. Two varieties of rice straw were added into soil to breed E. fetida at the rates of 2.5%, 5%, 7.5% and 10%. The survival rate, relative growth rate, reproduction of earthworm, the Cry1Ab content in soil-straw mixture and earthworm were detected after 7, 15, 30, 45, 60, 75, 90 d. The results showed that Bt rice straw returning at higher concentrations (7.5% and 10%) inhibited the survival rate of E. fetida. Bt rice straw returning had no adverse effect on relative growth rate (RGR) of E. fetida. Bt rice straw treatment improved the reproduction of earthworms under 5%, 7.5% and 10% straw returning in soil. Enzyme-linked immunosorbent assay (ELISA) results indicated that immunoreactive Cry1Ab was detectable in soil-straw mixture and E. fetida from Bt rice treatments, and a strong decline was observed in soil-straw mixture with the increase of treated time. Therefore, Cry1Ab released from Bt rice straw returning at 2.5% and 5% concentration had no adverse effects on the growth and reproduction of E. fetida.

  11. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. © 2014 John Wiley & Sons Ltd.

  12. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    PubMed

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  14. Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review.

    PubMed

    Siecińska, Joanna; Nosalewicz, Artur

    Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.In this review the mechanisms of plant-aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.

  15. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  16. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    PubMed

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of heavy metal Cd pollution on microbial activities in soil.

    PubMed

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  18. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  19. Sensitivity Analysis Reveals Critical Factors that Affect Wetland Methane Emissions using Soil Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Alonso-Contes, C.; Gerber, S.; Bliznyuk, N.; Duerr, I.

    2017-12-01

    Wetlands contribute approximately 20 to 40 % to global sources of methane emissions. We build a Methane model for tropical and subtropical forests, that allows inundated conditions, following the approaches used in more complex global biogeochemical emission models (LPJWhyMe and CLM4Me). The model was designed to replace model formulations with field and remotely sensed collected data for 2 essential drivers: plant productivity and hydrology. This allows us to directly focus on the central processes of methane production, consumption and transport. One of our long term goals is to make the model available to a scientists interested in including methane modeling in their location of study. Sensitivity analysis results help in focusing field data collection efforts. Here, we present results from a pilot global sensitivity analysis of the model order to determine which parameters and processes contribute most to the model's uncertainty of methane emissions. Results show that parameters related to water table behavior, carbon input (in form of plant productivity) and rooting depth affect simulated methane emissions the most. Current efforts include to perform the sensitivity analysis again on methane emissions outputs from an updated model that incorporates a soil heat flux routine and to determine the extent by which the soil temperature parameters affect CH4 emissions. Currently we are conducting field collection of data during Summer 2017 for comparison among 3 different landscapes located in the Ordway-Swisher Biological Station in Melrose, FL. We are collecting soil moisture and CH4 emission data from 4 different wetland types. Having data from 4 wetland types allows for calibration of the model to diverse soil, water and vegetation characteristics.

  20. The Effect of a Planetary Surface Penetrator on the Soil Column Surrounding the Impacting Body

    NASA Technical Reports Server (NTRS)

    Blanchard, Maxwell B.; Shade, Harry D.

    1975-01-01

    A prototype penetrator instrument was impacted into a dry lake bed. Laboratory studies of the soil surrounding the penetrator revealed that the soil was contaminated by paint and metal from the penetrator's casing. Paint pigment rich in titanium and sulfur was found in the adjacent soil. The highly mobile paint pigment migrated onto viewing ports in the penetrator's exterior. Bulk analysis of the soil adjacent to the impactor showed a significant increase in both elements, as well as the presence of metal chips from the casing and nose cone. It is recommended that great care be taken in the use of coating materials and the metal alloys selected for the penetrator's exterior, or the accuracy of any experiment requiring an uncontaminated in situ sample may be adversely affected.

  1. Aboveground Epichloë coenophiala-Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters.

    PubMed

    Slaughter, Lindsey C; McCulley, Rebecca L

    2016-10-01

    Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.

  2. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut - Pathogenic and Beneficial Fungi were Selected

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2012-01-01

    Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping. PMID:22808226

  3. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  4. Translocation of bacteria from animal excrements to soil and associated habitats

    NASA Astrophysics Data System (ADS)

    Kupriyanov, A. A.; Kunenkova, N. N.; van Bruggen, A. H. C.; Semenov, A. M.

    2009-11-01

    The population dynamics of Salmonella enterica var. Typhimurium MAE 110 gfp, Escherichia coli O157:H7 gfp, and Pseudomonas fluorescens 32 gfp were investigated in their introduction to cattle excrements and subsequent entering the soil, plants of cress ( Lepidium sativum L.), and migration through the gastroenteric tract of French snails ( Helix pomatia L.). The survival of these bacteria in the excrements and soil was investigated at cyclically changing (day-night, 25-15 °C) and constant (18 °C) temperatures. The cyclically changing temperature adversely affected the survival of E. coli O157:H7 gfp, and P. fluorescens but did not influence S. enterica var. Typhimurium. All the bacteria and, especially, the analogues of enteropathogens showed high survival in the cattle and snail excrements, soil, and on the plants under the gradual decrease in their population. On the cress plants grown in a mixture of cattle excrements and soil, an increase in the number of the introduced bacteria was observed.

  5. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  6. Temporal variations of low molecular mass organic acids during vegetation period in temperate forest soil affected by acidification

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period

  7. Resiliency in the Face of Adversity: A Short Longitudinal Test of the Trait Hypothesis.

    PubMed

    Karaırmak, Özlem; Figley, Charles

    2017-01-01

    Resilience represents coping with adversity and is in line with a more positive paradigm for viewing responses to adversity. Most research has focused on resilience as coping-a state-based response to adversity. However, a competing hypothesis views resilience or resiliency as a trait that exists across time and types of adversity. We tested undergraduates enrolled in social work classes at a large southern university at two time periods during a single semester using measures of adversity, positive and negative affect, and trait-based resiliency. Consistent with the trait-based resiliency, and in contrast to state-based resilience, resiliency scores were not strongly correlated with adversity at both testing points but were with positive affect, and resiliency scores remained the same over time despite adversity variations. There was no gender or ethnic group difference in resilience scores. Black/African Americans reported significantly less negative affect and more positive affect than White/Caucasians.

  8. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    PubMed

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  9. Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †

    PubMed Central

    Tate, Robert L.

    1979-01-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393

  10. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Does the increased air humidity affect soil respiration and carbon stocks?

    NASA Astrophysics Data System (ADS)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    contents of the more stable MOM. These results strongly suggest that, apart from the predicted increase in temperature and atmospheric carbon and nitrogen concentrations, an increase in free air humidity as a result of climate change may significantly influence the complex belowground carbon cycling by affecting biomass production, soil respiration and organic matter turnover.

  12. Evaluation of factors affecting nitrous oxide emission and N transformation in a sandy loam soil

    USDA-ARS?s Scientific Manuscript database

    A better understanding of the complex factors affecting nitrous oxide (N2O) emission and potential mitigation practices will assist in developing strategies to improve the sustainability of agricultural production systems. Using surface soil collected from a pomegranate orchard, a series of laborato...

  13. Effects of interactions between Collembola and soil microbial community on the degradation of glyphosate-based herbicide

    NASA Astrophysics Data System (ADS)

    Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.

    2017-12-01

    Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.

  14. Soil Conditions Affect Growth of Hardwoods in Shelterbelts

    Treesearch

    Willard H. Carmean

    1976-01-01

    Large growth differences were found for hardwoods in shelterbelts on three contrasting soils of western Minnesota. Fiver years after planting, height growth was outstanding for green ash and Russian olive planted on a moderately fine-textured, somewhat poorly drained soil. Growth was much poorer on coarse-textured or shallow soils. Size of planting stock was not...

  15. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  16. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation

    NASA Astrophysics Data System (ADS)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten

    2017-04-01

    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  17. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Processes affecting the dissipation of the herbicide isoxaflutole and its diketonitrile metabolite in agricultural soils under field conditions.

    PubMed

    Papiernik, Sharon K; Yates, Scott R; Koskinen, William C; Barber, Brian

    2007-10-17

    Two-year field dissipation studies were conducted in three soil types in Minnesota to examine the processes affecting the dissipation of the herbicide isoxaflutole and its phytotoxic diketonitrile metabolite (DKN) under relatively cool, wet soil conditions. Plots of cuphea were treated with isoxaflutole and potassium bromide, a nonsorbed, nondegraded tracer. Replicate soil cores were collected six times during the growing season to a depth of 1 m, and the bromide or herbicide concentration was measured in each of five depth increments. The dissipation half-life (DT50) of isoxaflutole + DKN was 8-18 days in each soil. Bromide and herbicide concentrations were low at depths >40 cm throughout the study, and herbicide concentrations in soil 100 days after application were usually undetectable. Simulation modeling using Hydrus-1D for the loam soil suggested that plant uptake was an important mechanism of dissipation.

  19. Status and effect of pesticide residues in soils under different land uses of Andaman Islands, India.

    PubMed

    Murugan, A V; Swarnam, T P; Gnanasambandan, S

    2013-10-01

    Pesticides are shown to have a great effect on soil organisms, but the effect varies with pesticide group and concentration, and is modified by soil organic carbon content and soil texture. In the humid tropical islands of Andaman, India, no systematic study was carried out on pesticide residues in soils of different land uses. The present study used the modified QuEChERS method for multiresidue extraction from soils and detection with a gas chromatograph. DDT and its various metabolites, α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, and fenvalerate, were detected from the study area. Among the different pesticide groups detected, endosulfan and DDT accounted for 41.7 % each followed by aldrin (16.7 %) and synthetic pyrethroid (8.3 %). A significantly higher concentration of pesticide residues was detected in rice-vegetable grown in the valley followed by rice-fallow and vegetable-fallow in the coastal plains. Soil microbial biomass carbon is negatively correlated with the total pesticide residues in soils, and it varied from 181.2 to 350.6 mg kg(-1). Pesticide residues have adversely affected the soil microbial populations, more significantly the bacterial population. The Azotobacter population has decreased to the extent of 51.8 % while actinomycetes were the least affected though accounted for 32 % when compared to the soils with no residue.

  20. Deviation from niche optima affects the nature of plant–plant interactions along a soil acidity gradient

    PubMed Central

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant–plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant–plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  1. Shaping an Optimal Soil by Root-Soil Interaction.

    PubMed

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biosolids affect soil barium in a dryland wheat agroecosystem.

    PubMed

    Ippolito, J A; Barbarick, K A

    2006-01-01

    In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.

  3. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  4. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    NASA Astrophysics Data System (ADS)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  5. Isotopic Evolution of Soil Organic Matter Affects Paleo-vegetation and Paleo-pCO2 Reconstructions

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Beerling, D. J.

    2004-12-01

    The stable carbon isotope ratio (\\delta13C) of fossil terrestrial organic matter is used to study several aspects of biosphere/atmosphere coupling in the geologic past. These range from vegetation response to climatic and pCO2 shifts to reconstruction of paleo-pCO2 levels. Although screening for diagenesis is typical in these studies, few have taken into account the ubiquitous but poorly understood phenomenon of progressive 13C-enrichment of soil organic matter during its decay, which is observed in modern soils worldwide. We present a simple model that describes this phenomenon and the interaction of soil organic carbon and CO2 concentrations, fluxes and \\delta13C values. At its most basic level, the model suggests that bulk organic matter from sub-surface soil horizons will be variably enriched in 13C relative to the vegetation living on the soil surface. This complicates interpretation of paleo-isotopic records used in C3/C4 vegetation reconstructions, and may account for anomalously heavy fossil organic carbon isotope values measured in some paleosols pre-dating the end-Miocene expansion of C4 floras. The model also demonstrates that the \\delta13C evolution of soil organic carbon during its decay generates 2 types of biases that may affect soil mineral paleo-pCO2 proxies. The first type of bias results from a steady-state inequality between the \\delta13C of organic carbon at a single depth within the soil and that of respired CO2 in the soil. This bias is present when fossil organic matter is used to reconstruct the \\delta13C of soil-respired carbon, and can be minimized with appropriate sampling methods. The second type of bias results from a dynamic, seasonal imbalance in respiration, which may cause the soil \\delta13CO2 flux during times of soil mineral formation to deviate from that of the annually integrated flux. At present, this bias can not be fully described or corrected for due to inadequacies in our knowledge of soil \\delta13C dynamics and the

  6. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    NASA Astrophysics Data System (ADS)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  7. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    PubMed Central

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308

  8. How People Have Used Soils, How Soils Have Affected U.S. History.

    ERIC Educational Resources Information Center

    Polak, Julia

    1996-01-01

    Presents a lesson plan that investigates social aspects of the land and soil and how people use these resources. Following an introduction by the teacher on land and soil use, students answer related questions on handouts. Later handouts direct the students to group research projects and class presentations. (MJP)

  9. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    PubMed Central

    Grüning, Maren M.; Simon, Judy; Rennenberg, Heinz; l-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy. PMID:28638396

  10. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  11. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Study on nitrification process in two calcareous and non-calcareous contaminated soils

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Najme

    2010-05-01

    Heavy metals are well known to be toxic to most microorganisms when present in high concentration in the soil. They are a serious threat to soil quality due to their persistence after entering the soil. It has been demonstrated repeatedly that heavy metals adversely affect biological functions in soil. While calcareous soils are widespread in Iran, there is lack of information on the behavior of microbial activity in the presence of heavy metals in these soils. Therefore, the aim of this study was to investigate the effect of Cd and Zn as pollutant on nitrification process in two calcareous and non-calcareous soils. After additions of 0, 10 and 100 µg Cd g-1 and 0, 100 and 500 µg Zn g-1 to the soils, nitrification in the presence and absence of ammonium was measured after 45 days incubation. Nitrification results showed that nitrate decreased in both treated soils. Toxic effect of Cd and Zn intensified with increase of metal concentration. The difference of nitrate in samples without ammonium was more pronounced than ammonium treated ones. Nitrification led to decrease in soil pH which was intensified especially in non-calcareous soil. The results of this study indicated that toxic effect of Cd and Zn on measured nitrification was more evident in non- calcareous soil. Keywords: Nitrification, Cadmium, Zinc, Calcareous and non-calcareous soil.

  13. Soil water balance as affected by throughfall in gorse ( Ulex europaeus, L.) shrubland after burning

    NASA Astrophysics Data System (ADS)

    Soto, Benedicto; Diaz-Fierros, Francisco

    1997-08-01

    The role of fire in the hydrological behaviour of gorse shrub is studied from the point of view of its effects on vegetation cover and throughfall. In the first year after fire, throughfall represents about 88% of gross rainfall, whereas in unburnt areas it is 58%. Four years after fire, the throughfall coefficients are similar in burnt and unburnt plots (about 6096). The throughfall is not linearly related to vegetation cover because an increase in cover does not involve a proportional reduction in throughfall. The throughfall predicted by the two-parameter exponential model of Calder (1986, J. Hydrol., 88: 201-211) provides a good fit with the observed throughfall and the y value of the model reflects the evolution of throughfall rate. The soil moisture distribution is modified by fire owing to the increase of evaporation in the surface soil and the decrease of transpiration from deep soil layers. Nevertheless, the use of the old root system by sprouting vegetation leads to a soil water profile in which 20 months after the fire the soil water is similar in burnt and unburnt areas. Overall, soil moisture is higher in burnt plots than in unburnt plots. Surface runoff increases after a fire but does not entirely account for the increase in throughfall. Therefore the removal of vegetation cover in gorse scrub by fire mainly affects the subsurface water flows.

  14. Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality.

    PubMed

    Sorocco, Kristen H; Carnes, Nathan C; Cohoon, Andrew J; Vincent, Andrea S; Lovallo, William R

    2015-05-01

    This study examined the impact of early lifetime adversity (ELA) on affect regulation and personality in persons with family history (FH+) and without (FH-) a family history of alcoholism. We examined the impact of early life adversity in healthy young adults, 18-30 years of age enrolled in a long-term study on risk for alcohol and other substance abuse. ELA was assessed by a composite score of low socioeconomic status and personal experience of physical or sexual abuse and/or separation from parents before age 16, resulting in a score of 0, 1-2, or >3 adverse events. Unstable affect regulation and personality variables were obtained via self-report measures. Higher ELA scores were seen in FH+ (χ(2)=109.2, p<0.0001) and in women (χ(2)=17.82, p=0.0019). Although higher ELA predicted less emotional stability and more behavioral undercontrol, further analysis including both FH and ELA showed that FH+ persons are prone to poor affect regulation, negative moods, and have risky drinking and drug abuse tendencies independent of ELA level. ELA predicts reduced stress reactivity and poorer cognitive control over impulsive behaviors as shown elsewhere. The present work shows that FH+ have poor mood regulation and antisocial characteristics. The greater prevalence of ELA in FH+ persons indicates that life experience and FH+ work in tandem to result in risky patterns of alcohol and drug experimentation to elevate risk for alcoholism. Further studies of genetic and environmental contributions to alcoholism are called for. Published by Elsevier Ireland Ltd.

  15. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  16. Adverse reactions associated with acetylcysteine.

    PubMed

    Sandilands, E A; Bateman, D N

    2009-02-01

    Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and

  17. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.

    PubMed

    Zhaolei, Li; Naishun, Bu; Xueping, Chen; Jun, Cui; Manqiu, Xiao; Zhiping, Song; Ming, Nie; Changming, Fang

    2018-05-15

    Bt crops that are transgenic crops engineered to produce Bt toxins which occur naturally with Bacillus thuringiensis (Bt) have been widely planted and its environmental risk assessment has been heavily debated. The effects of Bt crops on soil microbial communities are possible through changing the quantity and quality of C inputs and potential toxic activity of Bt protein on soil organisms. To date, the direct effects of Bt protein on soil microorganisms is unclear. Here we added Cry1Ac, one of the most commonly used Bt protein in Bt crops, to the soil and monitored changes in soil bacterial, fungal and archaeal diversities and community structures using ribosomal DNA-fingerprinting method, as well as their population sizes by real-time PCR over a 100-day period. Despite the fact that variations were observed in the indices of evenness, diversity and population sizes of bacteria, fungi and archaea with different Cry1Ac addition rates up to 100ngg -1 soil, the indices of soil microbial diversities and evennesses did not significantly shift with Cry1Ac protein addition, nor did population sizes change over time. The diversities of the dominant bacteria, fungi and archaea were not significantly changed, given Cry1Ac protein addition rates over a period of 100 days. These results suggested that Bt protein derived by cultivations of transgenic Bt crops is unlikely to cause transient or even persisting significant changes in soil microorganisms in field. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bensulfuron-Methyl Treatment of Soil Affects the Infestation of Whitefly, Aphid, and Tobacco Mosaic Virus on Nicotiana tabacum

    PubMed Central

    Li, Renyi; Islam, Saif Ul; Wu, Zujian; Ye, Xiujuan

    2016-01-01

    Bensulfuron-methyl (BSM) is widely used in paddy soil for weed control. BSM residue in the soil has been known to inhibit the growth of sensitive crop plants. However, it is unknown whether BSM residue can affect the agrosystem in general. In this study, we have found significant effects of BSM on the infestation of Bemisia tabaci, Myzus persicae, and Tobacco mosaic virus (TMV) in Nicotiana tabacum. The soil was treated with BSM before the pest inoculation. The herbicide-treated tobaccos showed resistance to B. tabaci, but this resistance could not be detected until 15-day post-infestation when smaller number of adults B. tabaci appeared. In M. persicae assay, the longevity of all development stages of insects, and the fecundity of insects were not significantly affected when feeding on BSM-treated plants. In TMV assay, the BSM treatment also reduced virus-induced lesions in early infection time. However, the titer of TMV in BSM treated plants increased greatly over time and was over 40-fold higher than the mock-infected control plants after 20 days. Further studies showed that BSM treatment increased both jasmonic acid (JA) and salicylic acid (SA) levels in tobacco, as well as the expression of target genes in the JA and SA signaling pathways, such as NtWIPK, NtPR1a, and NtPAL. NtPR1a and NtPAL were initially suppressed after virus-inoculation, while NtRDR1 and NtRDR6, which play a key role in fighting virus infection, only showed up- or were down-regulated 20 days post virus-inoculation. Taken together, our results suggested that BSM residue in the soil may affect the metabolism of important phytohormones such as JA and SA in sensitive plants and consequently affect the plant immune response against infections such as whitefly, aphids, and viruses. PMID:28083007

  19. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    NASA Astrophysics Data System (ADS)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  20. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  2. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    PubMed

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  3. Soil water dynamics of lateritic catchments as affected by forest clearing for pasture

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.

    1987-10-01

    Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water

  4. The adverse health effects of chronic cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2014-01-01

    This paper summarizes the most probable of the adverse health effects of regular cannabis use sustained over years, as indicated by epidemiological studies that have established an association between cannabis use and adverse outcomes; ruled out reverse causation; and controlled for plausible alternative explanations. We have also focused on adverse outcomes for which there is good evidence of biological plausibility. The focus is on those adverse health effects of greatest potential public health significance--those that are most likely to occur and to affect a substantial proportion of regular cannabis users. These most probable adverse effects of regular use include a dependence syndrome, impaired respiratory function, cardiovascular disease, adverse effects on adolescent psychosocial development and mental health, and residual cognitive impairment. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Does Simultaneous Liposuction Adversely Affect the Outcome of Thread Lifts? A Preliminary Result.

    PubMed

    Lee, Yong Woo; Park, Tae Hwan

    2018-04-11

    Along with advances in thread lift techniques and materials, ancillary procedures such as fat grafting, liposuction, or filler injections have been performed simultaneously. Some surgeons think that these ancillary procedures might affect the aesthetic outcomes of thread lifting possibly due to inadvertent injury to threads or loosening of soft tissue via passing the cannula in the surgical plane of the thread lifts. The purpose of the current study is to determine the effect of such ancillary procedures on the outcome of thread lifts in the human and cadaveric setting. We used human abdominal tissue after abdominoplasty and cadaveric faces. In the abdominal tissue, liposuction parallel to the parallel axis was performed in one area for 5 min. We counted 30 passes when liposuction was performed in one direction. This was repeated as we changed the direction of passages. The plane of thread lifts (dermal vs subcutaneous) and angle between liposuction and thread lifts (parallel vs perpendicular) were differentiated in this abdominal tissue study group. Then, we performed parallel or perpendicular thread lifts using a small slit incision. Using a tensiometer, the maximum holding strength was measured when pulling the thread out of the skin as much as possible. We also used faces of cadavers to prove whether the finding in human abdominal tissue is really valid with corresponding techniques. Our pilot study using abdominal tissue showed that liposuction after thread lifts adversely affects it regardless of the vector of thread lifts. In the cadaveric study, however, liposuction prior to thread lifting does not significantly affect the holding strength of thread lifts. Liposuction or fat grafting in the appropriate layer would not be a hurdle to safely performing simultaneous thread lifts if the target lift tissue is intra-SMAS or just above the SMAS layer. This journal requires that authors assign a level of evidence to each article. For a full description of these

  6. Toxic assessment of the leachates of paddy soils and river sediments from e-waste dismantling sites to microalga, Pseudokirchneriella subcapitata.

    PubMed

    Nie, Xiangping; Fan, Canpeng; Wang, Zhaohui; Su, Tian; Liu, Xinyu; An, Taicheng

    2015-01-01

    The potential adverse effects of e-waste recycling activity on environment are getting increasing concern. In this work, a model alga, Pseudokirchneriella subcapitata, was employed to assess the toxic effects of the leachates of paddy soils and river sediments collected from e-waste dismantling sites. Chemical analysis of the paddy soils and river sediments and their leachates were carried out and the growth rate, chlorophyll a fluorescence and anti-oxidative systems of the alga were measured. Results showed that two leachates decreased the amount of PSII active reaction centers and affected photosynthesis performance, interfered with chlorophyll synthesis and inhibited algal growth. Some chemical pollutants in the sediments and soils such as polybrominated diphenyl ethers (PBDEs) and metals derived from e-waste recycling activity may impose oxidative stress on algae and affect the activity of anti-oxidative enzymes such as GST, SOD, CAT and APX. The leachates of both river sediments and paddy soils are potentially toxic to the primary producers, P. subcapitata and the leachate from sediments was more deleterious than that from soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Biomarkers of adverse drug reactions.

    PubMed

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  8. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  9. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  10. Preliminary analytical results for ash and burned soils from the October 2007 southern California wildfires

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd; Kokaly, Raymond F.; Hageman, Philip; Eckberg, Alison; Meeker, Gregory P.; Adams, Monique; Anthony, Michael; Lamothe, Paul J.

    2007-01-01

    The U.S. Geological Survey (USGS) collected ash and burned soils from about 28 sites in southern California wildfire areas (Harris, Witch, Ammo, Santiago, Canyon and Grass Valley) from Nov. 2 through 9, 2007 (table 1). USGS researchers are applying a wide variety of analytical methods to these samples, with the goal of helping identify characteristics of the ash and soils from wildland and suburban burned areas that may be of concern for their potential to adversely affect water quality, human health, endangered species, and debris-flow or flooding hazards. These studies are part of the Southern California Multi-Hazards Demonstration Project, and preliminary findings are presented here.

  11. Early life adversity and telomere length: a meta-analysis.

    PubMed

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  12. Methane transport and emissions from soil as affected by water table and vascular plants.

    PubMed

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  13. The skin tissue is adversely affected by TNF-alpha blockers in patients with chronic inflammatory arthritis: a 5-year prospective analysis

    PubMed Central

    Machado, Natalia P.; dos Reis Neto, Edgard Torres; Soares, Maria Roberta M. P.; Freitas, Daniele S.; Porro, Adriana; Ciconelli, Rozana M.; Pinheiro, Marcelo M.

    2013-01-01

    OBJECTIVE: We evaluated the incidence of and the main risk factors associated with cutaneous adverse events in patients with chronic inflammatory arthritis following anti-TNF-α therapy. METHODS: A total of 257 patients with active arthritis who were taking TNF-α blockers, including 158 patients with rheumatoid arthritis, 87 with ankylosing spondylitis and 12 with psoriatic arthritis, were enrolled in a 5-year prospective analysis. Patients with overlapping or other rheumatic diseases were excluded. Anthropometric, socioeconomic, demographic and clinical data were evaluated, including the Disease Activity Score-28, Bath Ankylosing Spondylitis Disease Activity Index and Psoriasis Area Severity Index. Skin conditions were evaluated by two dermatology experts, and in doubtful cases, skin lesion biopsies were performed. Associations between adverse cutaneous events and clinical, demographic and epidemiological variables were determined using the chi-square test, and logistic regression analyses were performed to identify risk factors. The significance level was set at p<0.05. RESULTS: After 60 months of follow-up, 71 adverse events (73.85/1000 patient-years) were observed, of which allergic and immune-mediated phenomena were the most frequent events, followed by infectious conditions involving bacterial (47.1%), parasitic (23.5%), fungal (20.6%) and viral (8.8%) agents. CONCLUSION: The skin is significantly affected by adverse reactions resulting from the use of TNF-α blockers, and the main risk factors for cutaneous events were advanced age, female sex, a diagnosis of rheumatoid arthritis, disease activity and the use of infliximab. PMID:24141833

  14. Weight-of-evidence evaluation of an adverse outcome ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating staple food crops. Chemical and non-chemical stressors both have been implicated as possible contributors to colony failure, however, the potential role of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptor (nAChR) to eliminate target pest insects, however, mounting evidence indicates that these chemicals may adversely affect beneficial pollinators, such as the honey bee, via impacts on learning and memory thereby affecting foraging success. However, the mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. Therefore, the objective of this work was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between the nAChR and colony level impacts. Development of these AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect honey bee health, causing colony instability and further failure. From this effort, an AOP network also was developed, laying the f

  15. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China

    USGS Publications Warehouse

    Song, Yanyu; Song, Changchun; Meng, Henan; Swarzenski, Christopher M.; Wang, Xianwei; Tan, Wenwen

    2017-01-01

    Nitrogen (N) is a limiting nutrient in many peatland ecosystems. Enhanced N deposition, a major component of global climate change, affects ecosystem carbon (C) balance and alters soil C storage by changing plant and soil properties. However, the effects of enhanced N deposition on peatland ecosystems are poorly understood. We conducted a two-year N additions field experiment in a peatland dominated by Eriophorum vaginatum in the Da Xing’an Mountains, Northeast China. Four levels of N treatments were applied: (1) CK (no N added), (2) N1 (6 g N m−2 yr−1), (3) N2 (12 g N m−2 yr−1), and (4) N3 (24 g N m−2  yr−1). Plant and soil material was harvested at the end of the second growing season. N additions increased litter N and phosphorus (P) content, as well as β-glucosidase, invertase, and acid-phosphatase activity, but decreased litter C:N and C:P ratios. Litter carbon content remained unchanged. N additions increased available NH4+–N and NO3−–N as well as total Gram-positive (Gram+), Gram-negative (Gram−), and total bacterial phospholipid fatty acids (PLFA) in shallow soil (0–15 cm depth). An increase in these PLFAs was accompanied by a decrease in soil labile organic C (microbial biomass carbon and dissolved organic carbon), and appeared to accelerate decomposition and reduce the stability of the soil C pool. Invertase and urease activity in shallow soils and acid-phosphatase activity in deep soils (15–30 cm depth) was inhibited by N additions. Together, these findings suggest that an increase in N deposition in peatlands could accelerate litter decomposition and the loss of labile C, as well as alter microbial biomass and function.

  16. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    PubMed

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  17. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    PubMed

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    PubMed

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (<2 μm); silt-sized (2-20 μm); sand-sized (20-212 μm); and macroaggregates (212-2000 μm). The fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Do Holocaust survivors show increased vulnerability or resilience to post-Holocaust cumulative adversity?

    PubMed

    Shrira, Amit; Palgi, Yuval; Ben-Ezra, Menachem; Shmotkin, Dov

    2010-06-01

    Prior trauma can hinder coping with additional adversity or inoculate against the effect of recurrent adversity. The present study further addressed this issue by examining whether a subsample of Holocaust survivors and comparison groups, drawn from the Israeli component of the Survey of Health, Ageing, and Retirement in Europe, were differentially affected by post-Holocaust cumulative adversity. Post-Holocaust cumulative adversity had a stronger effect on the lifetime depression of Holocaust survivors than on that of comparisons. However, comparisons were more negatively affected by post-Holocaust cumulative adversity when examining markers of physical and cognitive functioning. Our findings suggest that previous trauma can both sensitize and immunize, as Holocaust survivors show general resilience intertwined with specific vulnerability when confronted with additional cumulative adversity.

  20. What's in our soil?: how soil pollution affects earthworm movement patterns

    NASA Astrophysics Data System (ADS)

    Whitmore, T.

    2017-12-01

    Earthworms are an important member of many ecosystems because they contribute to soil quality and are a major food source for many organisms. In this project, we assessed the impacts soil pollution has on the burrowing patterns of earthworms. In each experiment, we introduced 10 earthworms to a unique pollutant and let them equilibrate for up to a week. The results indicated that earthworms migrate towards the introduced liquid regardless of its impact on them. The liquid pollutants introduced seemed to attract the earthworms. This can have harmful consequences, especially in the case of the motor oil, which killed multiple worms.

  1. Grazing intensity and driving factors affect soil nitrous oxide fluxes during the growing seasons in the Hulunber meadow steppe of China

    NASA Astrophysics Data System (ADS)

    Yan, Ruirui; Tang, Huajun; Xin, Xiaoping; Chen, Baorui; Murray, Philip J.; Yan, Yunchun; Wang, Xu; Yang, Guixia

    2016-05-01

    In this study, the effects of cattle grazing intensity on soil nitrous oxide (N2O) fluxes were examined in the Hulunber meadow steppe of north-eastern China. Six stocking-rate treatments (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha-1) with three replicates were established, and observations were conducted from 2010 to 2014. Our results showed that substantial temporal fluctuations in N2O flux occurred amongst the different grazing intensities, with peak N2O fluxes after natural rainfall. Grazing had a long-term effect on the soil N2O flux in the grasslands. After 4-5 years of grazing, the N2O fluxes under increased levels of grazing intensity began to decrease significantly by 31.4%-60.2% in 2013 and 32.5%-50.5% in 2014 compared to the non-grazing treatment. We observed a significant negative linear relationship between the soil N2O fluxes and grazing intensity for the five-year mean. The soil N2O flux was significantly affected each year in all of the treatments. Over the five years, the temporal coefficient of variation (CVs) of the soil N2O flux generally declined significantly with increasing grazing intensity. The soil N2O emission rate was significantly positively correlated with soil moisture (SM), soil available phosphorus (SAP), soil {{{{NH}}}4}+-N, soil {{{{NO}}}3}--N, above-ground biomass (AGB), plant ground cover and height and was negatively correlated with total soil nitrogen (TN). Stepwise regressions showed that the N2O flux was primarily explained by SM, plant height, TN, soil pH, and soil {{{{NH}}}4}+-N. Using structural equation modelling, we show that grazing significantly directly influenced the plant community and the soil environment, which then influenced the soil N2O fluxes. Our findings provide an important reference for better understanding of the mechanisms and identifying the pathways of grazing effects on soil N2O emission rates, and the key drivers plant community and soil environment within the nitrogen cycle that are mostly likely to

  2. Effect of nonylphenol surfactants on fungi following the application of sewage sludge on agricultural soils.

    PubMed

    Kollmann, Albert; Brault, Agathe; Touton, Isabelle; Dubroca, Jacqueline; Chaplain, Véronique; Mougin, Christian

    2003-01-01

    The effect of nonylphenol on fungi following the application of contaminated sewage sludge on agricultural soil was studied in laboratory experiments. Nonylphenol bioavailability and adsorption were determined in the soil alone and soil-sludge mixtures. Mixing the soil with sludge made it possible to measure the nonylphenol concentration in the soil solution, which comprised between 6.6 x 10(-6) and 3.8 x 10(-7) M, according to the sludge. We then examined the dose-response relationship between nonylphenol concentration in the culture medium and both biomass production and germination rate of the spores from several strains of filamentous fungi. When applied in this range of concentration, nonylphenol was without noticeable short-term effect on these endpoints. Long-term exposure of fungi to nonylphenol was also assessed. The most intensive effect was a strong stimulation of spore production and germination in Fusarium oxysporum Schlechtendahl. Biomass production by the Fusarium strains also increased. Finally, nonylphenol was shown to induce laccase production in Trametes versicolor. We conclude that the potential of nonylphenol to adversely affect several soil fungi remains low.

  3. Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time*

    PubMed Central

    Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang

    2008-01-01

    Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628

  4. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  5. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    PubMed

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.

  6. Adverse health effects of non-medical cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2009-10-17

    For over two decades, cannabis, commonly known as marijuana, has been the most widely used illicit drug by young people in high-income countries, and has recently become popular on a global scale. Epidemiological research during the past 10 years suggests that regular use of cannabis during adolescence and into adulthood can have adverse effects. Epidemiological, clinical, and laboratory studies have established an association between cannabis use and adverse outcomes. We focus on adverse health effects of greatest potential public health interest-that is, those that are most likely to occur and to affect a large number of cannabis users. The most probable adverse effects include a dependence syndrome, increased risk of motor vehicle crashes, impaired respiratory function, cardiovascular disease, and adverse effects of regular use on adolescent psychosocial development and mental health.

  7. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  8. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  9. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    PubMed

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  10. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation

    PubMed Central

    Studer, Mirjam S.; Hagedorn, Frank; Niklaus, Pascal A.; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: ‘closed’ beakers and ‘open’ microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies. PMID:28380005

  11. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  12. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  13. Soil-Site Factors Affecting Southern Upland Oak Managment and Growth

    Treesearch

    John K. Francis

    1980-01-01

    Soil supplies trees with physical support, moisture, oxygen, and nutrients. Amount of moisture most limits tree growth; and soil and topographic factors such as texture and aspect, which influence available soil moisture. are most useful in predicting growth. Equations that include soil and topographic variables can be used to predict site index. Foresters can also...

  14. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  15. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  16. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  17. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  18. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  19. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  20. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these

  1. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  2. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  3. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  4. FINAL REPORT: Temporal and Spatial Distribution of Soil Moisture in Heterogeneous Vadose Zone with Moisture Barriers as Affected by Atmospheric Boundary Conditions

    DTIC Science & Technology

    2015-12-07

    Wallen, B., K.M. Smits and S.E. Howington. Thermal conductivity of binary sand mixtures evaluated through the full range of saturation. Hydrology Days...and T.H. Illangasekare. 2011. Thermal conductivity of soils as affected by temperature, Proceedings from Hydrology Days. Colorado State University...is mixed with very fine soil). Although it is well known that the apparent thermal conductivity (λ) of partially wet soil is a function of water (θ

  5. Committee Opinion No. 681: Disclosure and Discussion of Adverse Events.

    PubMed

    2016-12-01

    Adverse outcomes, preventable or otherwise, are a reality of medical care. Most importantly, adverse events affect patients, but they also affect health care practitioners. Disclosing information about adverse events has benefits for the patient and the physician and, ideally, strengthens the patient-physician relationship and promotes trust. Studies show that after an adverse outcome, patients expect and want timely and full disclosure of the event, an acknowledgment of responsibility, an understanding of what happened, expressions of sympathy, and a discussion of what is being done to prevent recurrence. Surveys have shown that patients are less likely to pursue litigation if they perceive that the event was honestly disclosed. Barriers to full disclosure are many and include fear of retribution for reporting an adverse event, lack of training, a culture of blame, and fear of lawsuits. To reduce these concerns, it is recommended that health care facilities establish a nonpunitive, blame-free culture that encourages staff to report adverse events and near misses (close calls) without fear of retaliation. Health care institutions should have written policies that address the management of adverse events. Having a responsive process to inform and aid the patient, loved ones, and practitioners is required. A commitment on the part of all health care practitioners and institutions to establish programs and develop the tools needed to help patients, families, health care practitioners, and staff members deal with adversity is essential.

  6. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Soil macrofauna webmasters of ecosystem

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2015-04-01

    The role of plant roots and microflora in shaping many ecosystem processes is generally appreciated in the contrary rho role of soil mcrofauna in this context is assumed to be negligible and rather anecdotic. But more than half of the litter fall is consumed by soil fauna and soil fauna can also consume and or translocation substantial amount of soil. Here we demonstrate on example of post mining chronosequences how site colonization by soil fauna affect composition of whole soil biota community, plant succession and soil formation. Filed and laboratory experiments show that decomposition of fauna feces may be sped up compare to litter at the very beginning but in long term fauna feces decompose slower than litter. This is also supported by micro morphological observation which shows that fauna feces form substantial part of soil. Fauna feces also induce lover or even negative priming effect when introduced in soil in comparison with litter that triggers positive priming effect. Laboratory experiment show that fauna effect is context sensitive and is more pronounced in systems already affected by soil fauna. Soil mixing by soil fauna consequently affect environmental conditions in soils such as water holding capacity or nutrient availability, it also affect composition of decomposer food web including microbial community (fungal bacterial ratio) which feed back in alternation of plant community composition during succession This fauna activity is not constant everywhere the higher effect of fauna activity on litter layer was observed in temperate soils of deciduous forests and with litter having CN between 20-30. In conclusion soil fauna use directly only small proportion of energy in the litter but can substantially affect soil carbon turnover, soil formation, decomposer food web and plant community.

  8. Sorption of a nonionic surfactant Tween 80 by minerals and soils.

    PubMed

    Kang, Soyoung; Jeong, Hoon Young

    2015-03-02

    Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina-water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclasesoils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H2O2-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete

    NASA Astrophysics Data System (ADS)

    Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun

    2015-04-01

    Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete

  10. Childhood Adversity, Religion, and Change in Adult Mental Health.

    PubMed

    Jung, Jong Hyun

    2018-02-01

    Research indicates that childhood adversity is associated with poor mental health in adulthood. The purpose of this study is to examine whether the deleterious long-term effects of childhood adversity on adult mental health are reduced for individuals who are involved in religious practices. Using longitudinal data from a representative sample of American adults ( N = 1,635), I find that religious salience and spirituality buffer the noxious effects of childhood abuse on change in positive affect over time. By contrast, these stress-buffering properties of religion fail to emerge when negative affect serves as the outcome measure. These results underscore the importance of religion as a countervailing mechanism that blunts the negative impact of childhood abuse on adult mental health over time. I discuss the theoretical implications of these findings for views about religion, childhood adversity, and mental health.

  11. Utilization of data and modeling at multiple scales to compare varying formulations of the soil resistance term affecting evaporative flux from the soil surface.

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Forsythe, L.; Riley, W. J.; Bisht, G.

    2016-12-01

    Land Surface Models (LSMs) are used to predict heat, energy, and momentum fluxesoccurring at the land surface and the resulting effects in the soil and atmosphere at various scales.Evaporation from bare soil is an integral component of the water balance that is very difficult toaccurately predict since it is complexly affected by the coupled effects of atmospheric conditions andsoil properties. Inaccurate or simplifying assumptions can have drastic effects on regional and globalLSM predictions and cause available LSMs to predict conflicting values for the soil moistureconditions and surface fluxes (e.g. evapotranspiration, infiltration, run off). The goal of this work isto see how heterogeneities in soil properties can be properly represented with a soil resistance termthat accounts for physically based parameters of the soil system at the land-atmosphere interface.Utilizing a comprehensive, experimental dataset generated from a soil with known, heterogeneousproperties under highly controlled atmospheric conditions, we are able to compare the effectivenessof various parameterizations in two different models. The first being a multiphase, non-equilibrium,and non-isothermal model that minimizes the dependence on fitting parameters. The effects ofcertain mechanisms are better understood at this fine scale and incorporated into the land surfacecomponent of the Accelerated Climate Modeling for Energy project (ALM), which is focused oncapturing the interactions between the surface and the atmosphere at larger scales. The formulationsof the resistance parameter, soil water retention curve (SWRC), and diffusivity through partiallysaturated porous media are of particular interest. The fine scale model was used in conjunction withthe experimental data to test formulations before implementing them into the ACME Land Model(ALM). Effects of these alterations were compared to the existing mechanisms in ALM and thentested against lab and field scale data sets. Initial findings

  12. Effect on Soil Properties of BcWRKY1 Transgenic Maize with Enhanced Salinity Tolerance

    PubMed Central

    Zeng, Xing; Zhou, Yu; Zhu, Zhongjia; Zu, Hongyue

    2016-01-01

    Maize (Zea mays L.) is the most important cereal crop in the world. However, soil salinity has become a major problem affecting plant productivity due to arable field degradation. Thus, transgenic maize transformed with a salinity tolerance gene has been developed to further evaluate its salt tolerance and effects on agronomic traits. It is necessary to analyze the potential environmental risk of transgenic maize before further commercialization. Enzyme activities, physicochemical properties, and microbial populations were evaluated in saline and nonsaline rhizosphere soils from a transgenic maize line (WL-73) overexpressing BcWRKY1 and from wild-type (WT) maize LH1037. Measurements were taken at four growth stages (V3, V9, R1, and R6) and repeated in three consecutive years (2012–2014). There was no change in the rhizosphere soils of either WL-73 or WT plants in the four soil enzyme activities, seven soil physicochemical properties, and the populations of three soil organisms. The results of this study suggested that salinity tolerant transgenic maize had no adverse impact on soil properties in soil rhizosphere during three consecutive years at two different locations and provided a theoretical basis for environmental impact monitoring of salinity tolerant transgenic maize. PMID:27990421

  13. Does adversity early in life affect general population suicide rates? A cross-national study.

    PubMed

    Shah, Ajit; Bhandarkar, Ritesh

    2011-01-01

    Adversity early in life has been suggested as a protective factor for elderly suicides. However, studies examining this relationship in general population suicide rates are scarce. The relationship between general population suicide rates and four proxy measures of adversity earlier in life was examined using data from the World Health Organization and the United Nations data banks. General population suicide rates were negatively correlated with the percentage of children under the age of 5 years who were underweight, the percentage of children under the age of 5 years who were under height, the percentage of infants with low birth weight babies, and the percentage of the general population that was undernourished. The only independent predictor general population suicide rates in both sexes, on multiple regression analysis, was the Gini coefficient (a measure of income inequality). Income inequality may lead to low birth weight, undernourishment, underweight and under height because income inequality results in poor access to healthcare and nutrition. These adversities may increase child mortality rates and reduce life expectancy. Those surviving into adulthood in countries with greater adversity early in life may be at reduced risk of suicide because of selective survival of those at reduced risk of suicide due to constitutional or genetic factors and development of greater tolerance to hardship in adulthood. ‎

  14. Degradation of soils as a result of human-induced transformation of their water regime and soil-protective practice

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2009-01-01

    The adverse human-induced changes in the water regime of soils leading to their degradation are considered. Factors of the human activity related to the water industry, agriculture, and silviculture are shown to play the most active role in the soil degradation. Among them are the large-scale hydraulic works on rivers, drainage and irrigation of soils, ameliorative and agricultural impacts, road construction, and uncontrolled impacts of industry and silviculture on the environment. The reasons for each case of soil degradation related to changes in the soil water regime are considered, and preventive measures are proposed. The role of secondary soil degradation processes is shown.

  15. Dissolved organic C and N pools in soils amended with composted and thermally-dried sludge as affected by soil tillage systems and sampling depth

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo

    2013-04-01

    Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS

  16. Cadmium content of plants as affected by soil cadmium concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With themore » same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.« less

  17. Degradation and ecotoxicity of the biomedical drug artemisinin in soil.

    PubMed

    Jessing, Karina K; Cedergreen, Nina; Jensen, John; Hansen, Hans C B

    2009-04-01

    The plant Artemisia annua L. is cropped in many countries for production of the antimalarial drug artemisinin. Artemisinin is phytotoxic and has insecticidal activity. Large-scale cultivation of A. annua may cause transfer of artemisinin to soil and, hence, may affect both soil organisms and the aquatic environment if the compound is leachable. In the present study, a new method for extraction of artemisinin from soil was developed, and field concentrations and degradation kinetics of artemisinin in sandy and loamy soils were measured. The soil concentrations in a Danish A. annua field were up to 11.7 mg/kg. The degradation kinetics could be modeled as the sum of two first-order reactions, a fast initial degradation followed by a reaction that was 11- to 25-fold slower. It took at least 35 d before artemisinin could not be detected (<0.36 mg/kg) at 20 degrees C, classifying artemisinin as being relatively persistent in the environment. Combined with its water solubility of 49.7 +/- 3.7 mg/L, this makes it potentially leachable. In soil, artemisinin repelled the earthworm (Eisenia fetida; the 10 and 50% effect concentrations [EC10s and EC50s, respectively] were 5.24 +/- 2.64 and 21.57 +/- 4.73 mg/kg, respectively) and inhibited growth of lettuce (Lactuca sativa L.; EC50, 2.48 mg/kg). Springtails (Folsomia candida) were not affected in the tested concentration range of 1 to 100 mg/kg. Artemisinin had toxicity to the freshwater algae (Pseudokirchneriella subcapitata; EC50, 0.24 +/- 0.01 mg/L) and duckweed (Lemna minor; EC50, 0.19 +/- 0.03 mg/L) similar to that of the commercial herbicide atrazine. Based on the presented data, the risks of adverse environmental effects because of cultivation of A. annua are high and comparable to those when using commercial pesticides.

  18. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1

  19. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    PubMed

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  20. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis.

    PubMed

    El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2015-01-01

    Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation.

  1. SOIL CADMIUM AS A THREAT TO HUMAN HEALTH

    EPA Science Inventory

    Cd contamination of soils has been a public concern since the demonstration that soil Cd from Zn mine wastes which contaminated rice paddies had caused excessive Cd absorption and adverse health effects in members of subsistence farm families who consumed rice grown on the contam...

  2. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    PubMed

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  4. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing.

  6. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    NASA Astrophysics Data System (ADS)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N

  7. Systematic review of pediatric health outcomes associated with childhood adversity.

    PubMed

    Oh, Debora Lee; Jerman, Petra; Silvério Marques, Sara; Koita, Kadiatou; Purewal Boparai, Sukhdip Kaur; Burke Harris, Nadine; Bucci, Monica

    2018-02-23

    Early detection of and intervention in childhood adversity has powerful potential to improve the health and well-being of children. A systematic review was conducted to better understand the pediatric health outcomes associated with childhood adversity. PubMed, PsycArticles, and CINAHL were searched for relevant articles. Longitudinal studies examining various adverse childhood experiences and biological health outcomes occurring prior to age 20 were selected. Mental and behavioral health outcomes were excluded, as were physical health outcomes that were a direct result of adversity (i.e. abusive head trauma). Data were extracted and risk of bias was assessed by 2 independent reviewers. After identifying 15940 records, 35 studies were included in this review. Selected studies indicated that exposure to childhood adversity was associated with delays in cognitive development, asthma, infection, somatic complaints, and sleep disruption. Studies on household dysfunction reported an effect on weight during early childhood, and studies on maltreatment reported an effect on weight during adolescence. Maternal mental health issues were associated with elevated cortisol levels, and maltreatment was associated with blunted cortisol levels in childhood. Furthermore, exposure to childhood adversity was associated with alterations of immune and inflammatory response and stress-related accelerated telomere erosion. Childhood adversity affects brain development and multiple body systems, and the physiologic manifestations can be detectable in childhood. A history of childhood adversity should be considered in the differential diagnosis of developmental delay, asthma, recurrent infections requiring hospitalization, somatic complaints, and sleep disruption. The variability in children's response to adversity suggests complex underlying mechanisms and poses a challenge in the development of uniform diagnostic guidelines. More large longitudinal studies are needed to better

  8. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  9. Assessing quality in volcanic ash soils

    Treesearch

    Terry L. Craigg; Steven W. Howes

    2007-01-01

    Forest managers must understand how changes in soil quality resulting from project implementation affect long-term productivity and watershed health. Volcanic ash soils have unique properties that affect their quality and function; and which may warrant soil quality standards and assessment techniques that are different from other soils. We discuss the concept of soil...

  10. Soil GHG emissions in a Miscanthus plantation as affected by increasing rates of biochar application.

    NASA Astrophysics Data System (ADS)

    Panzacchi, P.; Davies, C. A.; Ventura, M.; Michie, E. J.; Tonon, G.

    2012-04-01

    Biochar is defined as charcoal produced by pyrolysis with the aim to apply it to the soil in order to improve its fertility and carbon (C) storage capacity. Biochar physical and chemical properties can vary depending on the original biomass feedstock and pyrolysis conditions. The potential agricultural benefits and CO2 carbon sequestration from the application of biochar to soil, were assessed in field trials with well characterised biochar. In May 2010 we applied biochar from Miscanthus biomass produced at 450 °C at 3 different application rates: 10, 25 and 50 tons ha-1 to a 6 year old Miscanthus x giganteus plantation in Brattleby (Lincoln, UK) . Each treated 25 m2 plot had 4 replicates according to a randomised block experimental design. Biochar was incorporated to a depth of 10 cm in the soil between plant rhizomes after the harvest, through shallow tilling. CO2 emissions from biochar amended soil were monitored every two weeks by a portable infrared gas analyser (IRGA) with a closed dynamic chamber system, and continuously through 8 automated chambers (both systems from Li-COR, Lincoln, Nebraska). N2O fluxes were monitored using a closed static chamber technique with manual gas sampling and subsequent gas chromatography. Cation/anion exchange resin lysimeters were buried 20 cm deep in order to capture the leached nitrogen. Higher biochar applications led to a reduction of CO2 effluxes in the first 10 weeks of the experiment, after which no treatment effect was observed. The emission of N2O was significantly reduced in the 25 and 50 tons ha-1 application rates. Addition of biochar had no significant affect on the surface soil temperature, however the temperature sensitivity of soil respiration in the biochar treated plots decreased with increasing application rates

  11. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    , and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.

  12. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  13. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer.

    PubMed

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-07-01

    Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer.

  14. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    NASA Astrophysics Data System (ADS)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  15. Dynamics of aggregate stability and soil organic C distribution as affected by climatic aggressiveness: a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Elio Agnelli, Alessandro; Costanza Andrenelli, Maria; Barbetti, Roberto; Castelli, Fabio; Costantini, Edoardo A. C.; Lagomarsino, Alessandra; Pasqui, Massimiliano; Tomozeiu, Rodica; Razzaghi, Somayyeh; Vignozzi, Nadia

    2014-05-01

    changed at the end of the trial, depending of soil types. In CAS and MED a decrease of C content was observed in fractions larger than 0.250 mm, while an accumulation occurred only in CAS microaggregates. BOV showed a singular pattern, with an increase of organic C in all fractions. In this site an improvement of aggregation, involving the coarser fractions, seems to have been favoured during the experiment. Overall, the imposed climate did not affect significantly these trends, except in CAS, where TYP and SIM climates showed an increase of macroaggregates and their C concentration. Soil pedoclimatic characteristics showed to be the main factors affecting C and aggregates dynamics in this mesocosm experiment.

  16. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  17. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    USDA-ARS?s Scientific Manuscript database

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  18. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  19. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  20. Successive chlorothalonil applications inhibit soil nitrification and discrepantly affect abundances of functional genes in soil nitrogen cycling.

    PubMed

    Teng, Ying; Zhang, Manyun; Yang, Guangmei; Wang, Jun; Christie, Peter; Luo, Yongming

    2017-02-01

    Broad-spectrum fungicide chlorothalonil (CTN) is successively applied into intensive agriculture soil. However, the impacts of successive CTN applications on soil nitrification and related microorganisms remain poorly understood. A microcosm study was conducted to reveal the effects of successive CTN applications on soil nitrification and functional genes involved in soil nitrogen (N) cycling. The CTN at the dosages of 5 mg kg -1 dry soil (RD) and 25 mg kg -1 dry soil (5RD) was successively applied into the test soil at 7-day intervals which resulted in the accumulations of CTN residues. After 28 days of incubation, CTN residues in the RD and 5RD treatments were 3.14 and 69.7 mg kg -1 dry soil respectively. Net nitrification rates in the RD and 5RD treatments were lower than that obtained from the blank control (CK). Real-time PCR analysis revealed that AOA and AOB amoA gene abundances were significantly decreased by CTN applications. Moreover, CTN applications also discrepantly decreased the abundances of functional genes involved in soil denitrification, with the exception of nosZ gene. Principal component analysis further supported the observation that successive CTN applications could result in enhanced ecological toxicity.

  1. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  2. Committee Opinion No. 681 Summary: Disclosure and Discussion of Adverse Events.

    PubMed

    2016-12-01

    Adverse outcomes, preventable or otherwise, are a reality of medical care. Most importantly, adverse events affect patients, but they also affect health care practitioners. Disclosing information about adverse events has benefits for the patient and the physician and, ideally, strengthens the patient-physician relationship and promotes trust. Studies show that after an adverse outcome, patients expect and want timely and full disclosure of the event, an acknowledgment of responsibility, an understanding of what happened, expressions of sympathy, and a discussion of what is being done to prevent recurrence. Surveys have shown that patients are less likely to pursue litigation if they perceive that the event was honestly disclosed. Barriers to full disclosure are many and include fear of retribution for reporting an adverse event, lack of training, a culture of blame, and fear of lawsuits. To reduce these concerns, it is recommended that health care facilities establish a nonpunitive, blame-free culture that encourages staff to report adverse events and near misses (close calls) without fear of retaliation. Health care institutions should have written policies that address the management of adverse events. Having a responsive process to inform and aid the patient, loved ones, and practitioners is required. A commitment on the part of all health care practitioners and institutions to establish programs and develop the tools needed to help patients, families, health care practitioners, and staff members deal with adversity is essential.

  3. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    PubMed

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis

  4. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper.

    PubMed

    Liu, Jun; Lü, Xiaomeng; Xie, Jimin; Chu, Yafei; Sun, Cheng; Wang, Qian

    2009-06-01

    by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Without the addition of Cu, the adsorption of lambda-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of lambda-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg.kg(-1), the adsorption coefficient (K (d)) of lambda-CHT decreased from 12.2 to 5.9 L.kg(-1) for Red soil, and from 26.1 to 16.8 L.kg(-1) for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K (d) decreased from 9.4 to 0.2 L.kg(-1) for Red soil and from 16.2 to 0.5 L.kg(-1) for Black soil). Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to lambda-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the lambda-CHT and CPM were calculated, the differences of which probably lead to the fact that lambda-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) lambda-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) lambda-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms

  5. The Neurobiology of Intervention and Prevention in Early Adversity.

    PubMed

    Fisher, Philip A; Beauchamp, Kate G; Roos, Leslie E; Noll, Laura K; Flannery, Jessica; Delker, Brianna C

    2016-01-01

    Early adverse experiences are well understood to affect development and well-being, placing individuals at risk for negative physical and mental health outcomes. A growing literature documents the effects of adversity on developing neurobiological systems. Fewer studies have examined stress neurobiology to understand how to mitigate the effects of early adversity. This review summarizes the research on three neurobiological systems relevant to interventions for populations experiencing high levels of early adversity: the hypothalamic-adrenal-pituitary axis, the prefrontal cortex regions involved in executive functioning, and the system involved in threat detection and response, particularly the amygdala. Also discussed is the emerging field of epigenetics and related interventions to mitigate early adversity. Further emphasized is the need for intervention research to integrate knowledge about the neurobiological effects of prenatal stressors (e.g., drug use, alcohol exposure) and early adversity. The review concludes with a discussion of the implications of this research topic for clinical psychology practice and public policy.

  6. Soil nitrogen mineralization not affected by grass species traits

    Treesearch

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  7. Effect of organic matter supplementation on nitrogen transformations in soils. I. Chemical and bacteriological changes.

    PubMed

    Abd-el-Malek, Y; Monib, M; Hosny, I; Girgis, S A

    1979-01-01

    The effect of supplementation with different organic materials on nitrogen transformations and on certain bacterial groups in soil was studied. Addition of wide C/N ratio organic matter, sawdust and maize stalks prevented NO3-N from being lost through leaching out or dentrification and favoured the development of Azotobacter and N2-fixing clostridia that in turn resulted in marked gains in nitrogen through N2-fixation. Nitrifying bacteria were adversely affected. Application of such materials together with high amounts of NH4NO3 lessened nitrogen losses in drainage water but increased losses through denitrification. Nitrogen-rich organic matter resulted in higher losses in nitrates from soils in comparison to those of wide C/N ratio organic materials.

  8. Cellulitis in Obesity: Adverse Outcomes Affected by Increases in Body Mass Index.

    PubMed

    Theofiles, Meghan; Maxson, Julie; Herges, Lori; Marcelin, Alberto; Angstman, Kurt B

    2015-10-01

    Cellulitis in obese patients is associated with increased rates of treatment failure compared to those with normal body mass index (BMI); however, patients have not been extensively studied in the outpatient environment or stratified based on range of obesity and associated risk factors. This study looked at antibiotic dosing and treatment failure in the obese population from the primary care perspective and accounts for BMI range, weight, comorbid diabetes, and tobacco use. This study was a retrospective chart review of 637 adult primary care patients designed to evaluate rates of treatment failure of outpatient cellulitis among patients of varying BMI. Treatment failure was defined as (a) hospital admission for intravenous antibiotics, (b) prolonged antibiotic course, or (c) requiring a different antibiotic after initial course. Adverse outcomes were not statistically significant between normal BMI and those with BMI ≥40 kg/m(2). A subset of patients with a BMI ≥50 kg/m(2) was noted to have approximately twice the rate of adverse outcomes as the normal BMI group. While controlling for age, gender, race, diagnosis of diabetes mellitus, and tobacco use, a BMI of ≥50 kg/m(2) and a weight ≥120 kg was associated with adverse outcomes with an odds ratio of 2.440 (95% CI, 1.260-4.724; P = .008) and 2.246 (95% CI, 1.154-4.369; P = .017), respectively. Patients with cellulitis weighing >120kg or with a BMI ≥50 kg/m(2) were at greatest risk for treatment failure in the outpatient setting, even when controlling for comorbid diabetes and tobacco use. As morbid obesity continues to become more prevalent, it becomes imperative that primary care physicians have better antibiotic dosing guidelines to account for the physiologic effects of obesity to minimize the risk of increased morbidity, health care costs, and antibiotic resistance. © The Author(s) 2015.

  9. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed Central

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  10. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    NASA Astrophysics Data System (ADS)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  11. Thermal-treated soil for mercury removal: Soil and phytotoxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roh, Y.; Edwards, N.T.; Lee, S.Y.

    Mercury (Hg) contamination of soils and sediments is one of many environmental problems at the Oak Ridge Reservation, Oak Ridge, TN. Mercury-contaminated soil from the Lower East Fork Poplar Creek (LEFPC) at the Oak Ridge Reservation was treated thermally to reduce Hg concentration to a below target level (20 mg kg{sup {minus}1}) as a pilot scale thermal treatment demonstration. As a part of performance evaluation, the soil characteristics and plant growth response of the untreated and treated soil were examined. The soil treated at 350 C retained most of its original soil properties, but the soil treated at 600 Cmore » exhibited considerable changes in mineralogical composition and physicochemical characteristics. Growth and physiological response of the three plant species radish (Raphanus sativus L.), fescue (Festuca arundinacea Schreb.), and oat (Avena sativa L.) indicated adverse effects of the thermal treatment. The addition of N fertilizer had beneficial effects in the 350 C treated soil, but had little beneficial effect in the 600 C treated soil. Some changes of soil characteristics induced by thermal treatment cannot be avoided. Soil characteristics and phytotoxicity test results strongly suggest that changes occurring following the 350 C treatment do not limit the use of the treated soil to refill the excavated site for full-scale remediation. The only problem with the 350 C treatment is that small amounts of Hg compounds (<15 mg kg{sup {minus}1}) remain in the soil and a processing cost of $45/Mg.« less

  12. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.

    PubMed

    Bhuiyan, Mohammad A H; Parvez, Lutfar; Islam, M A; Dampare, Samuel B; Suzuki, Shigeyuki

    2010-01-15

    Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the northern part of Bangladesh were determined to evaluate the level of contamination. The average concentrations of Ti, Mn, Zn, Pb, As, Fe, Rb, Sr, Nb and Zr exceeded the world normal averages and, in some cases, Mn, Zn, As and Pb exceeded the toxic limit of the respective metals. Soil pollution assessment was carried out using enrichment factor (EF), geoaccumulation index (I(geo)) and pollution load index (PLI). The soils show significant enrichment with Ti, Mn, Zn, Pb, As, Fe, Sr and Nb, indicating inputs from mining activities. The I(geo) values have revealed that Mn (1.24+/-0.38), Zn (1.49+/-0.58) and Pb (1.63+/-0.38) are significantly accumulated in the study area. The PLIs derived from contamination factors indicate that the distal part of the coal mine-affected area is the most polluted (PLI of 4.02). Multivariate statistical analyses, principal component and cluster analyses, suggest that Mn, Zn, Pb and Ti are derived from anthropogenic sources, particularly coal mining activities, and the extreme proximal and distal parts are heavily contaminated with maximum heavy metals.

  13. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  14. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  15. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    PubMed

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  16. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  17. Comparing organic versus conventional soil management on soil respiration.

    PubMed

    Mátyás, Bence; Chiluisa Andrade, Maritza Elizabeth; Yandun Chida, Nora Carmen; Taipe Velasco, Carina Maribel; Gavilanes Morales, Denisse Estefania; Miño Montero, Gisella Nicole; Ramirez Cando, Lenin Javier; Lizano Acevedo, Ronnie Xavier

    2018-01-01

    Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  18. Comparing organic versus conventional soil management on soil respiration

    PubMed Central

    Mátyás, Bence; Chiluisa Andrade, Maritza Elizabeth; Yandun Chida, Nora Carmen; Taipe Velasco, Carina Maribel; Gavilanes Morales, Denisse Estefania; Miño Montero, Gisella Nicole; Ramirez Cando, Lenin Javier; Lizano Acevedo, Ronnie Xavier

    2018-01-01

    Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study. PMID:29623193

  19. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  20. Soil organic matter as sole indicator of soil degradation.

    PubMed

    Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y

    2017-04-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

  1. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  2. The specificity of childhood adversities and negative life events across the life span to anxiety and depressive disorders.

    PubMed

    Spinhoven, Philip; Elzinga, Bernet M; Hovens, Jacqueline G F M; Roelofs, Karin; Zitman, Frans G; van Oppen, Patricia; Penninx, Brenda W J H

    2010-10-01

    Although several studies have shown that life adversities play an important role in the etiology and maintenance of both depressive and anxiety disorders, little is known about the relative specificity of several types of life adversities to different forms of depressive and anxiety disorder and the concurrent role of neuroticism. Few studies have investigated whether clustering of life adversities or comorbidity of psychiatric disorders critically influence these relationships. Using data from the Netherlands Study of Depression and Anxiety (NESDA), we analyzed the association of childhood adversities and negative life experiences across the lifespan with lifetime DSM-IV-based diagnoses of depression or anxiety among 2288 participants with at least one affective disorder. Controlling for comorbidity and clustering of adversities the association of childhood adversity with affective disorders was greater than that of negative life events across the life span with affective disorders. Among childhood adversities, emotional neglect was specifically associated with depressive disorder, dysthymia, and social phobia. Persons with a history of emotional neglect and sexual abuse were more likely to develop more than one lifetime affective disorder. Neuroticism and current affective disorder did not affect the adversity-disorder relationships found. Using a retrospective study design, causal interpretations of the relationships found are not warranted. Emotional neglect seems to be differentially related to depression, dysthymia and social phobia. This knowledge may help to reduce underestimation of the impact of emotional abuse and lead to better recognition and treatment to prevent long-term disorders. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Phosphorus Concentrations in Sequentially Fractionated Soil Samples as Affected by Digestion Methods

    PubMed Central

    do Nascimento, Carlos A. C.; Pagliari, Paulo H.; Schmitt, Djalma; He, Zhongqi; Waldrip, Heidi

    2015-01-01

    Sequential fractionation has helped improving our understanding of the lability and bioavailability of P in soil. Nevertheless, there have been no reports on how manipulation of the different fractions prior to analyses affects the total P (TP) concentrations measured. This study investigated the effects of sample digestion, filtration, and acidification on the TP concentrations determined by ICP-OES in 20 soil samples. Total P in extracts were either determined without digestion by ICP-OES, or ICP-OES following block digestion, or autoclave digestion. The effects of sample filtration, and acidification on undigested alkaline extracts prior to ICP-OES were also evaluated. Results showed that, TP concentrations were greatest in the block-digested extracts, though the variability introduced by the block-digestion was the highest. Acidification of NaHCO3 extracts resulted in lower TP concentrations, while acidification of NaOH randomly increased or decreased TP concentrations. The precision observed with ICP-OES of undigested extracts suggests this should be the preferred method for TP determination in sequentially extracted samples. Thus, observations reported in this work would be helpful in appropriate sample handling for P determination, thereby improving the precision of P determination. The results are also useful for literature data comparison and discussion when there are differences in sample treatments. PMID:26647644

  4. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  5. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  6. Soil management practice in Croatian vineyard affect CO2 fluxes and soil degradation in trafficking zones. First results

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Bilandzija, Darija; Andabaka, Zeljko; Stupic, Domagoj; Cacic, Marija; Brezinscak, Luka; Maletic, Edi; Pereira, Paulo; Kisic, Ivica

    2017-04-01

    Vineyards represent one of the most degradation prone types of intensively managed land on Earth. Steep slopes encourage grape producers to adopt environmental friendly soil management like mulching or continuous no-tillage. In this context, producers have concerns about efficient fertilisation practices and water competitions between vine and grasses in continuous no-tillage inter rows. Vineyards in semi-humid areas like Continental Croatia mostly not suffer from water deficit during growth. Nevertheless, lack of research of different soil management practices open dilemma about soil compaction concerns in intensively trafficked soils in vineyard of semi-humid areas. Soil compaction, determined by bulk density (BD), soil water content (SWC) and CO2 fluxes from trafficked inter row positions were recorded in 2016 in an experiment in which four different soil management systems were compared in a vineyard raised on a silty clay loam soil, near Zagreb, Croatia: No-tillage (NT) system, continuous tillage (CT) and yearly inversed grass covered (INV-GC) and tillage managed (INV-T) inter rows are subjected to intensive traffic. Grape yield and must quality of grape variety Chardonnay was also monitored. Tractor traffic increased the soil BD at 0-10 and 10-20 cm, but especially at the 0-10 cm depth. CT treatment record lowest compaction at 0-10 cm because of tillage. Soil water content showed better conservation possibilities of INV-GC in drier period. In wet period SWC possibilities are similar between treatments. The results of soil compaction under different management indicate that vineyard soil differently response to traffic intensity and impact on microfauna activity and CO2 emissions. INV-GC and NT managed soils record lower CO2 fluxes from vineyard soil compared to CT and INV-T treatments. Management treatments did not statistically influenced on grape yields. Several years of investigation is needed to confirm the overall impact of different management

  7. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both

  8. Map the Permafrost and its Affected Soils and Vegetation on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Sheng, Y.; Pang, Q.; Zou, D.; Wang, Z.; Li, W.; Wu, X.; Yue, G.; Fang, H.; Zhao, Y.

    2015-12-01

    map within the permafrost regions on the TP. We also compiled the soil organic carbon density map of permafrost affected soils on the TP. An overview on permafrost thickness, GTs, ice content was statistically summarized based on investigation data.

  9. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    PubMed

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH 3 ) emission, N leaching and runoff), GHG (methane, CH 4 ; and nitrous oxide, N 2 O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH 3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha -1 yr -1 in upland and paddy fields, respectively; CH 4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N 2 O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  10. Higher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybean.

    PubMed

    Baquy, M Abdulaha-Al; Li, Jiu-Yu; Shi, Ren-Yong; Kamran, Muhammad Aqeel; Xu, Ren-Kou

    2018-03-01

    Low soil pH and aluminum (Al) toxicity induced by soil acidification are the main obstacles in many regions of the world for crop production. The purpose of this study was to reveal the mechanisms on how the properties of the soils derived from different parent materials play role on the determination of critical soil pH and Al concentration for soybean crops. A set of soybean pot experiment was executed in greenhouse with a soil pH gradient as treatment for each of four soils to fulfill the objectives of this study. The results indicated that plant growth parameters were affected adversely due to Al toxicity at low soil pH level in all soils. The critical soil pH varied with soil type and parent materials. They were 4.38, 4.63, 4.74, and 4.95 in the Alfisol derived from loss deposit, and the Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. The critical soil exchangeable Al was 2.42, 1.82, 1.55, and 1.44 cmol c /kg for the corresponding soils. At 90% yield level, the critical Al saturation was 6.94, 10.36, 17.79, and 22.75% for the corresponding soils. The lower critical soil pH and Al saturation, and higher soil exchangeable Al were mainly due to greater soil CEC and exchangeable base cations. Therefore, we recommended that critical soil pH, soil exchangeable Al, and Al saturation should be considered during judicious liming approach for soybean production.

  11. Environmental implications of high metal content in soils of a titanium mining zone in Kenya.

    PubMed

    Maina, David M; Ndirangu, Douglas M; Mangala, Michael M; Boman, Johan; Shepherd, Keith; Gatari, Michael J

    2016-11-01

    Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.

  12. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances

    PubMed Central

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats. PMID:29566035

  13. Review of municipal sludge use as a soil amendment on disturbed lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.A.; Hendrickson, P.L.

    1990-08-01

    The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effectivemore » means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.« less

  14. Land use type significantly affects microbial gene transcription in soil.

    PubMed

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  15. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau.

    PubMed

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke; Han, Feng; Li, Chunrong; Zhang, Hui; Dai, Zhenxue

    2017-06-07

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a "leaking CCS site". Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest that crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO 2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.

  16. The impact of childhood adversity on suicidality and clinical course in treatment-resistant depression.

    PubMed

    Tunnard, Catherine; Rane, Lena J; Wooderson, Sarah C; Markopoulou, Kalypso; Poon, Lucia; Fekadu, Abebaw; Juruena, Mario; Cleare, Anthony J

    2014-01-01

    Childhood adversity is a risk factor for the development of depression and can also affect clinical course. We investigated this specifically in treatment-resistant depression (TRD). One hundred and thirty-seven patients with TRD previously admitted to an inpatient affective disorders unit were included. Clinical, demographic and childhood adversity (physical, sexual, emotional abuse; bullying victimization, traumatic events) data were obtained during admission. Associations between childhood adversity, depressive symptoms and clinical course were investigated. Most patients had experienced childhood adversity (62%), with traumatic events (35%) and bullying victimization (29%) most commonly reported. Childhood adversity was associated with poorer clinical course, including earlier age of onset, episode persistence and recurrence. Logistic regression analyses revealed childhood adversity predicted lifetime suicide attempts (OR 2.79; 95% CI 1.14, 6.84) and childhood physical abuse predicted lifetime psychosis (OR 3.42; 95% CI 1.00, 11.70). The cross-sectional design and retrospective measurement of childhood adversity are limitations of the study. Childhood adversity was common amongst these TRD patients and was associated with poor clinical course, psychosis and suicide attempts. Routine assessment of early adversity may help identify at risk individuals and inform clinical intervention. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    PubMed

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, Mª Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Does Employment-Related Resilience Affect the Relationship between Childhood Adversity, Community Violence, and Depression?

    PubMed

    Welles, Seth L; Patel, Falguni; Chilton, Mariana

    2017-04-01

    Depression is a barrier to employment among low-income caregivers receiving Temporary Assistance for Needy Families (TANF), and adverse childhood experiences (ACEs) and exposure to community violence (ECV) are often associated with depression. Using baseline data of 103 TANF caregivers of young children of the Building Wealth and Health Network Randomized Controlled Trial Pilot, this study investigated associations of two forms of employment-related resilience-self-efficacy and employment hope-with exposure to adversity/violence and depression, measured by the Center for Epidemiologic Studies Depression (CES-D) short form. Using contingency table analysis and regression analysis, we identified associations between ACEs and depression [OR = 1.70 (1.25-2.32), p = 0.0008] and having high levels of ECV with a 6.9-fold increased risk for depression when compared with those without ECV [OR = 6.86 (1.43-33.01), p = 0.02]. While self-efficacy and employment hope were significantly associated with depression, neither resilience factor impacted the association of ACE level and depression, whereas self-efficacy and employment hope modestly reduced the associations between ECV and depression, 13 and 16%, respectively. Results suggest that self-efficacy and employment hope may not have an impact on the strong associations between adversity, violence, and depression.

  19. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica

    USGS Publications Warehouse

    Simas, F.N.B.; Schaefer, C.E.G.R.; Mendonça, E.S.; Silva, I.R.; Santana, R.M.; Ribeiro, A.S.S.

    2007-01-01

    Recent works show that organic matter accumulation in some soils from coastal Antarctica is higher than previously expected. The objective of the present work was to estimate the organic C stocks for soils from maritime Antarctica. Cryosols from subpolar desert landscapes presented the lowest organic C stocks. Ornithogenic soils are the most important C reservoirs in terrestrial ecosystems in this part of Antarctica. Although these soils correspond to only 2.5 % of the ice-free areas at Admiralty Bay, they contain approximately 20 % of the estimated C stock. Most of the organic C in the studied soils is stored in the active layer but in some cases the C is also stored in the permafrost.

  20. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  1. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    PubMed Central

    Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870

  3. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating.

    PubMed

    Daebeler, Anne; Abell, Guy C J; Bodelier, Paul L E; Bodrossy, Levente; Frampton, Dion M F; Hefting, Mariet M; Laanbroek, Hendrikus J

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  4. Can thinning slash cause a nitrogen deficiency in pumice soils of central Oregon?

    Treesearch

    P.H. Cochran

    1968-01-01

    Decomposition of thinning slash deposited on the soil surface should have no direct adverse effect on the soil nitrogen available to higher plants in the pumice soil region. Decomposition of roots of cut trees would immobilize nitrogen in the soil immediately adjacent to the root during the decomposition period, which appears to be short for the smaller roots. However...

  5. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    PubMed

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident

    NASA Astrophysics Data System (ADS)

    Konoplev, A. V.; Golosov, V. N.; Yoschenko, V. I.; Nanba, K.; Onda, Y.; Takase, T.; Wakiyama, Y.

    2016-05-01

    Presented are results of the study of radiocesium vertical distribution in the soils of the irrigation pond catchments in the near field 0.25 to 8 km from the Fukushima Dai-ichi NPP, on sections of the Niida River floodplain, and in a forest ecosystem typical of the territory contaminated after the accident. It is shown that the vertical migration of radiocesium in undisturbed forest and grassland soils in the zone affected by the Fukushima accident is faster than it was in the soils of the 30-km zone of the Chernobyl NPP for a similar time interval after the accident. The effective dispersion coefficients in the Fukushima soils are several times higher than those for the Chernobyl soils. This may be associated with higher annual precipitation (by about 2.5 times) in Fukushima as compared to the Chernobyl zone. In the forest soils the radiocesium dispersion is faster as compared to grassland soils, both in the Fukushima and Chernobyl zones. The study and analysis of the vertical distribution of the Fukushima origin radiocesium in the Niida gawa floodplain soils has made it possible to identify areas of contaminated sediment accumulation on the floodplain. The average accumulation rate for sediments at the study locations on the Niida gawa floodplain varied from 0.3 to 3.3 cm/year. Taking into account the sediments accumulation leading to an increase in the radiocesium inventory in alluvial soils is key for predicting redistribution of radioactive contamination after the Fukushima accident on the river catchments, as well as for decision-making on contaminated territories remediation and clean-up. Clean-up of alluvial soils does not seem to be worthwhile because of the following accumulation of contaminated sediments originating from more contaminated areas, including the exclusion zone.

  7. Nuclear transit study in children with chronic faecal soiling after Hirschsprung disease (HSCR) surgery has revealed a group with rapid proximal colonic treatment and possible adverse reactions to food.

    PubMed

    Stathopoulos, Lefteris; King, Sebastian K; Southwell, Bridget R; Hutson, John M

    2016-08-01

    Long-term problems with faecal incontinence occur in up to 50 % of patients after pull-through for Hirschsprung disease (HSCR). The cause often remains unknown, leading to empirical treatments. Using nuclear transit study, we found some patients surprisingly had rapid proximal colonic transit, suspicious of occult diarrhoea. We aimed to assess whether these patients had unrecognized adverse reactions to food. Patients (n = 10, all males, 9.6 year; 4.25-15.5 years) with persistent faecal incontinence following pull-through for HSCR referred to the senior author and after exclusion of anatomical defects, underwent nuclear transit studies. Most (8) subsequently underwent breath hydrogen tests for sugar malabsorption and were tested for adverse reactions to food. Exclusion diets for protein allergens, lactose or fructose were then trialed. Of the 10 patients with rapid intestinal transit proven on nuclear transit study, breath hydrogen tests for fructose and/or lactose malabsorption were done in 8, and were positive in 7/8 patients. Exclusion diets contributed to either resolution or improvement in faecal incontinence in 9/10 patients. Rapid transit in the proximal, ganglionated colon may be present in children with faecal incontinence following pull-through for HSCR, possibly secondary to adverse reactions to food. This study suggests that children with post-operative soiling may benefit from a transit study and hydrogen breath tests to diagnose adverse reactions to food caused by sugar malabsorption.

  8. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  9. Bioavailability assessment of thiacloprid in soil as affected by biochar.

    PubMed

    Li, Yao; Zhu, Yulong; Liu, Xingang; Wu, Xiaohu; Dong, Fengshou; Xu, Jun; Zheng, Yongquan

    2017-03-01

    Biochars can significantly sorb pesticides, and reduce their bioavailability in agricultural soils. In this study, the effects of a type of biochar (BC500) on the sorption, degradation, bioaccumulation and bioavailability of thiacloprid, which is a commonly used insecticide, were investigated. The thiacloprid sorption constant (K f values) increased by 14 times after 2% BC500 application, and the degradation of the insecticide decreased with increasing amounts of the biochars in the soil. Coupled with the exhaustive extraction and single-point Tenax method, the bioavailability of thiacloprid was predicted in the presence of the biochar. In soils amended with BC500, the thiacloprid concentrations accumulated in Tenax correlated well with those observed in earthworms (R 2  = 0.887), whereas the concentrations extracted by exhaustive method followed a less significant relationship with those in earthworms (R 2  = 0.624). The results of Tenax extractions and earthworm bioassays indicate that biochar reduces the bioavailability of thiacloprid in soil, but the delayed degradation and increased earthworm accumulation in aged biochar-amended soil imply that the environmental risks of biochar application to earthworms remain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of ivermectin application on the diversity and function of dung and soil fauna: Regulatory and scientific background information.

    PubMed

    Adler, Nicole; Bachmann, Jean; Blanckenhorn, Wolf U; Floate, Kevin D; Jensen, John; Römbke, Jörg

    2016-08-01

    The application of veterinary medical products to livestock can impact soil organisms in manure-amended fields or adversely affect organisms that colonize dung pats of treated animals and potentially retard the degradation of dung on pastures. For this reason, the authorization process for veterinary medicinal products in the European Union includes a requirement for higher-tier tests when adverse effects on dung organisms are observed in single-species toxicity tests. However, no guidance documents for the performance of higher-tier tests are available. Hence, an international research project was undertaken to develop and validate a proposed test method under varying field conditions of climate, soil, and endemic coprophilous fauna at Lethbridge (Canada), Montpellier (France), Zurich (Switzerland), and Wageningen (The Netherlands). The specific objectives were to determine if fecal residues of an anthelmintic with known insecticidal activity (ivermectin) showed similar effects across sites on 1) insects breeding in dung of treated animals, 2) coprophilous organisms in the soil beneath the dung, and 3) rates of dung degradation. By evaluating the effects of parasiticides on communities of dung-breeding insects and soil fauna under field conditions, the test method meets the requirements of a higher-tier test as mandated by the European Union. The present study provides contextual information on authorization requirements for veterinary medicinal products and on the structure and function of dung and soil organism communities. It also provides a summary of the main findings. Subsequent studies on this issue provide detailed information on different aspects of this overall project. Environ Toxicol Chem 2016;35:1914-1923. © 2015 SETAC. © 2015 SETAC.

  11. Ozone risk assessment in three oak species as affected by soil water availability.

    PubMed

    Hoshika, Yasutomo; Moura, Barbara; Paoletti, Elena

    2018-03-01

    To derive ozone (O 3 ) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O 3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O 3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O 3 dose (POD) 0-3 ) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O 3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O 3 sensitivity, the best metric was POD 0.5 , with a CL of 6.8 mmol m -2 for the less O 3 -sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m -2 for the more O 3 -sensitive species Q. robur. The performance of POD 0 , however, was very similar to that of POD 0.5 , and thus a CL of 6.9 mmol m -2 POD 0 and 3.6 mmol m -2 POD 0 for the less and more O 3 -sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that POD y is able to reconcile the effects of O 3 and soil water availability on species-specific oak productivity.

  12. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    ERIC Educational Resources Information Center

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  13. Implication of zinc excess on soil health.

    PubMed

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  14. Assessing Soil Organic Carbon Stocks in Fire-Affected Pinus Palustris Forests

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.; Johnsen, K. H.; Jackson, J. A.; Anderson, P. H.; Samuelson, L. J.; Lorenz, K.

    2014-12-01

    This study aimed to quantify the vertical distribution of soil organic carbon (SOC) and its biochemically resistant fraction (SOCR; defined as residual SOC following H2O2 treatment and dilute HNO3 digestion) in managed longleaf pine (LLP) stands located at Fort Benning, Georgia, USA (32.38 N., 84.88 W.). Although it is unclear how to increase SOCR via land management, it is a relatively stable carbon (C) pool that is important for terrestrial C sequestration. SOC concentration declines with soil depth on upland soils without a spodic horizon; however, the portion that is SOCR and the residence time of this fraction on LLP stands is unknown. Soils were collected by depth at five sites with common land use history, present use for active military training and a three-year prescribed fire return cycle. Soils were treated with H2O2 and dilute HNO3 to isolate SOCR. In the upper 1-m of soil SOC stocks averaged 72.1 ± 6.6 Mg C ha-1 and SOCR averaged 25.8 ± 3.2 Mg C ha-1. Depending on the site, the ratio of SOCR:SOC ranged from 0.25 to 0.50 in the upper 1-m of soil. On clayey soils the ratio of SOCR:SOC increased with soil depth. One site containing 33% clay at 50 to 100 cm depth had a SOCR:SOC ratio of 0.68. The radiocarbon age of SOCR increased with soil depth, ranging from approximately 2,000 years before present (YBP) at 0 to 10 cm to over 5,500 YBP at 50 to 100 cm depth. Across all sites, SOCR makes up a considerable portion of SOC. What isn't clear is the proportion of SOCR that is of pyrogenic origin (black carbon), versus SOCR that is stabilized by association with the mineral phase. Ongoing analysis with 13C nuclear magnetic resonance spectroscopy will provide data on the degree of aromaticity of the SOCR and some indication of the nature of its biochemical stability.

  15. Recording Adverse Events Following Joint Arthroplasty: Financial Implications and Validation of an Adverse Event Assessment Form.

    PubMed

    Lee, Matthew J; Mohamed, Khalid M S; Kelly, John C; Galbraith, John G; Street, John; Lenehan, Brian J

    2017-09-01

    In Ireland, funding of joint arthroplasty procedures has moved to a pay-by-results national tariff system. Typically, adverse clinical events are recorded via retrospective chart-abstraction methods by administrative staff. Missed or undocumented events not only affect the quality of patient care but also may unrealistically skew budgetary decisions that impact fiscal viability of the service. Accurate recording confers clinical benefits and financial transparency. The aim of this study was to compare a prospectively implemented adverse events form with the current national retrospective chart-abstraction method in terms of pay-by-results financial implications. An adverse events form adapted from a similar validated model was used to prospectively record complications in 51 patients undergoing total hip or knee arthroplasties. Results were compared with the same cohort using an existing data abstraction method. Both data sets were coded in accordance with current standards for case funding. Overall, 114 events were recorded during the study through prospective charting of adverse events, compared with 15 events documented by customary method (a significant discrepancy). Wound drainage (15.8%) was the most common complication, followed by anemia (7.9%), lower respiratory tract infections (7.9%), and cardiac events (7%). A total of €61,956 ($67,778) in missed funding was calculated as a result. This pilot study demonstrates the ability to improve capture of adverse events through use of a well-designed assessment form. Proper perioperative data handling is a critical aspect of financial subsidies, enabling optimal allocation of funds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Remote sensing and geographic information system for appraisal of salt-affected soils in India.

    PubMed

    Singh, Gurbachan; Bundela, D S; Sethi, Madhurama; Lal, Khajanchi; Kamra, S K

    2010-01-01

    Quantification of the nature, extent, and spatial distribution of salt-affected soils (SAS) for India and the world is essential for planning and implementing reclamation programs in a timely and cost-effective manner for sustained crop production. The national extent of SAS for India over the last four decades was assessed by conventional and remote sensing approaches using diverse methodologies and class definitions and ranged from 6.0 to 26.1 million hectares (Mha) and 1.2 to 10.1 Mha, respectively. In 1966, an area of 6 Mha under SAS was first reported using the former approach. Three national estimates, obtained using remote sensing, were reconciled using a geographic information system, resulting in an acceptable extent of 6.73 Mha. Moderately and severely salt-encrusted lands having large contiguous area have been correctly mapped, but slightly salt-encrusted land having smaller affected areas within croplands has not been accurately mapped. Recent satellite sensors (e.g., Resourcesat-1, Cartosat-2, IKONOS-II, and RISAT-2), along with improved image processing techniques integrated with terrain and other spatial data using a geographic information system, are enabling mapping at large scale. Significant variations in salt encrustation at the surface caused by soil moisture, waterlogging conditions, salt-tolerant crops, and dynamics of subsurface salts present constraints in appraisal, delineation, and mapping efforts. The article provides an overview of development, identification, characterization, and delineation of SAS, past and current national scenarios of SAS using conventional and remote sensing approaches, reconciliation of national estimates, issues of SAS mapping, and future scope.

  17. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    NASA Astrophysics Data System (ADS)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  18. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

    PubMed Central

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-01-01

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  19. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  20. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Family Adversity and Resilience Measures in Pediatric Acute Care Settings.

    PubMed

    O'Malley, Donna M; Randell, Kimberly A; Dowd, M Denise

    2016-01-01

    Adverse childhood experiences (ACEs) impact health across the life course. The purpose of this study was to identify caregiver ACEs, current adversity, and resilience in families seeking care in pediatric acute care settings. Study aims included identifying demographic characteristics, current adversities, and resilience measures associated with caregiver ACEs ≥4. A cross-sectional survey study design was used and a convenience sample (n = 470) recruited at emergency and urgent care settings of a large Midwest pediatric hospital system. Measures were self-reported. The original 10-item ACEs questionnaire measured caregiver past adversity. Current adversity was measured using the 10-item IHELP. The six-item Brief Resiliency Scale measured resilience, and WHO-5 Well-Being Index was used to measure depressive affect. Compared to participants with ACEs score of 0-3 participants with ACEs ≥4 were more likely to have multiple current adversities, increased risk of depression, and lower resilience. Caregivers using pediatric acute care settings carry a high burden of ACEs and current adversities. Caregiver ACEs are associated with current child experiences of adversity. Caregivers socioeconomic status and education level may not be an accurate indicator of a family's risks or needs. Pediatric acute care settings offer opportunities to access, intervene, and prevent childhood adversity. © 2016 Wiley Periodicals, Inc.

  2. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  3. Soil and solid poultry waste nutrient management and water quality.

    PubMed

    Chapman, S L

    1996-07-01

    Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.

  4. Weight of evidence evaluation of a network of adverse ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating many high nutrient crops, such as fruits, vegetables, and nuts. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure, however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate target pest insects. However, mounting evidence indicates that these neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Development of AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect norm

  5. How climatic conditions, site, and soil characteristics affect tree growth and critical loads of nitrogen for northeastern tree species

    Treesearch

    Molly J. Robin-Abbott; Linda H. Pardo

    2017-01-01

    Forest health is affected by multiple factors, including topography, climate, and soil characteristics, as well as pests, pathogens, competitive interactions, and anthropogenic deposition. Species within a stand may respond differently to site factors depending on their physiological requirements for growth, survival, and regeneration. We determined optimal ranges of...

  6. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  7. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  8. Patients' Perceptions of Physician-Patient Discussions and Adverse Events with Cancer Therapy.

    PubMed

    Hershman, Dawn; Calhoun, Elizabeth; Zapert, Kinga; Wade, Shawn; Malin, Jennifer; Barron, Rich

    2008-09-01

    OBJECTIVES: Patients with cancer who are treated with chemotherapy report adverse events during their treatment, which can affect their quality of life and increase the likelihood that their treatment will not be completed. In this study, patients' perceptions of the physician-patient relationship and communication about cancer-related issues, particularly adverse events were examined. METHODS: We surveyed 508 patients with cancer concerning the occurrence of adverse events and their relationship and communication with their physicians regarding cancer, treatment, and adverse events. RESULTS: Most individuals surveyed (>90%) discussed diagnosis, treatment plan, goals, and schedule, and potential adverse events with their physicians before initiating chemotherapy; approximately 75% of these individuals understood these topics completely or very well. Physician-patient discussions of adverse events were common, with tiredness, nausea and vomiting, and loss of appetite discussed prior to chemotherapy in over 80% of communications. These events were also the most often experienced (ranging in 95% to 64% of the respondents) along with low white blood cell counts (WBCs), which were experienced in 67% of respondents. Approximately 75% of the individuals reported that their overall quality of life was affected by adverse events. CONCLUSIONS: These findings suggest that discussions alone do not provide patients with sufficient understanding of the events, nor do they appear to adequately equip patients to cope with them. Therefore, efforts to improve cancer care should focus on developing tools to improve patients' understanding of the toxicities of chemotherapy, as well as providing resources to reduce the effects of adverse events.

  9. [Effects of root-knot nematodes on cucumber leaf N and P contents, soil pH, and soil enzyme activities].

    PubMed

    Xu, Hua; Ruan, Wei-Bin; Gao, Yu-Bao; Song, Xiao-Yan; Wei, Yu-Kun

    2010-08-01

    A pot experiment was conducted to study the effects of inoculation with root-knot nematodes on the cucumber leaf N and P contents, and the rhizospheric and non-rhizospheric soil pH and enzyme activities. The rhizospheric soil pH didn't have a significant decrease until the inoculation rate reached 6000 eggs per plant. With the increase of inoculation rate, the leaf N and P contents, rhizospheric soil peroxidase activity, and rhizospheric and non-rhizospheric soil polyphenol oxidase activity all decreased gradually, rhizospheric soil catalase activity was in adverse, non-rhizospheric soil pH decreased after an initial increase, and non-rhizospheric soil catalase activity had no regular change. After inoculation, rhizospheric soil urease activity decreased significantly, but rhizospheric and non-rhizospheric soil phosphatase activity and non-rhizospheric soil peroxidase activity only had a significant decrease under high inoculation rate. In most cases, there existed significant correlations between rhizospheric soil pH, enzyme activities, and leaf N and P contents; and in some cases, there existed significant correlations between non-rhizospheric soil pH, enzyme activities, and leaf N and P contents.

  10. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indexes

    USDA-ARS?s Scientific Manuscript database

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  11. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  12. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  13. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  14. Adverse events associated with pediatric exposures to dextromethorphan.

    PubMed

    Paul, Ian M; Reynolds, Kate M; Kauffman, Ralph E; Banner, William; Bond, G Randall; Palmer, Robert B; Burnham, Randy I; Green, Jody L

    2017-01-01

    Dextromethorphan is the most common over-the-counter (OTC) antitussive medication. We sought to characterize adverse events associated with dextromethorphan in children <12 years old from a surveillance program of OTC cough/cold medication exposures. This is a retrospective case series of oral exposures to dextromethorphan with ≥1 adverse event from multiple U.S. sources (National Poison Data System, FDA Adverse Event Reporting System, manufacturer safety reports, news/media, medical literature) reported between 2008 and 2014. An expert panel determined the relationship between exposure and adverse events, estimated dose ingested, intent of exposure, and identified contributing factors to exposure. 1716 cases contained ≥1 adverse event deemed at least potentially related to dextromethorphan; 1417 were single product exposures. 773/1417 (55%) involved only one single-ingredient dextromethorphan product (dextromethorphan-only). Among dextromethorphan-only cases, 3% followed ingestion of a therapeutic dose; 78% followed an overdose. 69% involved unsupervised self-administration and 60% occurred in children <4 years old. No deaths or pathologic dysrhythmias occurred. Central nervous system [e.g., ataxia (N = 420)] and autonomic symptoms [e.g., tachycardia (N = 224)] were the most common adverse events. Flushing and/or urticarial rash occurred in 18.1% of patients. Dystonia occurred in 5.4%. No fatalities were identified in this multifaceted surveillance program following a dextromethorphan-only ingestion. Adverse events were predominantly associated with overdose, most commonly affecting the central nervous and autonomic systems.

  15. Chapter 3: Soil Chemistry

    Treesearch

    Jennifer D. Knoepp; Leonard F. DeBano; Daniel G. Neary

    2005-01-01

    The chemical properties of the soil that are affected by fire include individual chemical characteristics, chemical reactions, and chemical processes (DeBano and others 1998). The soil chemical characteristics most commonly affected by fire are organic matter, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), cations, cation exchange capacity, pH, and buffer power...

  16. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  17. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  18. Early Adverse Caregiving Experiences and Preschoolers' Current Attachment Affect Brain Responses during Facial Familiarity Processing: An ERP Study.

    PubMed

    Kungl, Melanie T; Bovenschen, Ina; Spangler, Gottfried

    2017-01-01

    When being placed into more benign environments like foster care, children from adverse rearing backgrounds are capable of forming attachment relationships to new caregivers within the first year of placement, while certain problematic social behaviors appear to be more persistent. Assuming that early averse experiences shape neural circuits underlying social behavior, neurophysiological studies on individual differences in early social-information processing have great informative value. More precisely, ERP studies have repeatedly shown face processing to be sensitive to experience especially regarding the caregiving background. However, studies on effects of early adverse caregiving experiences are restricted to children with a history of institutionalization. Also, no study has investigated effects of attachment security as a marker of the quality of the caregiver-child relationship. Thus, the current study asks how adverse caregiving experiences and attachment security to (new) caregivers affect early- and mid-latency ERPs sensitive to facial familiarity processing. Therefore, pre-school aged foster children during their second year within the foster home were compared to an age matched control group. Attachment was assessed using the AQS and neurophysiological data was collected during a passive viewing task presenting (foster) mother and stranger faces. Foster children were comparable to the control group with regard to attachment security. On a neurophysiological level, however, the foster group showed dampened N170 amplitudes for both face types. In both foster and control children, dampened N170 amplitudes were also found for stranger as compared to (foster) mother faces, and, for insecurely attached children as compared to securely attached children. This neural pattern may be viewed as a result of poorer social interactions earlier in life. Still, there was no effect on P1 amplitudes. Indicating heightened attentional processing, Nc amplitude responses

  19. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  20. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  1. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  2. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  3. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  4. Varying termiticide application rate and volume affect initial soil penetration

    Treesearch

    Christopher Peterson

    2010-01-01

    The initial soil penetration of Premise 75 and Termidor SC, containing imidacloprid and fipronil, respectively, were tested in laboratory columns of five different soils. Three combinations of application concentration and volume were used: double the recommended active ingredient concentration at one half the recommended volume (DR), the full concentration and volume...

  5. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tibiofemoral osteoarthritis affects quality of life and function in elderly Koreans, with women more adversely affected than men.

    PubMed

    Kim, Inje; Kim, Hyun Ah; Seo, Young-Il; Song, Yeong Wook; Hunter, David J; Jeong, Jin Young; Kim, Dong Hyun

    2010-06-22

    worse WOMAC and SF-12 scores compared to men, regardless of the presence of radiographic knee OA after adjustment of age, BMI and OA severity. OA subjects had significantly worse performance score for usual walk and chair stands compared to non-OA subjects, but the ORs were no more significant after adjustment of sex. Knee OA negatively affects the QoL and physical function in both genders, but women are more adversely affected than men.

  7. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  8. Evaluation of a simple, point-scale hydrologic model in simulating soil moisture using the Delaware environmental observing system

    NASA Astrophysics Data System (ADS)

    Legates, David R.; Junghenn, Katherine T.

    2018-04-01

    Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.

  9. Soil Tillage as a Factor of Soil Conservation

    NASA Astrophysics Data System (ADS)

    Sherer, D. V.; Chumanova, N. N.

    2017-05-01

    The work describes the question of the soil treatment system influence on agro-physical and microbiological properties of gray forest soils, and yield of barley in Western Siberia. Research works were carried out in 2013-2014 in Yaya region of the Kemerovo region. Tillage affects soil structure. The water stability in zero tillage conditions was poor (15.7%). Soil density corresponding to the optimum rate for barley is formed by the zonal processing system, while at the zero tillage soil remains solid. The best indicators of phosphataze, catalysis and amylase activity are formed with minimum processing system. In the experiment the highest yield of barley was obtained with minimum tillage - 12.1 c/ha.

  10. Detecting crop yield reduction due to irrigation-induced soil salinization in South-West Russia

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Beets, W.; Croes, J.; Keesstra, S.; Verzandvoort, S.; Zeiliguer, A.

    2012-04-01

    The South-European part of the Russian Federation has experienced serious land degradation in the form of soil salinization since the 1960s. This land degradation was caused by intensive, large-scale irrigation on reclaimed land in combination with the salt-rich nature of the substrate. Alkaline soil salinity is believed to be an important factor decreasing crop yield in this area. A large research effort has been directed to the effects of soil salinity on crops, there is a need for simple, easily determinable indicators of crop health and soil salinity in irrigated systems, that can help to detect crop water stress in an early stage. The objectives of this research were to study the effects of soil salinity and vegetation water stress on the performance of alfalfa crop yield and physiological crop properties, and to study the possibility to measure soil salinity and alkalinity and the crop water stress index at plot level using a thermal gun and a regular digital camera. The study area was located in Saratov District, in the South-West part of Russia. Variables on the surface energy balance, crop properties, soil properties and visible reflectance were measured on plots with alfalfa cultures in two fields with and without signs of alkaline soil salinity, and with and without irrigation in July 2009. The research showed no clear adverse effects of soil salinity and soil alkalinity on crop yield and physiological crop properties. Soil salinity, as reflected by the electric conductivity, positively affected the root biomass of alfalfa in the range of 0.15 to 1.52 dS/m . This was a result of EC levels being below the documented threshold to negatively affect Alfalfa, as would be the case in truly saline soils. The soil pH also showed a positive correlation with root biomass within the range of pH 6.2 and 8.5 . From the literature these pH values are generally believed to be too high to exhibit a positive relationship with root biomass. No relationship was found

  11. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    USDA-ARS?s Scientific Manuscript database

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  12. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  13. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    PubMed

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  14. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    PubMed

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  15. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    USGS Publications Warehouse

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight

  16. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  17. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  18. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a “leaking CCS site”. Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest thatmore » crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.« less

  19. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau

    DOE PAGES

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke; ...

    2017-06-07

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a “leaking CCS site”. Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest thatmore » crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.« less

  20. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  1. Impacts of soil moisture content on visual soil evaluation

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  2. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil.

    PubMed

    Maletić, Snežana P; Dalmacija, Božo D; Rončević, Srđan D; Agbaba, Jasmina R; Perović, Svetlana D Ugarčina

    2011-01-01

    The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.

  3. Life adversity is associated with smoking relapse after a quit attempt.

    PubMed

    Lemieux, Andrine; Olson, Leif; Nakajima, Motohiro; Schulberg, Lauren; al'Absi, Mustafa

    2016-09-01

    Multiple cross-sectional studies have linked adverse childhood events and adult adversities to current smoking, lifetime smoking, and former smoking. To date, however, there have been no direct observational studies assessing the influence of adversities on smoking relapse. We prospectively followed 123 participants, 86 of whom were habitual smokers, from pre-quit ad libitum smoking to four weeks post-quit. Thirty-seven non-smokers were also tested in parallel as a comparison group. Subjects provided biological samples for confirmation of abstinence status and self-report history of adversities such as abuse, neglect, family dysfunction, incarceration, and child-parent separation. They also completed mood and smoking withdrawal symptom measures. The results indicated that within non-smokers and smokers who relapsed within the first month of a quit attempt, but not abstainers, females had significantly higher adversity scores than males. Cigarette craving, which was independent from depressive affect, increased for low adversity participants, but not those with no adversity nor high adversity. These results demonstrate that sex and relapse status interact to predict adversity and that craving for nicotine may be an important additional mediator of relapse. These results add further support to the previous cross-sectional evidence of an adversity and smoking relationship. Further studies to clarify how adversity complicates smoking cessation and impacts smoking behaviors are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

    PubMed

    Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio

    2016-11-01

    Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.

  5. Adverse Effects of Plasma Transfusion

    PubMed Central

    Pandey, Suchitra; Vyas, Girish N.

    2012-01-01

    Plasma utilization has increased over the last two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions following infusion of fresh frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: (1) transfusion related acute lung injury; (2) transfusion associated circulatory overload, and (3) allergic/anaphylactic reactions. Other less common risks include (1) transmission of infections, (2) febrile non-hemolytic transfusion reactions, (3) RBC allo-immunization, and (4) hemolytic transfusion reactions. The affect of pathogen inactivation/reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  6. Resilient Modulus of Freeze-Thaw Affected Granular Soils for Pavement Design and Evaluation. Part 2. Field Validation Tests at Winchendon, Massachusetts, Test Sections,

    DTIC Science & Technology

    1986-10-01

    AD-AI?5 394 RESILIENT MODULUS OF FREEZE-THAN AFFECTED GRANULAR 1/1 SOILS FOR PAVEMENT DES . .( U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH...Chamberlain, who had a major role in the de - velopment of the laboratory testing techniques; Glenn Durell, who conducted the resilient modulus testing; and...notorious. In areas of seasonal moisture tension, and the stresses imposed in the frost the supporting capacity of subgrade soils and triaxial tests. For

  7. Volcanic Ash Soils: Sustainable Soil Management Practices, With Examples of Harvest Effects and Root Disease Trends

    Treesearch

    Mike Curran; Pat Green; Doug Maynard

    2007-01-01

    Sustainability protocols recognize forest soil disturbance as an important issue at national and international levels. At regional levels continual monitoring and testing of standards, practices, and effects are necessary for successful implementation of sustainable soil management. Volcanic ash-cap soils are affected by soil disturbance and changes to soil properties...

  8. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  9. Application rate affects the degradation rate and hence emissions of chloropicrin in soil

    USDA-ARS?s Scientific Manuscript database

    Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil acro...

  10. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The effect of fire on soil properties

    Treesearch

    Leonard F. DeBano

    1991-01-01

    Fire affects nutrient cycling and the physical, chemical, and biological properties of soils occupied by western montane forests. Combustion of litter and soil organic matter (OM) increases the availability of some nutrients, although others are volatilized (for example, N, P, S). Soil OM loss also affects cation exchange capacity, organic chelation, aggregate...

  12. Some relationships among air, snow, and soil temperatures and soil frost

    Treesearch

    George Hart; Howard W. Lull

    1963-01-01

    Each winter gives examples of the insulating properties of snow cover. Seeds and soil fauna are protected from the cold by snow. Underground water pipes are less likely to freeze under snow cover. And, according to many observers, the occurrence, penetration, and thaw of soil frost are affected by snow cover. The depth of snow necessary to protect soil from freezing...

  13. Adverse mood symptoms with oral contraceptives.

    PubMed

    Poromaa, Inger Sundström; Segebladh, Birgitta

    2012-04-01

    In spite of combined oral contraceptives (COCs) having been available for more than 50 years, surprisingly little is known about the prevalence of truly COC-related adverse mood symptoms and about the underlying biological mechanisms of proposed changes in mood and affect. Precise estimates of COC-related adverse mood symptoms are not available due to the lack of placebo-controlled trials. In prospective trials the frequency of women who report deteriorated mood or deteriorated emotional well-being varies between 4 and 10%, but it can be assumed that the causal relation in these prevalence rates is overestimated. Adverse mood symptoms and somatic symptoms are most pronounced during the pill-free interval of the treatment cycles, but whether extended COC regimens would be more favorable in this respect is not known. COCs with anti-androgenic progestagens, such as drospirenone and desogestrel, appear more favorable in terms of mood symptoms than progestagens with a more androgenic profile. Available data suggest that lower doses of ethinylestradiol could be beneficial. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Evaluating the potential use of Tamarix gallica L. for phytoremediation practices in heavy-metal polluted soils

    NASA Astrophysics Data System (ADS)

    Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.

    2012-04-01

    The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the

  15. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study

    PubMed Central

    Molaei, Ali; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Teresa Ceccherini, Maria; Datta, Rahul

    2017-01-01

    Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III

  16. Effects of drought on forest soil structure and hydrological soil functions

    NASA Astrophysics Data System (ADS)

    Gimbel, K.; Puhlmann, H.; Weiler, M.

    2012-04-01

    Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the

  17. Environmental context affects microbial ecophysiological mechanisms underpinning soil carbon storage under different land use

    NASA Astrophysics Data System (ADS)

    Malik, A. A.; Puissant, J.; Buckeridge, K. M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gleixner, G.; Griffiths, R.

    2017-12-01

    Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of organic matter in soil. Increasing evidence now exists to suggest that microbial biomass contributes significantly to soil organic carbon formation. However, we do not fully understand the microbial mechanisms of organic matter processing and this hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically link key microbial ecophysiological traits to soil carbon storage in temperate grassland habitats ranging in land use from pristine species-rich grasslands to intensive croplands in 56 different soils across Britain. Physiological mechanisms of soil microorganisms were assessed using stable carbon isotope tracing and soil proteomics. Through spatial patterns and path analysis of structural equation modeling we discern two distinct pH-related mechanisms of soil carbon storage and highlight that the response of these mechanistic indicators is shaped by the environmental context. Land use intensification in low pH soils that increases soil pH above a threshold value ( 6.2) leads to loss of carbon due to increased microbial degradation as a result of lower acid retardation of organic matter decomposition. On the contrary, the loss of carbon through intensification in high pH (> 6.2) soils was linked to decreased microbial biomass and reduced carbon use efficiency that was linked to tradeoffs with stress alleviation and resource acquisition. We conclude that land use intensification-induced changes in soil pH can be used as a proxy to determine the effect of land management strategies on microbial soil carbon cycling processes and emphasize that more extensive land management practices at higher soil pH have greater potential for soil carbon storage through increased microbial metabolic efficiency, whereas in acidic soils abiotic factors exert a greater influence on the fate of soil carbon.

  18. Exposing physicians to reduced residency work hours did not adversely affect patient outcomes after residency.

    PubMed

    Jena, Anupam B; Schoemaker, Lena; Bhattacharya, Jay

    2014-10-01

    In 2003, work hours for physicians-in-training (residents) were capped by regulation at eighty hours per week, leading to the hotly debated but unexplored issue of whether physicians today are less well trained as a result of these work-hour reforms. Using a unique database of nearly all hospitalizations in Florida during 2000-09 that were linked to detailed information on the medical training history of the physician of record for each hospitalization, we studied whether hospital mortality and patients' length-of-stay varied according to the number of years a physician was exposed to the 2003 duty-hour regulations during his or her residency. We examined this database of practicing Florida physicians, using a difference-in-differences analysis that compared trends in outcomes of junior physicians (those with one-year post-residency experience) pre- and post-2003 to a control group of senior physicians (those with ten or more years of post-residency experience) who were not exposed to these reforms during their residency. We found that the duty-hour reforms did not adversely affect hospital mortality and length-of-stay of patients cared for by new attending physicians who were partly or fully exposed to reduced duty hours during their own residency. However, assessment of the impact of the duty-hour reforms on other clinical outcomes is needed. Project HOPE—The People-to-People Health Foundation, Inc.

  19. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    PubMed Central

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs. PMID:25437213

  20. Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China.

    PubMed

    Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan

    2014-06-01

    We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.

  1. Quality of life in children with adverse drug reactions: a narrative and systematic review.

    PubMed

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-10-01

    Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn's disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. © 2014 The British Pharmacological Society.

  2. Quality of life in children with adverse drug reactions: a narrative and systematic review

    PubMed Central

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-01-01

    Aims Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. Methods We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Results Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn’s disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. Conclusions To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. PMID:24833305

  3. Effects of Plutonium on Soil Microorganisms

    PubMed Central

    Wildung, Raymond E.; Garland, Thomas R.

    1982-01-01

    As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239Pu(NO3)4 (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 μg/g. Fungi were affected only at soil Pu levels of 180 μg/g. Soil CO2 evolution rate and total accumulated CO2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [238Pu2(diethylenetriaminepentaacetate)3], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways. PMID:16345947

  4. Interactions between Soil Habitat and Geographic Range Location Affect Plant Fitness

    PubMed Central

    Stanton-Geddes, John; Shaw, Ruth G.; Tiffin, Peter

    2012-01-01

    Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates. PMID:22615745

  5. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Soils as Sediment database: closing a gap between soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2016-04-01

    Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil. Key areas where such an understanding is essential are all issues related to the lateral movement of soil-bound substances that affect the nature of soils itself, as well as water or vegetation downslope from the source area. The redistribution of eroded soil falls several disciplines, most notably soil science, agronomy, hydrology and geomorphology. Accordingly, the way sediment is described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil as sediment would represent a step forward. To develop such a proxy, a database collating relevant soil and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil as sediment.

  7. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay

    2013-11-15

    Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate

  8. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    NASA Astrophysics Data System (ADS)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (<2 ha) farming systems, typical for the East African highlands. The soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P < 0.001 for all WHC). At WHC of 55% or 80%, the sandy clay loam soils had lower N2O fluxes than the clay soils (P < 0.001 and P = 0.041, respectively). Cumulative soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P < 0.001 at both 55 and 80% WHC). Methane fluxes were below detectable limits, a shortcoming for using soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  9. Adverse reactions to orthodontic materials.

    PubMed

    Sifakakis, I; Eliades, T

    2017-03-01

    Adverse effects can arise from the clinical use of orthodontic materials, due to the release of constituent substances (ions from alloys and monomers, degradation by-products, and additives from polymers). Moreover, intraoral aging affects the biologic properties of materials. The aim of this review is to present the currently identified major adverse effects of the metallic and polymeric components found in orthodontic appliances and materials. Corrosion in metallic orthodontic attachments releases metal ions, mainly iron, chromium, and nickel. The latter has received the greatest attention because of its reported potential for an allergic response. The formation of an oxide layer may inhibit the outward movement of ions, thereby acting as an obstacle for release. Titanium alloys have superior corrosion resistance than stainless steel. The efficiency of polymerisation is considered an essential property for all polymers. A poor polymer network is susceptible to the release of biologically reactive substances, such as bisphenol-A (BPA), which is capable of inducing hormone-related effects. The close proximity of a light-curing tip to the adhesive, pumice prophylaxis after bonding, indirect irradiation and mouth rinsing during the first hour after bonding may decrease BPA release. The adverse effects of some orthodontic materials should be considered during material selection and throughout orthodontic treatment, in order to minimise possible undesirable implications. © 2017 Australian Dental Association.

  10. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.).

    PubMed

    Elhindi, Khalid M; El-Din, Ahmed Sharaf; Elgorban, Abdallah M

    2017-01-01

    Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil ( Osmium basilicum ) plants were grown in a non-saline soil (EC = 0.64 dS m -1 ), in low saline soil (EC = 5 dS m -1 ), and in a high saline soil (EC = 10 dS m -1 ). There were differences between arbuscular mycorrhizal ( Glomus deserticola ) colonized plants (+AMF) and non-colonized plants (-AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.

  11. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    PubMed

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-05-01

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    PubMed Central

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  14. Delayed soil thawing affects root and shoot functioning and growth in Scots pine.

    PubMed

    Repo, Tapani; Lehto, Tarja; Finér, Leena

    2008-10-01

    In boreal regions, soil can remain frozen after the start of the growing season. We compared relationships between root characteristics and water relations in Scots pine (Pinus sylvestris L.) saplings subjected to soil frost treatments before and during the first week of the growing period in a controlled environment experiment. Delayed soil thawing delayed the onset of sap flow or totally blocked it if soil thawing lagged the start of the growing period by 7 days. This effect was reflected in the electrical impedance of needles and trunks and in the relative electrolyte leakage of needles. Prolonged soil frost reduced or completely inhibited root growth. In unfrozen soil, limited trunk sap flow was observed despite unfavorable aboveground growing conditions (low temperature, low irradiance, short photoperiod). Following the earliest soil thaw, sap flow varied during the growing season, depending on light and temperature conditions, phenological stage of the plant and the amount of live needles in the canopy. The results suggest that delayed soil thawing can reduce tree growth, and if prolonged, it can be lethal.

  15. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study.

    PubMed

    Hernandez-Soriano, Maria C; Kerré, Bart; Kopittke, Peter M; Horemans, Benjamin; Smolders, Erik

    2016-04-26

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  16. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  17. Close Friends' Psychopathology as a Pathway From Early Adversity to Young Adulthood Depressive Symptoms.

    PubMed

    Raposa, Elizabeth B; Hammen, Constance L; Brennan, Patricia A

    2015-01-01

    Past research has highlighted the negative impact of early adverse experiences on childhood social functioning, including friendship selection, and later mental health. The current study explored the long-term effects of early adversity on young adults' close friends' psychological symptoms and the impact of these close friendships on later depressive symptoms. A prospective longitudinal design was used to examine 816 youth from a large community-based sample, who were followed from birth through age 25. Participants' mothers provided contemporaneous information about adversity exposure up to age 5, and participants completed questionnaires about their own depressive symptoms at age 20 and in their early 20s. Youth also nominated a best friend to complete questionnaires about his or her own psychopathology at age 20. Individuals who experienced more early adversity by age 5 had best friends with higher rates of psychopathology at age 20. Moreover, best friends' psychopathology predicted target youth depressive symptoms 2 to 5 years later. Results indicate that early adversity continues to affect social functioning throughout young adulthood and that best friendships marked by elevated psychopathology in turn negatively affect mental health. Findings have implications for clinical interventions designed to prevent the development of depressive symptoms in youth who have been exposed to early adversity.

  18. Close Friends’ Psychopathology as a Pathway from Early Adversity to Young Adulthood Depressive Symptoms

    PubMed Central

    Raposa, Elizabeth; Hammen, Constance; Brennan, Patricia

    2014-01-01

    Objective Past research has highlighted the negative impact of early adverse experiences on childhood social functioning, including friendship selection, and later mental health. The current study explored the long-term effects of early adversity on young adults’ close friends’ psychological symptoms, and the impact of these close friendships on later depressive symptoms. Method A prospective longitudinal design was used to examine 816 youth from a large community-based sample, who were followed from birth through age 25. Participants’ mothers provided contemporaneous information about adversity exposure prior to age 5, and participants completed questionnaires about their own depressive symptoms at age 20 and in their early 20’s. Youth also nominated a best friend to complete questionnaires about their own psychopathology at age 20. Results Individuals who experienced more early adversity by age 5 had best friends with higher rates of psychopathology at age 20. Moreover, best friends’ psychopathology predicted target youth depressive symptoms two to five years later. Conclusions Results indicate that early adversity continues to affect social functioning throughout young adulthood, and that best friendships marked by elevated psychopathology in turn negatively affect mental health. Findings have implications for clinical interventions designed to prevent the development of depressive symptoms in youth who have been exposed to early adversity. PMID:24871609

  19. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  20. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  1. Sewage sludge as conditioner for improving soils affected by sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, M.K.

    1979-12-01

    Continuous emission of SO/sub 2/ from the acid manufacturing plant at Ching Lung Tau, New Territorise of Honk Kong, damaged most of the surrounding vegetation, leaving only a few comparatively more resistant species, e.g. Eragrostis sp., Ischaemum aristatum, Smilax glabra, etc. Erosion occurred after heavy rainfall. Fine particles were washed away, leaving the non-fertile subsoil which lack nutrients. The utilization of sludge as a soil conditioner has been regarded as a method of sludge disposal which not only solves some of the pollution problems but receives benefit from the waste product. A considerable amount of literature has been concerned withmore » improving infertile soil including the reclamation of spoiled land, e.g. coal mine spoils, iron-ore tailing. The present investigation attempts to study the effect of applying digested sewage sludge to eroded soil using laboratory soil columns and a green house trial.« less

  2. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. © The Author (2015). Published by Oxford University Press.

  3. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  4. Evaporative losses from soils covered by physical and different types of biological soil crusts

    USGS Publications Warehouse

    Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.

    2013-01-01

    Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.

  5. pH-dependent phytoavailability and speciation of tungsten (W) in soil affecting growth and N nutrition of soy (Glycine max)

    NASA Astrophysics Data System (ADS)

    Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas

    2017-04-01

    Tungsten (W) is an economically important transition metal that finds a broad scope of applications ranging from household appliances to high-end technology goods. However, in the past decades, increasing industrial and military use of W-based products (particularly ammunition, as well as drilling, milling and cutting tools) opened new pathways of W into natural systems and raise the need for a better understanding of the behavior of W in the environment. Soils play an important role in controlling the bioavailability of pollutants and their entry into the food web via plant uptake as they serve as filter and buffer systems. However, compared to other trace metals, knowledge about the fate of W in the plant-soil environment is rather sketchy. The chemical alikeness of W and molybdenum (Mo) suggests not only similar, typical anionic behaviour in soil but also a potential negative effect of W on important plant physiological processes that require Mo. We examined how soil pH dependent solubility and W speciation affected biomass production, W and nutrient uptake by soy (Glycine max cv Primus) and the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase). Increased solubility of mainly monomeric W in high pH soils resulted in increased W plant uptake, demonstrating a greater risk of entry of W into the food web in alkaline soils. Symbiotic nitrogen fixation was able to compensate for reduced nitrate reductase activity until W soil solution concentrations became too phytotoxic, indicating a more efficient detoxification/compartmentalization mechanism in nodules than in soy leaves. The increasing presence of polymeric W species observed in low pH soils spiked with high W concentrations resulted in decreased W uptake but simultaneously had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our results demonstrate the importance of soil pH for

  6. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    PubMed Central

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  7. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee

    2015-04-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture

  8. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2017-04-01

    The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.

  9. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    USDA-ARS?s Scientific Manuscript database

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  10. Abundance of adverse environmental conditions during critical stages of crop production in Northern Germany.

    PubMed

    Strer, Maximilian; Svoboda, Nikolai; Herrmann, Antje

    2018-01-01

    Understanding the abundance of adverse environmental conditions e.g. frost, drought, and heat during critical crop growth stages, which are assumed to be altered by climate change, is crucial for an accurate risk assessment for cropping systems. While a lengthening of the vegetation period may be beneficial, higher frequencies of heat or frost events and drought spells are generally regarded as harmful. The objective of the present study was to quantify shifts in maize and wheat phenology and the occurrence of adverse environmental conditions during critical growth stages for four regions located in the North German Plain. First, a statistical analysis of phenological development was conducted based on recent data (1981-2010). Next, these data were used to calibrate the DSSAT-CERES wheat and maize models, which were then used to run three climate projections representing the maximum, intermediate and minimum courses of climate development within the RCP 8.5 continuum during the years 2021-2050. By means of model simulation runs and statistical analysis, the climate data were evaluated for the abundance of adverse environmental conditions during critical development stages, i.e. the stages of early crop development, anthesis, sowing and harvest. Proxies for adverse environmental conditions included thresholds of low and high temperatures as well as soil moisture. The comparison of the baseline climate and future climate projections showed a significant increase in the abundance of adverse environmental conditions during critical growth stages in the future. The lengthening of the vegetation period in spring did not compensate for the increased abundance of high temperatures, e.g. during anthesis. The results of this study indicate the need to develop adaptation strategies, such as implementing changes in cropping calendars. An increase in frost risk during early development, however, reveals the limited feasibility of early sowing as a mitigation strategy. In

  11. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    PubMed

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  12. [Effects of global change on soil fauna diversity: A review].

    PubMed

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  13. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  14. Vaccine Adverse Events

    MedlinePlus

    ... use in the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA (800) 835- ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases ...

  15. Factors affecting transport of bacteria and microspheres through biochar-amended soils

    USDA-ARS?s Scientific Manuscript database

    We have investigated the role of biochar feedstock type (poultry litter extract and pine chips), biochar pyrolysis temperature (350 and 700 oC), biochar application rate (1, 2, and 10%), soil moisture content (saturated and 50% saturation), soil texture (1 and 12 % clay content), and surface propert...

  16. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value

    USDA-ARS?s Scientific Manuscript database

    The use of vermicompost to improve soil fertility and enhance crop yield has gained considerable momentum due to its contribution to agroecological sustainability. Short-term (35-days after transplanting) effects of vermicompost, applied either as a soil amendment (5% and 10%, v/v), or a drench (40 ...

  17. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  18. Does Gray-Tailed Vole Activity Affect Soil Quality?

    USDA-ARS?s Scientific Manuscript database

    Voles are well-known crop pests, especially when peak populations are present, but their role in soil fertility and impacts on agricultural sustainability are not well understood. Five months after the abrupt disappearance of a peak in a gray-tailed vole (Microtus canicaudus) population, we examined...

  19. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Survival and reproduction of enchytraeid worms, Oligochaeta, in different soil types amended with energetic cyclic nitramines.

    PubMed

    Dodard, Sabine G; Sunahara, Geoffrey I; Kuperman, Roman G; Sarrazin, Manon; Gong, Ping; Ampleman, Guy; Thiboutot, Sonia; Hawari, Jalal

    2005-10-01

    Hexanitrohexaazaisowurtzitane (CL-20), a new polycyclic polynitramine, has the same functional nitramine groups (N-NO2) as the widely used energetic chemicals hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (royal demolition explosive [RDX]) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high-melting explosive [HMX]). Potential impacts of CL-20 as an emerging contaminant must be assessed before its use. The effects of CL-20, RDX, or HMX on adult survival and juvenile production by potworms Enchytraeus albidus and Enchytraeus crypticus were studied in three soil types, including Sassafras sandy loam (1.2% organic matter [OM], 11% clay, pH 5.5), an agricultural soil (42% OM, 1% clay, pH 8.2), and a composite agricultural-forest soil (23% OM, 2% clay, pH 7.9) by using ISO method 16387 (International Standard Organization, Geneva, Switzerland). Results showed that CL-20 was toxic to E. crypticus with median lethal concentration values for adult survival ranging from 0.1 to 0.7 mg/kg dry mass (DM) when using the three tested soils. In addition, CL-20 adversely affected juvenile production by both species in all soils tested, with median effective concentration (EC50) values ranging from 0.08 to 0.62 mg/kg DM. Enchytraeus crypticus and E. albidus were similarly sensitive to CL-20 exposure in the composite agricultural-forest soil, which supported reproduction by both species and enabled comparisons. Correlation analysis showed weak or no relationship overall among the soil properties and reproduction toxicity endpoints. Neither RDX nor HMX affected (p > 0.05) adult survival of either species below 658 and 918 mg/kg DM, respectively, indicating that CL-20 is more toxic to enchytraeids than RDX or HMX. Examination of data shows that CL-20 should be considered as a potential reproductive toxicant to soil invertebrates, and that safeguards should be considered to minimize the potential for release of CL-20 into the environment.