These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

2

The Aedes aegypti Toll Pathway Controls Dengue Virus Infection  

Microsoft Academic Search

Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of

Zhiyong Xi; Jose L. Ramirez; George Dimopoulos

2008-01-01

3

BIOTIC AND ABIOTIC FACTORS AFFECTING LEPTOLEGNIA CHAPMANII INFECTION IN AEDES AEGYPTI L. (DIPTERA: CULICIDAE)  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effects of water volume, container surface area and the density of hosts and fungal zoospores on the infectivity of the oomycete fungus, Leptolegnia chapmanii Seymour to Aedes aegypti (L.) were investigated in the laboratory. Late third or early fourth instar larvae from a laboratory colony of A...

4

Complement-Related Proteins Control the Flavivirus Infection of Aedes aegypti by Inducing Antimicrobial Peptides  

PubMed Central

The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE)-containing proteins (TEPs), which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR), belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C), which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs), which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods. PMID:24722701

Xiao, Xiaoping; Liu, Yang; Zhang, Xiaoyan; Wang, Jing; Li, Zuofeng; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

2014-01-01

5

Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites.  

PubMed

Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia. PMID:22837817

Duncan, Alison B; Agnew, Philip; Noel, Valérie; Demettre, Edith; Seveno, Martial; Brizard, Jean-Paul; Michalakis, Yannis

2012-04-01

6

Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites  

PubMed Central

Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia. PMID:22837817

Duncan, Alison B; Agnew, Philip; Noel, Valérie; Demettre, Edith; Seveno, Martial; Brizard, Jean-Paul; Michalakis, Yannis

2012-01-01

7

Dynamics of the “Popcorn” Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control  

PubMed Central

Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

Yeap, H. L.; Mee, P.; Walker, T.; Weeks, A. R.; O'Neill, S. L.; Johnson, P.; Ritchie, S. A.; Richardson, K. M.; Doig, C.; Endersby, N. M.; Hoffmann, A. A.

2011-01-01

8

An In Vivo Transfection Approach Elucidates a Role for Aedes aegypti Thioester-Containing Proteins in Flaviviral Infection  

PubMed Central

Mosquitoes transmit pathogens that cause infectious diseases of global importance. Techniques to easily introduce genes into mosquitoes, however, limit investigations of the interaction between microbes and their arthropod vectors. We now show that a cationic liposome significantly enhances delivery and expression of plasmid DNA in Aedes aegypti and Anopheles gambiae mosquitoes. We then introduced the genes for Ae. aegypti thioester-containing proteins (AeTEPs), which are involved in the control of flaviviral infection, into mosquitoes using this technique. In vivo transfection of AeTEP-1 into Ae. aegypti significantly reduced dengue virus infection, suggesting that the approach can further our understanding of pathogen-mosquito interactions. PMID:21818390

Cheng, Gong; Liu, Lei; Wang, Penghua; Zhang, Yue; Zhao, Yang O.; Colpitts, Tonya M.; Feitosa, Fabiana; Anderson, John F.; Fikrig, Erol

2011-01-01

9

Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses  

PubMed Central

Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses. PMID:20957153

Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

2010-01-01

10

Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations  

PubMed Central

The wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infection following introduction and we characterize factors influencing the ongoing dynamics of the infection in these two populations. While the Wolbachia infection always remained high and near fixation in both locations, there was a persistent low frequency of uninfected mosquitoes. These uninfected mosquitoes showed weak spatial structure at both release sites although there was some clustering around two areas in Gordonvale. Infected females from both locations showed perfect maternal transmission consistent with patterns previously established pre-release in laboratory tests. After >2 years under field conditions, the infection continued to show complete cytoplasmic incompatibility across multiple gonotrophic cycles but persistent deleterious fitness effects, suggesting that host effects were stable over time. These results point to the stability of Wolbachia infections and their impact on hosts following local invasion, and also highlight the continued persistence of uninfected individuals at a low frequency most likely due to immigration. PMID:25211492

Hoffmann, Ary A.; Iturbe-Ormaetxe, Inaki; Callahan, Ashley G.; Phillips, Ben L.; Billington, Katrina; Axford, Jason K.; Montgomery, Brian; Turley, Andrew P.; O'Neill, Scott L.

2014-01-01

11

Effect of dengue-2 virus infection on protein expression in the salivary glands of Aedes aegypti mosquitoes.  

PubMed

Dengue virus (DENV) is the most important mosquito-transmitted flavivirus that is transmitted throughout the tropical and subtropical regions of the world. The primary mosquito vector of DENV in urban locations is Aedes aegypti. Key to understanding the transmission of DENV is the relationship between pathogen and vector. Accordingly, we report our preliminary characterization of the differentially expressed proteins from Ae. aegypti mosquitoes after DENV infection. We investigated the virus-vector interaction through changes in the proteome of the salivary glands of mosquitoes with disseminated DENV serotype 2 (DENV-2) infections using two-dimensional gel electrophoresis and identification by mass spectrometry. Our findings indicate that DENV-2 infection in the Ae. aegypti salivary gland alters the expression of structural, secreted, and metabolic proteins. These changes in the salivary gland proteome highlight the virally influenced environment caused by a DENV-2 infection and warrant additional investigation to determine if these differences extend to the expectorated saliva. PMID:24445208

Chisenhall, Daniel M; Londono, Berlin L; Christofferson, Rebecca C; McCracken, Michael K; Mores, Christopher N

2014-03-01

12

Effect of Dengue-2 Virus Infection on Protein Expression in the Salivary Glands of Aedes aegypti Mosquitoes  

PubMed Central

Dengue virus (DENV) is the most important mosquito-transmitted flavivirus that is transmitted throughout the tropical and subtropical regions of the world. The primary mosquito vector of DENV in urban locations is Aedes aegypti. Key to understanding the transmission of DENV is the relationship between pathogen and vector. Accordingly, we report our preliminary characterization of the differentially expressed proteins from Ae. aegypti mosquitoes after DENV infection. We investigated the virus–vector interaction through changes in the proteome of the salivary glands of mosquitoes with disseminated DENV serotype 2 (DENV-2) infections using two-dimensional gel electrophoresis and identification by mass spectrometry. Our findings indicate that DENV-2 infection in the Ae. aegypti salivary gland alters the expression of structural, secreted, and metabolic proteins. These changes in the salivary gland proteome highlight the virally influenced environment caused by a DENV-2 infection and warrant additional investigation to determine if these differences extend to the expectorated saliva. PMID:24445208

Chisenhall, Daniel M.; Londono, Berlin L.; Christofferson, Rebecca C.; McCracken, Michael K.; Mores, Christopher N.

2014-01-01

13

Effects of Manipulating Apoptosis on Sindbis Virus Infection of Aedes aegypti Mosquitoes  

PubMed Central

Improved control of vector-borne diseases requires an understanding of the molecular factors that determine vector competence. Apoptosis has been shown to play a role in defense against viruses in insects and mammals. Although some observations suggest a correlation between apoptosis and resistance to arboviruses in mosquitoes, there is no direct evidence tying apoptosis to arbovirus vector competence. To determine whether apoptosis can influence arbovirus replication in mosquitoes, we manipulated apoptosis in Aedes aegypti mosquitoes by silencing the expression of genes that either positively or negatively regulate apoptosis. Silencing of the A. aegypti anti-apoptotic gene iap1 (Aeiap1) caused apoptosis in midgut epithelium, alterations in midgut morphology, and 60 to 70% mosquito mortality. Mortality induced by Aeiap1 silencing was rescued by cosilencing the initiator caspase gene Aedronc, indicating that the mortality was due to apoptosis. When mosquitoes which had been injected with Aeiap1 double-stranded RNA (dsRNA) were orally infected with Sindbis virus (SINV), increased midgut infection and virus dissemination to other organs were observed. This increase in virus infection may have been due to the effects of widespread apoptosis on infection barriers or innate immunity. In contrast, silencing the expression of Aedronc, which would be expected to inhibit apoptosis, reduced SINV midgut infection and virus dissemination. Thus, our data suggest that some level of caspase activity and/or apoptosis may be necessary for efficient virus replication and dissemination in mosquitoes. This is the first study to directly test the roles of apoptosis and caspases in determining mosquito vector competence for arboviruses. PMID:22438551

Wang, Hua; Gort, Taryn; Boyle, Daniel L.

2012-01-01

14

Analysis of Early Dengue Virus Infection in Mice as Modulated by Aedes aegypti Probing  

PubMed Central

Dengue virus (DENV), the etiologic agent of dengue fever, is transmitted during probing of human skin by infected-mosquito bite. The expectorated viral inoculum also contains an assortment of mosquito salivary proteins that have been shown to modulate host hemostasis and innate immune responses. To examine the potential role of mosquito probing in DENV establishment within the vertebrate host, we inoculated mice intradermally with DENV serotype 2 strain 1232 at sites where Aedes aegypti had or had not probed immediately prior. We assayed these sites 3 h postinoculation with transcript arrays for the Toll-like receptor (TLR), RIG-I-like receptor, and NOD-like receptor signaling pathways of the innate immune system. We then chose TLR7, transcription factor p65 (RelA), gamma interferon (IFN-?), and IFN-?-inducible protein 10 (IP-10) from the arrays for further investigation and assayed these transcripts at 10 min, 3 h, and 6 h postinoculation. The transcripts for TLR7, RelA, IFN-?, and IP-10 were significantly downregulated between 2- and 3-fold in the group subjected to mosquito probing relative to the virus-only inoculation group at 3 h postinoculation. A reduction in these transcripts could indicate reduced DENV recognition and antigen presentation and diminished inhibition of viral replication and spread. Further, mosquito probing resulted in viremia titers significantly higher than those in mice that did not receive probing. A. aegypti probing has a significant effect on the innate immune response to DENV infection and generates an early immune environment more permissive to the establishment of infection. PMID:24198426

McCracken, M. K.; Christofferson, R. C.; Chisenhall, D. M.

2014-01-01

15

Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti  

PubMed Central

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. PMID:23133693

van den Hurk, Andrew F.; Hall-Mendelin, Sonja; Pyke, Alyssa T.; Frentiu, Francesca D.; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L.

2012-01-01

16

Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, Aedes aegypti, Infected with Dengue-2 Virus  

PubMed Central

Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever. PMID:20572793

Barón, Olga L.; Ursic-Bedoya, Raul J.; Lowenberger, Carl A.; Ocampo, Clara B.

2010-01-01

17

Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus.  

PubMed

Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever. PMID:20572793

Barón, Olga L; Ursic-Bedoya, Raul J; Lowenberger, Carl A; Ocampo, Clara B

2010-01-01

18

Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti.  

PubMed

The intracellular endosymbiont Wolbachia has been artificially transinfected into the dengue vector Aedes aegypti, where it is being investigated as a potential dengue biological control agent. Invasion of Wolbachia in natural populations depends upon the fitness of Wolbachia-infected Ae. aegypti relative to uninfected competitors. Although Wolbachia infections impose fitness costs on the adult host, effects at the immature stages are less clear, particularly in competitive situations. We look for effects of two Wolbachia infections, wMel and wMelPop, on intra-strain and inter-strain larval competition in Ae. aegypti. Development of Wolbachia-infected larvae is delayed in mixed cohorts with uninfected larvae under crowded-rearing conditions. Slow developing wMelPop-infected larvae have reduced adult size compared with uninfected larvae, and larvae with the wMel infection are somewhat larger and have greater viability relative to uninfected larvae when in mixed cohorts. Implications for successful invasion by these Wolbachia infections under field conditions are considered. PMID:24732463

Ross, Perran A; Endersby, Nancy M; Yeap, Heng Lin; Hoffmann, Ary A

2014-07-01

19

Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti  

PubMed Central

Dengue is the most common arboviral infection of humans and a public health burden in over 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but importantly did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection within humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66–75%. Our results suggest that establishment of wMelPop-infected A. aegypti at high frequency in a dengue endemic setting would result in complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings, but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

Ferguson, Neil M.; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A.; O’Neill, Scott L.; McGraw, Elizabeth A.; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Van Vinh Chau, Nguyen; Wills, Bridget; Simmons, Cameron P.

2015-01-01

20

Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti.  

PubMed

Dengue is the most common arboviral infection of humans and is a public health burden in more than 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but it did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection in humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66 to 75%. Our results suggest that establishment of wMelPop-infected A. aegypti at a high frequency in a dengue-endemic setting would result in the complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

Ferguson, Neil M; Hue Kien, Duong Thi; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Bich Chau, Tran Nguyen; Popovici, Jean; Ryan, Peter A; O'Neill, Scott L; McGraw, Elizabeth A; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Vinh Chau, Nguyen Van; Wills, Bridget; Simmons, Cameron P

2015-03-18

21

Naturally-Acquired Dengue Virus Infections Do Not Reduce Short-Term Survival of Infected Aedes aegypti from Ho Chi Minh City, Vietnam  

PubMed Central

Transmission of dengue virus (DENV) from mosquito to human is dependent upon the survival of the mosquito beyond the virus extrinsic incubation period. Previous studies report conflicting results of the effects of DENV on Aedes aegypti survival. Here, we describe the effect of DENV on the short-term survival (up to 12 d) of 4,321 Ae. aegypti mosquitoes blood-fed on 150 NS1-positive dengue patients hospitalized in the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. Mosquito survival was not different between cohorts that fed upon blood from which 0% of mosquitoes became DENV infected (N = 88 feeds), or 100% became infected (N = 116 feeds). Subgroup analysis also did not reveal serotype-dependent differences in survival, nor a relationship between survival and human plasma viremia levels. These results suggest that DENV infection adds minimal cost to Ae. aegypti, an important finding when parameterizing the vector competence of this mosquito. PMID:25561566

Carrington, Lauren B.; Nguyen, Hoa L.; Nguyen, Nguyet Minh; Duong, T. H. Kien; Tuan, Trung Vu; Giang, Nguyen Thi; Tuyet, Nhu Vu; Thi, Dui Le; Thi, Long Vo; Tran, Chau N.; Simmons, Cameron P.

2015-01-01

22

Rhamnolipids: solution against Aedes aegypti?  

PubMed Central

Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti.

Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

2015-01-01

23

Rhamnolipids: solution against Aedes aegypti?  

PubMed

Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

Silva, Vinicius L; Lovaglio, Roberta B; Von Zuben, Claudio J; Contiero, Jonas

2015-01-01

24

Operational use of household bleach to "crash and release" Aedes aegypti prior to Wolbachia-infected mosquito release.  

PubMed

Dengue (family Flaviviridae, genus Flavivirus, DENV) remains the leading arboviral cause of mortality in the tropics. Wolbachia pipientis has been shown to interrupt DENV transmission and is presently being trialled as a biological control. However, deployment issues have arisen on methods to temporarily suppress wild mosquito populations before Wolbachia-infected mosquito releases. By suppressing wild populations, fewer Ae. aegypti releases are required to achieve a sustainable Wolbachia density threshold. Furthermore, public distress is reduced. This study tests the application of domestic bleach (4% NaCIO) to temporarily "crash" immature Aedes populations in water-filled containers. Spray application NaClO (215 ppm) resulted in a mean 48-h mortality of 100, 100, 97, and 88% of eggs, second-instar larvae, fourth-instar larvae, and pupae, respectively. In the field, NaClO delayed ovipositing by 9 d in cooler months, and 11 d in hotter months, after which oviposition resumed in treated receptacles. We found bleach treatment of pot-plant bases did not cause wilting, yellowing, or dropping of leaves in two ornamental plants species. Domestically available NaClO could be adopted for a "crash and release" strategy to temporarily suppress wild populations of Ae. aegypti in containers before release of Wolbachia-infected mosquitoes. The "crash and release" strategy is also applicable to other mosquito species, e.g., Aedes albopictus (Skuse), in strategies using released mosquitoes. PMID:23540123

Jacups, Susan P; Ball, Tamara S; Paton, Christopher J; Johnson, Petrina H; Ritchie, Scott A

2013-03-01

25

The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed  

PubMed Central

Background Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. Methodology/Principal findings We orally challenged 4–5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal) and avidity (the likelihood to re-feed after an interrupted first blood-meal). To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding). Thus DENV-2 infection decreased the mosquitoes’ motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative) mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. Conclusions/Significance DENV-2 significantly decreased the mosquitoes’ motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed). As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue. PMID:23755202

Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C.

2013-01-01

26

Suppressing Dengue-2 Infection by Chemical Inhibition of Aedes aegypti Host Factors  

PubMed Central

Dengue virus host factors (DENV HFs) that are essential for the completion of the infection cycle in the mosquito vector and vertebrate host represent potent targets for transmission blocking. Here we investigated whether known mammalian DENV HF inhibitors could influence virus infection in the arthropod vector A. aegypti. We evaluated the potency of bafilomycin (BAF; inhibitor of vacuolar H+-ATPase (vATPase)), mycophenolic acid (MPA; inhibitor of inosine-5?-monophosphate dehydrogenase (IMPDH)), castanospermine (CAS; inhibitor of glucosidase), and deoxynojirimycin (DNJ; inhibitor of glucosidase) in blocking DENV infection of the mosquito midgut, using various treatment methods that included direct injection, ingestion by sugar feeding or blood feeding, and silencing of target genes by RNA interference (RNAi). Injection of BAF (5 µM) and MPA (25 µM) prior to feeding on virus-infected blood inhibited DENV titers in the midgut at 7 days post-infection by 56% and 60%, and in the salivary gland at 14 days post-infection by 90% and 83%, respectively, while treatment of mosquitoes with CAS or DNJ did not affect susceptibility to the virus. Ingestion of BAF and MPA through a sugar meal or together with an infectious blood meal also resulted in various degrees of virus inhibition. RNAi-mediated silencing of several vATPase subunit genes and the IMPDH gene resulted in a reduced DENV infection, thereby indicating that BAF- and MPA-mediated virus inhibition in adult mosquitoes most likely occurred through the inhibition of these DENV HFs. The route and timing of BAF and MPA administration was essential, and treatment after exposure to the virus diminished the antiviral effect of these compounds. Here we provide proof-of-principle that chemical inhibition or RNAi-mediated depletion of the DENV HFs vATPase and IMPDH can be used to suppress DENV infection of adult A. aegypti mosquitoes, which may translate to a reduction in DENV transmission. PMID:25101828

Kang, Seokyoung; Shields, Alicia R.; Jupatanakul, Natapong; Dimopoulos, George

2014-01-01

27

Workbook on Identification of Aedes Aegypti Larvae.  

ERIC Educational Resources Information Center

This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

Pratt, Harry D.; And Others

28

Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours.  

PubMed

The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary effect of the wMel strain is pathogen protection whereby infection with the symbiont limits replication of dengue virus inside the mosquito. A second strain, wMelPop, induces pathogen protection, reduces the adult mosquito lifespan and decreases blood feeding success in mosquitoes after 15 days of age. Here we test whether Wolbachia infection affects mosquito attraction to host odours in adults aged 5 and 15 days. We found no evidence of reduced odour attraction of mosquitoes, even for those infected with the more virulent wMelPop. This bodes well for fitness and competitiveness in the field given that the mosquitoes must find hosts to reproduce for the biocontrol method to succeed. PMID:24797695

Turley, A P; Smallegange, R C; Takken, W; Zalucki, M P; O'Neill, S L; McGraw, E A

2014-12-01

29

Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes.  

PubMed

The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias in usages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis-driven tests to examine the role of codon context bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

Behura, Susanta K; Severson, David W

2014-10-01

30

A preliminary study on in vitro transmission of Dirofilaria immitis infective stage larvae by Aedes aegypti (L.) (Diptera: Culicidae).  

PubMed

This study was performed to study an in vitro transmission of infective stage larvae from the mosquito proboscis. There were five experiments with 949 mosquitoes. Liverpool strain of Aedes aegypti (L.) were used in this study. They were allowed to feed on D. immitis infected dogs with different microfilarial levels which were 1,650, 1,950, 9,000, 9,250, and 11,550 microfilariae per one ml of blood. Mosquitoes were forced to feed on solution (5% sucrose in 5% dog serum) in capillary tubes for 20 minutes at 7-34 days post-blood feeding. Solutions in capillary tubes then were examined and mosquitoes were dissected and examined for D. immitis larvae under a light microscope. Second stage larvae could be found in the abdomen and malpighian tubules of mosquitoes and third stage larvae can be found in the abdomen, malpighian tubules, thorax, and proboscis of mosquitoes with different levels of infection. No larvae were detected in the solution in capillary tubes of all experiments. PMID:16438186

Tiawsirisup, Sonthaya; Khlaikhayai, Thodsatham; Nithiuthai, Suwannee

2005-01-01

31

Towards a Casa Segura: A Consumer Product Study of the Effect of Insecticide-Treated Curtains on Aedes aegypti and Dengue Virus Infections in the Home  

PubMed Central

The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.

2013-01-01

32

Age-Dependent Effects of Oral Infection with Dengue Virus on Aedes aegypti (Diptera: Culicidae) Feeding Behavior, Survival, Oviposition Success and Fecundity  

PubMed Central

Background Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. Methods/Principal Findings After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. Conclusions The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes. PMID:23555838

Sylvestre, Gabriel; Gandini, Mariana; Maciel-de-Freitas, Rafael

2013-01-01

33

Comparative Genome Analysis of the Yellow Fever Mosquito Aedes aegypti  

E-print Network

Comparative Genome Analysis of the Yellow Fever Mosquito Aedes aegypti with Drosophila melanogaster aegypti, and Culex pipiens, the primary vectors for malaria, yellow fever and dengue, and lymphatic 103

Severson, David

34

Burchellin: study of bioactivity against Aedes aegypti  

PubMed Central

Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations???30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

2014-01-01

35

Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes  

PubMed Central

Dengue is the most prevalent arboviral disease of humans. The host and virus variables associated with dengue virus (DENV) transmission from symptomatic dengue cases (n = 208) to Aedes aegypti mosquitoes during 407 independent exposure events was defined. The 50% mosquito infectious dose for each of DENV-1–4 ranged from 6.29 to 7.52 log10 RNA copies/mL of plasma. Increasing day of illness, declining viremia, and rising antibody titers were independently associated with reduced risk of DENV transmission. High early DENV plasma viremia levels in patients were a marker of the duration of human infectiousness, and blood meals containing high concentrations of DENV were positively associated with the prevalence of infectious mosquitoes 14 d after blood feeding. Ambulatory dengue cases had lower viremia levels compared with hospitalized dengue cases but nonetheless at levels predicted to be infectious to mosquitoes. These data define serotype-specific viremia levels that vaccines or drugs must inhibit to prevent DENV transmission. PMID:23674683

Nguyen, Nguyet Minh; Thi Hue Kien, Duong; Tuan, Trung Vu; Quyen, Nguyen Than Ha; Tran, Chau N. B.; Vo Thi, Long; Thi, Dui Le; Nguyen, Hoa Lan; Farrar, Jeremy J.; Holmes, Edward C.; Rabaa, Maia A.; Bryant, Juliet E.; Nguyen, Truong Thanh; Nguyen, Huong Thi Cam; Nguyen, Lan Thi Hong; Pham, Mai Phuong; Nguyen, Hung The; Luong, Tai Thi Hue; Wills, Bridget; Nguyen, Chau Van Vinh; Wolbers, Marcel; Simmons, Cameron P.

2013-01-01

36

Malathion resistance in Aedes aegypti and Culex quinquefasciatus after its use in Aedes aegypti control programs.  

PubMed

The continued widespread use of malathion in Aedes aegypti control programs in Latin America has generated insecticide resistance to this chemical in Culex quinquefasciatus but not in Ae. aegypti. To determine the extent of this resistance, the susceptibility of Cx. quinquefasciatus and Ae. aegypti from several countries to malathion was evaluated. Bioassay results indicated that all Ae. aegypti strains evaluated from Cuba, Venezuela, Costa Rica, and Jamaica were susceptible to malathion in spite of the historical use of this insecticide in Ae. aegypti control programs in these countries. In contrast, a high level of resistance to this insecticide was found in Cx. quinquefasciatus from Venezuela, Colombia, Brazil, and Cuba. Synergist assays indicated that neither esterases nor mixed-function oxidases (MFOs) were involved as the resistance mechanism to malathion in any of the Ae. aegypti strains tested. In Cx. quinquefasciatus, synergist assays confirmed that esterases played an important role in malathion resistance but MFOs were not involved in causing malathion resistance in this species. Biochemical assays showed that both resistance mechanisms were present in the Ae. aegypti and Cx. quinquefasciatus populations. Acrylamide electrophoresis gels revealed that all Ae. aegypti strains had a strongly staining, clear band, named A4, and had a relative mobility (Rm) value of 0.7. Analysis if the results of this study suggested that malathion could continue to be used for the emergency control of Ae. aegypti, the mosquito vector for dengue and dengue hemorrhagic fever in the Americas, but that malathion is probably not effective for the control of adult Cx. quinquefasciatus in urban areas. Therefore, control operations should integrate nonorganophosphate insecticides such as pyrethroids for control of these 2 species found in the urban environment. PMID:11198919

Coto, M M; Lazcano, J A; de Fernández, D M; Soca, A

2000-12-01

37

Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments  

PubMed Central

Background Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fitness of released infected mosquitoes, and (following termination of releases) to test for any effects of wMelPop-CLA on wing size and shape when mosquitoes were reared under field conditions. Methods We monitored gravid females via double sticky traps to assess the reproductive success of wMelPop-CLA-infected females and also sampled the overall mosquito population post-release using Biogent Sentinel traps. Morphometric analyses were used to evaluate infection effects on wing shape as well as size. Results Oviposition success as assessed through double sticky traps was unrelated to size of released mosquitoes. However, released mosquitoes with lower wing loading were more successful. Furthermore, wMelPop-CLA-infected mosquitoes had 38.3% of the oviposition success of uninfected mosquitoes based on the predicted infection frequency after release. Environmental conditions affected wing shape and particularly size across time in uninfected mosquitoes, but not in naturally-reared wMelPop-CLA-infected mosquitoes. Although the overall size and shape do not differ between naturally-reared wMelPop-CLA-infected and uninfected mosquitoes, the infected mosquitoes tended to have smaller wings than uninfected mosquitoes during the cooler November in comparison to December. Conclusion These results confirm the lower fitness of wMelPop-CLA infection under field conditions, helping to explain challenges associated with a successful invasion by this strain. In the long run, invasion may depend on releasing strains carrying insecticide resistance or egg desiccation resistance, combined with an active pre-release population suppression program. PMID:24495395

2014-01-01

38

Probing functional polymorphisms in the dengue vector, Aedes aegypti  

PubMed Central

Background Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers. Results We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3’UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome. Conclusions The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation. PMID:24168143

2013-01-01

39

Permethrin induces overexpression of multiple genes in Aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

40

Genome Sequence of Aedes aegypti, a Major Arbovirus Vector  

Microsoft Academic Search

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ~1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ~4 to

Vishvanath Nene; Jennifer R. Wortman; Daniel Lawson; Brian Haas; Chinnappa Kodira; Z. Tu; Brendan Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; E. M. Zdobnov; N. F. Lobo; K. S. Campbell; S. E. Brown; M. F. Bonaldo; Jingsong Zhu; S. P. Sinkins; D. G. Hogenkamp; Paolo Amedeo; Peter Arensburger; P. W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; M. R. Coy; Jonathan Crabtree; Matt Crawford; Becky deBruyn; David DeCaprio; Karin Eiglmeier; Eric Eisenstadt; Hamza El-Dorry; W. M. Gelbart; S. L. Gomes; Martin Hammond; Linda I. Hannick; M. H. Holmes; J. R. Hogan; David Jaffe; J. S. Johnston; R. C. Kennedy; Hean Koo; Saul Kravitz; Evgenia V. Kriventseva; David Kulp; Kurt LaButti; Eduardo Lee; Song Li; Diane D. Lovin; Chunhong Mao; Evan Mauceli; C. F. M. Menck; J. R. Miller; Philip Montgomery; Akio Mori; A. L. Nascimento; H. F. Naveira; Chad Nusbaum; S. O'Leary; Joshua Orvis; Mihaela Pertea; Hadi Quesneville; K. R. Reidenbach; Yu-Hui Rogers; C. W. Roth; J. R. Schneider; Michael Schatz; Martin Shumway; Mario Stanke; E. O. Stinson; J. M. C. Tubio; J. P. VanZee; Sergio Verjovski-Almeida; Doreen Werner; Owen White; Stefan Wyder; Qiandong Zeng; Qi Zhao; Yongmei Zhao; C. A. Hill; A. S. Raikhel; M. B. Soares; D. L. Knudson; N. H. Lee; James Galagan; S. L. Salzberg; I. T. Paulsen; George Dimopoulos; F. H. Collins; Bruce Birren; C. M. Fraser-Liggett; D. W. Severson

2007-01-01

41

Permethrin induces overexpression of multiple genes in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

42

Geographic genetic variation in populations of the dengue virus vector Aedes aegypti.  

PubMed

Isoenzyme variation was assessed in 79 mosquito samples of Aedes aegypti, and susceptibility to a dengue 2 virus strain was evaluated in 83 samples. Analysis of FST values, differentiation indexes, and geographic distances separating populations revealed that genetic differences between populations depended on the species' history of migration and colonization. Three major clusters were identified: (1). the sylvan form, Ae. ae. formosus, from West Africa and some islands in the Indian Ocean; (2). the domestic form, Ae. ae. aegypti, from Southeast Asia and South America; and (3). Ae. ae. aegypti populations from the South Pacific islands. Two groups were identified on the basis of susceptibility to the dengue virus: (1). populations with high infection rates, mostly the Ae. ae. aegypti form, and (2). mosquitoes with lower infection rates, specifically Ae. ae. formosus. Other evolutionary and epidemiological implications of the genetic variability of Ae. aegypti are also discussed. PMID:12486524

Failloux, Anna-Bella; Vazeille, Marie; Rodhain, François

2002-12-01

43

Development of a SYBR green I based RT-PCR assay for yellow fever virus: application in assessment of YFV infection in Aedes aegypti  

PubMed Central

Background Yellow Fever virus (YFV) is an important arboviral pathogen in much of sub-Saharan Africa and the tropical Americas. It is the prototype member of the genus Flavivirus and is transmitted primarily by Aedes (Stegomyia) mosquitoes. The incidence of human infections in endemic areas has risen in recent years. Prompt and dependable identification of YFV is a critical component of response to suspect cases. Results We developed a one-step SYBR Green I-based real-time quantitative RT-PCR (qRT-PCR) assay targeting the 5'NTR and capsid-gene junction--for rapid detection and quantification of YFV. The detection limit was 1 PFU/mL, 10-fold more sensitive than conventional RT-PCR, and there was no cross-reactivity with closely related flaviviruses or with alphaviruses. Viral load in samples was determined by standard curve plotted from cycle threshold (Ct) values and virus concentration. The efficacy of the assay in mosquitoes was assessed with spiked samples. The utility of the assay for screening of pooled mosquitoes was also confirmed. Replication of a Cameroon isolate of YFV in Ae. aegypti revealed a marked variation in susceptibility among different colonies at different days post infection (pi). Conclusions The SYBR Green-1 based qRT-PCR assay is a faster, simpler, more sensitive and less expensive procedure for detection and quantification of YFV than other currently used methods. PMID:22264275

2012-01-01

44

Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean  

PubMed Central

Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

2015-01-01

45

Gustatory receptor expression in the labella and legs of aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

46

Stage-specific transcription during development of Aedes aegypti  

PubMed Central

Background Aedes aegypti is the most important global vector of dengue virus infection in humans. Availability of the draft genome sequence of this mosquito provides unique opportunities to study different aspects of its biology, including identification of genes and pathways relevant to the developmental processes associated with transition across individual life stages. However, detailed knowledge of gene expression patterns pertaining to developmental stages of A. aegypti is largely lacking. Results We performed custom cDNA microarray analyses to examine the expression patterns among six developmental stages: early larvae, late larvae, early pupae, late pupae, and adult male and female mosquitoes. Results revealed 1,551 differentially expressed transcripts (DETs) showing significant differences in levels of expression between these life stages. The data suggests that most of the differential expression occurs in a stage specific manner in A. aegypti. Based on hierarchical clustering of expression levels, correlated expression patterns of DETs were also observed among developmental stages. Weighted gene correlation network analysis revealed modular patterns of expression among the DETs. We observed that hydrolase activity, membrane, integral to membrane, DNA binding, translation, ribosome, nucleoside-triphosphatase activity, structural constituent of ribosome, ribonucleoprotein complex and receptor activity were among the top ten ranked GO (Gene Ontology) terms associated with DETs. Significant associations of DETs were also observed with specific KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway modules. Finally, comparisons with the previously reported developmental transcriptome of the malaria vector, Anopheles gambiae, indicated that gene expression patterns during developmental processes reflect both species-specific as well as common components of the two mosquito species. Conclusions Our study shows that genes involved in the developmental life cycle of A. aegypti are expressed in a highly stage-specific manner. This suggests that transcriptional events associated with transition through larval, pupal and adult stages are largely discrete. PMID:23875547

2013-01-01

47

Mathematical model of temephos resistance in Aedes aegypti mosquito population  

NASA Astrophysics Data System (ADS)

Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

2014-03-01

48

Stage-Structured Population Dynamics of AEDES AEGYPTI  

NASA Astrophysics Data System (ADS)

Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

49

Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent  

PubMed Central

Background Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Methodology/Principal Findings Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Conclusions/Significance Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV. PMID:25275366

Dickson, Laura B.; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C.

2014-01-01

50

Functional development of the octenol response in aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, lik...

51

Cytochromr b expression and RNAi knockdown in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in the electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in mitoptosis, i.e. a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti (Ae...

52

AEDES AEGYPTI (DIPTERA: CULICIDAE) IN ST. JOSEPH COUNTY, INDIANA  

Microsoft Academic Search

Two adult female specimens of Aedes aegypti, the Yellow Fever mosquito, were collected on separate occasions in September of 2006 at a collection site in St. Joseph County, Indiana. The eggs of this species are not believed to be capable of surviving the winter in this area and were most likely introduced with a shipment of used automobile tires to

Catherine L. E. Young; Robert E. Sheffer; Frank H. Collins

53

Aedes aegypti Mosquitoes Imported into the Netherlands, 2010  

PubMed Central

During summer 2010, Aedes aegypti mosquitoes were discovered in the Netherlands. Using genetic markers, we tracked the origin of these mosquitoes to a tire shipment from Miami, Florida, USA. Surveillance of tire exports from the United States should be included as part of a comprehensive surveillance system. PMID:22172498

Scholte, Ernst-Jan; Dik, Marian; Den Hartog, Wietse; Beeuwkes, Jacob; Powell, Jeffrey R.

2011-01-01

54

Microsporidiosis (Microspora: Culicosporidae) in Aedes aegypti (Diptera: Culicidae) affects host attraction, blood feeding responses, and the repellency of deet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Infection of Aedes aegypti (L.) (Diptera: Culicidae) with Edhazardia aedis (Microsporidia: Culicosporidae) reduced mean human host attraction and landing/probing rates in female mosquitoes by 53% and 62%, respectively, compared with rates in microsporidia-free females. Infection with E. aedis reduc...

55

Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA  

PubMed Central

The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region. PMID:25520559

Champion, Samantha R; Vitek, Christopher J

2014-01-01

56

Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus.  

PubMed

The vector mosquitoes of dengue and chikungunya fever, Aedes aegypti and Aedes albopictus have adapted to feed on humans and undergo larval and pupal development in natural and artificial freshwater collections. Although several studies reported, still, much information is required to understand the successful survival of Aedes mosquitoes in small temporary containers. In an investigation conducted in the chikungunya affected areas of Kerala state, India, the presence of Bdelloid rotifer, Philodina in 95% of breeding habitats of Ae. aegypti and Ae. albopictus was recorded. The role of Philodina in the breeding containers was investigated. It was found that while in control the number of Philodina was found increasing in the water sample during the study period of seven days, the number found decreased in the containers with larvae of Aedes. The gut content analysis also confirmed the presence of the rotating wheel, corona of Philodina in some of the specimen suggests its role as major larval food. PMID:23202612

Muniaraj, M; Arunachalam, N; Paramasivan, R; Mariappan, T; Philip Samuel, P; Rajamannar, V

2012-12-01

57

History of domestication and spread of Aedes aegypti - A Review  

PubMed Central

The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

Powell, Jeffrey R; Tabachnick, Walter J

2013-01-01

58

Determination of dengue virus serotypes in individual Aedes aegypti mosquitoes in Colombia.  

PubMed

Adult Aedes aegypti mosquitoes were collected in Puerto Triunfo, central Colombia, where dengue is endemic, during a six month period. Viral infection within the head of each individual mosquito was identified by an immunofluorescent assay (IFA) using a flavivirus-specific monoclonal antibody. The dengue virus serotype, present in each flavivirus-positive specimen, was then determined in portions of the remaining thorax using IFAs with serotype-specific monoclonal antibodies. Among 2065 female Aedes aegypti collected and tested, twenty-four flavivirus-positive individuals were found (minimum infection rate 11.6%), three identified as dengue type-1 and twenty-one as dengue type-2 virus. This was consistent with the isolation of only these two serotypes of dengue virus from dengue fever patients within this town. No vertical transmission of dengue virus could be detected in 1552 male Aedes aegypti collected. This method is inexpensive, simple, rapid to perform and suitable for use in developing countries to identify and distinguish different serotypes of dengue virus in their vectors during eco-epidemiological investigations. PMID:9737600

Romero-Vivas, C M; Leake, C J; Falconar, A K

1998-07-01

59

Identification of germline transcriptional regulatory elements in Aedes aegypti  

NASA Astrophysics Data System (ADS)

The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

2014-02-01

60

Identification of germline transcriptional regulatory elements in Aedes aegypti.  

PubMed

The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference. PMID:24492376

Akbari, Omar S; Papathanos, Philippos A; Sandler, Jeremy E; Kennedy, Katie; Hay, Bruce A

2014-01-01

61

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre-and Post-Blood Meal  

E-print Network

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal. PLoS ONE 6(7): e22573. doi@nmsu.edu Introduction The yellow fever mosquito, Aedes aegypti, is the primary vector for dengue fever, several

Houde, Peter

62

Edhazardia aedis, a microsporidian pathogen of Aedes aegypti: Possibilities and challenges for classical biocontrol in South America  

Technology Transfer Automated Retrieval System (TEKTRAN)

Edhazardia aedis, a pathogen of Aedes aegypti, has a complex life cycle involving both horizontal and vertical transmission affecting two successive generations of the host. Usually, one sporulation sequence occurs in the adult female (infected orally as a larva) and results in the formation of bin...

63

Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females  

PubMed Central

Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

2013-01-01

64

Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell  

PubMed Central

Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

2014-01-01

65

Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection  

Microsoft Academic Search

West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their

Bradley S. Schneider; Lynn Soong; Lark L. Coffey; Heather L. Stevenson; Charles E. McGee; Stephen Higgs; Jane Deng

2010-01-01

66

Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions  

PubMed Central

Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to ?-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-?-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

2015-01-01

67

Neuropeptidomics of the mosquito Aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

68

Association of Human Immune Response to Aedes aegypti Salivary Proteins with Dengue Disease Severity  

PubMed Central

SUMMARY Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins, and fractionated them by non-denaturing polyacrylamide gel electrophoresis (PAGE). By use of immunoblots we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans. PMID:21995849

Machain-Williams, Carlos; Mammen, Mammen P; Zeidner, Nordin S; Beaty, Barry J; Prenni, Jessica E.; Nisalak, Ananda

2011-01-01

69

Aedes FADD: A novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti  

E-print Network

in the yellow fever mosquito, Aedes aegypti Dawn M. Cooper*,1 , Ciara M. Chamberlain 1 , Carl Lowenberger 1 and the arboviruses that cause Dengue fever, Yellow fever and West Nile fever. Much of the current research efforts

Lowenberger, Carl

70

Genomic analysis of detoxification genes in the mosquito Aedes aegypti.  

PubMed

Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes. PMID:18070670

Strode, Clare; Wondji, Charles S; David, Jean-Philippe; Hawkes, Nicola J; Lumjuan, Nongkran; Nelson, David R; Drane, David R; Karunaratne, S H P Parakrama; Hemingway, Janet; Black, William C; Ranson, Hilary

2008-01-01

71

Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET TM and its components  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ultralow volume (ULV) droplets of DUET TM, prallethrin and sumithrin at a sublethal dose were applied to unfed (non bloodfed) and bloodfed female Aedes aegypti Linn. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inactive ingredients. Individual mosquitoes wer...

72

Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations  

PubMed Central

Background Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap), produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors) were evaluated. Methods During a one year period, traps were placed in a dengue endemic area in 28?day?cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3). Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors) and front or back yard (outdoors). The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. Results During a 28?day?cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. Conclusions AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically infested by mosquitoes. Low requirements for skilled labor together with easy maintenance and low cost are additional advantages of using this sticky trap. PMID:22958376

2012-01-01

73

Occurrence of Natural Vertical Transmission of Dengue-2 and Dengue-3 Viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil  

PubMed Central

Background Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza. Methods From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome. Results The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively. Conclusions This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods. PMID:22848479

Martins, Victor Emanuel Pessoa; Alencar, Carlos Henrique; Kamimura, Michel Tott; de Carvalho Araújo, Fernanda Montenegro; De Simone, Salvatore Giovanni; Dutra, Rosa Fireman; Guedes, Maria Izabel Florindo

2012-01-01

74

Gustatory receptor expression in the labella and tarsi of Aedes aegypti.  

PubMed

The yellow-fever mosquito, Aedes aegypti, infects a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While these behaviors are in many instances well documented, the molecular mechanisms mediating them are not well understood. Here we report the results of sequencing total messenger RNA in the labella and tarsi of both male and female Ae. aegypti to reveal Gustatory Receptor (GR) gene expression profiles in these major gustatory appendages. Gene expression levels in each tissue were verified by RT-qPCR. We discuss potential functions for the GRs revealed here by considering homologous GRs in other insects. Specific GRs provide molecular targets for modification of gustatory-mediated behaviors in this important disease vector. PMID:24157615

Sparks, Jackson T; Vinyard, Bryan T; Dickens, Joseph C

2013-12-01

75

Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa  

PubMed Central

Background Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of Ae. albopictus in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control. Results Aedes aegypti and Ae. albopictus were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95) and resistance ratios (RR50 and RR95) suggested that both vector species were susceptible to Bti (Bacillus thuringiensis var israeliensis) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of Ae. aegypti (Libreville) and two populations of Ae. albopictus (Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in Ae. albopictus from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt50 and Kdt95) was noted in the Yaoundé resistant population compared to other Ae. albopictus populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT. Conclusion In view of the recent increase in dengue and chikungunya outbreaks in Central Africa, these unique comparative data on the insecticide susceptibility of Ae. aegypti and Ae. albopictus could help public health services to design more effective vector control measures. PMID:21575154

2011-01-01

76

Evaluation of Sumithion L-40 against Aedes aegypti (L.) and Aedes albopictus Skuse.  

PubMed

Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality. PMID:25801256

Loke, S R; Sing, K W; Teoh, G N; Lee, H L

2015-03-01

77

The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti  

PubMed Central

The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

2013-01-01

78

Formulas of components of citronella oil against mosquitoes (Aedes aegypti).  

PubMed

The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 ?L, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 ?L; 42.5%, 18% with 400 ?L; and 19%, 23% with 1000 ?L). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 ?L), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti. PMID:23998314

Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

2013-01-01

79

Functional Development of the Octenol Response in Aedes aegypti  

PubMed Central

Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol?+?CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes. PMID:23471139

Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

2013-01-01

80

Genome Engineering with CRISPR-Cas9 in the Mosquito Aedes aegypti.  

PubMed

The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification. PMID:25818303

Kistler, Kathryn E; Vosshall, Leslie B; Matthews, Benjamin J

2015-04-01

81

No maternal effects after stimulation of the melanization response in the yellow fever mosquito Aedes aegypti  

E-print Network

No maternal effects after stimulation of the melanization response in the yellow fever mosquito the maternal melanization response of the yellow fever mosquito Aedes aegypti by inoculating female mosquitoes

82

Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.  

PubMed

New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. PMID:23205694

Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

2013-09-01

83

Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings  

PubMed Central

Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics. PMID:24330720

2013-01-01

84

Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae)  

Microsoft Academic Search

ObjectiveThe present study deals with the investigation of larvicidal and ovicidal activities of benzene, hexane, ethyl acetate, methanol and chloroform leaf extract of Eclipta alba (E. alba) against dengue vector, Aedes aegypti (Ae. Aegypti).

M Govindarajan; P Karuppannan

2011-01-01

85

Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus  

PubMed Central

Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV. PMID:22953014

Ng, Lee Ching; Tan, Cheong Huat

2012-01-01

86

Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence  

E-print Network

individual life stages to heterogeneous and often stressful environmental conditions. The yellow fever and dengue fever vector mosquito, Aedes aegypti, typically breeds in small water-filled containers

Severson, David

87

Stable Transformation of the Yellow Fever Mosquito, Aedes aegypti, with the Hermes Element from the Housefly  

Microsoft Academic Search

The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germline transformation system reported here constitutes a major advance toward the implementation of this control strategy. A

Nijole Jasinskiene; Craig J. Coates; Mark Q. Benedict; Anthony J. Cornel; Cristina Salazar Rafferty; Anthony A. James; Frank H. Collins

1998-01-01

88

Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti  

Microsoft Academic Search

A degenerate PCR strategy was used to isolate a fragment of the acetylcholinesterase gene (Ace) homolog from Aedes aegypti and screen for a cDNA clone containing the complete open reading frame of the gene. The predicted amino acid sequence of the Aedes gene shares 64% identify with Ace from Drosophila and 87% identity with the acetylcholinesterase gene from another mosquito

Nicola Anthony; Thomas Rocheleau; Giovani Mocelin; Hwa-Jung Lee; Richard ffrench-Constant

1995-01-01

89

Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti  

PubMed Central

The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

2012-01-01

90

Cumulative mortality of Aedes aegypti larvae treated with compounds.  

PubMed

OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

Torres, Sandra Maria; Cruz, Nadine Louise Nicolau da; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; Silva Júnior, Valdemiro Amaro da

2014-06-01

91

Cumulative mortality of Aedes aegypti larvae treated with compounds  

PubMed Central

OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

2014-01-01

92

Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucatán State, México, with a summary of published collection records for Ae. cozumelensis  

PubMed Central

We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small, rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México’s Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur. PMID:23181861

García-Rejón, Julián E.; López-Uribe, Mildred P.; Loroño-Pino, María Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; López-Uribe, Genny M.; Coba-Tún, Carlos; Baak-Baak, Carlos M.; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C.; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black IV, William C.; Beaty, Barry J.; Eisen, Lars

2013-01-01

93

Blood-feeding and immunogenic Aedes aegypti saliva proteins.  

PubMed

Mosquito-transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar-fed and blood-fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar- or blood-based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar-fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up-regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2-DE profiles of immunogenic Ae. aegypti SG BF-related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal. PMID:19882664

Wasinpiyamongkol, Ladawan; Patramool, Sirilaksana; Luplertlop, Natthanej; Surasombatpattana, Pornapat; Doucoure, Souleymane; Mouchet, François; Séveno, Martial; Remoue, Franck; Demettre, Edith; Brizard, Jean-Paul; Jouin, Patrick; Biron, David G; Thomas, Frédéric; Missé, Dorothée

2010-05-01

94

Origin of the Dengue Fever Mosquito, Aedes aegypti, in California  

PubMed Central

Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

2014-01-01

95

Productive container types for Aedes aegypti immatures in Mérida, México.  

PubMed

During 2007-2010, we examined which container types in Mérida, México, are most productive for Aedes aegypti (L.) immatures. Surveys for mosquito immatures followed routine surveillance methodology and container type classifications used by Servicios de Salud de Yucatán. Our main findings were that (1) small and larger discarded containers that serve no particular purpose and therefore can be removed from the environment contribute strongly to larval and pupal production in Mérida, and (2) the importance of different container types can vary among sets of residential premises as well as between dry and wet periods. These results may help to guide future implementation in Mérida of control efforts that target the most productive container types for Ae. aegypti immatures. Furthermore, if the Patio Limpio cleanup campaign that currently is ongoing in Mérida proves successful in removing discarded containers as important immature development sites, then we should see dramatic changes in the most productive container types in the future as the mosquito is forced to switch to other container types, which perhaps also will be easier to include in highly targeted mosquito control interventions. PMID:21661326

García-Rejón, Julian E; López-Uribe, Mildred P; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Del Najera-Vazquez, Maria Rosario; Lozano-Fuentes, Saul; Beaty, Barry J; Eisen, Lars

2011-05-01

96

Chemometric studies on potential larvicidal compounds against Aedes aegypti.  

PubMed

The mosquito Aedes aegypti (Diptera, Culicidae) is the vector of yellow and dengue fever. In this study, chemometric tools, such as, Principal Component Analysis (PCA), Consensus PCA (CPCA), and Partial Least Squares Regression (PLS), were applied to a set of fifty five active compounds against Ae. aegypti larvae, which includes terpenes, cyclic alcohols, phenolic compounds, and their synthetic derivatives. The calculations were performed using the VolSurf+ program. CPCA analysis suggests that the higher weight blocks of descriptors were SIZE/SHAPE, DRY, and H2O. The PCA was generated with 48 descriptors selected from the previous blocks. The scores plot showed good separation between more and less potent compounds. The first two PCs accounted for over 60% of the data variance. The best model obtained in PLS, after validation leave-one-out, exhibited q(2) = 0.679 and r(2) = 0.714. External prediction model was R(2) = 0.623. The independent variables having a hydrophobic profile were strongly correlated to the biological data. The interaction maps generated with the GRID force field showed that the most active compounds exhibit more interaction with the DRY probe. PMID:23676010

Scotti, Luciana; Scotti, Marcus Tullius; Silva, Viviane Barros; Santos, Sandra Regina Lima; Cavalcanti, Sócrates C H; Mendonça, Francisco J B

2014-03-01

97

Genetic structure of Aedes aegypti populations determined using pairwise comparisons.  

PubMed

The biological characteristics of Aedes aegypti (Diptera, Culicidae), which is a vector of dengue and yellow fever, make this organism a good model for studying population structure and the events that may influence it under the effect of human activity. We assessed the genetic variability of five A. aegypti populations using RAPD-PCR technique and six primers. Four populations were from Brazil and one was from the USA. A total of 165 polymorphic DNA loci were generated. Considering the six primers and the five populations, the mean value of inter-population genetic diversity (Gst) was 0.277, which is considered high according to the Wright classification. However, pairwise comparisons of the populations gave variable Gst values ranging from 0.044 to 0.289. This variation followed the population's geographic distance to some extent but was also influenced by human activity. The lowest Gst values were obtained in the comparison of populations from cities with intensive commercial and medical contacts. These mosquito populations were previously classified as insecticide resistant, susceptible, or with decreased susceptibility; this parameter apparently had an effect on the Gst values obtained in the pairwise comparisons. PMID:24085439

Patarro, T de F; Guirado, M M; Ravazzi, L M; Bicudo, H E M de C

2013-01-01

98

Adult Survivorship of the Dengue Mosquito Aedes aegypti Varies Seasonally in Central Vietnam  

PubMed Central

The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

Hugo, Leon E.; Jeffery, Jason A. L.; Trewin, Brendan J.; Wockner, Leesa F.; Thi Yen, Nguyen; Le, Nguyen Hoang; Nghia, Le Trung; Hine, Emma; Ryan, Peter A.; Kay, Brian H.

2014-01-01

99

Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.  

PubMed

The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

2014-02-01

100

Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).  

PubMed

Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae.?aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae.?albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae.?aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae.?aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae.?aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae.?aegypti and Ae.?albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown. PMID:23607885

Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

2014-03-01

101

A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus.  

PubMed

The objective of this study was to develop a herbal formulation to control dengue vector mosquitoes. PONNEEM, a novel herbal formulation prepared using the oils of neem (Azadirachta indica), karanj (Pongamia glabra) and their extracts, was tested for larvicidal, ovicidal and oviposition deterrent activities against Aedes aegypti and Aedes albopictus at 1, 0.5, 0.3 and 0.1 ppm concentrations. Cent percent larvicidal and ovicidal activities were observed at 0.1 ppm in the two mosquito species under laboratory and sunlight-exposed conditions up to 12 months from the date of manufacture. Oviposition deterrent activity of 69.97% and 71.05% was observed at 1 ppm concentration of PONNEEM against A. aegypti and A. albopictus, respectively. Reduction in enzyme levels for ?-esterase was 0.089 ± 0.008 and 0.099 ± 0.140 ?g napthol produced/min/mg larval protein; for ?-esterase, it was 0.004 ± 0.009 and 0.001 ± 0.028 ?g napthol produced/min/mg larval protein; for glutathione S-transferase, it was 10.4814 ± 0.23 and 11.4811 ± 0.21 ?mol/min/mg larval protein and for total protein, it was 0.177 ± 0.010 and 0.008 ± 0.005 mg/individual larva in treated groups of A. aegypti and A. albopictus, respectively. The nontarget organisms such as Gambusia affinis and Diplonychus indicus were not affected. No mortality was observed in control. PONNEEM can be used effectively for the management of human vector mosquitoes. PMID:22042505

Maheswaran, Rajan; Ignacimuthu, Savarimuthu

2012-05-01

102

Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.  

PubMed

We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future. PMID:24893017

Khormi, Hassan M; Kumar, Lalit

2014-05-01

103

Behavioral Responses of Catnip (Nepeta cataria) by Two Species of Mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand  

Microsoft Academic Search

An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excito- repellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P , 0.05). With Anopheles harrisoni, a high

Suppaluck Polsomboon; John P. Grieco; Nicole L. Achee; Kamlesh R. Chauhan; Somchai Tanasinchayakul; Jinrapa Pothikasikorn; Theeraphap Chareonviriyaphap

2008-01-01

104

Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region).  

PubMed

Chikungunya virus (CHIKV) is transmitted to humans through the bite of Aedes mosquitoes. During the 2005-2006 epidemic that occurred in the Indian Ocean Islands, a viral strain harboring a substitution of an alanine to valine at position 226 (E1-A226V) of the E1 glycoprotein enhanced the transmissibility of CHIKV by Aedes albopictus. In March 2011, autochthonous transmission of CHIKV was reported in New Caledonia (NC), an island located in the southwest Pacific Ocean. This was the first report of local chikungunya (CHIK) transmission in this region of the world. Phylogenetic analysis based on the complete genome demonstrated that the CHIKV-NC strain isolated from the first autochthonous human case belongs to the Asian lineage. This is consistent with the Indonesian origin of CHIK cases previously imported and detected. Thus the CHIKV-NC does not present a valine substitution at position E1-226. In New Caledonia, the putative vector of CHIKV is Aedes aegypti, since no other potential vector has ever been described. For example, A. albopictus is not found in NC. Vector competence experiments showed that A. aegypti from New Caledonia was able to transmit, as early as 3 days post-infection, two CHIKV strains: CHIKV-NC belonging to the Asian lineage, and CHIKV-RE from Reunion Island harboring the E1-A226V mutation. Thus the extrinsic incubation period of both CHIKV strains in this vector species could be considered to be quite short. These results illustrate the threat of the spread of CHIKV in the South Pacific region. From February to June 2011 (the end of the alert), only 33 cases were detected. Implementation of drastic vector control measures and the occurrence of the cold season probably helped to limit the extent of the outbreak, but other factors may have also been involved and are discussed. PMID:23167500

Dupont-Rouzeyrol, Myrielle; Caro, Valérie; Guillaumot, Laurent; Vazeille, Marie; D'Ortenzio, Eric; Thiberge, Jean-Michel; Baroux, Noémie; Gourinat, Ann-Claire; Grandadam, Marc; Failloux, Anna-Bella

2012-12-01

105

Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa.  

PubMed

Exposure to vectors of infectious diseases has been associated with antibody responses against salivary antigens of arthropods among people living in endemic areas. This immune response has been proposed as a surrogate marker of exposure to vectors appropriate for evaluating the protective efficacy of antivectorial devices. The existence and potential use of such antibody responses in travellers transiently exposed to Plasmodium or arbovirus vectors in tropical areas has never been investigated. The IgM and IgG antibody responses of 88 French soldiers against the saliva of Anopheles gambiae and Aedes aegypti were evaluated before and after a 5-month journey in tropical Africa. Antibody responses against Anopheles and Aedes saliva increased significantly in 41% and 15% of the individuals, respectively, and appeared to be specific to the mosquito genus. A proteomic and immunoproteomic analysis of anopheles and Aedes saliva allowed for the identification of some antigens that were recognized by most of the exposed individuals. These results suggest that antibody responses to the saliva of mosquitoes could be considered as specific surrogate markers of exposure of travellers to mosquito vectors that transmit arthropod borne infections. PMID:17913537

Orlandi-Pradines, Eve; Almeras, Lionel; Denis de Senneville, Laure; Barbe, Solenne; Remoué, Franck; Villard, Claude; Cornelie, Sylvie; Penhoat, Kristell; Pascual, Aurélie; Bourgouin, Catherine; Fontenille, Didier; Bonnet, Julien; Corre-Catelin, Nicole; Reiter, Paul; Pagés, Frederic; Laffite, Daniel; Boulanger, Denis; Simondon, François; Pradines, Bruno; Fusaï, Thierry; Rogier, Christophe

2007-10-01

106

Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

107

Resistance of Aedes aegypti to temephos and adaptive disadvantages  

PubMed Central

OBJECTIVE To evaluate the resistance of Aedes aegypti to temephos Fersol 1G (temephos 1% w/w) associated with the adaptive disadvantage of insect populations in the absence of selection pressure. METHODS A diagnostic dose of 0.28 mg a.i./L and doses between 0.28 mg a.i./L and 1.40 mg a.i./L were used. Vector populations collected between 2007 and 2008 in the city of Campina Grande, state of Paraíba, were evaluated. To evaluate competition in the absence of selection pressure, insect populations with initial frequencies of 20.0%, 40.0%, 60.0%, and 80.0% resistant individuals were produced and subjected to the diagnostic dose for two months. Evaluation of the development of aquatic and adult stages allowed comparison of the life cycles in susceptible and resistant populations and construction of fertility life tables. RESULTS No mortality was observed in Ae. aegypti populations subjected to the diagnostic dose of 0.28 mg a.i./L. The decreased mortality observed in populations containing 20.0%, 40.0%, 60.0%, and 80.0% resistant insects indicates that temephos resistance is unstable in the absence of selection pressure. A comparison of the life cycles indicated differences in the duration and viability of the larval phase, but no differences were observed in embryo development, sex ratio, adult longevity, and number of eggs per female. CONCLUSIONS The fertility life table results indicated that some populations had reproductive disadvantages compared with the susceptible population in the absence of selection pressure, indicating the presence of a fitness cost in populations resistant to temephos. PMID:25372168

Diniz, Morgana Michele Cavalcanti de Souza Leal; Henriques, Alleksandra Dias da Silva; Leandro, Renata da Silva; Aguiar, Dalvanice Leal; Beserra, Eduardo Barbosa

2014-01-01

108

Effect of housing factors on infestation by Aedes aegypti (L.) and Aedes albopictus Skuse in urban Hanoi City, Vietnam.  

PubMed

To determine the effect of housing factors on infestation with Aedes aegypti (L.) and Aedes albopictus Skuse we conducted an entomological survey and inspection of 267 urban houses in Hanoi City, Vietnam. Two hundred ten pupae and 194 adult Ae. aegypti were collected from 19 and 88 houses, respectively. One hundred eighty-one pupae and 24 adult Ae. albopictus were collected from 21 and 14 houses, respectively. The presence of a private well was associated with increasing infestation with Ae. aegypti adults (p = 0.01) and increased the risk of Ae. aegypti and Ae. albopictus pupal presence (p = 0.04 for Ae. aegypti, p = 0.03 for Ae. albopictus). The presence of an outdoor space in the household premises was associated with a higher risk of Ae. albopictus pupal presence (p = 0.004) and a higher risk of high levels of Ae. albopictus adults (p = 0.01); however, it had no association with infestation with Ae. aegypti. The presence of an air-conditioning unit (p = 0.03) and four or more rooms in the residence (p = 0.02) were negatively and positively associated with the risk for Ae. albopictus presence, respectively. PMID:24450235

Tsuzuki, Ataru; Sunahara, Toshihiko; Duoc, Vu Trong; Le Nguyen, Hoang; Higa, Yukiko; Phong, Tran Vu; Minakawa, Noboru

2013-11-01

109

Laboratory vector competence experiments with yellow fever virus and five South African mosquito species including Aedes aegypti.  

PubMed

Three domestic and peridomestic mosquito species, selected because their prevalence, distribution and ecology favoured them as potential urban vectors of yellow fever (YF) in South Africa, were submitted to numerous tests for infectivity [measured as dose needed to infect 50% of the mosquitoes (MID50)], mainly with a Kenyan strain (BC7914) of the virus. Use of a Nigerian virus strain (TVP1617) did not significantly alter infectivity. After artificial infective blood meals with titres of 7.0-8.0 log10MID50/mL, head squash infection rates (HSIRs) determined by the indirect fluorescent antibody test were 0-4% (Eretmapodites quinquevittatus), 0-29% (Aedes simpsoni s. s.) and 0-21% (5 populations of Aedes aegypti). For some populations of Ae. aegypti tests were repeated with blood meals incorporating freshly prepared rather than frozen mouse brain but HSIRs did not increase. HSIRs did increase when a high infecting titre of 9.0 log10MID50/mL was used with the Richards Bay population (67-90%). It is concluded that these 3 mosquito species are potentially poor YF vectors but that Ae. simpsoni and Richards Bay Ae. aegypti are the most susceptible to the virus. However, the latter 2 species could support person-to-person transmission only if they were present at very high densities. This rarely occurs with Ae. simpsoni in South Africa but Ae. aegypti may occur at high densities although only in discrete foci. The feral Ae. furcifer and Ae. cordellieri had HSIRs of 29% and 3% respectively and Ae. furcifer 'transmitted' the virus in vitro at a transmission rate of 25%. This suggests that Ae. furcifer would be more important than Ae. cordellieri in transmission between monkeys in West Africa. PMID:12474475

Jupp, Peter G; Kemp, Alan

2002-01-01

110

Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus  

PubMed Central

Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

2013-01-01

111

Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti  

NASA Astrophysics Data System (ADS)

Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted ?2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal ?-helix at low pH.

Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

2004-09-01

112

Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants  

Microsoft Academic Search

The insecticidal activity of 11 extracts from nine South American medicinal plants has been studied using the Aedes aegypti larvicidal assay. Eight of the 11 plant extracts studied showed toxicity against the A. aegypti larvae (LC50<500 ?g\\/ml). The dichloromethane extracts of Abuta grandifolia and Minthostachys setosa demonstrated high larvicidal activity, the most active being the dichloromethane extract of A. grandifolia,

G Ciccia; J Coussio; E Mongelli

2000-01-01

113

Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae  

Microsoft Academic Search

The bioactivity of 14 essential oils from five plants has been studied using the brine shrimp lethality test and the Aedes aegypti larvicidal assay. All essential oils screened had LC50 values smaller than 200 ?g\\/ml, showing significant lethality against brine shrimp. In addition, nine of the 14 essential oils tested showed toxicity against the fourth-instar A. aegypti larvae in 24

Sen-Sung Cheng; Hui-Ting Chang; Shang-Tzen Chang; Kun-Hsien Tsai; Wei-June Chen

2003-01-01

114

Understanding Uncertainties in Model-Based Predictions of Aedes aegypti Population Dynamics  

Microsoft Academic Search

BackgroundAedes aegypti is one of the most important mosquito vectors of human disease. The development of spatial models for Ae. aegypti provides a promising start toward model-guided vector control and risk assessment, but this will only be possible if models make reliable predictions. The reliability of model predictions is affected by specific sources of uncertainty in the model.Methodology\\/Principal FindingsThis study

Chonggang Xu; Mathieu Legros; Fred Gould; Alun L. Lloyd

2010-01-01

115

Pyrethroid resistance in Aedes aegypti and Aedes albopictus from Port-au-Prince, Haiti.  

PubMed

In Port-au-Prince, Haiti, the status of insecticide resistance has not recently been evaluated for Aedes aegypti (L) and Aedes albopictus (Skuse) populations. No prophylactics exist for dengue, so prevention is only through vector control methods. An earthquake occurred in Haiti on January 12, 2010, with a magnitude of 7.0 Mw that devastated the area. Dengue became a major concern for the humanitarian relief workers that entered the country. Bottle bioassays were conducted in the field on adult mosquitoes reared from larvae collected from the grounds of the U.S. Embassy and from an adjacent neighborhood in eastern Port-au-Prince, Haiti. At the CDC, Fort Collins, CO, bioassays, molecular, and biochemical assays were performed on mosquitoes reared from field-collected eggs. A small percentage of the population was able to survive the diagnostic dose in bioassays run in Haiti. Mosquitoes tested at the CDC demonstrated no phenotypic resistance. A variety of factors could be responsible for the discrepancies between the field and lab data, but temperature and larval nutrition are probably most important. Knowledge of localized resistance and underlying mechanisms helps in making rational decisions in selection of appropriate and effective insecticides in the event of a dengue outbreak. PMID:23181855

McAllister, Janet C; Godsey, Marvin S; Scott, Mariah L

2012-12-01

116

Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions  

PubMed Central

Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99?=?3.95??g/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28??g/L; EI90= 12.47??g/L) and Ae. albopictus (EI50= 1.59??g/L; EI90= 2.63??g/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public health. Nevertheless, they point to the need of constant monitoring of the susceptibility status of vector populations to CSIs. PMID:23557173

2013-01-01

117

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection  

E-print Network

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which: Saliva Is Infectious as soon as Two Days after Oral Infection. PLoS ONE 4(6): e5895. doi:10.1371/journal

Boyer, Edmond

118

Reduction of Aedes aegypti Vector Competence for Dengue Virus under Large Temperature Fluctuations  

PubMed Central

Diurnal temperature fluctuations can fundamentally alter mosquito biology and mosquito-virus interactions in ways that impact pathogen transmission. We investigated the effect of two daily fluctuating temperature profiles on Aedes aegypti vector competence for dengue virus (DENV) serotype-1. A large diurnal temperature range of 18.6°C around a 26°C mean, corresponding with the low DENV transmission season in northwestern Thailand, reduced midgut infection rates and tended to extend the virus extrinsic incubation period. Dissemination was first observed at day 7 under small fluctuations (7.6°C; corresponding with high DENV transmission) and constant control temperature, but not until Day 11 for the large diurnal temperature range. Results indicate that female Ae. aegypti in northwest Thailand are less likely to transmit DENV during the low than high transmission season because of reduced DENV susceptibility and extended virus extrinsic incubation period. Better understanding of DENV transmission dynamics will come with improved knowledge of temperature effects on mosquito-virus interactions. PMID:23438766

Carrington, Lauren B.; Seifert, Stephanie N.; Armijos, M. Veronica; Lambrechts, Louis; Scott, Thomas W.

2013-01-01

119

Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti.  

PubMed

The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors. PMID:24704038

Pieprzyk, Joanna; Zbela, Agnieszka; Jakób, Micha?; O?yhar, Andrzej; Or?owski, Marek

2014-06-01

120

Insecticide resistance in Aedes aegypti populations from Ceará, Brazil  

PubMed Central

Background Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms. Results Resistance to temephos varied widely across the three studied populations, with resistance ratios (RR95) of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ? 30) imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha) were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain. Conclusions Our results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time the presence of the allele 1016Ile in mosquito populations from northeastern Brazil. A significant association between 1011Met and resistance was observed in one of the populations. Target-site mechanisms seem not to be implicated in temephos resistance, reinforcing the idea that for the studied populations, detoxification enzymes most likely play a major role in the resistance to this insecticide. PMID:21226942

2011-01-01

121

Bioefficacy of crude extract of Cyperus aromaticus (Family: Cyperaceae ) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes  

PubMed Central

Objective To evaluate the growth inhibition activity of the crude extract of Cyperus aromaticus (C. aromaticus) cultured cells against the 3rd instar larvae of Aedes aegypti (Linn.) and Aedes albopictus Skuse (Ae. albopictus) under laboratory conditions, and determine the sublethal effects (EI50) of the crude extract of C. aromaticus cultured cells on some biological and morphological parameters of both Aedes mosquito species during two generations as well. Methods The cell suspension cultures of C. aromaticus were activated from five callus lines (P4, Pa, Z1, Z6 and Ml) derived from the root explants of in vitro plantlets. The cultured cells were extracted in chloroform and used as plant material for the present study. For detection of juvenile hormone III, the crude extracts were analyzed by HPLC. Then the crude extracts of the three C. aromaticus cultured cell lines which contained varied amounts of juvenile hormone III [high level (P4 cell line), medium level (Z1 cell line) and low level (Ml cell line)] were tested against Aedes mosquito species. Laboratory evaluation was performed against late third instar larvae of the Vector Control Research Unit strains of Ae. aegypti and Ae. albopictus using the standard WHO method. The effects of EI50 of the C. aromaticus cultured P4 cells on fecundity, fertility, growth period, sex ratio, adult size and longevity of Aedes mosquitoes were assessed. Results Bioassay tests presented the remarkable growth inhibition activity of the crude extracts of C. aromaticus cultured cells against the two Aedes mosquitoes. Between the two mosquito species, Ae. albopictus was more susceptible to the crude extracts with lower EI50 values. EI50 of the crude extract of C. aromaticus cultured cells (P4) increased the sterility indices in the parental generation females in both Aedes mosquito species. A significant delay in the pupal formation and adult emergence were observed in the parental generation of the both mosquito species. The sex ratio of the adult population either parental or F1 generation of the Aedes mosquito species was not significantly affected by the EI50 dosage of the crude extract of C. aromaticus cultured P4 cells. A significant decrease in the wing length of the treated adult (female and male) of Aedes aegypti as well as the treated female of Ae. albopictus were observed. Longevity of the adult female of the parental generation of both Aedes mosquitoes as well as females of F1 generation of Ae. albopictus were significantly decreased. Conclusions The present study revealed the potential of the crude extract of C. aromaticus cultured cells in controlling vector mosquito populations in the effort to reduce the transmission of vector borne diseases. PMID:24075340

Kamiabi, Fatemeh; Jaal, Zairi; Keng, Chan Lai

2013-01-01

122

PERMEABILITY OF THE OVARIAN FOLLICLE OF AEDES AEGYPTI MOSQUITOES  

PubMed Central

The passage of tracers of various molecular weights into resting and vitellogenic ovarian follicles of Aedes aegypti mosquitoes was studied ultrastructurally. The outermost layer of the follicular sheath (the basement lamina) is a coarse mechanical filter. It is freely permeable to particles with molecular weights ranging from 12,000 to 500,000 (i.e. cytochrome c, peroxidase, hemoglobin, catalase, ferritin, immunoglobulin (IgG)-peroxidase, iron dextran and Thorotrast) that have dimensions less than 110 A. Molecules as large as carbon (300–500 A) are totally excluded. Whereas proteins and polysaccharide tracers permeate the basement lamina with apparent ease, certain inert particles (e.g. Thorotrast, Fellows-Testager Div., Fellows Mfg. Co., Inc., Detroit, Mich.) penetrate more slowly. With respect to the tracers tested, resting follicles are as permeable as vitellogenic follicles. The follicle epithelium of resting or vitellogenic follicles is penetrated by narrow intercellular channels. Our observations suggest that these spaces are lined with mucopolysaccharide material. After permeating the basement lamina, exogenous tracers fill these channels, while the bulk of material accumulates in the perioocytic space. Within 3 hr after imbibing blood, the pinocytotic mechanism of the oocyte is greatly augmented. Pinocytosis is not selective with regard to material in the perioocytic space, since double tracer studies show that exogenous compounds are not separated, but are incorporated into the same pinocytotic vesicle. During later stages of vitellogenesis, 36–48 hr after the blood-meal, the pinocytotic mechanism of the oocyte is diminished. Simultaneously, the intercellular channels become occluded by desmosomes, and the vitelline membrane plaques separate the oocyte and follicle epithelium. PMID:4104968

Anderson, Winston A.; Spielman, Andrew

1971-01-01

123

Different repellents for Aedes aegypti against blood-feeding and oviposition.  

PubMed

Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. PMID:25079819

Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C Giovanni

2014-01-01

124

Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

125

Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

126

USE OF THE PUPAL SURVEY TECHNIQUE FOR MEASURING AEDES AEGYPTI (DIPTERA: CULICIDAE) PRODUCTIVITY IN PUERTO RICO  

Microsoft Academic Search

The hypothesis tested was that most pupae of Aedes aegypti are produced in a few types of containers so that vector control efforts could concentrate on eliminating the most productive ones and thus prevent dengue out- breaks. Pupal surveys were conducted twice in 2004 in an urban area in southern Puerto Rico. A total 35,030 immature mosquitoes (III and IV

ROBERTO BARRERA; MANUEL AMADOR; GARY G. CLARK

2006-01-01

127

Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico  

Microsoft Academic Search

RAPD-PCR polymorphisms at 57 presumptive loci were used to examine the breeding structure of the mosquito Aedes aegypti in Puerto Rico. Mosquitoes were sampled from 16 locations in six cities and samples were located in a nested spatial design to examine local patterns of gene flow. Allele frequencies were estimated assuming (1) that genomic regions amplified by RAPD-PCR segregate as

Barbara L Apostol; William C Black; Paul Reiter; Barry R Miller; William C Black IV

1996-01-01

128

Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle  

Microsoft Academic Search

BACKGROUND: One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of

Gustavo Lazzaro Rezende; Ademir Jesus Martins; Carla Gentile; Luana Cristina Farnesi; Marcelo Pelajo-Machado; Alexandre Afrânio Peixoto; Denise Valle

2008-01-01

129

Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and  

E-print Network

Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island

Paris-Sud XI, Université de

130

Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

131

Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses  

Microsoft Academic Search

Aedes aegypti was eliminated from Brazil in 1955, but re-infested the country in the 1970s. Dengue outbreaks have occurred since 1981 and became endemic in several cities in Brazil after 1986. Urban yellow fever has not occurred since 1942, and only jungle yellow fever cases have been reported. A population genetic analysis using isoenzyme variation combined with an evaluation of

R Lourenço-de-Oliveira; M Vazeille; A. M. B de Filippis; A. B Failloux

2004-01-01

132

Structure-Activity Relationships of 33 Piperidines as Adulticides against Aedes aegypti(Diptera: Culicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Using insecticides is one of the major ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a beginning of our collaborative effort to...

133

Comparative study of four membranes for evaluation of new insect/arthropod repellents using Aedes aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Four different membranes: Baudruche; Hemotek, sausage, and silicone-based membrane were evaluated as human skin substitute for an in vitro repellent study using Aedes aegypti. No significant difference was observed in repellent activity (ED50) of DEET among the membranes. Sausage membrane was selec...

134

The maxillary palp of aedes aegypti, a model of multisensory integration  

Technology Transfer Automated Retrieval System (TEKTRAN)

Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

135

Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (AaeIAP1, Genbank accession no. DQ993355), however, it is n...

136

Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti L. (AeaCytB) is developm...

137

Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae)  

Microsoft Academic Search

Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the

A. Abdul Rahuman; Geetha Gopalakrishnan; P. Venkatesan; Kannappan Geetha

2008-01-01

138

Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...

139

Dependence of Metarhizium anisopliae on high humidity for ovicidal activity on Aedes aegypti  

Microsoft Academic Search

Eggs of Aedes aegypti, treated topically with Metarhizium anisopliae IP 46, were submitted for up to 30 d to three different moisture regimes at 25°C: (A) incubated at >98% relative humidity (RH); (B) were held in biphasic humidity regimes with initially increasing exposure times to >98% RH followed by decreasing exposures to 75% RH; and (C) daily alternating exposures to

Adelair Helena Santos; Marina Hsiang Hua Tai; Luiz Fernando Nunes Rocha; Heloisa Helena Garcia Silva; Christian Luz

2009-01-01

140

AN INSULIN-LIKE PEPTIDE REGULATES EGG MATURATION AND METABOLISM IN THE MOSQUITO AEDES AEGYPTI  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ingestion of vertebrate blood is essential for egg maturation and transmission of disease-causing parasites by female mosquitoes. Prior studies with the yellow fever mosquito, Aedes aegypti, indicated blood feeding stimulates egg production by triggering the release of hormones from MNCs in the mosq...

141

VERTICAL TRANSMISSION OF DENGUE VIRUS IN Aedes aegypti COLLECTED IN PUERTO IGUAZÚ, MISIONES, ARGENTINA  

PubMed Central

A finding of vertical transmission of the DEN 3 virus in male specimens of Aedes aegypti, collected in the 2009 fall-winter period, in Puerto Iguazú city, Misiones, Argentina, using the RT-PCR technique in a 15-specimen pool is reported. This result is analyzed within the context of the epidemiological situation of Argentina's northeast border. PMID:24626420

Espinosa, Manuel; Giamperetti, Sergio; Abril, Marcelo; Seijo, Alfredo

2014-01-01

142

LABORATORY AND FIELD ASSESSMENT OF SOME KAIROMONE BLENDS FOR HOST-SEEKING AEDES AEGYPTI  

Technology Transfer Automated Retrieval System (TEKTRAN)

Using laboratory y-tube olfactometers we examined whether lactic acid, a key Aedes aegypti (L.) attractant, and two proprietary kairomone blends (the USDA blend and the BG blend) incorporating this compound, were attractive to a range of geographically disparate populations from North Queensland Aus...

143

Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay  

Technology Transfer Automated Retrieval System (TEKTRAN)

Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

144

Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae  

E-print Network

Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae, Montpellier, France Abstract. 1. The role of pollution by conspecifics in the costs associated with larval the effects of other processes to be expressed. 3. A cost of growing in polluted water was found: this cost

145

Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon  

PubMed Central

Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

2014-01-01

146

The energetic costs of diving in Aedes aegypti and Aedes albopictus pupae.  

PubMed

Undisturbed mosquito pupae rest at the water surface and respond to passing shadows or vibrations by diving. Pupae do not feed and rely solely on energy stored from the larval stage. The ability of a newly emerged adult mosquito to survive, and therefore to transmit disease, depends on these energy reserves. Earlier studies of diving behavior in Aedes aegypti, Ae. albopictus, and Ae. triseriatus pupae provided evidence that pupae sense their state of buoyancy and modify their diving behavior accordingly. With strong stimulation pupae tend to dive to a depth where they become neutrally or negatively buoyant and commonly rest on the bottom. This behavior, as well as the tendency to rest when not disturbed, may logically be viewed as energy-conserving. The results of these studies also generated the hypothesis that the diving behavior displayed by these container-breeding mosquitoes helps them avoid being washed from their container by overflowing water during rainfall. Rainfall stimulates diving and logically, prolonged, heavy rainfall stimulates excessive diving, a likely drain on energy reserves. Our objectives were to determine, in Ae. aegypti and Ae. albopictus, the energetic costs associated with resting behavior, with frequent diving, and with buoyancy reduction. Using survival rate, mean survival after adult emergence, and measurement of total calories, we found a clear energetic cost associated with frequent diving. In contrast, relative to diving, essentially no energy cost was associated with buoyancy reduction, that is, pupae behave in response to variations in buoyancy in a way that does not impact significantly on energy reserves. PMID:11345420

Lucas, E A; Romoser, W S

2001-03-01

147

The Molecular Characterization of a Diuretic Hormone Receptor (GPRdih1) From Females of the Yellow Fever Mosquito, Aedes aegypti (L.)  

E-print Network

In the yellow fever mosquito, Aedes aegypti (L.), hemolymph-circulating diuretic hormones act upon the renal organs (Malpighian tubules) to regulate primary urine composition and secretion rate; however, the molecular endocrine mechanisms underlying...

Jagge, Christopher Lloyd

2011-02-22

148

Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults  

Technology Transfer Automated Retrieval System (TEKTRAN)

An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

149

Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior in Aedes aegypti  

PubMed Central

Background Dengue is a viral disease transmitted by Aedes mosquitoes. It is a threat for public health worldwide and its primary vector Aedes aegypti is becoming resistant to chemical insecticides. These factors have encouraged studies to evaluate entomopathogenic fungi against the vector. Here we evaluated mortality, infection, insemination and fecundity rates in A. aegypti females after infection by autodissemination with two Mexican strains of Metarhizium anisopliae. Methods Two M. anisopliae strains were tested: The Ma-CBG-1 least virulent (lv), and the Ma-CBG-2 highly virulent (hv) strain. The lv was tested as non mosquito-passed (NMP), and mosquito-passed (MP), while the hv was examined only as MP version, therefore including the control four treatments were used. In the first bioassay virulence of fungal strains towards female mosquitoes was determined by indirect exposure for 48 hours to conidia-impregnated paper. In the second bioassay autodissemination of fungal conidia from fungus-contaminated males to females was evaluated. Daily mortality allowed computation of survival curves and calculation of the LT50 by the Kaplan-Meier model. All combinations of fungal sporulation and mating insemination across the four treatments were analyzed by ?2. The mean fecundity was analyzed by ANOVA and means contrasted with the Ryan test. Results Indirect exposure to conidia allowed a faster rate of mortality, but exposure to a fungal-contaminated male was also an effective method of infecting female mosquitoes. All females confined with the hv strain-contaminated male died in fifteen days with a LT50 of 7.57 (± 0.45) where the control was 24.82 (± 0.92). For the lv strain, it was possible to increase fungal virulence by passing the strain through mosquitoes. 85% of females exposed to hv-contaminated males became infected and of them just 10% were inseminated; control insemination was 46%. The hv strain reduced fecundity by up to 99%, and the lv strain caused a 40% reduction in fecundity. Conclusions The hv isolate infringed a high mortality, allowed a low rate of insemination, and reduced fecundity to nearly zero in females confined with a fungus-contaminated male. This pathogenic impact exerted through sexual transmission makes the hv strain of M. anisopliae worthy of further research. PMID:21906283

2011-01-01

150

Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico  

PubMed Central

Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

2012-01-01

151

Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability  

NASA Astrophysics Data System (ADS)

The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

152

Environmental and Genetic Factors Determine Whether the Mosquito Aedes aegypti Lays Eggs Without a Blood Meal.  

PubMed

Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in Aedes aegypti mosquitoes are unknown. We found that 3.2% of females in a population of Ae. aegypti from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all Ae. aegypti genotypes can lay autogenously. We conclude that Ae. aegypti requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal. PMID:25646251

Ariani, Cristina V; Smith, Sophia C L; Osei-Poku, Jewelna; Short, Katherine; Juneja, Punita; Jiggins, Francis M

2015-04-01

153

Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs  

PubMed Central

Background An initial comparative genomic study of the malaria vector Anopheles gambiae and the yellow fever mosquito Aedes aegypti revealed striking differences in the genome assembly size and in the abundance of transposable elements between the two species. However, the chromosome arms homology between An. gambiae and Ae. aegypti, as well as the distribution of genes and repetitive elements in chromosomes of Ae. aegypti, remained largely unexplored because of the lack of a detailed physical genome map for the yellow fever mosquito. Results Using a molecular landmark-guided fluorescent in situ hybridization approach, we mapped 624 Mb of the Ae. aegypti genome to mitotic chromosomes. We used this map to analyze the distribution of genes, tandem repeats and transposable elements along the chromosomes and to explore the patterns of chromosome homology and rearrangements between Ae. aegypti and An. gambiae. The study demonstrated that the q arm of the sex-determining chromosome 1 had the lowest gene content and the highest density of minisatellites. A comparative genomic analysis with An. gambiae determined that the previously proposed whole-arm synteny is not fully preserved; a number of pericentric inversions have occurred between the two species. The sex-determining chromosome 1 had a higher rate of genome rearrangements than observed in autosomes 2 and 3 of Ae. aegypti. Conclusions The study developed a physical map of 45% of the Ae. aegypti genome and provided new insights into genomic composition and evolution of Ae. aegypti chromosomes. Our data suggest that minisatellites rather than transposable elements played a major role in rapid evolution of chromosome 1 in the Aedes lineage. The research tools and information generated by this study contribute to a more complete understanding of the genome organization and evolution in mosquitoes. PMID:24731704

2014-01-01

154

Fluctuations at a Low Mean Temperature Accelerate Dengue Virus Transmission by Aedes aegypti  

PubMed Central

Background Environmental factors such as temperature can alter mosquito vector competence for arboviruses. Results from recent studies indicate that daily fluctuations around an intermediate mean temperature (26°C) reduce vector competence of Aedes aeygpti for dengue viruses (DENV). Theoretical predictions suggest that the mean temperature in combination with the magnitude of the diurnal temperature range (DTR) mediate the direction of these effects. Methodology/Principal Findings We tested the effect of temperature fluctuations on Ae. aegypti vector competence for DENV serotype-1 at high and low mean temperatures, and confirmed this theoretical prediction. A small DTR had no effect on vector competence around a high (30°C) mean, but a large DTR at low temperature (20°C) increased the proportion of infected mosquitoes with a disseminated infection by 60% at 21 and 28 days post-exposure compared to a constant 20°C. This effect resulted from a marked shortening of DENV extrinsic incubation period (EIP) in its mosquito vector; i.e., a decrease from 29.6 to 18.9 days under the fluctuating vs. constant temperature treatment. Conclusions Our results indicate that Ae. aegypti exposed to large fluctuations at low temperatures have a significantly shorter virus EIP than under constant temperature conditions at the same mean, leading to a considerably greater potential for DENV transmission. These results emphasize the value of accounting for daily temperature variation in an effort to more accurately understand and predict the risk of mosquito-borne pathogen transmission, provide a mechanism for sustained DENV transmission in endemic areas during cooler times of the year, and indicate that DENV transmission could be more efficient in temperate regions than previously anticipated. PMID:23638208

Carrington, Lauren B.; Armijos, M. Veronica; Lambrechts, Louis; Scott, Thomas W.

2013-01-01

155

Differences in male mating response and female flight sounds in Aedes aegypti and Ae. albopictus (Diptera: Culicidae).  

PubMed

Aedes aegypti (L.) and Ae. albopictus (Skuse) showed similar rates and timing of insemination in the laboratory. Laboratory attempts at interspecific mating were unsuccessful. Because Ae. aegypti males are known to locate females by flight sounds, male response to sound was compared in the two species. Ae. aegypti males responded to female flight sounds with stereotypical orientation and mating behavior, whereas Ae. albopictus males seldom responded. Recorded flight sounds of females were sampled via computer digitization and compared. Ae. aegypti females produced louder sounds with more harmonics than Ae. albopictus. Males were tested for their ability to discriminate between the sounds of the two species. Ae. albopictus males did not respond to recordings of either Ae. albopictus or Ae. aegypti females. Ae. aegypti males responded preferentially to the recorded sounds of Ae. aegypti females. Thus, males of the two species use different mechanisms in locating mates. Ae. aegypti males rely more on sound than do Ae. albopictus males. PMID:1404257

Duhrkopf, R E; Hartberg, W K

1992-09-01

156

The Effect of Virus-Blocking Wolbachia on Male Competitiveness of the Dengue Vector Mosquito, Aedes aegypti  

PubMed Central

Background The bacterial endosymbiont Wolbachia blocks the transmission of dengue virus by its vector mosquito Aedes aegypti, and is currently being evaluated for control of dengue outbreaks. Wolbachia induces cytoplasmic incompatibility (CI) that results in the developmental failure of offspring in the cross between Wolbachia-infected males and uninfected females. This increases the relative success of infected females in the population, thereby enhancing the spread of the beneficial bacterium. However, Wolbachia spread via CI will only be feasible if infected males are sufficiently competitive in obtaining a mate under field conditions. We tested the effect of Wolbachia on the competitiveness of A. aegypti males under semi-field conditions. Methodology/Principal Findings In a series of experiments we exposed uninfected females to Wolbachia-infected and uninfected males simultaneously. We scored the competitiveness of infected males according to the proportion of females producing non-viable eggs due to incompatibility. We found that infected males were equally successful to uninfected males in securing a mate within experimental tents and semi-field cages. This was true for males infected by the benign wMel Wolbachia strain, but also for males infected by the virulent wMelPop (popcorn) strain. By manipulating male size we found that larger males had a higher success than smaller underfed males in the semi-field cages, regardless of their infection status. Conclusions/Significance The results indicate that Wolbachia infection does not reduce the competitiveness of A. aegypti males. Moreover, the body size effect suggests a potential advantage for lab-reared Wolbachia-males during a field release episode, due to their better nutrition and larger size. This may promote Wolbachia spread via CI in wild mosquito populations and underscores its potential use for disease control. PMID:25502564

Segoli, Michal; Hoffmann, Ary A.; Lloyd, Jane; Omodei, Gavin J.; Ritchie, Scott A.

2014-01-01

157

H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti  

Technology Transfer Automated Retrieval System (TEKTRAN)

Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

158

Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico  

Microsoft Academic Search

Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall

Roberto Barrera; Manuel Amador; Andrew J. MacKay

2011-01-01

159

Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru  

PubMed Central

Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. PMID:25102062

LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

2014-01-01

160

Coexistence of Philodina roseola (Rotifera: Bdelloidea) with larvae of Aedes aegypti in India.  

PubMed

The vector mosquitoes, Aedes aegypti and Aedes albopictus of dengue and Chikungunya fever are closely associated with human habitations and adapted to feed on human blood. They undergo larval and pupal development in natural and artificial freshwater collections in the urban and peri-urban environment. Although reports are available about the feeding behaviour of the thriving mosquito larvae, much information is still required to understand the successful survival of Aedes mosquitoes in small and temporary water collections. This study was undertaken to determine the co-existence and prevalence of Philodina roseola and other Bdelloid rotifers in the container habitats of Ae. aegypti mosquitoes. The investigation was conducted in 43 villages which belong to four districts in South India, affected by the epidemic of either dengue or Chikungunya fever. A total of 2093 houses and 12980 containers were examined for Aedes breeding and those containers with Aedes larvae were chosen for further investigation. The investigation showed that, the P. roseola was found associated in 502 (98.2%) containers, P. roseola along with other Philodina sp. in 126 containers (25%) and P. roseola along with other Philodina sp. and other Bdelloid rotifers found in 93 containers (19%). Since the members of the genus Philodina can survive desiccation, reproduce by parthenogenesis, can be transported by wind easily and more importantly, it can incorporate the genome of other organisms including viruses, understanding the co-existence and relationship of Philodina sp. with Aedes larvae would be helpful in the control of Aedes breeding and the control measures can be designed keeping the association of Bdelloids with Aedes in mind. PMID:25134889

Muniaraj, M; Sathish Babu, R

2014-06-01

161

Fine-scale temperature fluctuation and modulation of Dirofilaria immitis larval development in Aedes aegypti.  

PubMed

We evaluated degree-day predictions of Dirofilaria immitis development (HDU) under constant and fluctuating temperature treatments of equal average daily temperature. Aedes aegypti mosquitoes were infected with D. immitis microfilariae and parasite development was recorded at set time points in dissected mosquitoes. Time to L3 development in Malpighian tubules and detection in mosquito heads was shorter for larvae experiencing a daily regime of 19±9°C than larvae at constant 19°C; larval development rate in Malpighian tubules was slower in fluctuating regimes maintained above the 14°C developmental threshold than larvae under constant temperatures. We showed that hourly temperature modeling more accurately predicted D. immitis development to infective L3 stage. Development time differed between fluctuating and constant temperature treatments spanning the 14°C development threshold, implicating a physiological basis for these discrepancies. We conclude that average daily temperature models underestimate L3 development-and consequently dog heartworm transmission risk-at colder temperatures, and spatiotemporal models of D. immitis transmission risk should use hourly temperature data when analyzing high daily temperature ranges spanning 14°C. PMID:25747489

Ledesma, Nicholas; Harrington, Laura

2015-04-15

162

Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)  

PubMed Central

Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

Sritabutra, Duangkamon; Soonwera, Mayura

2013-01-01

163

Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth  

PubMed Central

Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ?C31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ?C31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

2015-01-01

164

Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth.  

PubMed

Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ?C31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ?C31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

2015-01-01

165

Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L.  

PubMed

The rhizomes and roots of Valeriana fauriei were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS) revealed that the essential oils of V. fauriei. The V. fauriei essential oil (VFEO) yield was 1.93%, and GC/MS analysis revealed that its major constituents were bornyl acetate (32.83%), terpinyl acetate (3.82%), bornyl isovalerate (2.11%), ?-sesquiphellandrene (2.21%), sesquiterpene alcohol (7.32%), and cedrol (2.45%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 30.44?ppm and an LC(90) value of 82.64?ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against Aedes aegypti L. PMID:20462349

Chung, Ill-Min; Kim, Eun-Hye; Moon, Hyung-In

2011-03-01

166

Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus  

PubMed Central

This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 ?g/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

2015-01-01

167

Blood Feeding and Insulin-like Peptide 3 Stimulate Proliferation of Hemocytes in the Mosquito Aedes aegypti  

PubMed Central

All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection. PMID:21998579

Castillo, Julio; Brown, Mark R.; Strand, Michael R.

2011-01-01

168

Comparative linkage maps for the mosquitoes (Culex pipiens and Aedes aegypti) based on common RFLP loci  

Microsoft Academic Search

We report construction of a comparative linkage map for the mosquito (Culex pi- piens) based on restriction fragment length polymorphisms (RFLPs) using cDNA clones from Aedes aegypti as probes to Southern blots of Cx. pipiens genomic DNA. Seventy-one cDNA clones were screened for hybridization and genetic di- versity among three Cx. pipiens strains. Fifty-two of 71 cDNA clones, isolated from

A. Mori; D. W. Severson; B. M. Christensen

1999-01-01

169

Temperature-Dependent Development and Survival Rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)  

Microsoft Academic Search

Development, growth, and survival of Culex quinquefasciatus Say and Aedes aegypti (L.) were determined at six constant temperatures (15, 20, 25, 27, 30, 34°C). The Sharpe & DeMichele four-parameter model with high-temperature inhibition described the temperature-dependent median developmental rates of both mosquito species. In both species, body size generally decreased as temperature increased. Head capsule widths in all instars in

L. M. RUEDA; K. J. PATEL; R. C. AXTELL; R. E. STINNER

170

Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti  

Microsoft Academic Search

Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of

Vladimir Kokoza; Abduelaziz Ahmed; Wen-Long Cho; Nijole Jasinskiene; Anthony A. James; Alexander Raikhel

2000-01-01

171

Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand  

Microsoft Academic Search

Previous studies have shown that permethrin resistance in our selected PMD-R strain of Aedes aegypti from Chiang Mai, Thailand, was associated with a homozygous mutation in the knockdown resistance (kdr) gene and other mechanisms. In this study, we investigated the metabolic mechanism of resistance of this strain compared\\u000a to the PMD strain which is susceptible to permethrin. The permethrin susceptibility

Puckavadee Somwang; Jintana Yanola; Warissara Suwan; Catherine Walton; Nongkran Lumjuan; La-aied Prapanthadara; Pradya Somboon

172

Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae)  

Microsoft Academic Search

The acetone, chloroform, ethyl acetate, hexane and methanol leaf extracts of Acalypha indica, Achyranthes aspera, Leucas aspera, Morinda tinctoria and Ocimum sanctum were studied against the early fourth-instar larvae of Aedes aegypti L and Culex quinquefasciatus Say. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the\\u000a highest larval mortality was found in the

A. Bagavan; A. A. Rahuman; C. Kamaraj; Kannappan Geetha

2008-01-01

173

Feeding Deterrent Effects of Catnip Oil Components Compared with Two Synthetic Amides Against Aedes aegypti  

Microsoft Academic Search

Recently, catnip, Nepeta cataria L. (Lamiaceae), essential oil has been formulated and marketed as an alternative repellent for protection against biting arthropods by several vendors. We isolated the major active components of catnip oil, E,Z- and Z,E-nepetalactone, and quantitatively measured their antibiting efÞcacy compared with the repellents N,N-diethyl-3-methylbenzamide (deet) and chiral (1S,2S)-2-methylpiperidinyl-3-cyclohexene-1-carboxamide (SS220) against the yellowfever mosquito, Aedes aegypti (L.),

Kamlesh R. Chauhan; Jerome A. Klun; Mustapha Debboun; Matthew Kramer

2005-01-01

174

In silico models for predicting vector control chemicals targeting Aedes aegypti  

PubMed Central

Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

2014-01-01

175

In silico models for predicting vector control chemicals targeting Aedes aegypti.  

PubMed

Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the 'low profitability' of the vector control market. Fortunately, the use of quantitative structure-activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

Devillers, J; Lagneau, C; Lattes, A; Garrigues, J C; Clémenté, M M; Yébakima, A

2014-01-01

176

Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae).  

PubMed

Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3, 600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus. PMID:10698776

Wirth, M C; Federici, B A; Walton, W E

2000-03-01

177

The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).  

PubMed

The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

Sethuraman, Nagaraja; O'Brochta, David A

2005-07-01

178

Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps  

PubMed Central

We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

2014-01-01

179

Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions  

PubMed Central

Background Entomopathogenic fungi could be useful tools for reducing populations of the dengue mosquito Aedes aegypti. Here the efficiency of fungus (Metarhizium anisopliae) impregnated cloths (with and without imidacloprid [IMI]) was evaluated against adult A. aegypti in simulated human dwellings. Behaviour of mosquitoes in the presence of black cloths was also investigated. Findings When mosquitoes were released into the test rooms, the lowest survival rates (38%) were seen when five black cloths impregnated with conidia of ESALQ 818?+?10 ppm IMI were fixed under tables and chairs. This result was significantly lower than the survival rate recorded when cloths were impregnated with ESALQ 818 alone (44%) or ESALQ 818?+?0.1 ppm IMI (43%). Blood fed A. aegypti had lower landing frequencies on black cloths than sucrose fed insects during the first 24 h following feeding, which may have been due to reduced flight activity. Few mosquitoes (4-5%) were observed to land on the cloths during the hours of darkness. The landing pattern of sucrose-fed mosquitoes on non-treated and fungus-treated cloths was similar. Conclusion The synergism between M. anisopliae and IMI significantly reduced Aedes survival in simulated field conditions. The use of fungus impregnated cloths is a promising point source application method for the control of adult A. aegypti. PMID:24010874

2013-01-01

180

Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus  

PubMed Central

Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

2012-01-01

181

Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program  

PubMed Central

Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

2014-01-01

182

Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city  

PubMed Central

Background In Brazil, dengue epidemics erupt sporadically throughout the country and it is unclear if outbreaks may initiate a sustainable transmission cycle. There are few studies evaluating the ability of Brazilian Aedes aegypti populations to transmit dengue virus (DENV). The aim of this study was to compare DENV susceptibility of field-captured Ae. aegypti populations from nine distinct geographic areas of the city of Belo Horizonte in 2009 and 2011. Infection Rate (IR), Vector Competence (VC) and Disseminated Infection Rate (DIR) were determined. Methods Aedes aegypti eggs from each region were collected and reared separately in an insectary. Adult females were experimentally infected with DENV-2 and the virus was detected by qPCR in body and head samples. Data were analyzed with the Statistical Package for the Social Sciences version 17. Results IR varied from 40.0% to 82.5% in 2009 and 60.0% to 100.0% in 2011. VC ranged from 25.0% to 77.5% in 2009 and 25.0% to 80.0% in 2011. DIR oscillated from 68.7% to 100.0% in 2009 and 38.4% to 86.8 in 2011. When the results were evaluated by a logistic model using IR as covariate, North, Barreiro, South-Central and Venda Nova showed the strongest association in 2009. In 2011, a similar association was observed for South-Central, Venda Nova, West and Northeast regions. Using VC as covariate, South-Central and Venda Nova showed the most relevant association in 2009. In 2011, South-Central, Venda Nova and Barreiro presented the greatest revelation associations. When DIR data were analyzed by logistic regression models, Pampulha, South-Central, Venda Nova, West, Northeast and East (2009) as well as South-Central, Venda Nova and West (2011) were the districts showing the strongest associations. Conclusions We conclude that Ae. aegypti populations from Belo Horizonte exhibit wide variation in vector competence to transmit dengue. Therefore, vector control strategies should be adapted to the available data for each region. Further analysis should be conducted to better understand the reasons for this large variability in vector competence and how these parameters correlate with epidemiological findings in subsequent years. PMID:25015526

2014-01-01

183

Identification of germline transcriptional regulatory elements in Aedes aegypti  

E-print Network

vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of these efforts4 . Vaccines are available for yellow fever, but there are still ,200,000 cases each year and in the early embryo, through overexpression or RNA interference. A edes aegypti is the major vector for yellow

Hay, Bruce A.

184

QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti  

PubMed Central

Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

2014-01-01

185

Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.  

PubMed

The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

2015-01-01

186

MicroRNAs of two medically important mosquito species: Aedes aegypti and Anopheles stephensi.  

PubMed

MicroRNAs (miRNAs) are endogenous, single-stranded small RNAs that have important regulatory functions at the post-transcriptional level. In the present study, we characterize miRNAs in two divergent mosquito species, Aedes aegypti and Anopheles stephensi, through deep sequencing of small RNAs spanning all developmental stages. We discovered eight novel miRNAs in Ae. aegypti and 20 novel miRNAs in An. stephensi, which enabled the first systematic analysis of miRNA evolution in mosquitos. We traced the phylogenetic history of all miRNAs in both species and report a rate of 0.055-0.13 miRNA net gain per million years. Most novel miRNAs originate de novo. Duplications that produced miRNA clusters and families are more common in Ae. aegypti than in An. stephensi. We also identified arm-switch as a source of new miRNAs. Expression profile analysis identified mosquito-specific miRNAs that showed strong stage-specific expression in one or both lineages. For example, the aae-miR-2941/2946 family represents the most abundant maternally deposited and zygotically transcribed miRNAs in Ae. aegypti. miR-2943 is a highly expressed zygotic miRNA in both Ae. aegypti and An. stephensi. Such information provides the basis from which to study the function of these miRNAs in biology common to all mosquitos or unique to one particular lineage. PMID:25420875

Hu, W; Criscione, F; Liang, S; Tu, Z

2014-11-24

187

Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.  

PubMed

This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently. PMID:15516650

Ocampo, Clara B; Wesson, Dawn M

2004-10-01

188

Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)  

PubMed Central

Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250??g/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000??g/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

2012-01-01

189

Immunolocalization and in vivo Functional Analysis by RNAi of the Aedes Kinin Receptor in Female Mosquitoes of Aedes aegypti (L.) (Diptera, Culicidae)  

E-print Network

, such as Anopheles gambiae, Leucophaea maderae, Periplaneta americana, Locusta migratoria, Acheta domesticus, Culex salinarius, Helicoverpa zea, Musca domestica, Drosophila melanogaster, and the tick Boophilus microplus (Blackburn et al., 1995; Cantera and N... IMMUNOLOCALIZATION AND IN VIVO FUNCTIONAL ANALYSIS BY RNAI OF THE AEDES KININ RECEPTOR IN FEMALE MOSQUITOES OF AEDES AEGYPTI (L.) (DIPTERA, CULICIDAE) A Thesis by CYMON NICHOLE KERSCH Submitted to the Office of Graduate...

Kersch, Cymon

2012-02-14

190

Behavioral responses of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus against various synthetic and natural repellent compounds.  

PubMed

The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito-repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65-98% escape for contact, 21.4-94.4% escape for non-contact) compared to Ae. aegypti (3.7-72.2% escape (contact), 0-31.7% (non-contact)) and Ae. albopictus (3.5-94.4% escape (contact), 11.2-63.7% (non-contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65-97.8% escape) than non-contact repellents (0-50.8% escape for non-contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes. PMID:25424262

Sathantriphop, Sunaiyana; White, Sabrina A; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

2014-12-01

191

Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission  

PubMed Central

Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation. PMID:25052008

2014-01-01

192

Factors favoring houseplant container infestation with Aedes aegypti larvae in Marília, São Paulo, Brazil.  

PubMed

Since reinvasion of São Paulo State by the Aedes aegypti (L.) mosquito in 1985, flower pots and vases have been important larval habitats despite educational messages focusing on their control. The objectives of this study were to characterize flower pots and vases as larval habitats with respect to the quantities present and infested, the types of plants involved, and the specific locations of the mosquito larvae; to explore local names for houseplants; and to examine factors affecting acceptance of control measures. The results showed an average of more than four potential plant-related larval habitats per premises, of which only 0.4% were occupied by the vector. Plant-related containers represented 31% of all the containers with Aedes aegypti larvae. Although a sample of 126 respondents was able to list 105 different houseplant names, 49% of the positive plants were of two types: ferns and the ornamental plant Dieffenbachia avoena. The public's apparent unwillingness to accept recommended anti-aegypti control measures involving houseplants seems related to the relative rarity of aegypti larvae in the very common houseplant containers, the control program's poor credibility as a source of information about plants, and a perception that the recommended control measures are harmful to plants. An intervention currently being planned for dengue control will use educational material that refers specifically to those plants whose containers are most commonly found to harbor aegypti larvae; it will also utilize information sources such as botanists with greater credibility regarding plants; and it will set out alternative plant care recommendations that are more likely to appeal as beneficial to the plants and that will stand a better chance of being accepted. PMID:9149524

Macoris, M L; Mazine, C A; Andrighetti, M T; Yasumaro, S; Silva, M E; Nelson, M J; Winch, P J

1997-04-01

193

Spatial Clustering of Aedes aegypti Related to Breeding Container Characteristics in Coastal Ecuador: Implications for Dengue Control  

PubMed Central

Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ? 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts. PMID:24002483

Schafrick, Nathaniel H.; Milbrath, Meghan O.; Berrocal, Veronica J.; Wilson, Mark L.; Eisenberg, Joseph N. S.

2013-01-01

194

Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti.  

PubMed

In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species. PMID:25815482

Dong, Shengzhang; Lin, Jingyi; Held, Nicole L; Clem, Rollie J; Passarelli, A Lorena; Franz, Alexander W E

2015-01-01

195

Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.  

PubMed

Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants. PMID:25134898

Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

2014-06-01

196

Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti  

PubMed Central

In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species. PMID:25815482

Dong, Shengzhang; Lin, Jingyi; Held, Nicole L.; Clem, Rollie J.; Passarelli, A. Lorena; Franz, Alexander W. E.

2015-01-01

197

Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota  

PubMed Central

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme. PMID:21445237

Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Lara, Flavio A.; Dias, Felipe A.; Gandara, Ana Caroline P.; Menna-Barreto, Rubem F. S.; Edwards, Meredith C.; Laurindo, Francisco R. M.; Silva-Neto, Mário A. C.; Sorgine, Marcos H. F.; Oliveira, Pedro L.

2011-01-01

198

Linking Oviposition Site Choice to Offspring Fitness in Aedes aegypti: Consequences for Targeted Larval Control of Dengue Vectors  

Microsoft Academic Search

BackgroundCurrent Aedes aegypti larval control methods are often insufficient for preventing dengue epidemics. To improve control efficiency and cost-effectiveness, some advocate eliminating or treating only highly productive containers. The population-level outcome of this strategy, however, will depend on details of Ae. aegypti oviposition behavior.Methodology\\/Principal FindingsWe simultaneously monitored female oviposition and juvenile development in 80 experimental containers located across 20 houses

Jacklyn Wong; Amy C. Morrison; Steven T. Stoddard; Helvio Astete; Yui Yin Chu; Imaan Baseer; Thomas W. Scott

2012-01-01

199

Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand.  

PubMed

An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions. PMID:19181058

Polsomboon, Suppaluck; Grieco, John P; Achee, Nicole L; Chauhan, Kamlesh R; Tanasinchayakul, Somchai; Pothikasikorn, Jinrapa; Chareonviriyaphap, Theeraphap

2008-12-01

200

The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus  

PubMed Central

Background Aedes aegypti is the main mosquito vector of the four serotypes of dengue virus (DENV). Previous population genetic and vector competence studies have demonstrated substantial genetic structure and major differences in the ability to transmit dengue viruses in Ae. aegypti populations in Mexico. Methodology/Principal Findings Population genetic studies revealed that the intersection of the Neovolcanic axis (NVA) with the Gulf of Mexico coast in the state of Veracruz acts as a discrete barrier to gene flow among Ae. aegypti populations north and south of the NVA. The mosquito populations north and south of the NVA also differed in their vector competence (VC) for dengue serotype 2 virus (DENV2). The average VC rate for Ae. aegypti mosquitoes from populations from north of the NVA was 0.55; in contrast the average VC rate for mosquitoes from populations from south of the NVA was 0.20. Most of this variation was attributable to a midgut infection and escape barriers. In Ae. aegypti north of the NVA 21.5% failed to develop midgut infections and 30.3% of those with an infected midgut failed to develop a disseminated infection. In contrast, south of the NVA 45.2% failed to develop midgut infections and 62.8% of those with an infected midgut failed to develop a disseminated infection. Conclusions Barriers to gene flow in vector populations may also impact the frequency of genes that condition continuous and epidemiologically relevant traits such as vector competence. Further studies are warranted to determine why the NVA is a barrier to gene flow and to determine whether the differences in vector competence seen north and south of the NVA are stable and epidemiologically significant. PMID:19564909

Lozano-Fuentes, Saul; Fernandez-Salas, Ildefonso; de Lourdes Munoz, Maria; Garcia-Rejon, Julian; Olson, Ken E.; Beaty, Barry J.; Black, William C.

2009-01-01

201

The importance of oxidases in the tolerance of deciduous leaf infusions by Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae).  

PubMed

Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) larvae rely on oxidases to reduce toxicity of water soluble toxins from some senescent tree leaf infusions. The mortality of third instar Ae. aegypti larvae in live oak and pin oak leaf infusions increased significantly in the presence of piperonyl butoxide (PBO), a broad inhibitor of cytochrome P450s (CYPs). In contrast, PBO treatment did not increase mortality in water controls or infusions of northern red oak or sugar maple leaf infusions for Ae. aegypti larvae. A similar pattern was observed for Ae. albopictus larvae, that is, an increase in mortality when CYPs were inhibited in live oak leaf infusions and no increase in sugar maple leaf infusions or water controls. However, the fresh live oak leaf infusion (5 d old) was the most toxic infusion to Ae. aegypti, but appeared less toxic to Ae. albopictus than the older infusions. A direct comparison of survival between the two Aedes species revealed Ae. aegypti exhibited a greater mortality than Ae. albopictus in PBO-treated live oak leaf infusions. These findings suggest that toxic components of some leaf litter in larval habitats may impose cryptic energy costs (detoxification). PMID:24605455

Lampman, Richard L; Kim, Chang-Hyun; Muturi, Ephantus J

2014-01-01

202

Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals  

PubMed Central

Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting. PMID:23469302

Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

2013-01-01

203

Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics.  

PubMed

Oviposition habitat choices of species with aquatic larvae are expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter-feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposits in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. A. aegypti preferentially oviposited in sites with Toxorhynchites theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding. PMID:24590205

Albeny-Simões, Daniel; Murrell, Ebony G; Elliot, Simon L; Andrade, Mateus R; Lima, Eraldo; Juliano, Steven A; Vilela, Evaldo F

2014-06-01

204

Microsatellite-Based Parentage Analysis of Aedes aegypti (Diptera: Culicidae) Using Nonlethal DNA Sampling  

PubMed Central

To track Aedes aegypti (L.) egg-laying behavior in the field in Iquitos, Peru, we developed methods for 1) sampling DNA from live mosquitoes and 2) high through-put parentage analysis using microsatellite markers. We were able to amplify DNA extracted from a single hind leg, but not from the pupal exuvia. Removal of a leg from teneral females caused no significant changes in female behavioral or life history traits (e.g., longevity, blood feeding frequency, fecundity, egg hatch rate, gonotrophic cycle length, or oviposition behavior). Using a panel of nine microsatellite markers and an exclusion-based software program, we matched offspring to parental pairs in 10 Ae. aegypti test families in which parents originated from natural development sites in Iquitos. By mating known individuals in the laboratory, retaining the male, sampling the female’s DNA before release, and collecting offspring in the field, the technique we developed can be used to genotype large numbers of Ae. aegypti, reconstruct family relationships, and track the egg-laying behavior of individual Ae. aegypti in nature. PMID:22308775

WONG, JACKLYN; CHU, YUI YIN; STODDARD, STEVEN T.; LEE, YOOSOOK; MORRISON, AMY C.; SCOTT, THOMAS W.

2012-01-01

205

A novel trypsin Kazal-type inhibitor from Aedes aegypti with thrombin coagulant inhibitory activity.  

PubMed

Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator and antimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. In this paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity with insect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptase inhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized the recombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (K(i)) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito's development. PMID:20363282

Watanabe, Renata M O; Soares, Tatiane S; Morais-Zani, Karen; Tanaka-Azevedo, Anita M; Maciel, Ceres; Capurro, Margareth L; Torquato, Ricardo J S; Tanaka, Aparecida S

2010-08-01

206

Post-integration stability of piggyBac in Aedes aegypti.  

PubMed

The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable. PMID:17681233

Sethuraman, Nagaraja; Fraser, Malcolm J; Eggleston, Paul; O'Brochta, David A

2007-09-01

207

Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico  

PubMed Central

Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.

2012-01-01

208

Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus  

PubMed Central

We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

2014-01-01

209

Vacant Lots: Productive Sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México  

PubMed Central

We assessed the potential for vacant lots and other non-residential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) in Mérida City, México. Mosquito immatures were collected, during November 2011 – June 2013, from residential premises (n = 156 site visits) and non-residential settings represented by vacant lots (50), parking lots (18), and streets/sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures that residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. Additionally, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality and physical location in the environment. PMID:24724299

BAAK-BAAK, CARLOS M.; ARANA-GUARDIA, ROGER; CIGARROA-TOLEDO, NOHEMI; LOROÑO-PINO, MARÍA ALBA; REYES-SOLIS, GUADALUPE; MACHAIN-WILLIAMS, CARLOS; BEATY, BARRY J.; EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.

2014-01-01

210

Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).  

PubMed

Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus. PMID:18163189

Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

2008-04-01

211

The genetics of chemoreception in the labella and tarsi of Aedes aegypti.  

PubMed

The yellow-fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor organs on the labella and tarsi are involved in human host evaluation and thus serve as potential foci for the disruption of blood feeding behavior. In addition to host detection, these contact chemoreceptors mediate feeding, oviposition and conspecific recognition; however, the molecular landscape of chemoreception in these tissues remains mostly uncharacterized. Here we report the expression profile of all putative chemoreception genes in the labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector. PMID:24582661

Sparks, Jackson T; Bohbot, Jonathan D; Dickens, Joseph C

2014-05-01

212

MicroRNA levels are modulated in Aedes aegypti following exposure to Dengue-2  

PubMed Central

To define microRNA (miRNA) involvement during arbovirus infection of Aedes aegypti, we mined deep sequencing libraries of Dengue type 2 (DENV2) -exposed mosquitoes. Three biological replicates for each timepoint (2, 4, and 9 days post-exposure (dpe)) and treatment group allowed us to remove outliers associated with sample-to-sample variability. Using edgeR (R Bioconductor), designed for use with replicate deep sequencing data, we determined the log fold-change (logFC) of miRNA levels (18–23 nts). The number of significantly modulated miRNAs increased from 5 or fewer at 2 and 4 dpe to 23 unique miRNAs by 9 dpe. Putative miRNA targets were predicted by aligning miRNAs to the transcriptome, and the list was reduced to include the intersection of hits found using the Miranda, PITA, and TargetScan algorithms. To further reduce false positives, putative targets were validated by cross-checking them to mRNAs reported in recent DENV2 host response transcriptome reports; 4076 targets were identified. Of these, 464 gene targets have predicted miRNA binding sites in 3?UTRs. Context-specific target functional groups include proteins involved in transport, transcriptional regulation, mitochondrial function, chromatin modification and signal transduction processes known to be required for viral replication and dissemination. The miRNA response is placed in context with other vector host response studies by comparing the predicted targets to those of transcriptome studies. Together, these data are consistent with the hypothesis that profound and persistent changes to gene expression occur in DENV2-exposed mosquitoes. PMID:24237456

Campbell, Corey L.; Harrison, Thomas; Hess, Ann M.; Ebel, Gregory D.

2014-01-01

213

MicroRNA levels are modulated in Aedes aegypti after exposure to Dengue-2.  

PubMed

To define microRNA (miRNA) involvement during arbovirus infection of Aedes aegypti, we mined deep sequencing libraries of Dengue type 2 (DENV2)-exposed mosquitoes. Three biological replicates for each timepoint [2, 4 and 9 days post-exposure (dpe)] and treatment group allowed us to remove the outliers associated with sample-to-sample variability. Using edgeR (R Bioconductor), designed for use with replicate deep sequencing data, we determined the log fold-change (logFC) of miRNA levels [18-23 nucleotides (nt)]. The number of significantly modulated miRNAs increased from ? 5 at 2 and 4 dpe to 23 unique miRNAs by 9 dpe. Putative miRNA targets were predicted by aligning miRNAs to the transcriptome, and the list was reduced to include the intersection of hits found using the Miranda, PITA, and TargetScan algorithms. To further reduce false-positives, putative targets were validated by cross-checking them with mRNAs reported in recent DENV2 host response transcriptome reports; 4076 targets were identified. Of these, 464 gene targets have predicted miRNA-binding sites in 3' untranslated regions. Context-specific target functional groups include proteins involved in transport, transcriptional regulation, mitochondrial function, chromatin modification and signal transduction processes known to be required for viral replication and dissemination. The miRNA response is placed in context with other vector host response studies by comparing the predicted targets with those of transcriptome studies. Together, these data are consistent with the hypothesis that profound and persistent changes to gene expression occur in DENV2-exposed mosquitoes. PMID:24237456

Campbell, C L; Harrison, T; Hess, A M; Ebel, G D

2014-02-01

214

Risk Factors for the Presence of Aedes aegypti and Aedes albopictus in Domestic Water-Holding Containers in Areas Impacted by the Nam Theun 2 Hydroelectric Project, Laos  

PubMed Central

We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires. PMID:23458958

Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W.; Brey, Paul T.

2013-01-01

215

Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos.  

PubMed

We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires. PMID:23458958

Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W; Brey, Paul T

2013-06-01

216

Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay  

PubMed Central

Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

2013-01-01

217

[Levels of resistance to insecticides and their mechanisms in 2 strains of Aedes aegypti from Panama].  

PubMed

The levels of susceptibility and/or resistance to insecticides in larvae and adults of Aedes aegypti from 2 localities of Panama (Rio Abajo and Victoriano Lorenzo) were determined. Among larvae, it was found resistance to methyl- pyrimifos in both localities; however, they were susceptible to the rest of the organophosphate insecticides (temephos, malathion, fenthion fenitrothion and clorpirifos) and to pyrethroids (deltamethrin, lambda-cyhalothrin, cypermethrin and cyfluthrin. In the trials carried out in adults, according to the categories of the World Health Organization, the 2 localities proved to be completely susceptible to deltamethrin, lambda-cyhalothrin, beta cypermethrin and cyfluthrin. PMID:15849925

Bisset, Juan A; Rodríguez, María Magdalena; Cáceres, Lorenzo

2003-01-01

218

Wing shape as an indicator of larval rearing conditions for Aedes albopictus and Aedes aegypti (Diptera: Culicidae).  

PubMed

Estimating a mosquito's vector competence, or likelihood of transmitting disease, if it takes an infectious bloodmeal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae were reared in low intraspecific, high intraspecific, or high interspecific competition treatments at either 22 or 32 degrees C. The right wing of each dried female was removed and photographed. Nineteen landmarks and 20 semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26 - 49%. Accounting for wing size produced no increase in classification success. There seemed to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Ae. albopictus and Ae. aegypti. PMID:22897054

Stephens, C R; Juliano, S A

2012-07-01

219

Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays.  

PubMed

Attraction of the mosquitoes Aedes aegypti and Ae. albopictus to plant infusions was evaluated by using a modified sticky-screen bioassay that improved the resolution of mosquito responses to odorants. Under bioassay conditions, solid-phase microextraction-gas chromatographic analyses of the volatile marker chemical indole showed that odorants diffused from bioassay cups, forming a concentration gradient. Infusions were prepared by separately fermenting senescent leaves of eight plant species in well water. Plant infusions were evaluated over an 8-fold range of leaf biomass and/or a 28 d fermentation period. The responses of gravid females of both mosquito species varied with the plant species and biomass of plant materials used to make infusions, and with the length of the fermentation period. Infusions made from senescent bamboo (Arundinaria gigantea) and white oak (Quercus alba) leaves were significantly attractive to both mosquitoes. In general, infusions prepared by using low biomass of plant material over a 7-14 d fermentation period were most attractive to Ae. aegypti. In contrast, Ae. albopictus was attracted to infusions made using a wider range of plant biomass and over a longer fermentation period. Both mosquito species were more attracted to a non-sterile white oak leaf infusion than to white oak leaf infusion that was prepared using sterilized plant material and water, thus suggesting a role for microbial activity in the production of odorants that mediate the oviposition response of gravid mosquitoes. PMID:20521087

Ponnusamy, Loganathan; Xu, Ning; Böröczky, Katalin; Wesson, Dawn M; Abu Ayyash, Luma; Schal, Coby; Apperson, Charles S

2010-07-01

220

Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.  

PubMed

An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. PMID:24820563

Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

2014-06-01

221

Laboratory studies of selected ketones, sulfides, and chloroalkanes on the host-seeking behavior of Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Synthetic attractant blends formulated from L-lactic acid and several synergists elicit significant attraction of Aedes aegypti (L.) and An. albimanus (Weidemann) in olfactometer bioassays using a triple-cage dual-port olfactometer. The synergists in these blends are commonly acetone and/or dimeth...

222

Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti  

Microsoft Academic Search

The lack of eye pigment in the Aedes aegypti WE (white eye) colony was confirmed to be due to a mutation in the kynurenine hydroxylase gene, which catalyzes one of the steps in the metabolic synthesis of ommochrome eye pigments. Partial restoration of eye color (orange to red phenotype) in pupae and adults occurred in both sexes when first or

Anthony J Cornel; Mark Q. Benedict; Cristina Salazar Rafferty; Antony J Howells; Frank. H Collins

1997-01-01

223

The potential of Metarhizium anisopliae and Beauveria bassiana isolates for the control of Aedes aegypti (Diptera: Culicidae) larvae  

Microsoft Academic Search

Fungal isolates were screened against Aedes aegypti larvae. Exposure of larvae to conidial suspensions resulted in 6–90% mortality. An inoculum persistence assay using one of the most virulent isolates showed an approximate half-life of 10 days in water containers. Not all larvae surviving to form pupae resulted in adult emergence.

César Ronald Pereira; Adriano Rodrigues de Paula; Simone Azevedo Gomes; Paulo César Oliveira Pedra Jr; Richard Ian Samuels

2009-01-01

224

RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti  

Microsoft Academic Search

BACKGROUND: Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue

Mariangela Bonizzoni; W Augustine Dunn; Corey L Campbell; Ken E Olson; Michelle T Dimon; Osvaldo Marinotti; Anthony A James

2011-01-01

225

Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae)  

Microsoft Academic Search

In an effort to find effective and affordable ways to control of Aedes aegypti L. (Diptera: Culicidae), the larvicidal activities of 94 extracts from ten plant species belonging to eight families [Guettarda grazielae and Spermacoce verticillata (Rubiaceae), Coccoloba mollis and Triplaris americana (Polygonaceae), Eschweilera ovata (Lecytidaceae), Merremia aegyptia (Convolvulaceae), Ouratea nitida (Ochnnaceae), Protium heptaphyllum (Burseraceae), Rourea doniana (Connaraceae), and Tovomita

Patrícia V. Oliveira; Jesú C. Ferreira Jr; Fabyanne S. Moura; Gerson S. Lima; Fernando M. de Oliveira; Patrícia Emanuella S. Oliveira; Lucia M. Conserva; Ana Maria Giulietti; Rosangela P. Lyra Lemos

2010-01-01

226

RESISTANCE OF AEDES AEGYPTI TO ORGANOPHOSPHATES IN SEVERAL MUNICIPALITIES IN THE STATE OF RIO DE JANEIRO AND ESPÍRITO SANTO, BRAZIL  

Microsoft Academic Search

Chemical insecticides have been widely used in Brazil for several years. This exposes mosquito populations to an intense selection pressure for resistance to insecticides. In 1999, the Brazilian National Health Foundation started the first program designed to monitor the resistance of Aedes aegypti to insecticides. We analyzed populations from 10 municipalities (from 84 selected in Brazil) in the states of

JOSÉ BENTO PEREIRA LIMA; MARCELLA PEREIRA DA-CUNHA; RONALDO CARNEIRO DA SILVA JÚNIOR; ALLAN KARDEC; RIBEIRO GALARDO; SILVA SOARES; IMA APARECIDA BRAGA; RICARDO PIMENTEL RAMOS; DENISE VALLE

2003-01-01

227

Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L  

Microsoft Academic Search

The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%,

Radhika Warikoo; Naim Wahab; Sarita Kumar

228

[Morphology and cytochemistry of Aedes aegypti's cell cultures (Diptera: Culicidae) and susceptibility to Leishmania panamensis (Kinetoplastida: Trypanosomatidae)].  

PubMed

Morphology and cytochemistry of Aedes aegypti's cell cultures (Diptera: Culicidae) and susceptibility to Leishmania panamensis (Kinetoplastida: Trypanosomatidae). The first cellular line of Aedes aegypti was developed by Grace in 1966; afterwards, other cellular lines of this species have been generated. These have been used for the study of pathogenic organisms like viruses, bacteria and parasites, which demonstrates their importance in biomedical applications. This research describes, for the first time, some cytochemical characteristics of A. aegypti cell cultures, that were infected with (MHOM/CO/87CL412) strain of Leishmania panamensis. A morphological study of the cell culture was also carried out. Maintenance of the cell culture, parasites and infection in vitro were carried out in the Laboratory of Entomology, Cell Biology and Genetics of the Universidad de La Salle. The cell cultures infected with the parasite were maintained in a mixture of mediums Grace/L15, supplemented with 10 % fetal bovine serum (FBS) at pH 6.8 and a temperature of 26 degrees C, during 3, 6 and 9 post-infection days. After this, these cell cultures were processed through High Resolution Light Microscopy (HRLM) and Transmission Electron Microscopy (TEM) based on standard protocols defined by the Group of Microscopy and Image Analyses of the Instituto Nacional de Salud. Semi-fine slices of 1 microm colored with toluidine blue were used for the morphological analysis of the culture, and ultra fine cuts of 60 to 90 nm stained with uranyl acetate and lead citrate where used for the ultrastructural study. In addition, PAS and peroxidase staining was carried out in cells fixed with methanol. The morphometric study was analyzed with software ImageJ (NIH). In the semi-fine slices, small cells were observed showing fibroblastic appearance 10.84 +/- 2.54 microm in length and 5.31 +/- 1.26 microm wide; other cells had epithelial appearance with a great peripheral nucleus, voluminous and vacuolated cytoplasm, 23.04 +/- 4.00 microm in length and 13.96 3.70 microm wide. These last ones predominated over the ones with fibroblastic appearance. Regarding the PAS coloration, 7.08% of the cells presented abundant PAS positive cytoplasmatic granules which indicated polysaccharides presence. The peroxidase test gave a negative result. The greatest percentage of infection (18.90%) of one total of 101 cells, turned up by day 6. Some cells analyzed by TEM presented a vacuolated aspect cytoplasm; some contained parasites, other fibrillar material and others were empty. The results indicate that A. aegypti cell culture can support the internalization and transformation of the parasite, which demonstrates the capacity that these cell cultures have to be infected with L. panamensis and to maintain the infection for approximately one week. PMID:19256419

Miranda, Alfonso Arturo; Sarmiento, Ladys; Caldas, María Leonor; Zapata, Cristina; Bello, Felio Jesús

2008-06-01

229

Deletion of the NSm Virulence Gene of Rift Valley Fever Virus Inhibits Virus Replication in and Dissemination from the Midgut of Aedes aegypti Mosquitoes  

PubMed Central

Background Previously, we investigated the role of the Rift Valley fever virus (RVFV) virulence genes NSs and NSm in mosquitoes and demonstrated that deletion of NSm significantly reduced the infection, dissemination, and transmission rates of RVFV in Aedes aegypti mosquitoes. The specific aim of this study was to further characterize midgut infection and escape barriers of RVFV in Ae. aegypti infected with reverse genetics-generated wild type RVFV (rRVF-wt) or RVFV lacking the NSm virulence gene (rRVF-?NSm) by examining sagittal sections of infected mosquitoes for viral antigen at various time points post-infection. Methodology and Principal Findings Ae. aegypti mosquitoes were fed an infectious blood meal containing either rRVF-wt or rRVF-?NSm. On days 0, 1, 2, 3, 4, 6, 8, 10, 12, and 14 post-infection, mosquitoes from each experimental group were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned, and examined for RVFV antigen by immunofluorescence assay. Remaining mosquitoes at day 14 were assayed for infection, dissemination, and transmission. Disseminated infections were observed in mosquitoes as early as three days post infection for both virus strains. However, infection rates for rRVF-?NSm were statistically significantly less than for rRVF-wt. Posterior midgut infections in mosquitoes infected with rRVF-wt were extensive, whereas midgut infections of mosquitoes infected with rRVF-?NSm were confined to one or a few small foci. Conclusions/Significance Deletion of NSm resulted in the reduced ability of RVFV to enter, replicate, and disseminate from the midgut epithelial cells. NSm appears to have a functional role in the vector competence of mosquitoes for RVFV at the level of the midgut barrier. PMID:24551252

Kading, Rebekah C.; Crabtree, Mary B.; Bird, Brian H.; Nichol, Stuart T.; Erickson, Bobbie Rae; Horiuchi, Kalanthe; Biggerstaff, Brad J.; Miller, Barry R.

2014-01-01

230

Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus  

PubMed Central

Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055?6±0.010?3) µg/mL, (0.067?5±0.136?0) µg/mL and (0.066?1±0.007?6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

2013-01-01

231

[Mode of inheritance of temephos (Abate) resistance in Aedes aegypti (Diptera: Culicidae) from Cuba].  

PubMed

A study on the mode of inheritance of temephos resistance was conducted using a temephos resistant Aedes aegypti reference strain (SAN-F6) with a value of resistance factor of 200x, compared with the insecticide susceptible Aedes aegypti strain (ROCKEFELLER). Genetic crossings were performed between temephos resistant and susceptible strains. An F1 crossing was attained. The females of this F1 crossing were crossed with males from the ROCKEFELLER strain (retrocrossing), and it was found that the temephos resistance was inherited in a semidominant way and as a monofactorial trait. The activity of Est-A4 observed in the polyacrylamide gel electrophoresis and measured by biochemical assays was higher in the strain resistant to temephos (SAN-F6), lower in the susceptible strain (ROCKEFELLER), and intermediate in the crossing of these two strains. A lower effect of the resistant parental strain was observed in the retrocrossing, both in the mortality with temephos and in the activity of Est. A4. These results suggest that the esterase activity may also be inherited, as well as the resistance to temephos, as a semidominant character. PMID:23427433

Magdalena Rodríguez, María; Bisset, Juan A; Pérez, Omayda; Ramos, Francisco; Risco, Grisel E

2006-01-01

232

Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro State, Brazil.  

PubMed

This study discusses the use of geoprocessing to identify key areas for Aedes aegypti control, based on the infestation index obtained in the Aedes aegypti Infestation Index Rapid Survey (LIRAa). The study was conducted in November 2004 in Nova Iguaçu, Rio de Janeiro State, Brazil. The results were analyzed on two scales, neighborhoods and blocks, with the building infestation index assigned to the neighborhood polygons and the Breteau index to the blocks. Kernel estimation was used in the spatial pattern analysis. The Breteau index spatial distribution showed five areas with high and medium density of positive Ae. aegypti breeding sites, highlighting small block clusters with high larval density, strategic for vector control. Based on the results, we recommend this method for dengue vector surveillance. PMID:18209835

Lagrotta, Marcos Thadeu Fernandes; Silva, Wellington da Costa; Souza-Santos, Reinaldo

2008-01-01

233

Oviposition-Stimulant and Ovicidal Activities of Moringa oleifera Lectin on Aedes aegypti  

PubMed Central

Background Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL) is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti. Methodology/Principal Findings WSMoL crude preparations (seed extract and 0–60 protein fraction), at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73%) in vessels containing isolated WSMoL (0.1 mg/mL), compared with vessels containing only distilled water (control). Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0–60 protein fraction and WSMoL were 45±8.7 %, 20±11 % and 55±7.5 %, respectively, significantly (p<0.05) lower than in controls containing only distilled water (75–95%). Embryos were visualized inside fresh control eggs, but not within eggs that were laid and maintained in WSMoL solution. Ovicidal activity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50) were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0–60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99) after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population. Conclusions/Significance WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in integrated A. aegypti control. PMID:22970317

Santos, Nataly Diniz de Lima; de Moura, Kézia Santana; Napoleão, Thiago Henrique; Santos, Geanne Karla Novais; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

2012-01-01

234

Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results  

NASA Technical Reports Server (NTRS)

In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

2012-01-01

235

Relationship between leaf litter identity, expression of cytochrome P450 genes and life history traits of Aedes aegypti and Aedes albopictus.  

PubMed

The role of toxic component of leaf litter in mediating the outcome of mosquito species interactions is not well documented. To examine the effect of leaf litter toxins on mosquito performance and interspecific interactions, we reared monospecific and heterospecific cultures of Aedes aegypti L. and Aedes albopictus Skuse larvae in microcosms with one of five leaf species and measured the expression of five cytochrome P450 genes and life history traits of the two mosquito species. For both mosquito species, survival to adulthood was significantly higher in black alder, black walnut, and cypress infusion compared to sugar maple and eastern white pine infusion. In pine but not in other leaf treatments, the presence of A. albopictus had significant positive effects on A. aegypti wing length and development time to adulthood. A. albopictus from heterospecific cultures were larger than those from monospecific cultures and were smaller and took longer to develop in pine and sugar maple infusions than in the other infusions. Up regulation of CYP6Z6 and CYP9M9 in A. aegypti and A. albopictus respectively appeared to be closely associated with the deleterious effects of sugar maple infusion on mosquito performance as was the down regulation of CYP6N12 (in A. aegypti) and lack of induction of CYP6Z6 and CYP9M9 (in A. aegypti and A. albopictus respectively) in pine infusion. Results suggest that metabolic capabilities that enable the two species to tolerate natural xenobiotics are associated with a fitness cost. PMID:22198240

Kim, Chang-Hyun; Muturi, Ephantus J

2012-04-01

236

Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?  

PubMed Central

Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

2012-01-01

237

Identification of Carboxylesterase Genes Implicated in Temephos Resistance in the Dengue Vector Aedes aegypti  

PubMed Central

Background Thailand is currently experiencing one of its worst dengue outbreaks in decades. As in most countries where this disease is endemic, dengue control in Thailand is largely reliant on the use of insecticides targeting both immature and adult stages of the Aedes mosquito, with the organophosphate insecticide, temephos, being the insecticide of choice for attacking the mosquito larvae. Resistance to temephos was first detected in Aedes aegypti larvae in Thailand approximately 25 years ago but the mechanism responsible for this resistance has not been determined. Principal Findings Bioassays on Ae. aegypti larvae from Thailand detected temephos resistance ratios ranging from 3.5 fold in Chiang Mai to nearly 10 fold in Nakhon Sawan (NS) province. Synergist and biochemical assays suggested a role for increased carboxylesterase (CCE) activities in conferring temephos resistance in the NS population and microarray analysis revealed that the CCE gene, CCEae3a, was upregulated more than 60 fold in the NS population compared to the susceptible population. Upregulation of CCEae3a was shown to be partially due to gene duplication. Another CCE gene, CCEae6a, was also highly regulated in both comparisons. Sequencing and in silico structure prediction of CCEae3a showed that several amino acid polymorphisms in the NS population may also play a role in the increased resistance phenotype. Significance Carboxylesterases have previously been implicated in conferring temephos resistance in Ae aegypti but the specific member(s) of this family responsible for this phenotype have not been identified. The identification of a strong candidate is an important step in the development of new molecular diagnostic tools for management of temephos resistant populations and thus improved control of dengue. PMID:24651719

Poupardin, Rodolphe; Srisukontarat, Wannaporn; Yunta, Cristina; Ranson, Hilary

2014-01-01

238

Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches  

PubMed Central

Background An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Methods Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00–12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00–18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Results Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Conclusion Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the pyrethroid compounds transfluthrin and metofluthrin and no change in recapture densities using DDT as compared to matched controls. These findings suggest a combined SR and BGS approach to vector control could function as a push-pull strategy to reduce Ae. aegypti adults in and around homes. PMID:23688176

2013-01-01

239

Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)  

PubMed Central

Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

2014-01-01

240

A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)  

PubMed Central

Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

2014-01-01

241

Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection  

PubMed Central

The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from México, and one from Perú. The response to selection was tracked in terms of lethal concentrations (LC50). Uniform upregulation was seen in the epsilon class glutathione-S-transferase genes (eGSTs) in strains from México prior to laboratory selection, while eGSTs in the Iquitos Perú strain became upregulated following five generations of temephos selection. While expression of many esterase genes (CCE) increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 genes (CYP) and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using GST, CCE and CYP inhibitors suggest that various CCE instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

Saavedra-Rodriguez, Karla; Strode, Clare; Flores, Adriana E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

2014-01-01

242

Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae).  

PubMed

The present study reveals the larvicidal activity of silver nanoparticles (AgNPs) synthesized by Bacillus thuringiensis (Bt) against Aedes aegypti responsible for the diseases of public health importance. The Bt-AgNPs were characterized by using UV-visible spectrophotometer followed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. A surface plasmon resonance spectrum of AgNps was obtained at 420 nm. The particle sizes were measured through SEM imaging ranging from 43.52 to 142.97 nm. The Bt-AgNPs has also given a characteristic peak at 3 keV in EDX image. Interestingly, the mortality rendered by Bt-AgNPs was comparatively high than that of the control against third-instar larvae of A. aegypti (LC50 0.10 ppm and LC90 0.39 ppm) in all the tested concentrations, viz. 0.03, 0.06, 0.09, 0.12, and 0.15 ppm. Hence, Bt-AgNPs would be significantly used as a potent mosquito larvicide against A. aegypti. PMID:24173811

Banu, A Najitha; Balasubramanian, C; Moorthi, P Vinayaga

2014-01-01

243

Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish.  

PubMed

The presence of pathogens or predators in water may alter oviposition behaviour of gravid female Aedes aegypti mosquitoes. We evaluated the oviposition behaviour of A. aegypti in recipients containing larvivorous fish (Betta splendens and Poecilia reticulata). In four breeders, fish specimens were placed in 15 l of dechlorined water. Four control breeders only contained dechlorined water. Breeders with eucatex ovitraps and approximately 100 male and female mosquitoes were placed in wire netting cages. During a period of 7 weeks, eggs on the ovitraps were counted weekly. The median number of eggs laid in recipients with B. splendens (32.5/week) was lower than in those with P. reticulata (200.5/week) and the control group (186.5/week; P < 0.0001). The oviposition activity index (OAI) for P. reticulata did not show any considerable difference between posture in deposits with and without fish (-0005). Deposits with B. splendens showed a lower position than those used as controls (-0627). We conclude that B. splendens can be used to effectively prevent gravid A. aegypti females from laying eggs in large water containers. PMID:19754521

Pamplona, Luciano de Góes Cavalcanti; Alencar, Carlos H; Lima, José Wellington O; Heukelbach, Jörg

2009-11-01

244

Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).  

PubMed

Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future. PMID:23728731

da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

2013-08-01

245

Food Availability Alters the Effects of Larval Temperature on Aedes aegypti Growth  

PubMed Central

Variation in temperature and food availability in larval habitats can influence the abundance, body size, and vector competence of the mosquito Aedes aegypti. Although increased temperature has energetic costs for growing larvae, how food resources influence the developmental response of this mosquito species to thermal conditions is unknown. We explored how rearing temperature and food affect allometric scaling between wing size and epidermal cell size in Ae. aegypti. Mosquitoes were reared at 22 and 28°C across a gradient of field-collected detritus designed to simulate commonly observed natural larval food resources. Overall, reduced temperature and increased food level increased wing size, but only temperature affected cell size. Females fed the least food had the longest time to maturation, and their increases in wing size induced by cold temperature were associated with larger, rather than more, cells. By contrast, males fed the most food had the shortest time to maturation, and their increases in wing size induced by cold temperature were associated with more, rather than larger, cells. Therefore, food levels can alter the underlying physiological mechanisms generating temperature-size patterns in mosquitoes, suggesting that the control of development is sensitive to the combination of nutrient and thermal conditions, rather than each independently. Conditions prolonging development time may favor increased cell division over growth. We suggest that understanding the effects of climate change on Ae. aegypti vectorial capacity requires an improved knowledge of how water temperature interacts with limited food resources and competition in aquatic container habitats. PMID:21936315

Padmanabha, H.; Bolker, B.; Lord, C. C.; Rubio, C.; Lounibos, L. P.

2012-01-01

246

Identification and Characterisation of Aedes aegypti Aldehyde Dehydrogenases Involved in Pyrethroid Metabolism  

PubMed Central

Background Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism. Methodology/Principal Findings Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid). Conclusions/Significance ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies. PMID:25047125

Lumjuan, Nongkran; Wicheer, Jureeporn; Leelapat, Posri; Choochote, Wej; Somboon, Pradya

2014-01-01

247

Larvicidal and Cytotoxic Potential of Squamocin on the Midgut of Aedes aegypti (Diptera: Culicidae)  

PubMed Central

Acetogenins are secondary metabolites exclusively produced by Annonaceae, which have antitumor, cytotoxic, and pesticide activities. In this study, we evaluated the larvicidal and cytotoxic effect of squamocin from Annona squamosa on Aedes aegypti (Diptera: Culicidae) midgut. The compound was solubilized in 2% Tween 20 at 10, 20, 50, 80 and 100 ppm. The assay was conducted in a completely randomized design with four replications, each with 20 third-instar larvae. Larval mortality was assessed every hour until total mortality, and the data were subjected to Probit analysis. Cellular damage was evaluated every 30 min in groups comprising five larvae subjected to squamocin at 50 and 100 ppm for 240 min. The total larval mortality occurred after 360 min following application of 50, 80, and 100 ppm squamocin, and 600 min after applying other concentrations with LC50 at 6.4 ppm. Both 50 and 100 ppm of squamocin showed cytotoxic activity in the midgut epithelium of A. aegypti after 240 min with 50 ppm resulting in midgut cells with light cytoplasm containing small vacuoles, whereas at 100 ppm were found cells with cytoplasm highly vacuolated, damaged apical surface and cell protrusion toward the gut lumen. In conclusion, squamocin has the potential to control A. aegypti. PMID:24674934

Costa, Marilza S.; Cossolin, Jamile F. S.; Pereira, Mônica J. B.; Sant’Ana, Antônio E. G.; Lima, Milena D.; Zanuncio, José C.; Serrão, José Eduardo

2014-01-01

248

Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae).  

PubMed

Acetogenins are secondary metabolites exclusively produced by Annonaceae, which have antitumor, cytotoxic, and pesticide activities. In this study, we evaluated the larvicidal and cytotoxic effect of squamocin from Annona squamosa on Aedes aegypti (Diptera: Culicidae) midgut. The compound was solubilized in 2% Tween 20 at 10, 20, 50, 80 and 100 ppm. The assay was conducted in a completely randomized design with four replications, each with 20 third-instar larvae. Larval mortality was assessed every hour until total mortality, and the data were subjected to Probit analysis. Cellular damage was evaluated every 30 min in groups comprising five larvae subjected to squamocin at 50 and 100 ppm for 240 min. The total larval mortality occurred after 360 min following application of 50, 80, and 100 ppm squamocin, and 600 min after applying other concentrations with LC50 at 6.4 ppm. Both 50 and 100 ppm of squamocin showed cytotoxic activity in the midgut epithelium of A. aegypti after 240 min with 50 ppm resulting in midgut cells with light cytoplasm containing small vacuoles, whereas at 100 ppm were found cells with cytoplasm highly vacuolated, damaged apical surface and cell protrusion toward the gut lumen. In conclusion, squamocin has the potential to control A. aegypti. PMID:24674934

Costa, Marilza S; Cossolin, Jamile F S; Pereira, Mônica J B; Sant'Ana, Antônio E G; Lima, Milena D; Zanuncio, José C; Serrão, José Eduardo

2014-04-01

249

Food availability alters the effects of larval temperature on Aedes aegypti growth.  

PubMed

Variation in temperature and food availability in larval habitats can influence the abundance, body size, and vector competence of the mosquito Aedes aegypti. Although increased temperature has energetic costs for growing larvae, how food resources influence the developmental response of this mosquito species to thermal conditions is unknown. We explored how rearing temperature and food affect allometric scaling between wing size and epidermal cell size in Ae. aegypti. Mosquitoes were reared at 22 and 28 degrees C across a gradient of field-collected detritus designed to simulate commonly observed natural larval food resources. Overall, reduced temperature and increased food level increased wing size, but only temperature affected cell size. Females fed the least food had the longest time to maturation, and their increases in wing size induced by cold temperature were associated with larger, rather than more, cells. By contrast, males fed the most food had the shortest time to maturation, and their increases in wing size induced by cold temperature were associated with more, rather than larger, cells. Therefore, food levels can alter the underlying physiological mechanisms generating temperature-size patterns in mosquitoes, suggesting that the control of development is sensitive to the combination of nutrient and thermal conditions, rather than each independently. Conditions prolonging development time may favor increased cell division over growth. We suggest that understanding the effects of climate change on Ae. aegypti vectorial capacity requires an improved knowledge of how water temperature interacts with limited food resources and competition in aquatic container habitats. PMID:21936315

Padmanabha, H; Bolker, B; Lord, C C; Rubio, C; Lounibos, L P

2011-09-01

250

Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae).  

PubMed

Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q

2014-01-01

251

Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.  

PubMed

Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae.?aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae.?aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

2013-12-01

252

Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.  

PubMed

The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

2014-04-01

253

Comparative efficacy of IR3535 and deet as repellents against adult Aedes aegypti and Culex quinquefasciatus.  

PubMed

Arm-in-cage laboratory evaluations of 2 proprietary formulations of the mosquito repellents IR3535 and N,N-diethyl-3-methylbenzamide (deet; aqueous cream, hydroalcoholic spray) were made with 10 and 20% concentrations of each repellent. Also, 4 commercially available products containing IR3535 (Expedition insect repellent 20.07% active ingredient [AI], Bug Guard Plus with SPF30 sunscreen 7.5% AI, Bug Guard Plus with SPF15 sunscreen 7.5% AI, and Bug Guard Plus 7.5% AI) were tested. All comparisons were made on an equal formulation or concentration basis. Eight volunteers tested all formulations or products 3 times against laboratory-reared, Aedes aegypti and Culex quinquefasciatus mosquitoes (6-10 days old). Products were applied to a forearm at the rate of 0.002 g/cm2. The other forearm was not treated and served as a control. Elapsed time to 1st and 2nd consecutive bite was recorded. Mean protection time (i.e., time to 1st bite) with proprietary formulations of IR3535 were comparable to those of deet, with 20% concentrations providing greater protection against Ae. aegypti (3 h) and Cx. quinquefasciatus (6 h). Mean protection time for commercial products containing IR3535 ranged from nearly 90 to 170 min for Ae. aegypti and 3.5 to 6.5 h for Cx. quinquefasciatus. Mean time to the 2nd bite was similar to time to 1st bite for each mosquito species, product, and formulation. PMID:15532931

Cilek, J E; Petersen, J L; Hallmon, C E

2004-09-01

254

Aedes aegypti larval indices and risk for dengue epidemics.  

PubMed

We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BI(max) (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission. PMID:16704841

Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lázara; Marquetti, Maria del Carmen; Guzman, Maria Guadalupe; Bisset, Juan; van der Stuyft, Patrick

2006-05-01

255

Dissimilar effects on landing behavior by Aedes aegypti L., Anopheles quadrimaculatus Say, and Culex quinquefasciatus Say mosquitoes (Diptera: Culicidae) when exposed to different pyrethroid insecticides  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mosquitoes from three genera, Aedes aegypti L., Anopheles quadrimaculatus Say, and Culex quinquefasciatus Say were tested for facultative landing and resting behavior on pyrethroid-treated surfaces paired with adjacent untreated surfaces. The three pyrethroids tested were bifenthrin, deltamethrin, ...

256

The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

257

Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).  

PubMed

World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

2011-01-01

258

Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)  

PubMed Central

World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

2011-01-01

259

Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.  

PubMed

Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control. PMID:23540124

Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

2013-03-01

260

Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L  

PubMed Central

Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

2011-01-01

261

The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.  

PubMed

Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org). PMID:23833213

Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

2013-09-01

262

Discovery and Characterization of a Potent and Selective Inhibitor of Aedes aegypti Inward Rectifier Potassium Channels  

PubMed Central

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening ‘hits’, the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides. PMID:25375326

Raphemot, Rene; Rouhier, Matthew F.; Swale, Daniel R.; Days, Emily; Weaver, C. David; Lovell, Kimberly M.; Konkel, Leah C.; Engers, Darren W.; Bollinger, Sean F.; Hopkins, Corey; Piermarini, Peter M.; Denton, Jerod S.

2014-01-01

263

Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.  

Technology Transfer Automated Retrieval System (TEKTRAN)

An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

264

Effect of larval selection with two bioinsecticides on susceptibility levels and reproductive capacity of Aedes aegypti (L.)  

Microsoft Academic Search

Two bacterial insecticides,Bacillus thuringiensis H-14 andB. sphaericus 1593 were evaluated for larvicidal potency against mosquito larvae ofAedes aegypti. LC50 values showed thatB.thuringiensis H-14 (4×105 spores\\/ml) had a higher pathogenicity against fourth larval instars ofA. aegypti thanB. sphaericus (3.1×106 spores\\/ml) by about 7.75 times.Larval selection with LC90 of both pathogens for 8 successive generations caused a decrease in the susceptibility levels

Moustafa S. Saleh

1987-01-01

265

Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus.  

PubMed

Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

Ocampo, Clara B; Caicedo, Paola A; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M; Cooper, Dawn M; Lowenberger, Carl

2013-01-01

266

Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L. against Aedes aegypti L.  

PubMed

Ficus carica L., its fruits are delicious and can be eaten by human. Its leaves are commonly used to cure hemorrhoid and clear away heart ache. The milky sap of F. carica have a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an lethal concentration (LC(50)) value of 10.2??g/ml and an LC(90) value of 42.3??g/ml. Two natural furocoumarins, 5-methoxypsoralen and 8-methoxypsoralen were isolated from the milky sap of F. carica. The LC(50) value of 5-methoxypsoralen and 8-methoxypsoralen were 9.4 and 56.3??g/ml, respectively. The above indicates that major compounds may play a more important role in the toxicity of the milky sap of F. carica. PMID:21214422

Chung, Iii-Min; Kim, Sun-Jin; Yeo, Min-A; Park, Se-Won; Moon, Hyung-In

2011-09-01

267

[Report of habitats used by Aedes aegypti in Havana City, Cuba].  

PubMed

50 habitats used by Aedes aegypti in the urban environment of Havana City were reported. 66% corresponded to artificial deposits, of which 57.5% were classified as unuseful by the population. 14% were receptacles of domestic use, whereas 8% were natural breeding places. It calls the attention that 12% of the habitats were represented by pits, sewers and drainages that contain the so-called black waters; a factor that should be considered in the epidemiology of dengue in Cuba and that deserves a study of the ecological factors associated with the specie that may influence on this behavior. It is encouraged the community participation as a tool in the control of this dangerous vector. PMID:17966589

Marquetti, María del Carmen; Suárez, Silvia; Bisset, Juan; Leyva, Maureen

2005-01-01

268

Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti.  

PubMed

Changes in gene expression before, during and after five generations of permethrin laboratory selection were monitored in six strains of Aedes aegypti: five F(2)-F(3) collections from the Yucatán Peninsula of Mexico and one F(2) from Iquitos, Peru. Three biological replicate lines were generated for each strain. The response to selection was measured as changes in the lethal and knockdown permethrin concentrations (LC(50), KC(50)) and in the frequency of the Ile1,016 substitution in the voltage-gated sodium channel (para) gene. Changes in expression of 290 metabolic detoxification genes were measured using the 'Aedes Detox' microarray. Selection simultaneously increased the LC(50), KC(50) and Ile1,016 frequency. There was an inverse relationship between Ile1,016 frequency and the numbers of differentially transcribed genes. The Iquitos strain lacked the Ile1,016 allele and 51 genes were differentially transcribed after selection as compared with 10-18 genes in the Mexican strains. Very few of the same genes were differentially transcribed among field strains but 10 cytochrome P(450) genes were upregulated in more than one strain. Laboratory adaptation to permethrin in Ae. aegypti is genetically complex and largely conditioned by geographic origin and pre-existing target site insensitivity in the para gene. The lack of uniformity in the genes that responded to artificial selection as well as differences in the direction of their responses challenges the assumption that one or a few genes control permethrin metabolic resistance. Attempts to identify one or a few metabolic genes that are predictably associated with permethrin adaptation may be futile. PMID:22032702

Saavedra-Rodriguez, K; Suarez, A F; Salas, I F; Strode, C; Ranson, H; Hemingway, J; Black, William C

2012-02-01

269

Transcription of detoxification genes following permethrin selection in the mosquito Aedes aegypti  

PubMed Central

Changes in gene expression before, during and after five generations of permethrin laboratory selection were monitored in six strains of Aedes aegypti: five F2 – F3 collections from the Yucatán Peninsula of México and one F2 from Iquitos, Perú. Three biological replicate lines were generated for each strain. The response to selection was measured as changes in the lethal and knockdown permethrin concentrations (LC50, KC50) and in the frequency of the Ile1,016 substitution in the voltage gated sodium channel (para) gene. Changes in expression of 290 metabolic detoxification genes were measured using the “Aedes Detox” microarray. Selection simultaneously increased the LC50, KC50 and Ile1,016 frequency. There was an inverse relationship between Ile1,016 frequency and the numbers of differentially transcribed genes. The Iquitos strain lacked the Ile1,016 allele and 51 genes were differentially transcribed following selection as compared to 10–18 genes in the Mexican strains. Very few of the same genes were differentially transcribed among field strains but ten cytochrome P450 genes were upregulated in more than one strain. Laboratory adaptation to permethrin in Ae. aegypti is genetically complex and largely conditioned by geographic origin and preexisting target site insensitivity in the para gene. The lack of uniformity in the genes that responded to artificial selection as well as differences in the direction of their responses challenges the assumption that one or a few genes control permethrin metabolic resistance. Attempts to identify one or a few metabolic genes that are predictably associated with permethrin adaptation may be futile. PMID:22032702

Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Salas, Ildefonso Fernandez; Strode, Clare; Ranson, Hilary; Hemingway, Janet; Black, William C.

2011-01-01

270

An inexpensive intervention for the control of larval Aedes aegypti assessed by an improved method of surveillance and analysis.  

PubMed

A sampling method coupled with statistical calibration factors was developed to accurately assess the numbers of larvae and pupae of Aedes aegypti in large water-storage containers of variable capacities and water levels. Aedes aegypti productivity in different types of breeding sites found in an urban study area in central Colombia was assessed and compared. In this study, water-storage tanks and drums were found to comprise 79% of the containers positive for larval Ae. aegypti, which contributed to 93 and 92% of the total production of populations of 4th-stage larvae and pupae, respectively. These main breeding sites of Ae. aegypti were found at an indoor to outdoor ratio of 2.4:1 and no correlation was found between temporal fluctuation of populations of larval Ae. aegypti and monthly rainfall. Netted lids that used inexpensive local materials were designed to prevent oviposition by Ae. aegypti. During a 6-month trial period, 56% of inspected containers had netted lids correctly in place. Of these, 78% had no mosquito larvae. Because only 37% of uncovered containers were free of mosquito larvae, a significant difference was demonstrated when these inexpensive mechanical barriers were used (chi2 = 138.7; P < 0.001). These netted lids and the improved methods described to assess the productivity of larval and pupal Ae. aegypti in this study are now being used in combination with other strategies to assess and control these populations of dengue virus vectors in the main port city on the Atlantic Coast of Colombia. PMID:11998929

Romero-Vivas, Claudia M E; Wheeler, Jeremy G; Falconar, Andrew K I

2002-03-01

271

Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication.  

PubMed

The gram-negative endosymbiotic bacteria, Wolbachia, have been found to colonize a wide range of invertebrates, including over 40% of insect species. Best known for host reproductive manipulations, some strains of Wolbachia have been shown to reduce the host life span by about 50% and inhibit replication and transmission of dengue virus (DENV) in the mosquito vector, Aedes aegypti. The molecular mechanisms underlying these effects still are not well understood. Our previous studies showed that Wolbachia uses host microRNAs (miRNAs) to manipulate host gene expression for its efficient maintenance and limiting replication of DENV in Ae. aegypti. Protein arginine methyltransferases are structurally and functionally conserved proteins from yeast to human. In mammals, it has been reported that protein arginine methyltransferases such as PRMT1, 5 and 6 could regulate replication of different viruses. Ae. aegypti contains eight members of protein arginine methyltransferases (AaArgM1-8). Here, we show that the wMelPop strain of Wolbachia introduced into Ae. aegypti significantly induces the expression of AaArgM3. Interestingly, we found that Wolbachia uses aae-miR-2940, which is highly upregulated in Wolbachia-infected mosquitoes, to upregulate the expression of AaArgM3. Silencing of AaArgM3 in a mosquito cell line led to a significant reduction in Wolbachia replication, but had no effect on the replication of DENV. These results provide further evidence that Wolbachia uses the host miRNAs to manipulate host gene expression and facilitate colonization in Ae. aegypti mosquito. PMID:25158106

Zhang, Guangmei; Hussain, Mazhar; Asgari, Sassan

2014-10-01

272

Circadian clock of Aedes aegypti: effects of blood-feeding, insemination and RNA interference  

PubMed Central

Mosquitoes are the culprits of some of the most important vector borne diseases. A species’ potential as a vector is directly dependent on their pattern of behaviour, which is known to change according to the female’s physiological status such as whether the female is virgin/mated and unfed/blood-fed. However, the molecular mechanism triggered by and/or responsible for such modulations in behaviour is poorly understood. Clock genes are known to be responsible for the control of circadian behaviour in several species. Here we investigate the impact mating and blood-feeding have upon the expression of these genes in the mosquito Aedes aegypti . We show that blood intake, but not insemination, is responsible for the down-regulation of clock genes. Using RNA interference, we observe a slight reduction in the evening activity peak in the fourth day after dstim injection. These data suggest that, as in Drosophila , clock gene expression, circadian behaviour and environmental light regimens are interconnected in Ae. aegypti . PMID:24473806

Gentile, Carla; Rivas, Gustavo Bueno da S; Lima, José BP; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio

2013-01-01

273

Feeding deterrent effects of catnip oil components compared with two synthetic amides against Aedes aegypti.  

PubMed

Recently, catnip, Nepeta cataria L. (Lamiaceae), essential oil has been formulated and marketed as an alternative repellent for protection against biting arthropods by several vendors. We isolated the major active components of catnip oil, E,Z- and Z,E-nepetalactone, and quantitatively measured their antibiting efficacy compared with the repellents N,N-diethyl-3-methylbenzamide (deet) and chiral (1S,2'S)-2-methylpiperidinyl-3-cyclohexene-1-carboxamide (SS220) against the yellowfever mosquito, Aedes aegypti (L.), by using an in vitro assay and human volunteers at 24 nmol compound/cm2 (cloth or skin). Of all compounds tested in an in vitro assay, SS220 ranked as the most effective, whereas catnip oil and the nepetalactone compounds did not differ significantly from each other or from deet. However, in human volunteer bioassays, neither E,Z and Z,E-nepetalactone nor racemic nepetalactone deterred mosquito biting as effectively as SS220 or deet. All compounds differed significantly from the control. We conclude that catnip oil and nepetalactone isomers are significantly less effective than deet or SS220 in deterring the biting of Ae. aegypti. PMID:16119554

Chauhan, Kamlesh R; Klun, Jerome A; Debboun, Mustapha; Kramer, Matthew

2005-07-01

274

Susceptibility to Chlorpyrifos in Pyrethroid-Resistant Populations of Aedes aegypti (Diptera: Culicidae) from Mexico  

PubMed Central

Resistance to the organophosphate insecticide chlorpyrifos was evaluated in females from six strains of Aedes aegypti (L) that expressed high levels of cross resistance to eight pyrethroid insecticides. Relative to LC50 and LC90 at 24h of a susceptible New Orleans (NO) three strains were highly resistant to chlorpyrifos (Coatzacoalcos, resistance ratio (RRLC90) =11.97; Pozarica, RRLC90=12.98; and Cosoleacaque, RRLC50= 13.94 and RRLC90=17.57), one strain was moderately resistant (Veracruz, RR=5.92), and two strains were susceptible (Tantoyuca and Martinez de la Torre, RRLC50 and RRLC90 < 5) in CDC bottle bioassays. Furthermore, high levels of ?/?-esterase activity in the sample populations were correlated with resistance, suggesting that esterase activity may be a mechanism causing the development of organophosphate resistance in these populations. Overall, the populations in this study were less resistant to chlorpyrifos than to pyrethroids. Rotation of insecticides used in control activities is recommended to delay or minimize the occurrence of high levels of resistance to chlorpyrifos among local populations of Ae. aegypti. The diagnostic dose (DD) and diagnostic time (DT) for chlorpyrifos resistance monitoring was determined to be 85 ?g/ bottle and 30min, respectively, using the susceptible NO strain. PMID:24897857

Lopez, Beatriz; Ponce, Gustavo; Gonzalez, Jessica A.; Gutierrez, Selene M.; Villanueva, Olga K.; Gonzalez, Gabriela; Bobadilla, Cristina; Rodriguez, Iram P.; Black, William C.; Flores, Adriana E.

2014-01-01

275

Aedes aegypti larvicide from the ethanolic extract of Piper nigrum black peppercorns.  

PubMed

Due to unavailability of a vaccine and a specific cure to dengue, the focus nowadays is to develop an effective vector control method against the female Aedes aegypti mosquito. This study aims to determine the larvicidal fractions from Piper nigrum ethanolic extracts (PnPcmE) and to elucidate the identity of the bioactive compounds that comprise these larvicidal fractions. Larvicidal assay was performed by subjecting 3rd to 4th A. aegypti instar larvae to PnPcmE of P. nigrum. The PnPcmE exhibited potential larvicidal activity having an LC50 of 7.1246 ± 0.1304 ppm (mean ± Std error). Normal phase vacuum liquid chromatography of the PnPcmE was employed which resulted in five fractions, two of which showed larvicidal activity. The most active of the PnPcmE fractions is PnPcmE-1A, with an LC50 and LC90 of 1.7101 ± 0.0491 ppm and 3.7078 ppm, respectively. Subsequent purification of PnPcmE-1A allowed the identification of the larvicidal compound as oleic acid. PMID:25118563

Santiago, Viviene S; Alvero, Rita Grace; Villaseñor, Irene M

2015-01-01

276

Two different routes of colonization of Aedes aegypti in Argentina from neighboring countries.  

PubMed

Aedes aegypti L. (Diptera, Culicidae) is the main vector of dengue and yellow fever. In Argentina, the species was apparently eradicated approximately in 1964; by 1986, it was reintroduced. To identify different gene pools in geographical populations of the species and to ascertain the possible routes of colonization, we analyzed the diversity of mitochondrial DNA haplotypes in 572 specimens from Argentina and neighboring countries. We found that the restriction fragment length polymorphism-polymerase chain reaction screening of a large DNA fragment including the A+T-rich region was the best strategy to reconstruct the colonization pattern ofAe. aegypti in Argentina. Twenty haplotypes were recognized; levels of genetic similarity varied among populations from different geographical locations. The haplotype network constructed on the basis of genetic distances showed three well differentiated groups. Two of them exhibited a well defined spatial distribution and populations in these groups presented an isolation-by-distance pattern. The persistence of relictual populations after the last eradication campaigns would explain the high levels of haplotype diversity and the presence of exclusive haplotypes in urban centers from northwestern Argentina. Eastern Argentine populations showed one prevalent haplotype, also predominant in Brazil and Paraguay. Our results highlight the need for efficient surveys and control campaigns, given the strong effect of land trade on genetic exchange among mosquito populations from Argentina and neighboring countries where dengue is endemic. PMID:19960679

Dueñas, J C Rondan; Llinás, G Albrieu; Panzetia-Dutari, G M; Gardenal, C N

2009-11-01

277

The role of male harassment on female fitness for the dengue vector mosquito Aedes aegypti  

PubMed Central

Sexual harassment studies in insects suggest that females can incur several kinds of costs from male harassment and mating. Here, we examined direct and indirect costs of male harassment on components of female fitness in the predominantly monandrous mosquito Aedes aegypti. To disentangle the costs of harassment versus the costs of mating, we held females at a low or high density with males whose claspers were modified to prevent insemination, and compared these to females held with normal males and to those held with females or alone. A reduced longevity was observed when females were held under high density conditions with males or females, regardless if male claspers had been modified. There was no consistent effect of harassment on female fecundity. Net reproductive rate (R0) was higher in females held at low density with normal males compared to females held with males in the other treatments, even though only a small number of females showed direct evidence of remating. Indirect costs and benefits that were not due to harassment alone were observed. Daughters of females held with normal males at high density had reduced longevity compared to daughters from females held without conspecifics. However, their fitness (R0) was higher compared to females in all other treatments. Overall, our results indicate that A. aegypti females do not suffer a fitness cost from harassment of males when kept at moderate densities, and they suggest the potential for benefits obtained from ejaculate components. PMID:25544799

Helinski, Michelle E.H.; Harrington, Laura C.

2014-01-01

278

Efficacy of various larvicides against Aedes aegypti immatures in the laboratory.  

PubMed

We conducted a laboratory study to evaluate the efficacy of control agents against small larvae, large larvae, and pupae of Aedes aegypti to determine an appropriate larvicide regime to employ in emergency dengue control programs. The control agents included Bacillus thuringiensis var. israelensis (Bti), pyriproxyfen (an insect growth regulator), a larvicidal oil, Aquatain AMF (polydimethylsiloxane, a monomolecular film), and temephos at the recommend application dosages and rates. Our results showed that Bti, pyriproxyfen, and temephos were efficacious (100% mortality) against larvae, irrespective of the instar stage, but not against pupae of Ae. aegypti (1.5-7.8% mortality). Aquatain AMF, on the other hand, was very effective at controlling the pupal stage (100% mortality), but had limited efficacy against small larvae (38.0% mortality) and large larvae (78.0% mortality). The larvicidal oil was effective against all immature stages (93.3-100% mortality). Therefore, we concluded that for effectively interrupting the dengue transmission cycle, larvicides that kill the pupal stage (Aquatain AMF or larvicidal oil) should be included in an emergency dengue control program in addition to Bti, pyriproxyfen, or temephos. PMID:23883850

Wang, Chih-Yuan; Teng, Hwa-Jen; Lee, Si-Jia; Lin, Cheo; Wu, Jhy-Wen; Wu, Ho-Sheng

2013-01-01

279

Analysis of cycle Gene Expression in Aedes aegypti Brains by In Situ Hybridization  

PubMed Central

Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc) gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR). Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on) compared to ZT11 (one before light-off), which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized. PMID:23300979

Chahad-Ehlers, Samira; Gentile, Carla; Lima, José Bento Pereira; Peixoto, Alexandre Afranio; Bruno, Rafaela Vieira

2013-01-01

280

Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia.  

PubMed

Counts of immature stages of the mosquito Aedes aegypti have been used to calculate several entomological indices of dengue vector abundance. Some studies have concluded that these indices can be used as indicators of dengue epidemic risk, while other studies have failed to find a predictive relationship. Ecological niche models have been able to predict distributional patterns in space and time, not only of vectors, but also of the diseases that they transmit. In this study, we used Landsat 7 ETM+ images and two niche-modeling algorithms to estimate the local-landscape ecological niche and the dynamics of Ae. aegypti larval habitats in Bello, Colombia, and to evaluate their potential spatial and temporal distribution. Our models showed low omission error with high confidence levels: about 13.4% of the area presents conditions consistently suitable for breeding across the entire study period (2002-2008). The proportion of neighborhoods predicted to be suitable showed a positive association with dengue case rates, whereas the vector-focused Bretau index had no relationship to case rates. As a consequence, niche models appear to offer a superior option for predictive evaluation of dengue transmission risk and anticipating the potential for outbreaks. PMID:22548535

Arboleda, Sair; Jaramillo-O, Nicolás; Peterson, A Townsend

2012-06-01

281

Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).  

PubMed

Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50?=?17.1 ppm); C. sinensis (LC50?=?20.6 ppm); the mixture of L. alba and L. origanoides (LC50?=?40.1 ppm); L. alba (LC50?=?42.2 ppm); C. odorata (LC50?=?52.9 ppm); L. origanoides (LC50?=?53.3 ppm); S. glutinosa (LC50?=?65.7 ppm); T. lucida (LC50?=?66.2 ppm); E. citriodora (LC50?=?71.2 ppm); and C. citratus (LC50?=?123.3 ppm). The EO from C. flexuosus, with citral (geranial?+?neral) as main component, showed the highest larvicidal activity. PMID:24781026

Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

2014-07-01

282

Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti.  

PubMed

For many insects, including mosquitoes, olfaction is the dominant modality regulating their behavioral repertoire. Many neurochemicals modulate olfactory information in the central nervous system, including the primary olfactory center of insects, the antennal lobe. The most diverse and versatile neurochemicals in the insect nervous system are found in the neuropeptides. In the present study, we analyzed neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti, a major vector of arboviral diseases. Direct tissue profiling of the antennal lobe by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated the presence of 28 mature products from 10 different neuropeptide genes. In addition, immunocytochemical techniques were used to describe the cellular location of the products of up to seven of these genes within the antennal lobe. Allatostatin A, allatotropin, SIFamide, FMRFamide-related peptides, short neuropeptide F, myoinhibitory peptide, and tachykinin-related peptides were found to be expressed in local interneurons and extrinsic neurons of the antennal lobe. Building on these results, we discuss the possible role of neuropeptide signaling in the antennal lobe of Ae. aegypti. PMID:23897410

Siju, K P; Reifenrath, Anna; Scheiblich, Hannah; Neupert, Susanne; Predel, Reinhard; Hansson, Bill S; Schachtner, Joachim; Ignell, Rickard

2014-02-15

283

Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti.  

PubMed

Mosquitoes rely on carbon dioxide (CO2) to detect and orient towards their blood hosts. However, the variable and rapid fluctuations of atmospheric CO2 concentrations may have an impact on the host-seeking behaviour of mosquitoes. In this study, we analysed the effect of transient elevated background levels of CO2 on the host-seeking behaviour and the physiological characteristics of the CO2-sensitive olfactory receptor neurones (ORNs) in female yellow fever mosquitoes, Aedes aegypti. We show that the take-off and source contact behaviour of A. aegypti is impeded at elevated background levels of CO2 as a result of masking of the stimulus signal. The mechanism underlying this masking during take-off behaviour is one of sensory constraint. We show that the net response of the CO2-ORNs regulates this CO2-related behaviour. Since these neurones themselves are not habituated or fatigued by the transient elevation of background CO2, we propose that habituation of second-order neurones in response to the elevated CO2-ORN activity could be one mechanism by which the net response is transduced by the olfactory system. The findings from this study may help to predict future shifts in mosquito-host interactions and consequently to predict vectorial capacity in the light of climate change. PMID:24198270

Majeed, Shahid; Hill, Sharon Rose; Ignell, Rickard

2014-02-15

284

The maxillary palp of Aedes aegypti, a model of multisensory integration.  

PubMed

Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary palps play a major role in host detection and other sensory-mediated behaviors. Compared to the antennae, the maxillary palps are a relatively simple organ and thus an attractive model for exploration of the neuromolecular networks underlying chemo- and mechanosensation. In this study, we surveyed the expressed genetic components and examined their potential involvement with these sensory modalities. Using Illumina sequencing, we identified the transcriptome of the maxillary palps of physiologically mature female Ae. aegypti. Genes expressed in the maxillary palps included those involved in sensory reception, signal transduction and neuromodulation. In addition to previously reported chemosensory genes, we identified candidate transcripts potentially involved in mechanosensation and thermosensation. This survey lays the groundwork to explore sensory networks in an insect appendage. The identification of genes involved in thermosensation provides prospective molecular targets for the development of chemicals aimed at disrupting the behavior of this medically important insect. PMID:24613607

Bohbot, Jonathan D; Sparks, Jackson T; Dickens, Joseph C

2014-05-01

285

Aedes aegypti Mosquitoes Exhibit Decreased Repellency by DEET following Previous Exposure  

PubMed Central

DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them. PMID:23437043

Stanczyk, Nina M.; Brookfield, John F. Y.; Field, Linda M.; Logan, James G.

2013-01-01

286

Natural habitats of Aedes Aegypti in the Caribbean--a review.  

PubMed

Natural breeding habitats of Aedes aegypti in the Caribbean region were reviewed by conducting larval surveys in Trinidad. Puerto Rico, and the U.S. Virgin Islands and referring to records from the Mosquitoes of Middle America project. Twelve types of natural habitats were recorded: rock holes (9.7%), calabashes (2.4%), tree holes (19.5%), leaf axils (4.8%), bamboo joints (14.9%), papaya stumps (7.3%), coconut shells (4.8%), bromeliads (7.3%), ground pools (14.9%), coral rock holes (9.7%), crab holes (2.4%), and conch shells (7.3%), of which the coconut shell and calabash habitats were new to the Caribbean. The countries having the highest prevalence of natural habitats were Trinidad. Puerto Rico, and Jamaica, with 9 types (22.0%), 7 types (17.0%), and 6 types (14.6%), respectively. The distribution of natural habitats of Ae. aegypti in the Caribbean region is discussed in relation to vector control measures. PMID:9599318

Chadee, D D; Ward, R A; Novak, R J

1998-03-01

287

Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam  

PubMed Central

We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued. PMID:22556087

Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

2012-01-01

288

Toxicities of 31 volatile low molecular weight compounds against Aedes aegypti and Culex quinquefasciatus.  

PubMed

This research studied 31 volatile compounds for indoor control of the medically important mosquitoes Aedes aegypti L. and Culex quinquefasciatus Say. Only adult female mosquitoes were tested. The test compounds were from six families that included five heterobicyclics, eight formate esters, formic acid (a hydrolyzed metabolite of formate esters), eight acetate esters, four propionate esters, three butyrate esters, and two valerate esters. Also, the organophosphate compound dichlorvos (DDVP) was tested as a positive control. Cx. quinquefasciatus was generally more susceptible than Ae. aegypti. Cx. quinquefasciatus was most susceptible to a subset of heterobicyclics and formate esters (rank: n-butyl formate > hexyl formate = dihydrobenzofuran = menthofuran = heptyl formate = ethyl formate). Ae. aegypti was most susceptible to a subset of formate esters (rank: methyl > n-butyl > propyl = ethyl = hexyl). The most active materials against both species had LC50s of 0.4-1 mg active ingredient per 0.5 liter of air volume (0.8-2 mg/liter), which is 50- to 60-fold less toxic than dichlorvos (an organophosphate insecticide that is being phased out from indoor use). In relation to Drosophila melanogaster Meigen, both mosquito species were generally more susceptible to formate esters but more tolerant of heterobicyclics. Generally, the most toxic compound against all dipterans tested to date is n-butyl formate, whereas menthofuran is additionally toxic against Cx. quinquefasciatus and D. melanogaster. Finally, the toxicity differences between species point to the potential for differential toxicity among mosquito general/species, suggesting that further studies of a number of mosquito species might be warranted. PMID:19351084

Chaskopoulou, Alexandra; Nguyen, Sam; Pereira, Roberto M; Scharf, Michael E; Koehler, Philip G

2009-03-01

289

Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru  

PubMed Central

Background Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus. Methodology/Principal Findings Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual's likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05). A linear function fit the relationship equally well (?AIC<1). Conclusions/Significance Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people's contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread. PMID:24551262

Liebman, Kelly A.; Stoddard, Steven T.; Reiner, Robert C.; Perkins, T. Alex; Astete, Helvio; Sihuincha, Moises; Halsey, Eric S.; Kochel, Tadeusz J.; Morrison, Amy C.; Scott, Thomas W.

2014-01-01

290

Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae.  

PubMed

Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations. PMID:21410734

Padmanabha, H; Lord, C C; Lounibos, L P

2011-12-01

291

[Determination in vivo of the role of esterase and glutathione transferase enzymes in pyrethroid resistance of Aedes aegypti (Diptera: Culicidae)].  

PubMed

An in vivo study of two synergists, that is, Triphenil phosphate -specific esterase inhibitor- and ethacrynic acid -specific gluthation transferase inhibitor- was performed to determine if these enzymes were responsible for pyrethroid resistance of Aedes aegypti. To this end, two insecticide resistant Aedes aegypti strains were used, one strain selected with temephos by six selection generations (SAN-F6) and the other strain with delmamethrin by 12 selection generations (SAN-F12), being both strains resistant to pyrethroid insecticices. Through the use of TPP and EA synergists, it was proved that esterase and gluthation-s-transferase (GST) enzymes were responsible for pryrethroid resistance of these strains. These results showed the existence of cross-resistance and multidrug resistance, which should be taken into account for insecticide use strategies aimed at vector control. PMID:23427458

Rodríguez, María Magdalena; Bisset, Juan A; Fernández, Ditter

2007-01-01

292

Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes.  

PubMed

As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia?coli ?-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes. PMID:23241066

Totten, D C; Vuong, M; Litvinova, O V; Jinwal, U K; Gulia-Nuss, M; Harrell, R A; Beneš, H

2013-02-01

293

[Insecticide resistance mechanisms of Aedes aegypti (Diptera: Culicidae) from two Peruvian provinces].  

PubMed

Insecticide resistance of Aedes aegypti larvae and adults from two Peruvian provinces, that is, Trujillo and Tumbes provinces, was conducted. High infestation indexes and extensive use of insecticides based on the Vector Surveillance and Control Strategy of the Ministry of Public Health prevailed in these places. Larval bioassays revealed susceptibility to organophosphorate insecticide called malathion in TRUJILLO strain, it being moderate to fention and fenitrotion and high to chlorpyriphos and temephos;however, TUMBES strain was susceptible to the evaluated organophosphorate compounds, except for fention, with moderate resistance. In the adult state, at the recommended dose, TRUJILLO strain showed resistence to DDT organochlorate insecticide and to pyrethoids called lambdacyalotrine and cyflutrine whereas TUMBES was resistant to DDT and to all assessed pyrethoids. None of them was resistant to chlorpiriphos in adult stage. By using synergists, the results showed that esterases and monooxigenases played an important role in the detected resistence to organophosphorate in Aedes larvae from TRUJILLO province. Biochemical assays yielded that increased activity of esterases was very frequent in TRUJILLO strain as was the case of glutathion transferase(GST) and modified acetylcholinesterase (AchR). On the other hand, the polyacrylamide gel electrophoresis allowed observing the prevalence of amplified activity of esterases A4 in TRUJILLO strain but not in TUMBES strain. PMID:23427457

Bisset, Juan A; Rodríguez, María; Fernández, Ditter; Palomino, Miriam

2007-01-01

294

Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes  

PubMed Central

As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito, Aedes atropalpus, is female-specific and uniquely expressed in the fat body of fourth-instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector, Aedes aegypti. Male transgenic larvae and pupae of one line expressed no E. coli ?-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body. However, lacZ mRNA levels were no different in males and females at all stages examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes. PMID:23241066

TOTTEN, Daniel C.; VUONG, Mai; LITVINOVA, Oksana V.; JINWAL, Umesh K.; GULIA-NUSS, Monika; HARRELL, Robert A.; BENEŠ, Helen

2014-01-01

295

Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae)  

PubMed Central

Objective To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria (E. coronaria) and Caesalpinia pulcherrima (C. pulcherrima) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions. The hatch rates were assessed 48 h after treatment. The repellent efficacy was determined against three mosquito species at three concentrations viz., 1.0, 2.5 and 5.0 mg/cm2 under the laboratory conditions. Results The crude extract of E. coronaria exerted zero hatchability (100% mortality) at 250, 200 and 150 ppm for Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The crude extract of C. pulcherrima exerted zero hatchability (100% mortality) at 375, 300 and 225 ppm for Cx. quinquefasciatus, Ae. aegypti and An. Stephensi, respectively. The methanol extract of E. coronaria found to be more repellenct than C. pulcherrima extract. A higher concentration of 5.0 mg/cm2 provided 100% protection up to 150, 180 and 210 min against Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The results clearly showed that repellent activity was dose dependent. Conclusions From the results it can be concluded the crude extracts of E. coronaria and C. pulcherrima are an excellent potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569723

Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

2011-01-01

296

First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012.  

PubMed

The invasion of the yellow fever mosquito Aedes aegypti at Narita International Airport, Japan was detected for the first time. During the course of routine vector surveillance at Narita International Airport, 27 Ae. aegypti adults emerged from larvae and pupae collected from a single larvitrap placed near No. 88 spot at passenger terminal 2 on August 8, 2012. After the appearance of Ae. aegypti in the larvitrap, we defined a 400-m buffer zone and started an intensive vector survey using an additional 34 larvitraps and 15 CO2 traps. International aircraft and passenger terminal 2 were also inspected, and one Ae. aegypti male was collected from the cargo space of an international aircraft from Darwin via Manila on August 28, 2012. Larvicide treatment with 1.5% fenitrothion was conducted in 64 catch basins and one ditch in the 400-m buffer zone. Twenty-four large water tanks were also treated at least once with 0.5% pyriproxyfen, an insect growth regulator. No Ae. aegypti eggs or adults were found during the 1-month intensive vector survey after finding larvae and pupae in the larvitrap. We concluded that Ae. aegypti had failed to establish a population at Narita International Airport. PMID:23698478

Sukehiro, Nayu; Kida, Nori; Umezawa, Masahiro; Murakami, Takayuki; Arai, Naoko; Jinnai, Tsunesada; Inagaki, Shunichi; Tsuchiya, Hidetoshi; Maruyama, Hiroshi; Tsuda, Yoshio

2013-01-01

297

The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens  

Microsoft Academic Search

The larvicidal activity of commercial bark saponin extract (Sigma) from Quillaja saponaria was studied on 3rd–4th instar larvae of Aedes aegypti and Culex pipiens (vectors for dengue fever and Western Nile virus, respectively). The larvae were exposed to serial concentrations (1000, 800, 500, 300, 100, 10, 1, 0.1 and 0.01 mg\\/l) of the extract for 1, 3, 5, 7 and

D Pelah; Z Abramovich; A Markus; Z Wiesman

2002-01-01

298

Genetic and molecular evidence for a trans -acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti  

Microsoft Academic Search

The amount of glutathione S-transferase-2 (GST-2) protein and enzyme activity in a mutant strain (strain GG) of the yellow fever mosquito (Aedes aegypti) is approximately 25-fold higher than in the wild-type (+ +) strain. The mode of inheritance of the GG phenotype was studied in F1 and backcross progeny using GST enzyme assays, isozyme-specific antisera, and Northern blot analysis. Enzyme

David F. Grant; Bruce D. Hammock

1992-01-01

299

Laboratory and Field Evaluation of Novaluron a New Acylurea Insect Growth Regulator against Aedes aegypti (Diptera: Culicidae)  

Microsoft Academic Search

Novaluron, a new chitin synthesis inhibitor type of insect growth regulator, was evaluated in the laboratory and field against larvae of the mosquito Aedes aegypti (L.). In the laboratory, the technical material showed a high level of activity against 2nd and 4th instar larvae. The inhibition of emergence (IE) was 100% at concentrations of 0.25 to 1.0 µg\\/L. Second instars

Mir S. Mulla; Usavadee Thavara; Apiwat Tawatsin; Jakkrawarn Chompoosri; Morteza Zaim; Tianyun Su

300

Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti  

Microsoft Academic Search

Ethanolic extracts from the kernels of ripe fruits from the Indian Lilac Melia azedarach and from the well-known Neem tree, Azadirachta indica were assayed against larvae of Aedes aegypti, the mosquito vector of dengue fever. The lethality bioassays were carried out according to the recommendations of the World Health Organization. Extracts were tested at doses ranging from 0.0033 to 0.05g%

Carolina B. Wandscheer; Jonny E. Duque; Mario A. N. da Silva; Yoshiyasu Fukuyama; Jonathan L. Wohlke; Juliana Adelmann; José D. Fontana

2004-01-01

301

LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES  

PubMed Central

Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

2014-01-01

302

Glytube: A Conical Tube and Parafilm M-Based Method as a Simplified Device to Artificially Blood-Feed the Dengue Vector Mosquito, Aedes aegypti  

PubMed Central

Aedes aegypti, the main vector of dengue virus, requires a blood meal to produce eggs. Although live animals are still the main blood source for laboratory colonies, many artificial feeders are available. These feeders are also the best method for experimental oral infection of Ae. aegypti with Dengue viruses. However, most of them are expensive or laborious to construct. Based on principle of Rutledge-type feeder, a conventional conical tube, glycerol and Parafilm-M were used to develop a simple in-house feeder device. The blood feeding efficiency of this apparatus was compared to a live blood source, mice, and no significant differences (p?=?0.1189) were observed between artificial-fed (51.3% of engorgement) and mice-fed groups (40.6%). Thus, an easy to assemble and cost-effective artificial feeder, designated “Glytube” was developed in this report. This simple and efficient feeding device can be built with common laboratory materials for research on Ae. aegypti. PMID:23342010

Costa-da-Silva, André Luis; Navarrete, Flávia Rosa; Salvador, Felipe Scassi; Karina-Costa, Maria; Ioshino, Rafaella Sayuri; Azevedo, Diego Soares; Rocha, Desirée Rafaela; Romano, Camila Malta; Capurro, Margareth Lara

2013-01-01

303

The use of the copepod Mesocyclops longisetus as a biological control agent for Aedes aegypti in Cali, Colombia.  

PubMed

We present data on the efficacy of Mesocyclops longisetus as a biocontrol agent in controlling Aedes aegypti larvae in catch basins in Cali, Colombia. Additionally, we determined some of the features that facilitated the establishment of the copepods in catch basins. Between June 1999 and February 2000, 201 catch basins were treated with an average of 500 adult copepods. The copepods had established in 49.2% of all the basins and they maintained Ae. aegypti larvae at low densities until the end of the 8-month study. The corrected efficacy percent was 90.4%. The copepods established in basins located in a flat area as opposed to those in steep areas, exposed to sunlight and with 0-10% of floating organic matter. When the catch basins were contaminated with synthetic washing agents, like detergents, the copepods did not survive. The copepod M. longisetus could be incorporated as a biological control agent in an integrated Ae. aegypti control program. PMID:15669381

Suárez-Rubio, Marcela; Suárez, Marco E

2004-12-01

304

Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus.  

PubMed

Essential oils extracted from 10 medicinal plants were evaluated for larvicidal, adulticidal, ovicidal, oviposition-deterrent and repellent activities towards three mosquito species; Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The essential oils of Juniperus macropoda and Pimpinella anisum were highly effective as both larvicidal and ovicidal. The essential oil of P. anisum showed toxicity against 4th instar larvae of A. stephensi and A. aegypti with equivalent LD95 values of 115.7 microg/ml, whereas it was 149.7 microg/ml against C. quinquefasciatus larvae. Essential oils of Zingiber officinale and Rosmarinus officinalis were found to be ovicidal and repellent, respectively towards the three mosquito species. The essential oil of Cinnamomum zeylanicum resulted into highest repellent (RD95) values of 49.6, 53.9 and 44.2 mg/mat against A. stephensi, A. aegypti and C. quinquefasciatus, respectively apart from oviposition-deterrent potential. PMID:16051081

Prajapati, Veena; Tripathi, A K; Aggarwal, K K; Khanuja, S P S

2005-11-01

305

Ecological studies on the breeding of Aedes aegypti and other mosquitos in shells of the giant African snail Achatina fulica.  

PubMed

The breeding of larvae of Aedes aegypti, Aedes simpsoni, and Eretmapodites quinquevittatus in empty shells of Achatina fulica was studied in the coastal zone of Dar es Salaam, Tanzania. The average density of shells was estimated to be 228 per ha. From 11 to 35% were positive for mosquito larvae. A. aegypti were found in 82-84% of positive shells; A. simpsoni in 8-13%. On Msasani peninsula, during the 3-month rainy season April-June 1970, the larval density of A. aegypti in shells was estimated at 1 100 per ha, that of A. simpsoni and E. quinquevittatus being estimated at 60 and 280 larvae per ha, respectively.Empty shells of A. fulica may contain up to 250 ml of water (average: 56.5 ml). The number of larvae per shell varies from 1 to 35 (average: 8.4) and it was estimated that, depending on the availability of food, and other factors, approximately 10 ml of water are required per larva. Viable eggs of A. aegypti were still to be found in 4% of the shells at the end of the dry season. PMID:4148745

Trpis, M

1973-01-01

306

Ecological studies on the breeding of Aedes aegypti and other mosquitos in shells of the giant African snail Achatina fulica  

PubMed Central

The breeding of larvae of Aedes aegypti, Aedes simpsoni, and Eretmapodites quinquevittatus in empty shells of Achatina fulica was studied in the coastal zone of Dar es Salaam, Tanzania. The average density of shells was estimated to be 228 per ha. From 11 to 35% were positive for mosquito larvae. A. aegypti were found in 82-84% of positive shells; A. simpsoni in 8-13%. On Msasani peninsula, during the 3-month rainy season April—June 1970, the larval density of A. aegypti in shells was estimated at 1 100 per ha, that of A. simpsoni and E. quinquevittatus being estimated at 60 and 280 larvae per ha, respectively. Empty shells of A. fulica may contain up to 250 ml of water (average: 56.5 ml). The number of larvae per shell varies from 1 to 35 (average: 8.4) and it was estimated that, depending on the availability of food, and other factors, approximately 10 ml of water are required per larva. Viable eggs of A. aegypti were still to be found in 4% of the shells at the end of the dry season. PMID:4148745

Trpis, Milan

1973-01-01

307

Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti  

PubMed Central

Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent) response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI) dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2) within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA) Compendium Method TO-10A and thermal desorption (TD). Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality) in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency) into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions This study is the first to describe two air sampling methodologies that are appropriate for detecting and quantifying repellent chemicals within a treated air space during mosquito behavior evaluations. Results demonstrate that the quantity of AI detected by the mosquito vector, Ae. aegypti, that elicits repellency is far lower than that needed for toxicity. These findings have important implications for evaluation and optimization of new vector control tools that function through mosquito behavior modification as opposed to mortality. PMID:23273133

2012-01-01

308

Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)  

PubMed Central

Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide. PMID:19857255

Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

2009-01-01

309

High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus  

PubMed Central

ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN) cases are annually recorded. Indeed, DEN virus and CHIK virus (CHIKV) share the same vectors. Due to a recent CHIK outbreak affecting Caribbean islands, the need for a Pan-American evaluation of vector competence was compelling as a key parameter in assessing the epidemic risk. We demonstrated for the first time that A. aegypti and A. albopictus populations throughout the continent are highly competent to transmit CHIK irrespective of the viral genotypes tested. The risk of CHIK spreading throughout the tropical, subtropical, and even temperate regions of the Americas is more than ever a reality. In light of our results, local authorities should immediately pursue and reinforce epidemiological and entomological surveillance to avoid a severe epidemic. PMID:24672026

Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

2014-01-01

310

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection  

Microsoft Academic Search

Background: Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus .A sAe. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as

Mathieu Dubrulle; Laurence Mousson; Sara Moutailler; Marie Vazeille; Anna-Bella Failloux

2009-01-01

311

Seasonal changes in the larvel populations of Aedes aegypti in two biotopes in Dar es Salaam, Tanzania  

PubMed Central

The seasonal dynamics of larval populations of Aedes aegypti was studied in two different biotopes in Dar es Salaam, Tanzania. The first biotope was located on the Msasani peninsula on the coast 6 km north of Dar es Salaam, where A. aegypti breeds exclusively in coral rock holes. The population dynamics was studied during both the rainy and the dry season. Seasonal changes in the density of A. aegypti larvae depend primarily on variation in rainfall. The population of larvae dropped to zero only for a short time during the driest period while the adult population was maintained at a low level. The second biotope was in an automobile dump in a Dar es Salaam suburb, where A. aegypti breeds in artificial containers such as tires, automobile parts, tins, coconut shells, and snail shells. The greater part of the A. aegypti population of this biotope is maintained in the egg stage during the dry season. It serves as a focal point for breeding during the dry season: with the coming of the rains, the population expands into the surrounding residential areas. More than 70% of the larval population developed in tires, 20% in tins, 5% in coconut shells, and 1% in snail shells. PMID:4539415

Trpis, Milan

1972-01-01

312

Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico  

PubMed Central

Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

2011-01-01

313

Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.  

PubMed

Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

2011-12-01

314

Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.  

PubMed

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated, and having the size of 25-80 nm. Energy-dispersive x-ray spectroscopy showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNPs leaf extracts against the fourth instar larvae of A. aegypti (LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l) and (LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l), respectively. These results suggest that the synthesized AgNPs leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24553980

Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

2014-05-01

315

Surveillance of Aedes aegypti: Comparison of House Index with Four Alternative Traps  

PubMed Central

Introduction The mosquito Aedes aegypti, vector of dengue, chikungunya and yellow fever viruses, is an important target of vector control programs in tropical countries. Most mosquito surveillance programs are still based on the traditional household larval surveys, despite the availability of new trapping devices. We report the results of a multicentric entomological survey using four types of traps, besides the larval survey, to compare the entomological indices generated by these different surveillance tools in terms of their sensitivity to detect mosquito density variation. Methods The study was conducted in five mid-sized cities, representing variations of tropical climate regimens. Surveillance schemes using traps for adults (BG-Sentinel, Adultrap and MosquiTRAP) or eggs (ovitraps) were applied monthly to three 1 km2 areas per city. Simultaneously, larval surveys were performed. Trap positivity and density indices in each area were calculated and regressed against meteorological variables to characterize the seasonal pattern of mosquito infestation in all cities, as measured by each of the four traps. Results The House Index was consistently low in most cities, with median always 0. Traps rarely produced null indices, pointing to their greater sensitivity in detecting the presence of Ae. aegypti in comparison to the larval survey. Trap positivity indices tend to plateau at high mosquito densities. Despite this, both indices, positivity and density, agreed on the seasonality of mosquito abundance in all cities. Mosquito seasonality associated preferentially with temperature than with precipitation even in areas where temperature variation is small. Conclusions All investigated traps performed better than the House Index in measuring the seasonal variation in mosquito abundance and should be considered as complements or alternatives to larval surveys. Choice between traps should further consider differences of cost and ease-of-use. PMID:25668559

Codeço, Claudia T.; Lima, Arthur W. S.; Araújo, Simone C.; Lima, José Bento P.; Maciel-de-Freitas, Rafael; Honório, Nildimar A.; Galardo, Allan K. R.; Braga, Ima A.; Coelho, Giovanini E.; Valle, Denise

2015-01-01

316

Efficacy of dinotefuran, permethrin and pyriproxyfen combination spot-on against Aedes aegypti mosquitoes on dogs.  

PubMed

A spot-on formulation combining permethrin, dinotefuran and pyriproxyfen (Vectra 3D™ spot-on solution for dogs - one 10-25 kg pipette contains 196 mg dinotefuran, 1429 mg permethrin and 17 mg pyriproxyfen) was evaluated in adult Beagle dogs in a study designed to measure its efficacy to control Aedes aegypti (anti-feeding effect and mortality effect). The trial was performed according to Animal Welfare and Good Clinical Practice. Twelve dogs (five males and seven female, >3 years old, weighing 8.8-13.0 kg) were randomly allocated to treatment groups on pre-treatment mosquito counts: six dogs served as untreated controls, and six dogs were treated with the test formulation. Treatment consisted of applying a combination formulation to deliver at least 46.6 mg kg(-1) permethrin, 6.40 mg kg(-1) dinotefuran and 0.57 mg kg(-1) pyriproxyfen. The combination is designed to control fleas, ticks, sand flies and mosquitoes. Each dog was infested with approximately 100 adult unfed A. aegypti once before treatment (day 6) then at 1, 7, 14, 21 and 28 days post-treatment. Counts and engorgement determination of dead and live mosquitoes were performed after 1h exposure period. In the treated group (group A), the repellency effect of the product based on engorgement status (anti-feeding effect), was 91.5%, 94%, 94.7%, 94% and 87% at 1, 7, 14, 21 and 28 days post-treatment. Mortality effect or insecticidal efficacy calculated at the end of the 1-h exposure was almost identical when calculated 24h after the 1-h exposure and remained above 93% until the end of the in-life phase. No adverse events were observed following treatment, including observations conducted 2, 4 and 24h after the last dog was treated. PMID:22709947

Franc, Michel; Genchi, Claudio; Bouhsira, Emilie; Warin, Stephan; Kaltsatos, Vassilios; Baduel, Laure; Genchi, Marc

2012-10-26

317

Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost  

PubMed Central

Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious effects. PMID:23593337

Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, José Bento P.; Valle, Denise; Martins, Ademir J.

2013-01-01

318

Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves  

PubMed Central

Background Genetic modification of mosquitoes offers a promising strategy for the prevention and control of mosquito-borne diseases. For such a strategy to be effective, it is critically important that engineered strains are competitive enough to serve their intended function in population replacement or reduction of wild mosquitoes in nature. Thus far, fitness evaluations of genetically modified strains have not addressed the effects of competition among the aquatic stages and its consequences for adult fitness. We therefore tested the competitive success of combinations of wild, inbred and transgenic (created in the inbred background) immature stages of the dengue vector Aedes aegypti in the presence of optimal and sub-optimal larval diets. Results The wild strain of Ae. aegypti demonstrated greater performance (based on a composite index of survival, development rate and size) than the inbred strain, which in turn demonstrated greater performance than the genetically modified strain. Moreover, increasing competition through lowering the amount of diet available per larva affected fitness disproportionately: transgenic larvae had a reduced index of performance (95-119%) compared to inbred (50-88%) and wild type larvae (38-54%). In terms of teneral energy reserves (glycogen, lipid and sugar), adult wild type mosquitoes had more reserves directly available for flight, dispersal and basic metabolic functions than transgenic and inbred mosquitoes. Conclusions Our study provides a detailed assessment of inter- and intra-strain competition across aquatic stages of wild type, inbred, and transgenic mosquitoes and the impact of these conditions on adult energy reserves. Although it is not clear what competitive level is adequate for success of transgenic strains in nature, strong gene drive mechanisms are likely to be necessary in order to overcome competitive disadvantages in the larval stage that carryover to affect adult fitness. PMID:20925917

2010-01-01

319

Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand  

PubMed Central

Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ?25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control. PMID:25102306

Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

2014-01-01

320

Evaluation of Household Bleach as an Ovicide for the Control of Aedes aegypti.  

PubMed

Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1?3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ? 99% in shaded and sun-exposed plastic containers. Similarly, 4?1 dilution of household bleach (with or without smectite clay) eliminated ? 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats. PMID:25843179

Mackay, Andrew J; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

2015-03-01

321

Olfactory learning and memory in the disease vector mosquito Aedes aegypti.  

PubMed

Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS--some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (?-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

Vinauger, Clément; Lutz, Eleanor K; Riffell, Jeffrey A

2014-07-01

322

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal  

PubMed Central

Background The fat body is the main organ of intermediary metabolism in insects and the principal source of hemolymph proteins. As part of our ongoing efforts to understand mosquito fat body physiology and to identify novel targets for insect control, we have conducted a transcriptome analysis of the fat body of Aedes aegypti before and in response to blood feeding. Results We created two fat body non-normalized EST libraries, one from mosquito fat bodies non-blood fed (NBF) and another from mosquitoes 24 hrs post-blood meal (PBM). 454 pyrosequencing of the non-normalized libraries resulted in 204,578 useable reads from the NBF sample and 323,474 useable reads from the PBM sample. Alignment of reads to the existing reference Ae. aegypti transcript libraries for analysis of differential expression between NBF and PBM samples revealed 116,912 and 115,051 matches, respectively. De novo assembly of the reads from the NBF sample resulted in 15,456 contigs, and assembly of the reads from the PBM sample resulted in 15,010 contigs. Collectively, 123 novel transcripts were identified within these contigs. Prominently expressed transcripts in the NBF fat body library were represented by transcripts encoding ribosomal proteins. Thirty-five point four percent of all reads in the PBM library were represented by transcripts that encode yolk proteins. The most highly expressed were transcripts encoding members of the cathepsin b, vitellogenin, vitellogenic carboxypeptidase, and vitelline membrane protein families. Conclusion The two fat body transcriptomes were considerably different from each other in terms of transcript expression in terms of abundances of transcripts and genes expressed. They reflect the physiological shift of the pre-feeding fat body from a resting state to vitellogenic gene expression after feeding. PMID:21818341

Price, David P.; Nagarajan, Vijayaraj; Churbanov, Alexander; Houde, Peter; Milligan, Brook; Drake, Lisa L.; Gustafson, John E.; Hansen, Immo A.

2011-01-01

323

Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection.  

PubMed

A sample of Aedes aegypti L. from Santiago de Cuba with a high level of deltamethrin resistance (113.7 x at the 50% lethal concentration [LC50]), was subjected to deltamethrin selection to determine the capacity of this population to evolve higher resistance under intensive laboratory selection pressure, to characterize that resistance, to attempt to identify some of the mechanisms involved, and to use it as a reference strain for future molecular research. High resistance developed after 12 generations of selection (1,425 x). After selection for 12 generations with deltamethrin, the Santiago de Cuba colony (SAN-F12) showed little or no cross-resistance to the organophosphates evaluated, but high cross-resistance was observed for all the pyrethroids in larvae from this strain: lambdacyhalothrin (197.5 x), cypermethrin (45 x), and cyfluthrin (41.2 x). Adult bioassays reveal that a SAN-F12 strain was resistant to the pyrethroid and the organochlorine dichlorodiphenyltrichloroethane (DDT). Synergism tests implicated detoxifying esterase or glutathione S-transferase (GST) and monooxygenase in pyrethroid resistance. Biochemical tests reveal that acetylcholinesterase was not involved in deltamethrin resistance. The frequency of GST enzyme increased from 0.43 in Santiago de Cuba to 0.88 in SAN-F12. Esterase frequency increased from 0.12 in Santiago de Cuba to 0.63 in SAN-F6 and it diminished to 0.38 in SAN-F12. The polyacrylamide gel electrophoresis and inhibition study suggests the presence of elevated esterase activity not associated with pyrethroid resistance. The presence of both DDT and pyrethroid resistance in the SAN-F12 strain suggests the presence of a knockdown (Kdr)-type resistance mechanism, although the frequency of this mechanism was low. Resistance to deltamethrin could be associated with esterase or GST mechanisms, and more investigation is required. This information contributes to the improvement of resistance management strategies in the Cuban Ae. aegypti control program. PMID:16506569

Rodríguez, María M; Bisset, Juan A; De Armas, Yaxsier; Ramos, Francisco

2005-12-01

324

Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries.  

PubMed

Eight Latin American strains of Aedes aegypti were evaluated for resistance to 6 organophosphates (temephos, malathion, fenthion, pirimiphos-methyl, fenitrothion, and chlorpirifos) and 4 pyrethroids (deltamethrin, lambdacyhalothrin, betacypermethrin, and cyfluthrin) under laboratory conditions. In larval bioassays, temephos resistance was high (resistance ratio [RR50], > or =10X) in the majority of the strains, except for the Nicaragua and Venezuela strains, which showed moderate resistance (RR50, between 5 and 10X). The majority of the strains were susceptible to malathion, fenthion, and fenitrothion. However, resistance to pirimiphos-methyl ranged from moderate to high in most of the strains. Larvae from Havana City were resistant to 3 of the pyrethroids tested and moderately resistant to cyfluthrin. The Santiago de Cuba strain showed high resistance to deltamethrin and moderate resistance to the other pyrethroids (lambdacyhalothrin, betacypermethrin, and cyfluthrin). The rest of the strains were susceptible to pyrethroids, except for the Jamaica and Costa Rica strains, which showed moderate resistance to cyfluthrin, and Peru and Venezuela, which showed resistance to deltamethrin. Adult bioassays showed that all the strains were resistant to dichlorodiphenyl-trichloroethane and to the majority of pyrethroids evaluated. The use of the synergists S,S,S,-tributyl phosphorotrithioate and piperonil butoxide showed that esterase and monooxygenases played an important role in the temephos, pirimiphos-methyl, and chlorpirifos resistance in some strains. Biochemical tests showed high frequencies of esterase and glutathione-S-transferase activity; however, the frequency of altered acetylcholinesterase mechanism was low. The polyacrylamide electrophoresis gel detected the presence of a strong band called Est-A4. Insecticide resistance in Ae. aegypti is a serious problem facing control operations, and integrated control strategies are recommended to help prevent or delay the temephos resistance in larvae and pyrethroids resistance in adults. PMID:18240518

Rodríguez, María M; Bisset, Juan A; Fernández, Ditter

2007-12-01

325

Insecticide resistance status of Aedes aegypti in 10 localities in Colombia.  

PubMed

Insecticide resistance is one of the major threats to the effectiveness of vector control programs. In order to establish a baseline susceptibility profile of Aedes aegypti in the southwest of Colombia, 10 localities in four Departments (States) were evaluated. Standardized WHO bioassay, CDC bottle bioassay and microplate biochemical assays of non-specific ?-esterase (NSE), mixed function oxidases (MFO) and acetylcholinesterase were used. Cross resistance was evaluated with field collected mosquitoes that underwent selection pressure in the laboratory from DDT, propoxur and lambdacyhalothrin during three alternate generations. Mosquitoes with mortality rates below 80% in bioassays were considered resistant. Insecticide resistance varied geographically. Insecticide resistance was observed in 100% of localities in which mosquitoes were exposed to DDT, bendiocarb and temephos using both assays. WHO bioassays showed susceptibility to pyrethroids in all the localities evaluated, however CDC bottle bioassays showed decreases in susceptibility especially with lambdacyhalothrin. All localities showed susceptibility to the organophosphate malathion. Mosquitoes from eight regions with evidence of resistance to any of the insecticide evaluated were also evaluated biochemically. Mosquitoes from five of these regions had increased levels of NSE and two regions had increased levels of MFO. Increase levels of NSE explain partially the low susceptibility to temephos found in all the localities. However, the biochemical mechanisms evaluated do not explain all the resistance observed. Cross resistance was observed between the DDT-selected strain and lambdacyhalothrin, and between the lambdacyhalothrin-selected strain and propoxur and vice versa. The selected strains do not show changes in the biochemical assays evaluated, therefore the observed cross-resistance suggests different biochemical mechanisms. This study shows that Ae. aegypti from Colombia can develop resistance to most of the insecticide classes in the market. Periodic surveillance of insecticide resistance is necessary in order to maintain effective interventions. This study helped to establish the National Network for the surveillance of the insecticide resistance in Colombia. PMID:21300017

Ocampo, Clara B; Salazar-Terreros, Myriam J; Mina, Neila J; McAllister, Janet; Brogdon, William

2011-04-01

326

Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti.  

PubMed

Most mosquito species must feed on the blood of a vertebrate host to produce eggs. In the yellow fever mosquito, Aedes aegypti, blood feeding triggers medial neurosecretory cells in the brain to release insulin-like peptides (ILPs) and ovary ecdysteroidogenic hormone (OEH). Theses hormones thereafter directly induce the ovaries to produce ecdysteroid hormone (ECD), which activates the synthesis of yolk proteins in the fat body for uptake by oocytes. ILP3 stimulates ECD production by binding to the mosquito insulin receptor (MIR). In contrast, little is known about the mode of action of OEH, which is a member of a neuropeptide family called neuroparsin. Here we report that OEH is the only neuroparsin family member present in the Ae. aegypti genome and that other mosquitoes also encode only one neuroparsin gene. Immunoblotting experiments suggested that the full-length form of the peptide, which we call long OEH (lOEH), is processed into short OEH (sOEH). The importance of processing, however, remained unclear because a recombinant form of lOEH (rlOEH) and synthetic sOEH exhibited very similar biological activity. A series of experiments indicated that neither rlOEH nor sOEH bound to ILP3 or the MIR. Signaling studies further showed that ILP3 activated the MIR but rlOEH did not, yet both neuropeptides activated Akt, which is a marker for insulin pathway signaling. Our results also indicated that activation of TOR signaling in the ovaries required co-stimulation by amino acids and either ILP3 or rlOEH. Overall, we conclude that OEH activates the insulin signaling pathway independently of the MIR, and that insulin and TOR signaling in the ovaries is coupled. PMID:24076067

Dhara, Animesh; Eum, Jai-Hoon; Robertson, Anne; Gulia-Nuss, Monika; Vogel, Kevin J; Clark, Kevin D; Graf, Rolf; Brown, Mark R; Strand, Michael R

2013-12-01

327

Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).  

PubMed

Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The adulticidal and repellent activities of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Eclipta alba and Andrographis paniculata were assayed for their toxicity against two important vector mosquitoes, viz., Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract of A. paniculata against the adults of C. quinquefasciatus and A. aegypti with the LC(50) and LC(90) values were 149.81, 172.37 ppm and 288.12, 321.01 ppm, respectively. The results of the repellent activity of hexane, ethyl acetate, benzene, chloroform, and methanol extract of E. alba and A. paniculata plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm(2) were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal ecofriendly approach for the control of mosquitoes. This is the first report on the mosquito adulticidal and repellent activities of the reported E. alba and A. paniculata plants. PMID:22009267

Govindarajan, Marimuthu; Sivakumar, Rajamohan

2012-05-01

328

Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae  

PubMed Central

Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0?604 ± 0.0?040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0?972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

Ali, M Syed; Ravikumar, S; Beula, J Margaret

2012-01-01

329

Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti.  

PubMed

Bacillus thuringiensis subsp. israelensis (Bti) is widely used for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (? 40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID:25242559

Lee, Su-Bum; Aimanova, Karlygash G; Gill, Sarjeet S

2014-11-01

330

Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae).  

PubMed

Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program. PMID:25368088

AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

2014-01-01

331

Mosquito (Aedes aegypti) flight tones: Frequency, harmonicity, spherical spreading, and phase relationships  

PubMed Central

Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1?Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed. PMID:25234901

Arthur, Benjamin J.; Emr, Kevin S.; Wyttenbach, Robert A.; Hoy, Ronald R.

2014-01-01

332

Fitness of Transgenic Mosquito Aedes aegypti Males Carrying a Dominant Lethal Genetic System  

PubMed Central

OX513A is a transgenic strain of Aedes aegypti engineered to carry a dominant, non-sex-specific, late-acting lethal genetic system that is repressed in the presence of tetracycline. It was designed for use in a sterile-insect (SIT) pest control system called RIDL® (Release of Insects carrying a Dominant Lethal gene) by which transgenic males are released in the field to mate with wild females; in the absence of tetracycline, the progeny from such matings will not survive. We investigated the mating fitness of OX513A in the laboratory. Male OX513A were as effective as Rockefeller (ROCK) males at inducing refractoriness to further mating in wild type females and there was no reduction in their ability to inseminate multiple females. They had a lower mating success but yielded more progeny than the wild-type comparator strain (ROCK) when one male of each strain was caged with a ROCK female. Mating success and fertility of groups of 10 males—with different ratios of RIDL to ROCK—competing for five ROCK females was similar, but the median longevity of RIDL males was somewhat (18%) lower. We conclude that the fitness under laboratory conditions of OX513A males carrying a tetracycline repressible lethal gene is comparable to that of males of the wild-type comparator strain. PMID:23690948

Massonnet-Bruneel, Blandine; Corre-Catelin, Nicole; Lacroix, Renaud; Lees, Rosemary S.; Hoang, Kim Phuc; Nimmo, Derric; Alphey, Luke; Reiter, Paul

2013-01-01

333

Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito  

PubMed Central

Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

2009-01-01

334

Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti.  

PubMed Central

Information on genetic variation within and between populations is critical for understanding the evolutionary history of mosquito populations and disease epidemiology. Previous studies with Drosophila suggest that genetic variation of selectively neutral loci in a large fraction of genome may be constrained by fixation of advantageous mutations associated with hitchhiking effect. This study examined restriction fragment length polymorphisms of four natural Aedes aegypti mosquito populations from Trinidad and Tobago, at 16 loci. These populations have been subjected to organophosphate (OP) insecticide treatments for more than two decades, while dichlor-diphenyltrichlor (DDT) was the insecticide of choice prior to this period. We predicted that genes closely linked to the OP target loci would exhibit reduced genetic variation as a result of the hitchhiking effect associated with intensive OP insecticide selection. We also predicted that genetic variability of the genes conferring resistance to DDT and loci near the target site would be similar to other unlinked loci. As predicted, reduced genetic variation was found for loci in the general chromosomal region of a putative OP target site, and these loci generally exhibited larger F(ST) values than other random loci. In contrast, the gene conferring resistance to DDT and its linked loci show polymorphisms and genetic differentiation similar to other random loci. The reduced genetic variability and apparent gene deletion in some regions of chromosome 1 likely reflect the hitchhiking effect associated with OP insecticide selection. PMID:9504925

Yan, G; Chadee, D D; Severson, D W

1998-01-01

335

Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela.  

PubMed

Resistance to the insecticides deltamethrin and malathion and the enzymes associated with metabolic resistance mechanisms were determined in four field populations of Aedes aegypti (L.) from western Venezuela during 2008 and 2010 using the bottle assay and the microplate biochemical techniques. For deltamethrin, mortality rates after 1 h exposure and after a 24-h recovery period were determined to calculate the 50% knock-downconcentration (KC50) and the lethal concentration (LC50), respectively. For malathion, mortality was recorded at 24 h to determine the LC50. For deltamethrin, resistance ratios of knock-down resistance and postrecovery were determined by calculating the RRKC50 and RRLC50, comparing the KC50 and LC50 values of the field populations and those of the susceptible New Orleans strain. Knock-down resistance to deltamethrin was moderate in the majority of the populations in 2008 (RRKC50 values were between 5- and 10-fold), and only one population showed high resistance in 2010 (RRKC50 > 10-fold). Moderate and high postrecovery resistance to deltamethrin was observed in the majority of the populations for 2008 and 2010, respectively. There was significantly increased expression of glutathione-S-tranferases and mixed-function oxidases. All populations showed low resistance to malathion in 2008 and 2010 with significantly higher levels of alpha-esterases for 2008 and 2010 and beta-esterases for 2008. PMID:24180108

Alvarez, Leslie C; Ponce, Gustavo; Oviedo, Milagros; Lopez, Beatriz; Flores, Adriana E

2013-09-01

336

Morphological variants of Aedes aegypti collected from the Leeward Island of Antigua.  

PubMed

Nineteen Aedes aegypti larvae were collected in rural Antigua, West Indies, from an 18-liter plastic bucket. The location was in a rural area at the northern end of Antigua bordering the coast of Dickenson Bay and approximately 50 m south of Halcyon Cove Beach (17 degrees 09'42.54"N, 61 degrees 50'44.50"W; elevation 16 m). Atypical morphology was noted in larvae and 3 reared adult females. Fourth instars showed a reduction in length of the lateral hair on the saddle (seta 1-X) with measurements ranging from 0.36 to 0.57 the length of the saddle. Two atypical female specimens displayed an abundance of dull white to gold scales that blanketed the abdomen. A 3rd specimen bore fine, golden scales on the mesonotum and bronze scales on the vertices of the head. These adult specimens demonstrated morphological characteristics that closely parallel described mutations, although the genetic basis for these characters was not confirmed. The remaining adults in the collection were morphologically typical. Adults and larvae were compared to field populations from Florida, Bahamas, and Antigua, as well as to the Rockefeller strain maintained at Rutgers University. PMID:22017096

Verna, Thomas N; Munstermann, Leonard E

2011-09-01

337

Characterisation of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae).  

PubMed

Bacillus thuringiensis is successfully used in pest management strategies as an eco-friendly bioinsecticide. Isolation and identification of new strains with a wide variety of target pests is an ever growing field. In this paper, new B. thuringiensis isolates were investigated to search for original strains active against diptera and able to produce novel toxins that could be used as an alternative for the commercial H14 strain. Biochemical and molecular characterization revealed a remarkable diversity among the studied strains. Using the PCR method, cry4C/Da1, cry30Ea, cry39A, cry40 and cry54 genes were detected in four isolates. Three strains, BLB355, BLB196 and BUPM109, showed feeble activities against Aedes aegypti larvae. Interestingly, spore-crystal mixtures of BLB361, BLB30 and BLB237 were found to be active against Ceratitis capitata with an LC50 value of about 65.375, 51.735 and 42.972 ?g cm(-2), respectively. All the studied strains exhibited important mortality levels using culture supernatants against C. capitata larvae. This suggests that these strains produce a wide range of soluble factors active against C. capitata larvae. PMID:25433312

Elleuch, Jihen; Tounsi, Slim; Ben Hassen, Najeh Belguith; Lacoix, Marie Noël; Chandre, Fabrice; Jaoua, Samir; Zghal, Raida Zribi

2015-01-01

338

Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes  

PubMed Central

A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus. PMID:25494470

Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

2014-01-01

339

Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.  

PubMed

The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial. PMID:25204067

Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

2014-09-01

340

Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae).  

PubMed

Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans. PMID:24239749

Dieng, Hamady; Rajasaygar, Sudha; Ahmad, Abu Hassan; Md Rawi, Che Salmah; Ahmad, Hamdan; Satho, Tomomitsu; Miake, Fumio; Zuharah, Wan Fatma; Fukumitsu, Yuki; Saad, Ahmad Ramli; Abdul Hamid, Suhaila; Vargas, Ronald Enrique Morales; Ab Majid, Abdul Hafiz; Fadzly, Nik; Abu Kassim, Nur Faeza; Hashim, Nur Aida; Ghani, Idris Abd; Abang, Fatimah Bt; Abubakar, Sazaly

2013-11-13

341

[Comparison of 2 populations of Aedes aegypti mosquitoes from Santiago de Cuba with different rest conduct].  

PubMed

Two populations of Aedes aegypti that were collected in Santiago de Cuba during the epidemics of 1971 were separated for having different rest habits, some of them rested naturally on the walls up to 1 m high (Santiago de Cuba strain) and the others were found resting in the roofs of the houses (Santiago de Cuba Techo strain). These strains did not show significant differences as regards their morphological characteristics. The mosquitoes corresponding to Santiago de Cuba Techo strain presented the same patches that those of Santiago de Cuba. The resistance to organophosphate insecticides is very similar in both populations; however, the Santiago de Cuba Techo strain shows a higher resistance to pyrethroid deltamethrin than the Santiago de Cuba strain. From the biochemical point of view and by using the DEF synergist, it was proved that esterases are associated with the high resistance to clorpirifos in both strains. It was not so with the MFO, which was demonstrated by means of the piperomyl butoxide sinergist. Nevertheless, the GST enzyme seems to be responsible for the high resistance to deltamethrin detected in the Santiago de Cuba Techo strain due to the elevated frequency value of that gene in this strain. The random amplified polymorphic DNA technique was used to observe the genetic variability between the 2 populations. The results revealed that there was genetic polymorphism between the populations under study, which could have an impact on the ecology and epidemiology of the vector. PMID:17966585

Bisset, Juan A; Rodríguez, Magdalena; De Armas, Yaxsier

2005-01-01

342

Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.  

PubMed

This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40? ? g·mL(-1) (11.1460? ? g·mL(-1) and 25.8689? ? g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40? ? g·mL(-1) (29.018? ? g·mL(-1) and 17.230? ? g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277? ? g·mL(-1) and 706.990? ? g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

2014-01-01

343

The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti.  

PubMed

Secreted ferritin is the major iron storage and transport protein in insects. Here, we characterize the message and protein expression profiles of yellow fever mosquito (Aedes aegypti) ferritin heavy chain homologue (HCH) and light chain homologue (LCH) subunits in response to iron and bacterial challenge. In vivo experiments demonstrated tissue-specific regulation of HCH and LCH expression over time post-blood meal (PBM). Transcriptional regulation of HCH and LCH was treatment specific, with differences in regulation for naïve versus mosquitoes challenged with heat-killed bacteria (HKB). Translational regulation by iron regulatory protein (IRP) binding activity for the iron-responsive element (IRE) was tissue-specific and time-dependent PBM. However, mosquitoes challenged with HKB showed little change in IRP/IRE binding activity compared to naïve animals. The changes in ferritin regulation and expression in vivo were confirmed with in vitro studies. We challenged mosquitoes with HKB followed by a blood meal to determine the effects on ferritin expression, and demonstrate a synergistic, time-dependent regulation of expression for HCH and LCH. PMID:23956079

Geiser, Dawn L; Zhou, Guoli; Mayo, Jonathan J; Winzerling, Joy J

2013-10-01

344

Larvicidal activity of selected aloe species against Aedes aegypti (Diptera: Culiciade).  

PubMed

Management of mosquito vectors by current classes of mosquitocides is relatively ineffective and necessitates prospecting for novel insecticides with different modes of action. Larvicidal activities of 15 crude extracts from three geographically isolated Aloe ngongensis (Christian), Aloe turkanensis (Christian), and Aloe fibrosa (Lavranos & L.E.Newton) (Xanthorrhoeaceae) species (five each) were evaluated against Aedes aegypti (Linnaeus in Hasselquist) (Diptera: Culiciade L.) yellow fever mosquito. Freshly collected leaves were separately shade-dried to constant weight at room temperature (25?±?2°C) and powdered. Each powder was macerated in solvents of increasing polarity (hexane, chloroform, ethyl acetate, acetone, and methanol) for 72 h and subsequently filtered. Third-instar larvae (n?=?25) of the mosquito were exposed to the extracts at different concentrations for 24 h to establish dose response relationships. All the fractions of A. ngongensis were active below 1 mg/ml except A. fibrosa and A. turkanensis. The highest activity (LC50) mg/ml was obtained with extracts of A. fibrosa hexane (0.05 [0.04-0.06]), followed by A. ngongensis hexane (0.11 [0.08-0.15]) and A. turkanensis ethyl acetate (0.11 [0.09-0.12]). The activities are apparently Aloe species specific and extraction solvent dependent. These findings suggest that extracts from selected Aloe species have mosquitocidal principles that can be exploited in development of new insecticides. PMID:25502038

Chore, Judith K; Obonyo, Meshack; Wachira, Francis N; Mireji, Paul O

2014-01-01

345

Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito.  

PubMed

Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals. PMID:25540155

Després, Laurence; Stalinski, Renaud; Faucon, Frédéric; Navratil, Vincent; Viari, Alain; Paris, Margot; Tetreau, Guillaume; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Reynaud, Stéphane; David, Jean-Philippe

2014-12-01

346

Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance  

Microsoft Academic Search

BackgroundPyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32

Bradley J. Stevenson; Patricia Pignatelli; Dimitra Nikou; Mark J. I. Paine

2012-01-01

347

Oviposition deterrent activity from the ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves against Aedes aegypti and Culex quinquefaciatus  

PubMed Central

Mosquitoes are responsible for spread of many diseases than any other group of arthropods. Diseases such as malaria, filariasis, dengue hemorrhagic fever (DHF), and chikunguinya are real threat to mankind. In the present study, ethanolic extracts of leaves of Pongamia pinnata, Coleus forskohlii, and Datura stramonium were evaluated for oviposition deterrent activity against Aedes aegypti and Culex quinquefasciatus. The oviposition deterrent tests of ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves reduced egg laying by 97.62%, 77.3%, 100% against Aedes aegypti and 59.10%, 39.22%, 82% against Culex quinquefasciatus at higher concentration (0.1%). PMID:21120036

Swathi, S.; Murugananthan, G.; Ghosh, S. K.

2010-01-01

348

Potential development of temephos resistance in Aedes aegypti related to its mechanism and susceptibility to dengue virus.  

PubMed

The addition of temephos to water containers as a larvicide against Aedes aegypti was commonly used as a part of DHF control programs. The widespread, or long-term, application of insecticides can lead to the development of mosquito resistance to the insecticides through selection pressure. This presents a problem for disease control. Therefore, this study was conducted in the laboratory to observe the potential development of resistance to temephos and the mechanism involved in Ae. aegypti, and to study the significance for dengue infection. The larvae were selected in consecutive generations. The level of resistance to temephos was detected by WHO assay technique. After 19 generations of selection, a low level of resistance was found. The resistance ratio at LC50 was 4.64 when compared with the non-selected group. The assay for major enzyme-based resistance mechanisms was done in a microtiter plate to detect elevated non-specific esterases, monooxygenase, and insensitive acetylcholinesterase in the temephos-selected and non-selected groups. It revealed a significant increase in esterase activity when compared with the non-selected group. There was no elevation of monooxygenase or insensitive acetylcholinesterase activities. However, when an esterase inhibitor (S, S, S-tributyl phosphorotrithioate, or DEF) was added to temephos and the susceptibility in the selected group was studied, the resistance ratio was reduced from 16.92 to 3.57 when compared with a standard susceptible strain (Bora Bora). This indicates that the esterases play an important role in temephos resistance. Dengue-2 virus susceptibility was studied by oral feeding to females of the temephos-selected (S19) and the non-selected groups. The dissemination rates, when the titer of virus in the blood meal was 7.30 MID50/ml, were 11.11% and 9.38% for the selected and non-selected groups, respectively. When the titer of virus in the blood meal was 8.15 MID50/ml, the dissemination rates increased to 24.24% and 33.33%, respectively. A statistical difference in viral susceptibility was not found between the two groups. This suggested that the low level of temephos resistance might not affect oral susceptibility. However, this needs further study. PMID:19230585

Paeporn, Pungasem; Komalamisra, Narumon; Thongrungkiat, Supatra; Deesin, Vanida; Eshita, Yuki; Rongsriyam, Yupha

2003-01-01

349

Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).  

PubMed

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10?×?LC50) lead to A. aegypti larval reduction of 47.6 %, 76.7 % and 100 %, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9 %, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors. PMID:25669140

Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

2015-04-01

350

Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae).  

PubMed

The purpose of this study was to investigate the repellent activities of essential oils from Cryptomeria japonica (sugi) against adults of mosquitoes Aedes aegypti and Aedes albopictus . Comparison of essential oils from four different plant parts of C. japonica revealed that essential oil from its leaf exhibited the best repellent activity against mosquitoes. To understand the relationship between volatile organic compounds and repellent activity, the solid-phase microextraction (SPME) method was employed to analyze volatile organic compounds of leaf essential oil. The SPME fiber was coated with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The major volatile organic compounds in the cage were 3-carene, alpha-terpinene, limonene, gamma-terpinene, and terpinolene at 0 min. Results demonstrated that (-)-terpinen-4-ol was the major volatile organic compound adsorbed by SPME fiber during repellent assays. Furthermore, the repellent activities of six compounds against adults of the mosquitoes were evaluated, and the results revealed that (-)-terpinen-4-ol exhibited the best repellent activity against A. aegypti and A. albopictus. PMID:19902948

Gu, Hui-Jing; Cheng, Sen-Sung; Lin, Chun-Ya; Huang, Chin-Gi; Chen, Wei-June; Chang, Shang-Tzen

2009-12-01

351

Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases  

PubMed Central

Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti. PMID:21227970

Brown, Julia E.; McBride, Carolyn S.; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Hervé; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J.; Black, William C.; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O.; Walker, Christopher; Powell, Jeffrey R.

2011-01-01

352

The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti  

PubMed Central

Dietary restriction extends lifespan in many organisms, but little is known about how it affects hematophagous arthropods. We demonstrated that diet restriction during either larval or adult stages extends Aedes aegypti lifespan. A. aegypti females fed either single or no blood meals survived 30–40% longer than those given weekly blood meals. However, mosquitoes given weekly blood meals produced far more eggs. To minimize reproduction’s impact on lifespan, adult mosquitoes were fed artificial blood meals containing <10% of the protein in normal human blood, minimizing egg production. A. aegypti fed artificial blood meals containing 25 mg/ml of BSA had significantly shorter lifespans than those fed either 10 or 5 mg/ml. To assess the impact of larval dietary restriction on adult lifespan, we maintained larval A. aegypti on 2X, 1X (normal diet), 0.5X or 0.25X diets. Adult mosquitoes fed 0.5X and 0.25X larval diets survived significantly longer than those fed the 2X larval diet regardless of adult diet. In summary, dietary restriction during both larval and adult stages extends lifespan. This diet-mediated lifespan extension has important consequences for understanding how dietary restriction regulates lifespan and disease transmission. PMID:20451597

Joy, Teresa K.; Arik, Anam J.; Corby-Harris, Vanessa; Johnson, Adiv A.; Riehle, Michael A.

2014-01-01

353

Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba.  

PubMed

A sample of Aedes aegypti (L.) (Diptera: Culicidae) from Santiago de Cuba, Cuba, with a high level of propoxur resistance compared with the reference susceptible Rockefeller strain (12.60 x at the 50% lethal concentration [LC50] and 18.08 at the 90% lethal concentration [LC90]), with a 4.3% frequency of insensitive acetylcholinesterase (AChE) frequency, was subjected to propoxur selection for 13 successive generations to increase the frequency of this resistance mechanism in Ae. aegypti. High resistance to propoxur was developed during this selection (41.73-fold), and the frequency of insensitive AChE mechanism was increased 13.25-fold. Other mechanisms (overproduced esterases, glutathione transferases, or monooxygenases) were not detected in the propoxur-selected strain. The selection of an insensitive AChE resistance mechanism in Ae. aegypti has important implications and will be a valuable resource for genetic studies and molecular characterization of the ace gene mutation(s) associated with insecticide resistance in Ae. aegypti. PMID:17162951

Bisset, Juan; Rodríguez, María M; Fernández, Ditter

2006-11-01

354

Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti.  

PubMed

Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6-trimethylcyclohex-2-ene-1,4-dione (ketoisophorone) (CAS# 1125-21-9, t(R) = 18.75), 2,2,6-trimethylcyclohexane-1,4-dione (the saturated analog of ketoisophorone) (CAS# 20547-99-3, t(R) = 20.05), and 1-(4-ethylphenyl) ethanone (CAS# 937-30-4, t(R) = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti. PMID:25424264

Fawaz, Emadeldin Y; Allan, Sandra A; Bernier, Ulrich R; Obenauer, Peter J; Diclaro, Joseph W

2014-12-01

355

Emergency control of Aedes aegypti in the Dominican Republic using the Scorpion 20 ULV forced-air generator.  

PubMed

In an effort to develop a more effective measure for use in emergency control of the dengue vector Aedes aegypti. applications of a combination of a larvicide (Bacillus thuringiensis israelensis [B.t.i.]) and an adulticide (permethrin) were made using a truck-mounted forced-air generator (Scorpion 20) and evaluated in the Dominican Republic. This method has the potential to simultaneously control adults and larvae. In bioassay cages placed in household water containers at the time of application, larval mortalities were 95.1 and 100% for 2 application rates of permethrin mixed with B.t.i. Adult mortalities were not as impressive, probably because of resistance to permethrin. Higher adult mortality in caged specimens (78.5%) and a substantial reduction in the natural population (68.4%) of Ae. aegypti were obtained following a 2.1-g AI/ha application of deltamethrin alone. PMID:7807084

Tidwell, M A; Williams, D C; Gwinn, T A; Peña, C J; Tedders, S H; Gonzalvez, G E; Mekuria, Y

1994-09-01

356

Breeding places and seasonal incidence of Aedes aegypti, as assessed by the single-larva survey method*  

PubMed Central

The single-larva survey method was employed to study the breeding places and seasonal incidence of Aedes aegypti in Dar es Salaam, Tanzania. From May 1968 to May 1969, 28 462 containers of water—located in approximately equal numbers indoors and outdoors—were investigated. The highest frequency of breeding (8.0%) of A. aegypti was observed in tires and motor parts. Drums, barrels, water-pots, and other receptacles left outdoors showed a higher frequency (3.1%) than those kept indoors (0.6%). Metal containers were infested to a greater extent than those made of mud, wood, or other materials; 2.5% of coconut shells, snail shells, etc. and 1.3% of tree holes, plant axils, and cut bamboos were infested. The seasonal prevalence, expressed as a container index, closely followed and paralleled the fluctuations in rainfall. The value of this survey method for both ecological studies and practical control purposes is discussed. PMID:4544149

Rao, T. Ramachandra; Trpis, M.; Gillett, J. D.; Teesdale, C.; Tonn, R. J.

1973-01-01

357

A field trial on the comparative effectiveness of malathion and Resigen by ULV application on Aedes aegypti.  

PubMed

Field trials were conducted in two residential areas of Petaling Jaya Municipality to test the adulticidal and larvicidal effects of malathion 96% TG and Resigen on Aedes aegypti. Malathion is the currently used insecticide in Malaysia for the control of dengue. The Leco HD ULV machine was used throught the trials. For malathion the flow rate was 90 ml/minute at a vehicle speed of 8kph and for Resigen the flow rate was 200 ml/minute at the same vechicle speed. Malathion was more effective giving higher mortality rates when compared with Resigen. The mortality rate of adult Ae. aegypti outdoor was higher than in the living room and kitchen. Both insecticides did not show promising larvicidal effects. PMID:1948249

Vythilingam, I; Panart, P

1991-03-01

358

Development of a Semi-Field System for Contained Field Trials with Aedes aegypti in Southern Mexico  

PubMed Central

Development of new genetic approaches to either interfere with the ability of mosquitoes to transmit dengue virus or to reduce vector population density requires progressive evaluation from the laboratory to contained field trials, before open field release. Trials in contained outdoor facilities are an important part of this process because they can be used to evaluate the effectiveness and reliability of modified strains in settings that include natural environmental variations without releasing mosquitoes into the open field. We describe a simple and cost-effective semi-field system designed to study Aedes aegypti carrying a dominant lethal gene (fsRIDL) in semi-field conditions. We provide a protocol for establishing, maintaining, and monitoring stable Ae. aegypti population densities inside field cages. PMID:21813843

Facchinelli, Luca; Valerio, Laura; Bond, J. Guillermo; Wise de Valdez, Megan R.; Harrington, Laura C.; Ramsey, Janine M.; Casas-Martinez, M.; Scott, Thomas W.

2011-01-01

359

Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison).  

PubMed

The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes. PMID:22299433

Phasomkusolsil, Siriporn; Soonwera, Mayura

2011-09-01

360

Discrepancies between Aedes aegypti identification in the field and in the laboratory after collection with a sticky trap  

PubMed Central

Currently, sticky traps are regularly employed to assist in the surveillance of Aedes aegypti infestation. We tested two alternative procedures for specimen identification performed by local health agents: directly in the field, as recommended by certain manufacturers, or after transportation to the laboratory. A total of 384 sticky traps (MosquiTRAP) were monitored monthly during one year in four geographically representative Brazilian municipalities. When the same samples were inspected in the field and in the laboratory, large differences were noted in the total number of mosquitoes recorded and in the number of specimens identified as Ae. aegypti by both procedures. Although field identification has the potential to speed vector surveillance, these results point to uncertainties in the evaluated protocol. PMID:25317711

Maciel-de-Freitas, Rafael; Lima, Arthur Weiss da Silva; Araújo, Simone Costa; Lima, José Bento Pereira; Galardo, Allan Kardec Ribeiro; Honório, Nildimar Alves; Braga, Ima Aparecida; Coelho, Giovanini Evelim; Codeço, Claudia Torres; Valle, Denise

2014-01-01

361

Discrepancies between Aedes aegypti identification in the field and in the laboratory after collection with a sticky trap.  

PubMed

Currently, sticky traps are regularly employed to assist in the surveillance of Aedes aegypti infestation. We tested two alternative procedures for specimen identification performed by local health agents: directly in the field, as recommended by certain manufacturers, or after transportation to the laboratory. A total of 384 sticky traps (MosquiTRAP) were monitored monthly during one year in four geographically representative Brazilian municipalities. When the same samples were inspected in the field and in the laboratory, large differences were noted in the total number of mosquitoes recorded and in the number of specimens identified as Ae. aegypti by both procedures. Although field identification has the potential to speed vector surveillance, these results point to uncertainties in the evaluated protocol. PMID:25230130

Maciel-de-Freitas, Rafael; Lima, Arthur Weiss da Silva; Araújo, Simone Costa; Lima, José Bento Pereira; Galardo, Allan Kardec Ribeiro; Honório, Nildimar Alves; Braga, Ima Aparecida; Coelho, Giovanini Evelim; Codeço, Claudia Torres; Valle, Denise

2014-09-01

362

Discrepancies between Aedes aegypti identification in the field and in the laboratory after collection with a sticky trap.  

PubMed

Currently, sticky traps are regularly employed to assist in the surveillance of Aedes aegypti infestation. We tested two alternative procedures for specimen identification performed by local health agents: directly in the field, as recommended by certain manufacturers, or after transportation to the laboratory. A total of 384 sticky traps (MosquiTRAP) were monitored monthly during one year in four geographically representative Brazilian municipalities. When the same samples were inspected in the field and in the laboratory, large differences were noted in the total number of mosquitoes recorded and in the number of specimens identified as Ae. aegypti by both procedures. Although field identification has the potential to speed vector surveillance, these results point to uncertainties in the evaluated protocol. PMID:25317711

Maciel-de-Freitas, Rafael; Lima, Arthur Weiss da Silva; Araújo, Simone Costa; Lima, José Bento Pereira; Galardo, Allan Kardec Ribeiro; Honório, Nildimar Alves; Braga, Ima Aparecida; Coelho, Giovanini Evelim; Codeço, Claudia Torres; Valle, Denise

2014-09-01

363

Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.  

PubMed

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-80 nm. Energy-dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNP from leaf extracts against the fourth instar larvae of A. aegypti with LC?? values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l and LC?? values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l respectively. These results suggest that the synthesized AgNP from leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24337613

Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

2014-03-01

364

Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti  

NASA Astrophysics Data System (ADS)

Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N, N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.

Sanford, Jillian L.; Shields, Vonnie D. C.; Dickens, Joseph C.

2013-03-01

365

Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal  

PubMed Central

Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to protect the health of local people and tourists travelling in the central Himalayas. PMID:25774518

Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

2015-01-01

366

Wing Shape as an Indicator of Larval Rearing Conditions for Aedes albopictus and Ae. aegypti (Diptera: Culicidae)  

PubMed Central

Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054

Stephens, C. R.; Juliano, S. A.

2012-01-01

367

Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions  

PubMed Central

Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV). While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector. PMID:23861987

Sim, Shuzhen; Jupatanakul, Natapong; Ramirez, José L.; Kang, Seokyoung; Romero-Vivas, Claudia M.; Mohammed, Hamish; Dimopoulos, George

2013-01-01

368

A Secure Semi-Field System for the Study of Aedes aegypti  

PubMed Central

Background New contained semi-field cages are being developed and used to test novel vector control strategies of dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages (James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia. Methodology/Principal Findings The MRF consists of a single QIC-2 laboratory/insectary that connects through a central corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match ambient conditions. Data loggers set in the cages and outside found a <2°C temperature difference. Additional security features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled every 3–4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively. Conclusions/Significance The MRF SFS allows us to test novel control strategies within a secure, contained environment. The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures on quarantine level insects. PMID:21445333

Ritchie, Scott A.; Johnson, Petrina H.; Freeman, Anthony J.; Odell, Robin G.; Graham, Neal; DeJong, Paul A.; Standfield, Graeme W.; Sale, Richard W.; O'Neill, Scott L.

2011-01-01

369

Wide spread cross resistance to pyrethroids in Aedes aegypti (L.) from Veracruz State Mexico  

PubMed Central

Seven F1 strains of Aedes aegypti (L.) were evaluated by bottle bioassay for resistance to the pyrethroids d-phenothrin, permethrin, deltamethrin, ?-cyalothrin, bifenthrin, cypermethrin, ?-cypermethrin and z-cypermethrin. The New Orleans strain was used as a susceptible control. Mortality rates after a 1h exposure and following a 24h recovery period were determined. The resistance ratio between the 50% knockdown values (RRKC50) of the F1 and New Orleans strains indicated high levels of knockdown resistance (kdr). The RRKC50 with ?-cypermethrin varied from 10–100 among strains indicating high levels of kdr. Most of the strains had moderate resistance to d-phenothrin. Significant but much lower levels of resistance were detected for ?–cyalothrin, permethrin and cypermethrin. For z-cypermethrin and bifenthrin, only one strain exhibited resistance with RRKC50 values of 10- and 21-fold, respectively. None of the strains showed RRKC50 >10 with deltamethrin, and moderate resistance was seen in three strains, while the rest were susceptible. Mosquitoes from all strains exhibited some recovery from all pyrethroids except d-phenothrin. Regression analysis was used to analyze the relationship between RRLC50 and RRKC50. Both were highly correlated (R2 = 0.84 – 0.97) so that the slope could be used to determine how much additional pyrethroid was needed to insure lethality. Slopes ranged from 0.875 for d-phenothrin (RRLC50 ? RRKC50) to 8.67 for ?–cyalothrin (~8.5 fold more insecticide needed to kill). Both RRLC50 and RRKC50 values were highly correlated for all pyrethroids except bifenthrin indicating strong cross resistance. Bifenthrin appears to be an alternative pyrethroid without strong cross resistance that could be used as an alternative to the current widespread use of permethrin in Mexico. PMID:23786088

Flores, Adriana E.; Ponce, Gustavo; Silva, Brenda G.; Gutierrez, Selene M.; Bobadilla, Cristina; Lopez, Beatriz; Mercado, Roberto; Black, William C.

2014-01-01

370

Proteomic biomarkers for ageing the mosquito Aedes aegypti to determine risk of pathogen transmission.  

PubMed

Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting mosquito longevity. PMID:23536806

Hugo, Leon E; Monkman, James; Dave, Keyur A; Wockner, Leesa F; Birrell, Geoff W; Norris, Emma L; Kienzle, Vivian J; Sikulu, Maggy T; Ryan, Peter A; Gorman, Jeffery J; Kay, Brian H

2013-01-01

371

Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.  

PubMed

Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

Marcombe, Sébastien; Paris, Margot; Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

2013-01-01

372

Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region.  

PubMed

We determined the susceptibility to insecticides and the biochemical and molecular mechanisms involved in resistance in nine populations of Aedes aegypti (L.) of the Colombian Caribbean region. Bioassays were performed on larvae for susceptibility to temephos and on adults to the insecticides malathion, fenitrothion, pirimiphos-methyl, permethrin, deltamethrin, ?-cyhalothrin and cyfluthrin. The resistance ratio (RR) for each insecticide in the populations was determined, using the susceptible Rockefeller strain as a susceptible control. Additionally, we evaluated the response of the populations to the diagnostic dose (DD) of the organochlorine pesticide DDT. The following biochemical mechanisms associated with resistance were studied: ?-esterases, ?-esterases, mixed-function oxidases (MFO), glutathione s-transferases (GST) and insensitive acetylcholinesterase (iAChE) as well as the presence of kdr I1,016 mutation and its frequency. All populations studied showed susceptibility to the organophosphates evaluated (RR?

Maestre-Serrano, Ronald; Gomez-Camargo, Doris; Ponce-Garcia, Gustavo; Flores, Adriana E

2014-11-01

373

Proteomic Biomarkers for Ageing the Mosquito Aedes aegypti to Determine Risk of Pathogen Transmission  

PubMed Central

Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting mosquito longevity. PMID:23536806

Hugo, Leon E.; Monkman, James; Dave, Keyur A.; Wockner, Leesa F.; Birrell, Geoff W.; Norris, Emma L.; Kienzle, Vivian J.; Sikulu, Maggy T.; Ryan, Peter A.; Gorman, Jeffery J.; Kay, Brian H.

2013-01-01

374

Biochemical analysis of a blood meal-induced Aedes aegypti glutamine synthetase gene.  

PubMed

Glutamine synthetase (GS) in the mosquito, Aedes aegypti, is induced in the midgut following a blood meal. Mosquito GS message is detected as soon as 1 h post-blood feeding and remains stable for 18 h. Using a PCR product encoding mosquito GS, a lambda gt10 adult female mosquito cDNA library was screened. A cDNA clone, pCl5A2, encoding the full translation product of mosquito GS was isolated and sequence analyses performed. Mosquito GS cDNA is 2.5 kb in length and its putative translation product shares all the conserved regions characteristic of the GS gene family, including the presumed ATP biding site. Glutamine synthetase activity in the mosquito midgut is highest at 18 h post-blood feeding. Activity can be detected over a broad pH range, from 6.0 to 7.5. Unlike other cellular GS enzymes, mosquito GS is not active in the presence of ATP. Very low dosages (0.05 mM) of L-methionine S-sulfoximine are sufficient to partially inhibit mosquito GS activity. Inhibition of GS disrupts the normal formation of the midgut peritrophic matrix, suggesting that GS enzyme might be involved in the initial pathway of chitin synthesis. The unique expression pattern and inducible nature of the mosquito GS gene make it an interesting candidate for studying promoter function. Additionally, the blood meal activation of the GS gene makes this a potentially valuable tool in mosquito transformation studies. PMID:9887510

Smartt, C T; Chiles, J; Lowenberger, C; Christensen, B M

1998-12-01

375

Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island  

PubMed Central

Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique. PMID:24204999

Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

2013-01-01

376

Evidence for gene duplication in the voltage-gated sodium channel gene of Aedes aegypti  

PubMed Central

Background and objectives: Mutations in the voltage-gated sodium channel gene (NaV), known as kdr mutations, are associated with pyrethroid and DDT insecticide resistance in a number of species. In the mosquito dengue vector Aedes aegypti, besides kdr, other polymorphisms allowed grouping AaNaV sequences as type ‘A’ or ‘B’. Here, we point a series of evidences that these polymorphisms are actually involved in a gene duplication event. Methodology: Four series of methods were employed: (i) genotypying, with allele-specific PCR (AS-PCR), of two AaNaV sites that can harbor kdr mutations (Ile1011Met and Val1016Ile), (ii) cloning and sequencing of part of the AaNaV gene, (iii) crosses with specific lineages and analysis of the offspring genotypes and (iv) copy number variation assays, with TaqMan quantitative real-time PCR. Results: kdr mutations in 1011 and 1016 sites were present only in type ‘A’ sequences, but never in the same haplotype. In addition, although the 1011Met-mutant allele is widely disseminated, no homozygous (1011Met/Met) was detected. Sequencing revealed three distinct haplotypes in some individuals, raising the hypothesis of gene duplication, which was supported by the genotype frequencies in the offspring of specific crosses. Furthermore, it was estimated that a laboratory strain selected for insecticide resistance had 5-fold more copies of the sodium channel gene compared with a susceptible reference strain. Conclusions and implications: The AaNaV duplication here found might be a recent adaptive response to the intense use of insecticides, maintaining together wild-type and mutant alleles in the same organism, conferring resistance and reducing some of its deleterious effects. PMID:24481195

Martins, Ademir Jesus; Brito, Luiz Paulo; Linss, Jutta Gerlinde Birggitt; Rivas, Gustavo Bueno da Silva; Machado, Ricardo; Bruno, Rafaela Vieira; Lima, José Bento Pereira; Valle, Denise; Peixoto, Alexandre Afranio

2013-01-01

377

Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control  

PubMed Central

Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

2013-01-01

378

Evaluation of BG-sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment.  

PubMed

The BG-Sentinel (BGS) trap uses visual and olfactory cues as well as convection currents to attract Aedes aegypti (L.). The impact of the visual environment on trapping efficacy of the BGS trap for Ae. aegypti was investigated. Four- to 5-d nulliparous female and male Ae. aegypti were released into a semicontrolled room to evaluate the effect of the presence, reflectance, and distribution of surrounding harborage sites on BGS trapping efficacy. Low-reflective (dark) harborage sites near the BGS had a negative effect on both male and nulliparous female recapture rates; however, a more pronounced effect was observed in males. The distribution (clustered versus scattered) of dark harborage sites did not significantly affect recapture rates in either sex. In a subsequent experiment, the impact of oviposition sites on the recapture rate of gravid females was investigated. Although gravid females went to the oviposition sites and deposited eggs, the efficacy of the BGS in recapturing gravid females was not compromised. Ae. aegypti sampling in the field will mostly occur in the urban environment, whereby the BGS will be among oviposition sites and dark harborage areas in the form of household items and outdoor clutter. In addition to understanding sampling biases of the BGS, estimations of the adult population size and structure can be further adjusted based on an understanding of the impact of dark harborage sites on trap captures. Outcomes from this suite of experiments provide us with important considerations for trap deployment and interpretation of Ae. aegypti samples from the BGS trap. PMID:20695282

Ball, Tamara S; Ritchie, Scott R

2010-07-01

379

Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)  

PubMed Central

Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

2013-01-01

380

Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti  

PubMed Central

Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control. PMID:22870187

Strode, Clare; de Melo-Santos, Maria; Magalhães, Tereza; Araújo, Ana; Ayres, Contancia

2012-01-01