Note: This page contains sample records for the topic aedes aegypti infected from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females  

PubMed Central

Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ?50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission.

Luz, Paula M.; Castro, Marcia G.; Lourenco-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

2011-01-01

2

Induction of apoptosis in densovirus infected Aedes aegypti mosquitoes  

Microsoft Academic Search

The mechanism of death in densovirus infected mosquitoes remains unexplored. This study investigated the cellular consequences of densovirus infection in Aedes aegypti mosquitoes after a second generation challenge with a densovirus isolated from adult Aedes albopictus mosquitoes in Thailand (AThDNV). Specimens were analyzed by TUNEL assay, fluorescent in situ hybridization (FISH) and a calorimic assay to detect activation of caspase

Songsak Roekring; Duncan R. Smith

2010-01-01

3

Yellow Fever Virus Infectivity for Bolivian Aedes aegypti Mosquitoes  

PubMed Central

The absence of urban yellow fever virus (YFV) in Bolivian cities has been attributed to the lack of competent urban mosquito vectors. Experiments with Aedes aegypti from Santa Cruz, Bolivia, demonstrated infection (100%), dissemination (20%), and transmission of a Bolivian YFV strain (CENETROP-322).

Mutebi, John-Paul; Gianella, Alberto; Travassos da Rosa, Amelia; Tesh, Robert B.; Barrett, Alan D. T.

2004-01-01

4

Induction of apoptosis in densovirus infected Aedes aegypti mosquitoes.  

PubMed

The mechanism of death in densovirus infected mosquitoes remains unexplored. This study investigated the cellular consequences of densovirus infection in Aedes aegypti mosquitoes after a second generation challenge with a densovirus isolated from adult Aedes albopictus mosquitoes in Thailand (AThDNV). Specimens were analyzed by TUNEL assay, fluorescent in situ hybridization (FISH) and a calorimic assay to detect activation of caspase 3-like activity. After challenge, moribund mosquitoes showed considerable evidence of TUNEL positive cells. The caspase 3-like activity assay showed that the presence of TUNEL positive cells was associated with increased levels of activated caspase 3-like activity in AThDNV infected mosquitoes. PMID:20382153

Roekring, Songsak; Smith, Duncan R

2010-04-09

5

The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti  

PubMed Central

Dengue viruses (DENV) cause significant morbidity and mortality worldwide and are transmitted by the mosquito Aedes aegypti. Mosquitoes become infected after ingesting a viremic bloodmeal, and molecular mechanisms involved in bloodmeal digestion may affect the ability of DENV to infect the midgut. We used RNA interference (RNAi) to silence expression of four midgut serine proteases and assessed the effect of each RNAi phenotype on DENV-2 infectivity of Aedes aegypti. Silencing resulted in significant reductions in protease mRNA levels and correlated with a reduction in activity except in the case of late trypsin. RNA silencing of chymotrypsin, early and late trypsin had no effect on DENV-2 infectivity. However, silencing of 5G1 or the addition of soybean trypsin inhibitor to the infectious bloodmeals significantly increased midgut infection rates. These results suggest that some midgut serine proteases may actually limit DENV-2 infectivity of Ae. aegypti.

Brackney, Doug E.; Foy, Brian D.; Olson, Ken E.

2009-01-01

6

Adverse ffects of covert iridovirus infection on life history and demographic parameters of Aedes aegypti  

Microsoft Academic Search

Sublethal viral infections can cause changes in the body size and demography of insect vectors, with important consequences for population dynamics and the probability that individual mosquitoes will transmit disease. This study examined the effects of covert (sublethal) infection by Invertebrate iridescent virus 6 (IIV-6) on the demography of female Aedes aegypti and the relationship between key life history parameters

Carlos F. Marina; Jorge E. Ibarra; Juan I. Arredondo-Jimenez; Ildefonso Fernandez-Salas; Pablo Liedo; Trevor Williams

2003-01-01

7

Flavivirus Susceptibility in Aedes aegypti  

Microsoft Academic Search

Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. aegypti populations throughout the world and discuss how variation in vector competence is

William C. Black; Kristine E. Bennett; Norma Gorrochótegui-Escalante; Carolina V. Barillas-Mury; Ildefonso Fernández-Salas; Mar??a de Lourdes Muñoz; José A. Farfán-Alé; Ken E. Olson; Barry J. Beaty

2002-01-01

8

Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti.  

PubMed

This study was designed to determine if infection of Aedes aegypti with dengue-2 virus affects the ability of the mosquito to efficiently locate and imbibe blood from an uninfected host. Previous studies suggest that some parasites manipulate their arthropod host to increase the probability of transmission by interfering with blood-feeding efficiency. We found no evidence that dengue-2 virus infection by intrathoracic inoculation impaired the blood-feeding efficiency of Ae. aegypti. We speculate that natural selection has not favored the evolution of dengue viruses that increase vector probing time because uninfected Ae. aegypti take multiple blood meals during each gonotrophic cycle and further increases in vector probing would not significantly increase virus fitness. PMID:7694963

Putnam, J L; Scott, T W

1995-03-01

9

Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection  

PubMed Central

Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

2012-01-01

10

Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.  

PubMed

Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

2010-12-06

11

Vector Topics Number 4 - Biology and Control of 'Aedes aegypti'.  

National Technical Information Service (NTIS)

Contents: Public health importance of Aedes aegypti; Biology and habits of Aedes aegypti; Surveillance of Aedes aegypti populations; Control of Aedes aegypti; Evaluation of control measures; Control during disease outbreaks.

1979-01-01

12

Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites  

PubMed Central

Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.

Duncan, Alison B; Agnew, Philip; Noel, Valerie; Demettre, Edith; Seveno, Martial; Brizard, Jean-Paul; Michalakis, Yannis

2012-01-01

13

Evidence of co-infection of chikungunya and densonucleosis viruses in C6\\/36 cell lines and laboratory infected Aedes aegypti (L.) mosquitoes  

Microsoft Academic Search

BACKGROUND: Densonucleosis viruses are the etiological agents of insect's disease. We have reported the isolation of densovirus from India and its distribution among the natural populations of Aedes aegypti mosquitoes across the country. Since densonucleosis virus persistently infects mosquito populations, and is demonstrated to negatively affect multiplication of dengue virus in Aedes albopictus, it would be interesting to study if

Aruna Sivaram; Pradip V Barde; Mangesh D Gokhale; Dinesh K Singh; Devendra T Mourya

2010-01-01

14

Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses  

PubMed Central

Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses.

Tchankouo-Nguetcheu, Stephane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valerie

2010-01-01

15

Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection  

Microsoft Academic Search

BackgroundThe mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.Methods and ResultsTo identify

Susanta K. Behura; Consuelo Gomez-Machorro; Brent W. Harker; Becky deBruyn; Diane D. Lovin; Ryan R. Hemme; Akio Mori; Jeanne Romero-Severson; David W. Severson

2011-01-01

16

Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands  

PubMed Central

Background Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission. Methods We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis. Results We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI) with chikungunya virus (CHIKV). Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling. Conclusion Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection.

2012-01-01

17

Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti.  

PubMed

Most pathogens require a relatively long period of development in their mosquito vector before they can be transmitted to a new human host; hence, only older insects are of epidemiological importance. The successful transfer of a life-shortening strain of the inherited bacterial symbiont, Wolbachia, into the major mosquito vector of dengue, Aedes aegypti, halved adult life span under laboratory conditions. The association is stable, and the Wolbachia strain is maternally inherited at high frequency. It is capable of inducing complete cytoplasmic incompatibility, which should facilitate its invasion into natural field populations and its persistence over time. Our data suggest that targeting mosquito age with inherited Wolbachia infections may be a viable strategy to reduce the transmission of pathogens such as dengue viruses. PMID:19119237

McMeniman, Conor J; Lane, Roxanna V; Cass, Bodil N; Fong, Amy W C; Sidhu, Manpreet; Wang, Yu-Feng; O'Neill, Scott L

2009-01-01

18

Concomitant malaria (Plasmodium gallinaceum) and filaria (Brugia pahangi) infections in Aedes aegypti: effect on parasite development.  

PubMed

Mixed infections with malarial (Plasmodium gallinaceum) and filarial (Brugia pahangi) parasites were carried out in 8 trials with filaria susceptible (REFM) and filaria refractory (REP-RR) Aedes aegypti strains. A secondary infection with B. pahangi microfilariae (mff) by intrathoracic inoculation, reduced the development rate of a pre-existing P. gallinaceum infection. The level of reduction ranged from 9.5 to 49% in REFM and from 50 to 90% in REP-RR. An immune response against oocysts was seen as melanization in mosquitoes with a double infection in the strain refractory to B. pahangi (REP-RR) and a reduction in oocyst size in both mosquito strains. Melanization was not observed in mosquitoes infected only with P. gallinaceum. This may indicate that activation of the prophenoloxidase (PPO) cascade in response to mff in the haemolymph can also be addressed against oocysts in the midgut. No significant difference in the number of filarial parasites recovered was observed when comparing groups with a single or double infection. Retardation in development of filaria larvae was observed in mosquitoes with double infection (REFM strain), together with melanization and a higher rate of abnormal development. Nutritional deficiency caused by superinfection might also be responsible for the delay in filarial development and reduced oocyst size. PMID:7845706

Albuquerque, C M; Ham, P J

1995-01-01

19

Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti  

PubMed Central

Background The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop) as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection. Methodology/Principal Findings In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a “bendy” proboscis that may explain the decreased biting success. Conclusions/Significance Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.

Turley, Andrew P.; Moreira, Luciano A.; O'Neill, Scott L.; McGraw, Elizabeth A.

2009-01-01

20

Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in M?rida, M?xico  

PubMed Central

We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females.

Garcia-Rejon, Julian E.; Lorono-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis F.; Lopez-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nunez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

2011-01-01

21

Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti  

PubMed Central

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

van den Hurk, Andrew F.; Hall-Mendelin, Sonja; Pyke, Alyssa T.; Frentiu, Francesca D.; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L.

2012-01-01

22

Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.  

PubMed

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4) times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. PMID:23133693

van den Hurk, Andrew F; Hall-Mendelin, Sonja; Pyke, Alyssa T; Frentiu, Francesca D; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L

2012-11-01

23

A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence.  

PubMed

A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters. PMID:20644622

McMeniman, Conor J; O'Neill, Scott L

2010-07-13

24

Genetic heterogeneity of the dengue vector Aedes aegypti in Martinique.  

PubMed

In Martinique, Aedes aegypti, the vector of dengue viruses has been the target of insecticide control for more than 35 years. Despite significant control efforts, dengue has become a major disease of public health concern. We conducted a population genetic analysis based on isoenzyme variations combined with an estimation of infection rate to a dengue virus among 26 Ae. aegypti samples. Aedes aegypti samples could be differentiated for their susceptibility to dengue infection (infection rates ranging from 42.8% to 98.6%) and showed important genetic variation (significant F(ST) values). PMID:15117302

Yébakima, André; Charles, Céline; Mousson, Laurence; Vazeille, Marie; Yp-Tcha, Marie-Michelle; Failloux, A-B

2004-05-01

25

Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, Aedes aegypti, Infected with Dengue-2 Virus  

PubMed Central

Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever.

Baron, Olga L.; Ursic-Bedoya, Raul J.; Lowenberger, Carl A.; Ocampo, Clara B.

2010-01-01

26

Vectorial Capacity of Aedes aegypti for Dengue Virus Type 2 Is Reduced with Co-infection of Metarhizium anisopliae  

PubMed Central

Background Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. Methodology/Principal Findings The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Conclusion/Significance Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

Salazar, Ma Isabel; Russell, Tanya L.; Adeleke, Monsuru A.; de Luna-Santillana, Erik de J.; Reyes-Villanueva, Filiberto

2013-01-01

27

Evidence of co-infection of chikungunya and densonucleosis viruses in C6/36 cell lines and laboratory infected Aedes aegypti (L.) mosquitoes  

PubMed Central

Background Densonucleosis viruses are the etiological agents of insect's disease. We have reported the isolation of densovirus from India and its distribution among the natural populations of Aedes aegypti mosquitoes across the country. Since densonucleosis virus persistently infects mosquito populations, and is demonstrated to negatively affect multiplication of dengue virus in Aedes albopictus, it would be interesting to study if this virus has a role in determining the susceptibility of the vector mosquito Ae. aegypti to chikugunya virus. Methods Mosquito cell lines and adult Ae. aegypti mosquitoes infected with densovirus were superinfected with Chikungunya virus and both the viruses were quantitated by determining their genomic copy number by real time amplification. Comparison was made between the log of genomic copy numbers of the viruses in the presence and absence of each other. Results The log of copy number of the viruses did not vary due to co-infection. Even though the RNA copy number of chikungunya virus increased over the period of time, no change was observed in the RNA copy number between the control and the co-infected group on any given day. Similarly, DNA copy number of densovirus also remained unchanged between the control and the co-infected groups. Conclusion Chikungunya virus neither stimulates the replication of densovirus nor is its own replication suppressed due to co-infection. Ae. aegypti mosquitoes with densovirus infection were as susceptible to infection by chikungunya virus as the uninfected mosquitoes.

2010-01-01

28

Operational use of household bleach to "crash and release" Aedes aegypti prior to Wolbachia-infected mosquito release.  

PubMed

Dengue (family Flaviviridae, genus Flavivirus, DENV) remains the leading arboviral cause of mortality in the tropics. Wolbachia pipientis has been shown to interrupt DENV transmission and is presently being trialled as a biological control. However, deployment issues have arisen on methods to temporarily suppress wild mosquito populations before Wolbachia-infected mosquito releases. By suppressing wild populations, fewer Ae. aegypti releases are required to achieve a sustainable Wolbachia density threshold. Furthermore, public distress is reduced. This study tests the application of domestic bleach (4% NaCIO) to temporarily "crash" immature Aedes populations in water-filled containers. Spray application NaClO (215 ppm) resulted in a mean 48-h mortality of 100, 100, 97, and 88% of eggs, second-instar larvae, fourth-instar larvae, and pupae, respectively. In the field, NaClO delayed ovipositing by 9 d in cooler months, and 11 d in hotter months, after which oviposition resumed in treated receptacles. We found bleach treatment of pot-plant bases did not cause wilting, yellowing, or dropping of leaves in two ornamental plants species. Domestically available NaClO could be adopted for a "crash and release" strategy to temporarily suppress wild populations of Ae. aegypti in containers before release of Wolbachia-infected mosquitoes. The "crash and release" strategy is also applicable to other mosquito species, e.g., Aedes albopictus (Skuse), in strategies using released mosquitoes. PMID:23540123

Jacups, Susan P; Ball, Tamara S; Paton, Christopher J; Johnson, Petrina H; Ritchie, Scott A

2013-03-01

29

Protein expression in the salivary glands of dengue-infected Aedes aegypti mosquitoes and blood-feeding success.  

PubMed

Mosquito salivary glands (SG) play an essential role in food digestion and pathogen transmission. The function of the salivary components during infection is poorly understood. In this study, female Aedes aegypti mosquitoes were infected with dengue virus serotype 2 (DENV-2) via an artificial membrane feeding apparatus. The mosquito SGs were examined for DENV-2 infection for 14 days post-infection (dpi). The amount of dengue virus increased throughout the 14 dpi. Three different meals were provided for the Ae. aegypti mosquitoes. SG protein expression was compared among sugar-fed (SF), blood-fed (BF), and dengue-infected blood-fed (DF) mosquitoes using SDS-PAGE coupled with densitometric analysis. The SG of SF mosquitoes had fewer protein bands than those of BF and DF mosquitoes. The major SG proteins seen among BF and DF mosquitoes had molecular weights of 12-15, 25-30, 35-40, 45-50, 55-60 kDa and 61-67 kDa. We compared the SG protein band expression profiles in BF and DF mosquitoes. Two bands (35-40 and 61-67 kDa) were expressed more by DF mosquitoes and 3 different bands (25-30, 45-50, and 55-60 kDa) were expressed more by BF mosquitoes. These SG proteins may have some role in facilitating blood-feeding and dengue infection. We speculate these specific SG proteins in dengue-infected mosquitoes may increase the chance of blood-feeding and virus transmission by infected mosquitoes. These results may be useful for designing additional tools to investigate the interaction between Ae. aegypti SG and the dengue virus. PMID:23413697

Wasinpiyamongkol, Ladawan; Patramool, Sirilaksana; Thongrungkiat, Supatra; Maneekan, Pannamas; Sangmukdanan, Suntaree; Missé, Dorothée; Luplertlop, Natthanej

2012-11-01

30

Differential Susceptibility of Aedes aegypti to Infection by the American and Southeast Asian Genotypes of Dengue Type 2 Virus  

PubMed Central

Outbreaks of dengue hemorrhagic fever have coincided with the introduction of the Southeast (SE) Asian genotype of dengue type 2 virus in the Western Hemisphere. This introduced genotype appears to be rapidly displacing the indigenous, American genotype of dengue 2 virus throughout the region. These field observations raise the possibility that the SE Asian genotype of dengue 2 is better adapted for vector transmission than its American counterpart. To evaluate this hypothesis, we compared the ability of viral strains of the SE Asian and American genotypes to infect, replicate, and disseminate within vector mosquitoes (Aedes aegypti). Viral strains of the SE Asian genotype tended to infect and disseminate more efficiently in mosquitoes than did variants of the American genotype. These differences, however, were observed solely in field-derived mosquitoes, whereas viral infection rates were virtually identical in the laboratory-adapted Rockefeller colony of Ae. aegypti. Our findings could provide a physiological basis for the contrasting patterns of dengue virus genotype transmission and spread. Such an understanding of functional differences between viral strains and genotypes may ultimately improve surveillance and intervention strategies.

ARMSTRONG, PHILIP M.; RICO-HESSE, REBECA

2011-01-01

31

The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed  

PubMed Central

Background Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. Methodology/Principal findings We orally challenged 4–5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal) and avidity (the likelihood to re-feed after an interrupted first blood-meal). To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding). Thus DENV-2 infection decreased the mosquitoes’ motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative) mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. Conclusions/Significance DENV-2 significantly decreased the mosquitoes’ motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed). As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.

Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C.

2013-01-01

32

Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection  

PubMed Central

Background The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. Methods and Results To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Conclusions Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.

Behura, Susanta K.; Gomez-Machorro, Consuelo; Harker, Brent W.; deBruyn, Becky; Lovin, Diane D.; Hemme, Ryan R.; Mori, Akio; Romero-Severson, Jeanne; Severson, David W.

2011-01-01

33

Isolation and Characterization of Densonucleosis Virus from Aedes aegypti Mosquitoes and Its Distribution in India  

Microsoft Academic Search

Objectives: Mosquito densonucleosis viruses (DNVs) are known to persistently infect the insect cell line and mosquito population in nature, causing mortality in mosquitoes. Here we report the isolation and characterization of a DNV from Aedes aegypti and its distribution among different Ae. aegypti populations from India. Methods: We screened Ae. aegypti mosquito populations from different states of India by PCR.

A. Sivaram; P. V. Barde; S. R. P. Kumar; P. Yadav; M. D. Gokhale; A. Basu; D. T. Mourya

2009-01-01

34

Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand  

Microsoft Academic Search

BackgroundAedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial

Jared Aldstadt; Constantianus J. M. Koenraadt; Thanyalak Fansiri; Udom Kijchalao; Jason Richardson; James W. Jones; Thomas W. Scott

2011-01-01

35

Potential impact of a presumed increase in the biting activity of dengue-virus-infected Aedes aegypti (Diptera: Culicidae) females on virus transmission dynamics.  

PubMed

Recently, we showed that infection with dengue virus increases the locomotor activity of Aedes aegypti females. We speculate that the observed increased locomotor activity could potentially increase the chances of finding a suitable host and, as a consequence, the relative biting rate of infected mosquitoes. We used a mathematical model to investigate the impact of the increased locomotor activity by assuming that this activity translated into an increased biting rate for infected mosquitoes. The results show that the increased biting rate resulted in dengue outbreaks with greater numbers of primary and secondary infections and with more severe biennial epidemics. PMID:22012232

Luz, Paula Mendes; Lima-Camara, Tamara Nunes; Bruno, Rafaela Vieira; Castro, Márcia Gonçalves de; Sorgine, Marcos Henrique Ferreira; Lourenço-de-Oliveira, Ricardo; Peixoto, Alexandre Afrânio

2011-09-01

36

Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home.  

PubMed

The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus-infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

Loroño-Pino, María Alba; García-Rejón, Julián E; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; Nájera-Vázquez, Maria del Rosario; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K; Black, William C; Keefe, Thomas J; Eisen, Lars; Beaty, Barry J

2013-06-03

37

Ultrastructural studies on the reproductive system of male Aedes aegypti (Diptera: Culicidae) infected with dengue 2 virus.  

PubMed

Dengue 2 virus was found by transmission electron microscopy to be present in the reproductive tissues of male Aedes aegypti (L) 14 d after intrathoracic inoculation. Dengue 2 particles were detected in the matrix, epithelial cells, and the peripheral fat body of the testes; secretory droplets of columnar cells of the accessory glands; and the epithelial and muscle cells of the seminal vesicles. However, none was found in the germ cells (i.e., spermatogonia, spermatocytes, spermatid, or spermatozoa). These observations indicate that fluid transfer may be the mechanism of venereal transmission of dengue 2 virus by Ae. aegypti. PMID:9542348

Tu, W C; Chen, C C; Hou, R F

1998-01-01

38

A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence  

Microsoft Academic Search

A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a

Conor J. McMeniman; Scott L. ONeill

2010-01-01

39

Persistence of viral RNA in chikungunya virus-infected Aedes aegypti (Diptera: Culicidae) mosquitoes after prolonged storage at 28°C.  

PubMed

Experiments were conducted to determine the persistence of chikungunya viral (CHIKV) RNA in experimentally infected Aedes aegypti mosquitoes stored for prolonged periods at 28°C. Intra-thoracically inoculated mosquitoes with confirmed positivity were killed by quick freezing at -80°C, applied to sticky tape, and stored at 28°C with 80 ± 5% relative humidity (RH). At weekly intervals, five mosquitoes were removed from the tape randomly and assayed individually for detection of viral RNA by reverse transcriptase-polymerase chain reaction (RT-PCR). CHIKV RNA was detected up to 12 weeks in dry mosquitoes by RT-PCR. Virus could not be isolated either in cell culture or in the suckling Swiss-albino mouse system at any stage. This study demonstrated the persistence of CHIKV viral RNA up to 12 weeks when stored at 28°C with RH 80 ± 5%. This finding will have significance in CHIKV surveillance programs in mosquito populations or field-based studies in countries where maintenance of a cold chain is a concern. PMID:22232470

Mavale, Mangala; Sudeep, Anakkathil; Gokhale, Mangesh; Hundekar, Supriya; Parashar, Deepti; Ghodke, Youwaraj; Arankalle, Vidya; Mishra, Akhilesh Chandra

2012-01-01

40

Dengue 3 Virus Distribution in the Mosquito Aedes aegypti: An Immunocytochemical Study.  

National Technical Information Service (NTIS)

The dissemination of dengue (DEN) 3 virus in parenterally infected female Aedes aegypti mosquitoes was studied immunocytochemically. Antigen was first detected in fat body cells near the thoracic site of virus inoculation. The intussuscepted foregut; sali...

K. J. Linthicum K. Platt K. S. Myint K. Lerdthusnee B. L. Innis

1996-01-01

41

Dengue-2 virus carrying capacity of Thai Aedes aegypti strains with different susceptibility to deltamethrin.  

PubMed

Deltamethrin-resistant Aedes aegypti currently threatens the effectiveness of dengue hemorrhagic fever control operations in Thailand. Although a previous study has suggested that insecticide resistance may increase Ae. aegypti susceptibility to dengue-2 virus infection, our experimental data showed no significant association between laboratory-induced deltamethrin-resistance in a Thai Ae. aegypti isolate and its susceptibility to dengue -2 infection. PMID:23077842

Phanpoowong, Theerawit; Lek-Uthai, Usa; Thongrungkiat, Supatra; Komalamisra, Narumon; Srisawat, Raweewan; Russell, Bruce; Renia, Laurent

2012-05-01

42

Aedes aegypti in Córdoba Province, Argentina.  

PubMed

In 1955, the area infested by Aedes aegypti in Argentina was estimated as 1,500,000 km2; and in 1963, the species was considered to be eradicated from Argentina. In 1995, the Argentine Ministry of Health reported reinfestation by Ae. aegypti. During 1994-95, the Ministry of Health of Córdoba Province, Zoonosis Department, established a surveillance system for Ae. aegypti in Córdoba Province, Argentina. This report is a summary of results obtained thus far. In total, 74 localities in Córdoba Province were sampled during August 1994-April 1996, resulting in 5 positives (6.7%): Villa María city, Villa Nueva, and Córdoba city in 1995, and Juarez Celman and Jesús María in 1996. In Villa María and Villa Nueva, Ae. aegypti was present until June 1995 (autumn) and reappeared in December 1995. In Córdoba city, Ae. aegypti was eliminated from the only positive house in May 1995, but it reappeared in March 1996. Reappearance of Ae. aegypti in this temperate area in early summer may have been due to the survival of individuals during winter and not to reintroduction during summertime. The last previous active surveillance for Ae. aegypti in Córdoba Province was carried out more than 30 years ago. PMID:9383767

Avilés, G; Cecchini, R; Harrington, M E; Cichero, J; Asis, R; Rios, C

1997-09-01

43

Characterization of the Structural Gene Promoter of Aedes aegypti Densovirus  

Microsoft Academic Search

Aedes aegypti densonucleosis virus (AeDNV) has two promoters that have been shown to be active by reporter gene expression analysis (B. N. Afanasiev, Y. V. Koslov, J. O. Carlson, and B. J. Beaty, Exp. Parasitol. 79: 322-339, 1994). Northern blot analysis of cells infected with AeDNV revealed two transcripts 1,200 and 3,500 nucleotides in length that are assumed to express

TODD W. WARD; MICHAEL W. KIMMICK; BORIS N. AFANASIEV; JONATHAN O. CARLSON

2001-01-01

44

Deletions in the Putative Cell Receptor-Binding Domain of Sindbis Virus Strain MRE16 E2 Glycoprotein Reduce Midgut Infectivity in Aedes aegypti  

PubMed Central

The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log10 PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3? end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16ic?E200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16ic?E200-C220, was also constructed that contained a smaller deletion extending only to the 3? terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16ic?E200-Y229 and pMRE16ic?E200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (?6.0 log10 PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.

Myles, Kevin M.; Pierro, Dennis J.; Olson, Ken E.

2003-01-01

45

Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti.  

PubMed

The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti. PMID:12885905

Myles, Kevin M; Pierro, Dennis J; Olson, Ken E

2003-08-01

46

Exposure to chikungunya virus and adult longevity in Aedes aegypti (L.) and Aedes albopictus (Skuse)  

PubMed Central

Chikungunya virus (CHIKV) recently emerged as a global threat to public health through its adaptation to the cosmopolitan mosquito Aedes albopictus Skuse. Aedes albopictus is highly susceptible to the emergent strain of CHIKV, relative to the historical vector of CHIKV, Aedes aegypti (L.). We hypothesized that the high susceptibility of Ae. albopictus to CHIKV may have a cost in terms of longevity and fecundity among infected vs non-infected mosquitoes, relative to Ae. aegypti. We performed a longevity experiment comparing Ae. aegypti and Ae. albopictus exposed to the emergent strain of CHIKV (LR-2006OPY1). We found a small but significant decrease in longevity of Ae. albopictus, but not Ae. aegypti, in response to exposure to CHIKV. We did not observe significant differences in numbers of eggs laid by either species in response to exposure. Longevity and body titer of infected Ae. albopictus were significantly negatively correlated, such that individuals that lived longer had lower viral body titers when they died. The cost of exposure, while not high, suggests there may be physiological constraints in the evolution of viral infectiousness in its insect vector.

Westbrook, Catherine J.; Lounibos, L. Philip

2012-01-01

47

[Competition between Aedes aegypti and Aedes albopictus larvae in the laboratory].  

PubMed

This study had the aim of evaluating the effects of intra and interspecies larval competition between Aedes aegypti and Aedes albopictus, survival of larvae time taken to develop and wing length. The experiment was carried out with three densities and five proportions of the species. Aedes aegypti survival was greater than Aedes albopictus survival at intermediate density, while it was lower at high density. Only the time taken for Aedes albopictus to develop was affected. The differences found in comparing the species combinations demonstrated that the mean wing length of Aedes aegypti was generally greater than that of Aedes albopictus. For both species, competition had greater effect on wing length and survival than on the time taken to develop. Aedes aegypti seems to present better competitive capacity than does Aedes albopictus, at intermediate density. PMID:19009190

Serpa, Lígia Leandro Nunes; Kakitani, Iná; Voltolini, Júlio Cesar

48

Spatial Stability of Adult Aedes aegypti Populations  

PubMed Central

Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs.

Barrera, Roberto

2011-01-01

49

Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti Salivary Gland, following Infection with Dengue Virus  

PubMed Central

The ultimate stage of the transmission of Dengue Virus (DENV) to man is strongly dependent on crosstalk between the virus and the immune system of its vector Aedes aegypti (Ae. aegypti). Infection of the mosquito's salivary glands by DENV is the final step prior to viral transmission. Therefore, in the present study, we have determined the modulatory effects of DENV infection on the immune response in this organ by carrying out a functional genomic analysis of uninfected salivary glands and salivary glands of female Ae. aegypti mosquitoes infected with DENV. We have shown that DENV infection of salivary glands strongly up-regulates the expression of genes that encode proteins involved in the vector's innate immune response, including the immune deficiency (IMD) and Toll signalling pathways, and that it induces the expression of the gene encoding a putative anti-bacterial, cecropin-like, peptide (AAEL000598). Both the chemically synthesized non-cleaved, signal peptide-containing gene product of AAEL000598, and the cleaved, mature form, were found to exert, in addition to antibacterial activity, anti-DENV and anti-Chikungunya viral activity. However, in contrast to the mature form, the immature cecropin peptide was far more effective against Chikungunya virus (CHIKV) and, furthermore, had strong anti-parasite activity as shown by its ability to kill Leishmania spp. Results from circular dichroism analysis showed that the immature form more readily adopts a helical conformation which would help it to cause membrane permeabilization, thus permitting its transfer across hydrophobic cell surfaces, which may explain the difference in the anti-pathogenic activity between the two forms. The present study underscores not only the importance of DENV-induced cecropin in the innate immune response of Ae. aegypti, but also emphasizes the broad-spectrum anti-pathogenic activity of the immature, signal peptide-containing form of this peptide.

Patramool, Sirilaksana; Dumas, Emilie; Wasinpiyamongkol, Ladawan; Saune, Laure; Hamel, Rodolphe; Bernard, Eric; Sereno, Denis; Thomas, Frederic; Piquemal, David; Yssel, Hans; Briant, Laurence; Misse, Dorothee

2011-01-01

50

GROWTH CHARACTERISTICS OF CHIMERIVAX™DEN2 VACCINE VIRUS IN AEDES AEGYPTI AND AEDES ALBOPICTUS MOSQUITOES  

Microsoft Academic Search

The chimeric yellow fever (YF) 17D-dengue type 2 (ChimeriVax™-DEN2) vaccine virus developed by Acambis, Inc. (Cambridge, MA) contains the prM and E genes of wild-type (wt) dengue 2 (DEN-2) (strain PUO-218) virus in theYF vaccinevirus (strain 17D) backbone . Thepote ntial of Chime riVax™-DEN2 virus to infect and be transmitted by Aedes aegypti, theprincipal DEN and YF virus mosquito ve

BARBARA W. JOHNSON; TRUDY V. CHAMBERS; MARY B. CRABTREE; TEJAL R. BHATT; FARSHAD GUIRAKHOO; THOMAS P. MONATH; BARRY R. MILLER

2002-01-01

51

Failure to Detect Natural Transovarial Transmission of Dengue Viruses by Aedes aegypti and Aedes albopictus (Diptera: Culicidae).  

National Technical Information Service (NTIS)

The possibility that dengue viruses were transmitted transovarially by Aedes aegypti and Aedes albobopictus was studied in urban and rural areas of Thailand. Dengue viruses were not isolated from 5766 larvae, 39 pupae, or 85 male Ae. aegypti collected in ...

D. M. Watts B. A. Harrison S. Pantuwatana T. A. Klein D. S. Burke

1985-01-01

52

Experimental Transmission of Mayaro Virus by Aedes aegypti  

PubMed Central

Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission.

Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

2011-01-01

53

Detritus Type Alters the Outcome of Interspecific Competition Between Aedes aegypti and Aedes albopictus (Diptera: Culicidae)  

Microsoft Academic Search

Many studies of interspeciÞc competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae.aegypti. Single-species studies indicate that growth and survival of Ae.albopictus and Ae.aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito

Ebony G. Murrell; Steven A. Juliano

2008-01-01

54

Inheritance of oral susceptibility of Aedes aegypti to Chikungunya virus.  

PubMed

A colony of rosy eye mutants of Aedes aegypti was established. This strain was refractory to Chikungunya virus by oral route of infection when compared with the wild-type parent strain. The refractoriness of this strain seems to be due to a mesentronal barrier, since both the mosquito strains supported the multiplication of virus after intrathoracic inoculation. The rosy eye strain was also found to be refractory to Sagiyama virus (Alphaviridae: Getah virus subtype) when compared with wild-type parent strain, but no such difference in the oral susceptibility was found with dengue-2 (Flaviviridae) virus. The rosy eye mutant appears to be closely linked to the gene(s) for refractoriness to alpha viruses and may be useful in future studies in understanding the genetic basis of vector competence of Ae. aegypti to arboviruses. PMID:7943547

Mourya, D T; Gokhale, M D; Malunjkar, A S; Bhat, H R; Banerjee, K

1994-09-01

55

Genome Sequence of Aedes aegypti, a Major Arbovirus Vector  

Microsoft Academic Search

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ~1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ~4 to

Vishvanath Nene; Jennifer R. Wortman; Daniel Lawson; Brian Haas; Chinnappa Kodira; Z. Tu; Brendan Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; E. M. Zdobnov; N. F. Lobo; K. S. Campbell; S. E. Brown; M. F. Bonaldo; Jingsong Zhu; S. P. Sinkins; D. G. Hogenkamp; Paolo Amedeo; Peter Arensburger; P. W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; M. R. Coy; Jonathan Crabtree; Matt Crawford; Becky deBruyn; David DeCaprio; Karin Eiglmeier; Eric Eisenstadt; Hamza El-Dorry; W. M. Gelbart; S. L. Gomes; Martin Hammond; Linda I. Hannick; M. H. Holmes; J. R. Hogan; David Jaffe; J. S. Johnston; R. C. Kennedy; Hean Koo; Saul Kravitz; Evgenia V. Kriventseva; David Kulp; Kurt LaButti; Eduardo Lee; Song Li; Diane D. Lovin; Chunhong Mao; Evan Mauceli; C. F. M. Menck; J. R. Miller; Philip Montgomery; Akio Mori; A. L. Nascimento; H. F. Naveira; Chad Nusbaum; S. O'Leary; Joshua Orvis; Mihaela Pertea; Hadi Quesneville; K. R. Reidenbach; Yu-Hui Rogers; C. W. Roth; J. R. Schneider; Michael Schatz; Martin Shumway; Mario Stanke; E. O. Stinson; J. M. C. Tubio; J. P. VanZee; Sergio Verjovski-Almeida; Doreen Werner; Owen White; Stefan Wyder; Qiandong Zeng; Qi Zhao; Yongmei Zhao; C. A. Hill; A. S. Raikhel; M. B. Soares; D. L. Knudson; N. H. Lee; James Galagan; S. L. Salzberg; I. T. Paulsen; George Dimopoulos; F. H. Collins; Bruce Birren; C. M. Fraser-Liggett; D. W. Severson

2007-01-01

56

A transcriptome analysis of the Aedes aegypti vitellogenic fat body  

Microsoft Academic Search

Aedes (Stegomyia) aegypti is an important dengue vector in tropical and subtropical zones throughout the world. A transcriptome of Ae. aegypti vitellogenic fat bodies is described here. The fat body is a dynamic tissue that participates in multiple biochemical functions of intermediate metabolism. A total of 589 randomly selected cDNAs were assembled into 262 clusters based on their primary sequence

Fabiana M. Feitosa; Eric Calvo; Emilio F. Merino; Alan M. Durham; Anthony A. James; Antonio G. de Bianchi; Osvaldo Marinotti; Margareth L. Capurro

2006-01-01

57

Substitution of Wild-Type Yellow Fever Asibi Sequences for 17D Vaccine Sequences in ChimeriVax-Dengue 4 Does Not Enhance Infection of Aedes aegypti Mosquitoes  

PubMed Central

To address concerns that a flavivirus vaccine/wild-type recombinant virus might have a high mosquito infectivity phenotype, the yellow fever virus (YFV) 17D backbone of the ChimeriVax– dengue 4 virus was replaced with the corresponding gene sequences of the virulent YFV Asibi strain. Field-collected and laboratory-colonized Aedes aegypti mosquitoes were fed on blood containing each of the viruses under investigation and held for 14 days after infection. Infection and dissemination rates were based on antigen detection in titrated body or head triturates. Our data indicate that, even in the highly unlikely event of recombination or substantial backbone reversion, virulent sequences do not enhance the transmissibility of ChimeriVax viruses. In light of the low-level viremias that have been observed after vaccination in human volunteers coupled with low mosquito infectivity, it is predicted that the risk of mosquito infection and transmission of ChimeriVax vaccine recombinant/revertant viruses in nature is minimal.

McGee, Charles E.; Tsetsarkin, Konstantin; Vanlandingham, Dana L.; McElroy, Kate L.; Lang, Jean; Guy, Bruno; Decelle, Thierry; Higgs, Stephen

2008-01-01

58

Aedes aegypti, Aedes albopictus, and Dengue virus in Harris county: An estimate of risk  

Microsoft Academic Search

Recent outbreaks of dengue fever (DF) along the United States\\/Mexico border, coupled with the high number of reported cases in Mexico suggest that there is the possibility for DF emergence in Houston, Texas1,2. To determine the presence of DF, populations of Aedes aegypti and Aedes albopictus were identified and tested for dengue virus. Maps were created to identify \\

J. Marie Bloemer

2009-01-01

59

Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.  

PubMed

The larvicidal activity against Aedes aegypti larvae of a stem wood hexane extract of Cybistax antisyphilitica was evaluated. Bioassay-guided fractionation of the crude extract, monitored by larvicidal assay, led to the isolation of a natural quinone identified as 2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone (lapachol). This compound was quite potent against A. aegypti larvae (LC50 26.3 microg/ml). PMID:16229968

Rodrigues, A M S; de Paula, J E; Roblot, F; Fournet, A; Espíndola, L S

2005-10-17

60

Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands  

PubMed Central

Dengue virus (DENV), the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE) from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L.) and Aedes polynesiensis (Marks). The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.

Cao-Lormeau, Van-Mai

2009-01-01

61

Aedes aegypti Mosquitoes Imported into the Netherlands, 2010  

PubMed Central

During summer 2010, Aedes aegypti mosquitoes were discovered in the Netherlands. Using genetic markers, we tracked the origin of these mosquitoes to a tire shipment from Miami, Florida, USA. Surveillance of tire exports from the United States should be included as part of a comprehensive surveillance system.

Scholte, Ernst-Jan; Dik, Marian; Den Hartog, Wietse; Beeuwkes, Jacob; Powell, Jeffrey R.

2011-01-01

62

Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes.  

PubMed

The vector competence in Ae. aegypti (L.) and Ae. albopictus (Skuse) from southern Taiwan to the dengue 1 virus was studied to elucidate the distribution of dengue infection during the 1987-1988 outbreak. The brain of Ae. aegypti was infected as early as 3 d after intrathoracic inoculation. The esophagus and the proboscis (tissues within the labium) were infected 5 d after inoculation. The salivary gland was highly susceptible to the virus, but no specific infection site was found. Gangli, muscles, and diverticula within the thorax were not infected. In the abdominal area, the ventral diverticula, Malpighian tubules, ganglia, and the dorsal vessel were not infected. However, the entire gut was susceptible to dengue 1 virus, although it was not infected simultaneously. Only a certain type of midgut epithelial cells was infected by the virus. The ovarioles, oviducts, and accessory glands frequently were infected. However, the spermathecae were not infected, perhaps because of the chitin-rich outer layer. Infections of the testes, vas deferens, seminal vesicles, and accessory glands of males also were detected in this study. The tissues of the proboscis were never infected in Ae. albopictus but frequently were infected in Ae. aegypti, indicating that the virus may escape the salivary gland barrier more efficiently in Ae. aegypti than in Ae. albopictus. When these mosquitoes were fed on hanging drops, the salivary gland infection and transmission rates of Ae. aegypti were always higher than those of Ae. albopictus. On Taiwan, Ae. aegypti appears to be a more competent vector in the transmission of the dengue 1 virus than Ae. albopictus. PMID:8510112

Chen, W J; Wei, H L; Hsu, E L; Chen, E R

1993-05-01

63

LOW ORAL RECEPTIVITY FOR DENGUE TYPE 2 VIRUSES OF AEDES ALBOPICTUS FROM SOUTHEAST ASIA COMPARED WITH THAT OF AEDES AEGYPTI  

Microsoft Academic Search

Dengue hemorrhagic fever has been a major health problem in Asia since the 1950s. During this period, the former principal vector of dengue viruses in Asia, Aedes albopictus, was replaced by Aedes aegypti in most major cities of the area. Ae. aegypti is now considered the main vector of dengue viruses in Asia. Surprisingly, however, this mosquito has been described

MARIE VAZEILLE; LEON ROSEN; LAURENCE MOUSSON; ANNA-BELLA FAILLOUX

2003-01-01

64

Development of Mansonella perstans in the surrogate vector Aedes aegypti.  

PubMed

The biology of the human filaria Mansonella perstans has been poorly studied due in part to the lack of experimental animal models in which its life-cycle could be reproduced. In nature Culicodes spp. (and probably simuliids) are the vectors involved in disease transmission. In the present work Aedes aegypti black-eyed strain was experimentally infected with M. perstans microfilariae by intrathoracic inoculation of 8 to 15 parasites contained in 0.4-0.6 microliters of RPMI 1640. Concentration of microfilariae was achieved by means of a ficoll separation technique. A. aegypti were maintained at 26 degrees C and 80% relative humidity with a sugar-water diet, except on day 4 post-infection on which they received an uninfected blood meal. Larval development was slow, taking no less than 4 days to reach the sausage stage, which measured 95-100 microns in length. Molt to the second stage took place on the 6th day; the differentiation into a long muscular and glandular esophagus, and short intestine measuring approximately one fourth of the total larval length were the most significant changes. At the end of this period 4 small but well demarcated tail papillae were observed. The first third-stage larvae appeared at the 8th day post-infection, measuring 650 to 680 microns in length. Beyond the 10th day larvae with an average length of 750 microns were found in the thorax, head, and mouthparts. Four conspicuous tail papillae characteristic of the genus Mansonella were seen in all third-stage larvae.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2075386

Travi, B L; Orihel, T C; Montoya, J; Jaramillo, C

1990-12-01

65

A transcriptome analysis of the Aedes aegypti vitellogenic fat body  

PubMed Central

Aedes (Stegomyia) aegypti is an important dengue vector in tropical and subtropical zones throughout the world. A transcriptome of Ae. aegypti vitellogenic fat bodies is described here. The fat body is a dynamic tissue that participates in multiple biochemical functions of intermediate metabolism. A total of 589 randomly selected cDNAs were assembled into 262 clusters based on their primary sequence similarities. The putative translated proteins were classified into categories based on their function in accordance with significant similarity using the BlastX at NCBI FTP site and Pfam (Bateman et al. 2000) and SMART (Schultz et al. 2000) databases. The characterization of transcripts expressed in the fat body of Ae. aegypti at 24 hours post blood meal provides a basic tool for understanding the processes occurring in this organ and could identify putative new genes whose promoters can be used to specifically express transgenes in the fat bodies of Ae. aegypti.

Feitosa, Fabiana M.; Calvo, Eric; Merino, Emilio F.; Durham, Alan M.; James, Anthony A.; de Bianchi, Antonio G.; Marinotti, Osvaldo; Capurro, Margareth L.

2006-01-01

66

Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus.  

PubMed

The vector mosquitoes of dengue and chikungunya fever, Aedes aegypti and Aedes albopictus have adapted to feed on humans and undergo larval and pupal development in natural and artificial freshwater collections. Although several studies reported, still, much information is required to understand the successful survival of Aedes mosquitoes in small temporary containers. In an investigation conducted in the chikungunya affected areas of Kerala state, India, the presence of Bdelloid rotifer, Philodina in 95% of breeding habitats of Ae. aegypti and Ae. albopictus was recorded. The role of Philodina in the breeding containers was investigated. It was found that while in control the number of Philodina was found increasing in the water sample during the study period of seven days, the number found decreased in the containers with larvae of Aedes. The gut content analysis also confirmed the presence of the rotating wheel, corona of Philodina in some of the specimen suggests its role as major larval food. PMID:23202612

Muniaraj, M; Arunachalam, N; Paramasivan, R; Mariappan, T; Philip Samuel, P; Rajamannar, V

2012-12-01

67

Growth of Venezuelan Equine Encephalitis Virus in Tissue Cultures of Minced AEDES Aegypti Larvae.  

National Technical Information Service (NTIS)

A method for the germfree cultivation of the mosquitoes Aedes aegypti and Aedes triseriatus was developed, and primary tissue cultures were prepared from minced larvae of both insect species. The Trinidad and the 9t strains of Venezuelan equine encephalit...

J. W. Johnson

1968-01-01

68

First evidence of natural vertical transmission of yellow fever virus in Aedes aegypti, its epidemic vector.  

PubMed

Entomological investigations were conducted in 1995 in Senegal, following a yellow fever (YF) outbreak. A total of 1125 mosquitoes collected in the field, including males, females and 12-48 h old newly emerged adults reared from wild-caught larvae, were tested for YF virus. Among the 22 species captured, Aedes aegypti was the most common. 'Wild' vectors of YF were also captured, including A. furcifer, A. metallicus and A. luteocephalus. In all, 28 YF virus isolations were made: 19 from A. aegypti females, including 2 from newly emerged specimens; 5 were obtained from A. aegypti males, including one from a pool of newly emerged specimens, 2 from A. furcifer females, and one each from a female A. metallicus and a female A. luteocephalus. The true infection rates (TIRs) were much higher in adult A. aegypti than in specimens reared from larvae--8.2% and 31.4% for female and male A. aegypti captured on human volunteers, respectively (P < 0.0001). The TIRs for A. aegypti reared from larvae were 1.4% and 0.5% for females and males, respectively (P > 0.05). This outbreak was an intermediate YF epidemic, involving 4 vector species. Our data provide the first evidence of vertical transmission of YF virus in nature by A. aegypti, its main vector to humans, and strongly suggest that vertical transmission played a major role in the spread of the epidemic. PMID:9463659

Fontenille, D; Diallo, M; Mondo, M; Ndiaye, M; Thonnon, J

69

Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes  

Microsoft Academic Search

Background  Resistance to chemical insecticides plus high morbidity rates have lead to rising interest in fungi as candidates for biocontrol\\u000a agents of mosquito vectors. In most studies fungal infections have been induced by exposure of mosquitoes to various surfaces\\u000a treated with conidia. In the present study eight Mexican strains of Beauveria bassiana were assessed against Aedes aegypti by direct exposure of

Alberto M García-Munguía; Javier A Garza-Hernández; Eduardo A Rebollar-Tellez; Mario A Rodríguez-Pérez; Filiberto Reyes-Villanueva

2011-01-01

70

A new factor in the Aedes aegypti immune response: CLSP2 modulates melanization  

Microsoft Academic Search

Microbial infections in the mosquito Aedes aegypti activate the newly identified CLSP1 and CLSP2 genes, which encode modular proteins composed of elastase-like serine protease and C-type lectin domains. These genes are predominantly regulated by the immune deficiency pathway, but also by the Toll pathway. Silencing of CLSP2, but not CLSP1, results in the activation of prophenoloxidase (PPO), the terminal enzyme

Zhen Zou; Sang Woon Shin; Alexander S Raikhel

2011-01-01

71

The w MelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti  

Microsoft Academic Search

Wolbachia is an intracellular bacterium that has been stably transinfected into the mosquito vector of dengue, Aedes aegypti. This inherited infection causes a range of metabolic and phenotypic alterations in the mosquito, which might be related\\u000a to neuronal abnormalities. In order to determine if these alterations were caused by the manipulation of neuroamines by this\\u000a bacterium, we studied the expression

Luciano A Moreira; Yixin H Ye; Karly Turner; Darryl W Eyles; Elizabeth A McGraw; Scott L O’Neill

2011-01-01

72

Field evaluations of disposable sticky lures for surveillance of Aedes aegypti (Stegomyia aegypti) and Culex quinquefasciatus in Jakarta.  

PubMed

From December 1997 to April 1998, disposable sticky lures (1608 lure days) were trialled in homes in north Jakarta, Indonesia as surveillance tools for Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae), referenced to indoor resting adult collections (92 × 10 min). The lures collected 89.4% of the total of 1339 Ae. aegypti and 92.1% of the total of 1272 Cx. quinquefasciatus collected by all methods. Because there were no significant differences with respect to numbers collected in bedrooms, living rooms and kitchens, bedrooms were selected for subsequent trials for reasons of convenience. The main trials involved a replicated complete block design with L-lysine and sodium carbonate. Lures without attractant or with four different dilutions of L-lysine collected 3.4-8.5 times more Ae. aegypti and 4.2-8.1 times more Cx. quinquefasciatus than were collected by mouth aspirator. Lures with or without dilutions of sodium carbonate collected 2.7-5.0 times more Ae. aegypti and 1.8-4.2 times more Cx. quinquefasciatus than aspirator collections. The precision associated with catches of sticky lures was better than that for aspirator collections. Although olfactants generally improved the numbers of mosquitoes collected, the differences in catch between lures with and without attractants were usually non-significant. Any deficit in catch may be offset by increasing the surveillance period to ?30 days to detect all four dengue serotypes from infected mosquitoes. PMID:23002913

Kay, B H; Brown, M D; Siti, Z; Bangs, M J

2012-09-25

73

Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar  

PubMed Central

Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML) method with the gene time reversible (GTR) model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p < 2.2 × 10-16) and period (F = 36.22, p = 2.548 × 10-13), that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough to discern Malagasy populations. The experimental oral infection method showed that six Ae. albopictus populations exhibited high dissemination infection rates for chikungunya virus ranging from 98 to 100%. Conclusion In Madagascar, Ae. albopictus has extended its geographical distribution whereas, Ae. aegypti has become rare, contrasting with what was previously observed. Changes are predominantly driven by human activities and the rainfall regime that provide suitable breeding sites for the highly anthropophilic mosquito Ae. albopictus. Moreover, these populations were found to be highly susceptible to chikungunya virus. In the light of this study, Ae. albopictus may have been involved in the recent outbreaks of chikungunya and dengue epidemics in Madagascar, and consequently, control measures should be promoted to limit its current expansion.

2012-01-01

74

[Control of Aedes aegypti in Martinique. Contribution of entomology studies].  

PubMed

The dengue prevention activities in Martinique are based on: Entomological surveillance (including the use of insecticide in all parts of the Island). Epidemiological (clinical, serological and virological) surveillance. Health Education (radio, TV, exhibitions, talks in primaries and secondaries schools, in associations,...). The main breeding sites of Aedes aegypti are maintained by human practices: flowers vases, containers, used tyres, waste... The role of those human practices in the standing of Aedes aegypti populations at high level in Martinique have lead us to emphasize entomological observations and Health education. The calculation of classical Breteau Index abstracts the nature and the productivity of the breeding sites (f.e.: no difference between a flower vase and a drum). In operational way, we have introduced a new approach for calculating the Breteau index value which includes the breeding sites nature and productivity. This approach permit us to adapt the Health education message in each geographical sector. PMID:8924777

Yébakima, A

1996-01-01

75

Vitelline envelope genes of the yellow fever mosquito, Aedes aegypti  

Microsoft Academic Search

Vitelline envelope genes from the mosquito Aedes aegypti were analyzed with respect to their DNA sequences, genomic representation, temporal and spatial expression profiles and response to 20-hydroxyecdysone. Genomic clones of three vitelline envelope genes, 15a-1, 15a-2 and 15a-3 were isolated. Southern analysis indicates that all three genes are represented by a single copy in the genome. The deduced amino acid

Marten J. Edwards; David W. Severson; Henry H. Hagedorn

1998-01-01

76

Larvicidal activity of Tagetes erecta against Aedes aegypti.  

PubMed

The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti. PMID:21805850

Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

2011-06-01

77

Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City  

PubMed Central

The distribution and density of Ae. aegypti and Ae. albopictus in Singapore were assessed from extensive larval surveys carried out from 1966 to 1968 to evaluate their respective roles in the epidemiology of dengue haemorrhagic fever and to study their ecology in the urban areas. Ten urban areas where the majority of dengue haemorrhagic fever cases occurred were surveyed. The results showed that both species were common in the city, with Ae. aegypti being the dominant species. The distribution of Ae. aegypti was more uniform and related to the prevailing housing types and conditions. Its premise index was highest in slum houses, intermediate in shop houses, and lowest in multistorey flats. Ae. albopictus, on the other hand, did not seem to be related to the prevailing housing type in its distribution but tended to be more widespread in areas with open spaces. The larval density index (the average number of larvae per housing unit) was higher for Ae. aegypti than for Ae. albopictus, in agreement with the relative densities shown by their premise indices. The larval density index correlated well with the premise index and correlated best with the infested-receptacle index. For practical purposes, the most suitable, convenient, and reliable measure of density of Ae. aegypti population seems to be the infested-receptacle index. An attempt was made to estimate the rate of dispersal of Ae. aegypti from a stable population to an adjacent area of multistorey flats. The rate of dispersal, estimated from the premise index and the larval density index, was approximately 2% per year of the ”donor” population.

Chan, Y. C.; Chan, K. L.; Ho, B. C.

1971-01-01

78

Enhanced esterase activity in salivary gland and midgut of Aedes aegypti mosquito infected with dengue-2 virus.  

PubMed

Mosquitoes were infected by intrathoracic inoculation. About 95% head squashes were positive for dengue virus antigen on the 15th post infection day (PID). Esterase activity was determined in the homogenates prepared from the salivary glands and midguts on different PIDs of dengue virus inoculated and control mosquitoes showed that it was consistently higher in the virus-infected batches. PMID:15267144

Mourya, D T; Rohankhedkar, M S; Yadav, P; Dighe, V; Deobagkar, D N

2003-01-01

79

[Specificity of the Adultrap for capturing females of Aedes aegypti (Diptera: Culicidae)].  

PubMed

The Adultrap is a new trap built for capturing females of Aedes aegypti. Tests were carried out to evaluate the specificity of this trap in comparison with the technique of aspiration of specimens in artificial shelters. Adultraps were kept for 24 hours inside and outside 120 randomly selected homes in two districts of the city of Foz do Iguaçú, State of Paraná. The statistical test was Poissons log-linear model. The result was 726 mosquitoes captured, of which 80 were Aedes aegypti. The Adultrap captured only females of this species, while the aspiration method captured both sexes of Aedes aegypti and another five species. The Adultrap captured Aedes aegypti inside and outside the homes, but the analysis indicated that, outside the homes, this trap captured significantly more females than aspiration did. The sensitivity of the Adultrap for detecting females of Aedes aegypti in low-frequency situations was also demonstrated. PMID:17568892

Gomes, Almério de Castro; da Silva, Nilza Nunes; Bernal, Regina Tomie Ivata; Leandro, André de Souza; de Camargo, Natal Jataí; da Silva, Allan Martins; Ferreira, Adão Celestino; Ogura, Luis Carlos; de Oliveira, Sebastião José; de Moura, Silvestre Marques

80

Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City  

PubMed Central

There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species.

Chan, K. L.; Chan, Y. C.; Ho, B. C.

1971-01-01

81

Gene flow networks among American Aedes aegypti populations  

PubMed Central

The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread.

Goncalves da Silva, Anders; Cunha, Ivana C L; Santos, Walter S; Luz, Sergio L B; Ribolla, Paulo E M; Abad-Franch, Fernando

2012-01-01

82

Gene flow networks among American Aedes aegypti populations.  

PubMed

The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread. PMID:23144654

Gonçalves da Silva, Anders; Cunha, Ivana C L; Santos, Walter S; Luz, Sérgio L B; Ribolla, Paulo E M; Abad-Franch, Fernando

2012-11-01

83

Identification of Aedes aegypti and its Respective Life Stages by Real-Time PCR  

Microsoft Academic Search

An Aedes aegypti specific fluorogenic probe hydrolysis (TaqMan) PCR assay was developed for real-time screening using a field-deployable thermocycler. Laboratory-based testing of Ae. aegypti, Ae. aegypti (Trinidad strain); Culex pipiens; Culex pipiens quinquefasciatus; Anopheles stephensi; Ochlerotatus taeniorhynchus individual adult mosquitoes and mixed pools (n=10) demonstrated 100% concordance in both in vitro sensitivity (6\\/6) and specificity (10\\/10). A single adult Aedes

James C. McAvin; David E. Bowles; Col James; A. Swaby; Capt Keith; W. Blount; Miguel Quintana; John R. Hickman

84

Identification of Aedes aegypti and its Respective Life Stages by Real- Time PCR.  

National Technical Information Service (NTIS)

An Aedes aegypti specific fluorogenic probe hydrolysis (TaqMan) PCR assay was developed for real-time screening using a field-deployable thermocycler. Laboratory-based testing of Ae. aegypti, Ae. aegypti (Trinidad strain); Culex pipiens; Culex pipiens qui...

J. C. McAvin D. E. Bowles J. A. Swaby K. W. Blount J. A. Blow

2004-01-01

85

Identification of Aedes aegypti and Its Respective Life Stages by Real- Time Polymerase Chain Reaction.  

National Technical Information Service (NTIS)

An Aedes aegypti-specific, fluorogenic probe hydrolysis (Taq-Man), polymerase chain reaction assay was developed for real-time screening using a field-deployable thermocycler. Laboratory-based testing of A. aegypti, A. aegypti (Trinidad strain), Culex pip...

J. C. McAvin D. E. Bowles J. A. Swaby K. W. Blount J. A. Blow

2004-01-01

86

Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say)  

Microsoft Academic Search

The acetone, chloroform, ethyl acetate, hexane, and methanol leaf and flower extracts of Ocimum sanctum were studied against fourth instar larvae of Aedes aegypti and Culex quinquefasciatus. The highest larval mortality was found in leaf extract of O. sanctum against the larvae of A. aegypti and C. quinquefasciatus. The LC50 values of O. sanctum against the larvae of A. aegypti

A. Mohamed Anees

2008-01-01

87

[Effect of larval rearing water on Aedes aegypti oviposition in the laboratory].  

PubMed

To evaluate the influence of larval rearing water on Aedes aegypti oviposition, four types of water were provided for gravid females. It was observed that more eggs were laid in the mixed larval rearing water (2,837) than in the Aedes albopictus water (690) or control water (938), but that this number was similar to what was seen in the Aedes aegypti water (2,361). PMID:19009198

Serpa, Lígia Leandro Nunes; Monteiro, Simone D'Cara Barbosa; Voltolini, Júlio Cesar

88

Neuropeptidomics of the mosquito Aedes aegypti  

PubMed Central

Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single specimens which yielded a largely complete accounting of the putative bioactive neuropeptides; truncated neuropeptides with low abundance were not counted as mature peptides. Differential processing within the CNS was detected for the CAPA-precursor and differential post-translational processing (pyroglutamate formation) was detected for AST-C and CAPA-PVK-2. For the first time in insects, we succeeded in the direct mass spectrometric profiling of midgut tissue which yielded a comprehensive and immediate overview of the peptides involved in the endocrine system of the gut. Head peptides which were earlier identified as the most abundant RFamides of Ae. aegypti, were not detected in any part of the CNS or midgut. This study provides a framework for future investigations on mosquito endocrinology and neurobiology. Given the high sequence similarity of neuropeptide precursors identified in other medically important mosquitoes, conclusions regarding the peptidome of Ae. aegypti likely are applicable to these mosquitoes.

Predel, Reinhard; Neupert, Susanne; Garczynski, Stephen F.; Crim, Joe W.; Brown, Mark R.; Russell, William K.; Kahnt, Jorg; Russell, David H.; Nachman, Ronald J.

2010-01-01

89

Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection  

PubMed Central

West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-? and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10.

Schneider, Bradley S.; Soong, Lynn; Coffey, Lark L.; Stevenson, Heather L.; McGee, Charles E.; Higgs, Stephen

2010-01-01

90

Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity.  

PubMed

Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans. PMID:21995849

Machain-Williams, C; Mammen, M P; Zeidner, N S; Beaty, B J; Prenni, J E; Nisalak, A; Blair, C D

2012-01-01

91

Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi.  

PubMed

The effect of host immune activation on the development of Brugia malayi in one susceptible and four refractory strains of Aedes aegypti and in Armigeres subalbatus was assessed. A. aegypti that were immune activated by the injection of saline or bacteria 24 hr before feeding on a B. malayi-infected gerbil had significantly reduced prevalences and mean intensities of infection from those of naive controls when exposed to bloodmeals with low (105 mf/20 microliters) and medium (160 mf/20 microliters) microfilaremias. At a higher microfilaremia (237 mf/20 microliters) there were no significant differences in mean intensities, suggesting that the number of parasites ingested may affect the host's ability to mount an effective defense response. Because the major immune proteins in A. aegypti are defensins, we did Northern analyses of fat body RNA 8 hr after immune activation or bloodfeeding. All mosquitoes demonstrated rapid transcriptional activity for defensins following immune activation by intrathoracic inoculation with either saline or bacteria. However, no strain of A. aegypti, susceptible or refractory to B. malayi, nor Ar. subalbatus produced defensin transcripts after bloodfeeding on an uninfected or a B. malayi-infected gerbil. These data suggest that inducible immune proteins of mosquitoes can reduce the prevalence and mean intensity of infections with ingested parasites, but these proteins are not expressed routinely after parasite ingestion and midgut penetration and probably do not contribute to existing refractory mechanisms. Immune proteins such as defensins, however, represent potential candidates to genetically engineer mosquitoes for resistance to filarial worms. PMID:8682188

Lowenberger, C A; Ferdig, M T; Bulet, P; Khalili, S; Hoffmann, J A; Christensen, B M

1996-07-01

92

Susceptibility of Aedes aegypti (Diptera: Culicidae) to Acanthamoeba polyphaga (Sarcomastigophora: Acanthamoebidae).  

PubMed

To date there is no report on mosquitoes infected with free-living amoebae. For this reason, the aim of this study was to verify if Aedes aegypti could be susceptible to Acanthamoeba polyphaga under laboratory conditions, so trophozoites were offered as a unique food resource for larvae of first instar. The results show that those amoebae are able to infect and colonize the mosquito gut and could be re-isolated of all stages of the mosquito (larvae, pupae, and adults). PMID:20379834

Rott, Marilise; Caumo, Karin; Sauter, Ismael; Eckert, Janina; da Rosa, Luana; da Silva, Onilda

2010-04-09

93

Investigation of the Cry4B-prohibitin interaction in Aedes aegypti cells.  

PubMed

Bacillus thuringiensis (Bt) produces insecticidal toxins active against insects. Cry4B, one of the major insecticidal toxins produced by Bt subsp. israelensis, is highly toxic to mosquitoes in the genus Aedes: the major vectors of dengue, yellow fever, and chikungunya. Previous work has shown that Cry4B binds to several mid-gut membrane proteins in Aedes aegypti larvae including prohibitin, a protein recently identified as a receptor that also mediates entry of dengue virus into Aedes cells. This study confirms the interaction between Cry4B and prohibitin by co-immunoprecipitation analysis and demonstrates colocalization of prohibitin and Cry4B by confocal microscopy. While activated Cry4B toxin showed high larvicidal activity, it was not cytotoxic to two Aedes cell lines, allowing determination of its effect on dengue virus infectivity in the absence of Cry4B-induced cell lysis. Pre-exposure of Aedes cells to Cry4B resulted in a significant reduction in the number of infected cells compared to untreated cells. PMID:22767320

Kuadkitkan, Atichat; Smith, Duncan R; Berry, Colin

2012-07-06

94

PCR detection of Dirofilaria immitis in Aedes aegypti and Culex pipiens from urban temperate Argentina.  

PubMed

Dirofilariasis, a mosquito-borne disease of dogs caused by the nematode Dirofilaria immitis (Leidy; Spirurida: Onchocercidae), has now become a growing zoonotic concern. Based on direct microscopical observation, Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) have been previously incriminated as potential vectors of D. immitis in urban temperate Argentina. In this study, an effort was made to provide evidence for this assumption by screening of mosquitoes for D. immitis infection using a polymerase chain reaction (PCR) assay. PCR primers were developed to specifically amplify the D. immitis-16S rRNA gene and to reliably detect 100th of the genomic equivalent (10 pg) of the infective third-stage larvae in mosquito pools of up to 30 individuals. Collection of mosquitoes was performed between September 2007 and April 2008 in premises known to be inhabited by D. immitis-infected dogs in Greater Buenos Aires. The final collection comprised 453 specimens belonging to 11 mosquito species of the genera Aedes, Culex, Ochlerotatus, and Psorophora. PCR assays were performed on 82 pools (n ? 20) of heads and abdomens separately, as this allows differentiating infective and non-infective stages of the parasite, respectively. Identification of the non-infective stage of D. immitis in A. aegypti and C. pipiens provided additional strong support of transmission of the parasite by these species. To our knowledge, this was the first PCR screening for D. immitis-infected mosquitoes in South America. PMID:21072539

Vezzani, Darío; Mesplet, María; Eiras, Diego F; Fontanarrosa, María F; Schnittger, Leonhard

2010-11-12

95

Permethrin induces overexpression of multiple genes in Aedes aegypti.  

PubMed

Using the polymerase chain reaction (PCR)-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated versus acetone-treated Aedes aegypti subtractive library. Quantitative PCR (QPCR) results showed that 8 of the 18 gene's transcriptional levels in permethrin-treated Ae. aegypti were at least two-fold higher (ranging from 2.6 +/- 0.5 to 4.8 +/- 0.2) than that in acetone-treated Ae. aegypti. These eight genes include three functionally known genes (cytochrome c oxidase subunit III, NADH2 dehydrogenase, deltamethrin resistance associated protein), three functionally unknown genes (Ae. aegypti putative 16.9-kDa secreted protein, Anopheles gambiae ENSANGP00000019508, Cryptococcus neoformans hypothetical protein CNE05340), and two novel genes. Transcriptional levels for 11 of the 18 genes were induced significantly higher by permethrin than by fipronil (P < 0.05). Our results suggest that subtractive cDNA hybridization and QPCR are powerful techniques to identify differentially expressed genes in response to pesticide treatment. PMID:19496430

Pridgeon, Julia W; Becnel, James J; Clark, Gary G; Linthicum, Kenneth J

2009-05-01

96

[Aedes aegypti oviposition in response to NPK fertilizers].  

PubMed

Fertilizers are mineral associations intended to bring to the plants nutritive complements necessary to their growth. Modern fertilizers (NPK) combine the three basic elements which are the nitrogen (N), phosphorus (P) and potassium (K). In this study, we investigated in tunnel apparatus the influence of aqueous solutions containing low, moderate and high concentrations of NPK on the oviposition of Aedes aegypti. The results showed that the solutions containing moderate concentrations (NK = 17-33 mg/l and P = 23-47 mg/l) attracted significantly more gravid females than distilled water (P < 0.001). Conversely, the solutions containing either low or high concentrations of NPK (NK = 8 mg/l and P = 12 mg/l; NK = 50 mg/I and P = 70 mg/l) did not induce significant attraction (P > 0.05). These findings suggest that NPK fertilizers may influence the egg-laying behaviour of Ae. aegypti in field situations. PMID:18416252

Darriet, F; Corbel, V

2008-03-01

97

Population and parity levels of Aedes aegypti collected in Tucson.  

PubMed

Oviposition traps were used to follow changes in the population of Aedes aegypti (L.) (Diptera:Culicidae) in a seven-block area in midtown region of Tucson, Arizona. About 20,000 eggs were collected over a period from 1 June to 14 October 2000. Peak mosquito populations were correlated with the late summer rains. Mosquitoes seeking a blood meal were collected and dissected to determine if they had previously fed, i.e. if they were parous. Of the 241 females examined, 44% were parous, with a range from 0% to 80%. Females that had blood in their guts were collected and the source of blood was identified using an ELISA. Preliminary results suggest that 80% of them had fed on humans. These data suggest that the reproductive history of Tucson populations of Ae. aegypti could be conducive for transmission of dengue viruses. PMID:12831130

Hoeck, Paquita A E; Ramberg, Frank B; Merrill, Samuel A; Moll, Carlos; Hagedorn, Henry H

2003-06-01

98

Phylogeography and population structure of Aedes aegypti in Arizona.  

PubMed

Aedes aegypti, the mosquito responsible for transmitting dengue, has colonized many cities and towns throughout Arizona. Determining both the migration between, and the origin of, local Ae. aegypti populations is important for vector control and disease prevention purposes. Amplified fragment length polymorphism was used to infer geographic structure and local substructure, and effective migration rates (M, migrants per generation) between populations, and to determine genetic differentiation between populations (PhiPT). Three geographically and genetically differentiated groups of populations were identified. Population substructure was only detected in the border town of Nogales. Reliable estimates of M between regions ranged from 1.02 to 3.41 and between cities within regions from 1.66 to 4.44. In general, pairwise PhiPT were lowest between cities within regions. The observed patterns of genetic differentiation suggest infrequent migration between populations and are compatible with the idea of human transport facilitating dispersal between regions. PMID:15772327

Merrill, Samuel A; Ramberg, Frank B; Hagedorn, Henry H

2005-03-01

99

Evidence of Polyandry for Aedes aegypti in Semifield Enclosures  

PubMed Central

Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males (15N or 13C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m3) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control.

Helinski, Michelle E. H.; Valerio, Laura; Facchinelli, Luca; Scott, Thomas W.; Ramsey, Janine; Harrington, Laura C.

2012-01-01

100

Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand  

PubMed Central

Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs.

Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.

2011-01-01

101

Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.  

PubMed

Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT. PMID:22299463

Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

2011-07-01

102

Venereal transmission of chikungunya virus by Aedes aegypti mosquitoes (Diptera: Culicidae).  

PubMed

Experiments were conducted to demonstrate the role of male Aedes aegypti mosquitoes in the maintenance and transmission of chikungunya virus (CHIKV) to female mosquitoes. We demonstrated that infected male mosquitoes are capable of infecting females during mating. The infection rate in female mosquitoes was 11% when virgin female mosquitoes were allowed to coinhabit with infected males. The body suspension of venereally infected female mosquitoes induced illness in infant Swiss albino mice, which demonstrated the infectivity of the venereally transmitted virus. The presence of CHIKV in the brains of the ill mice was confirmed by a reverse transcription-polymerase chain reaction specific for partial sequences of nonstructural protein 4 and envelope 1 genes. In the light of the recent report of transovarial transmission of CHIKV in mosquitoes, although at a lower level, this finding has significance because it may help in transmission of the virus to females venereally to start a new infection cycle. PMID:21118928

Mavale, Mangala; Parashar, Deepti; Sudeep, Anakkathil; Gokhale, Mangesh; Ghodke, Youwaraj; Geevarghese, Geevarghese; Arankalle, Vidya; Mishra, Akhilesh Chandra

2010-12-01

103

Venereal Transmission of Chikungunya Virus by Aedes aegypti Mosquitoes (Diptera: Culicidae)  

PubMed Central

Experiments were conducted to demonstrate the role of male Aedes aegypti mosquitoes in the maintenance and transmission of chikungunya virus (CHIKV) to female mosquitoes. We demonstrated that infected male mosquitoes are capable of infecting females during mating. The infection rate in female mosquitoes was 11% when virgin female mosquitoes were allowed to coinhabit with infected males. The body suspension of venereally infected female mosquitoes induced illness in infant Swiss albino mice, which demonstrated the infectivity of the venereally transmitted virus. The presence of CHIKV in the brains of the ill mice was confirmed by a reverse transcription–polymerase chain reaction specific for partial sequences of nonstructural protein 4 and envelope 1 genes. In the light of the recent report of transovarial transmission of CHIKV in mosquitoes, although at a lower level, this finding has significance because it may help in transmission of the virus to females venereally to start a new infection cycle.

Mavale, Mangala; Parashar, Deepti; Sudeep, Anakkathil; Gokhale, Mangesh; Ghodke, Youwaraj; Geevarghese, Geevarghese; Arankalle, Vidya; Mishra, Akhilesh Chandra

2010-01-01

104

Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa  

PubMed Central

Background Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of Ae. albopictus in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control. Results Aedes aegypti and Ae. albopictus were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC50 and LC95) and resistance ratios (RR50 and RR95) suggested that both vector species were susceptible to Bti (Bacillus thuringiensis var israeliensis) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of Ae. aegypti (Libreville) and two populations of Ae. albopictus (Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in Ae. albopictus from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt50 and Kdt95) was noted in the Yaoundé resistant population compared to other Ae. albopictus populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT. Conclusion In view of the recent increase in dengue and chikungunya outbreaks in Central Africa, these unique comparative data on the insecticide susceptibility of Ae. aegypti and Ae. albopictus could help public health services to design more effective vector control measures.

2011-01-01

105

Failure of dengue-2 virus antibody to interfere with the isolation of dengue-2 virus from Aedes aegypti (Diptera: Culicidae).  

PubMed

When isolating dengue virus (DEN) from mosquitoes collected in endemic areas, pools may contain both anti-dengue antibodies from freshly engorged females and virus from DEN infected females. To determine if these antibodies may interfere with virus isolation, we simulated the isolation procedure using Aedes aegypti (L.) that we infected with the 16,681 strain of dengue type 2 virus by intrathoracic inoculation. At 7 d postinfection, we allowed females to engorge on immunized or normal mouse blood. Virus in a mixture of anti-dengue-2 antibodies and dengue-2 virus became inactive after incubation at 37 degrees C for 1 h, but remained infective without incubation. Therefore, at ambient conditions antibodies would not interfere with virus isolation from field-collected Ae. aegypti from endemic areas. In addition, DEN antibodies enhanced virus replication when inoculated into Ae. aegypti, but not C6/36 cells. The mechanism for this in vitro antibody enhancement of infection remains unclear. PMID:10916310

Weng, M H; Shaio, M F; Yao, C W

2000-07-01

106

Organophosphate resistance in Trinidad and Tobago strains of Aedes aegypti.  

PubMed

Aedes aegypti larvae from 8 sites in Trinidad and 1 in Tobago were assayed against temephos, malathion, and fenthion using the Centers for Disease Control and Prevention time-mortality-based bioassay method. Resistance ratios (RRs) and resistance thresholds (RTs) for each insecticide were calculated in relation to the Caribbean Epidemiology Center reference susceptible strain. Results showed that the Haleland Park and Tobago strains were susceptible to fenthion and malathion, respectively (RRs < 1), while the San Fernando strain had a high RR (33.92) to malathion. All other strains had low-level resistance to fenthion and malathion. Resistance to temephos was more intense with 4 strains showing high-level resistance. The established RT was 60 min for fenthion, 75 min for bendiocarb, and 120 min for temephos and malathion. At the RTs, all Trinidad strains were resistant to temephos (11.50-74.50% mortality), 7 resistant to fenthion (21.25-78.75% mortality), and 5 resistant to malathion (56.25-77.50% mortality). The other strains were incipiently resistant (80-97% mortality). Despite the discrepancies between the RR levels and RT status, it is evident that the organophosphate insecticide resistance is prevalent in Trinidad and Tobago populations of Ae. aegypti. These results suggest that operational failure could soon occur and alternative strategies should be developed and implemented to reduce the probability of further selection pressure on resistant Ae. aegypti populations in Trinidad and Tobago. PMID:21290936

Polson, Karen A; Rawlins, Samuel C; Brogdon, William G; Chadee, Dave D

2010-12-01

107

Functional Development of the Octenol Response in Aedes aegypti  

PubMed Central

Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol?+?CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes.

Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

2013-01-01

108

Germline excision of transgenes in Aedes aegypti by homing endonucleases.  

PubMed

Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector. PMID:23549343

Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

2013-01-01

109

The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti  

PubMed Central

The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti.

Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

2013-01-01

110

The Effect of Temperature and Relative Humidity on the Flight Performance of Female AEDES Aegypti.  

National Technical Information Service (NTIS)

The influence of temperature and r.h. on the flight performance of tethered virgin female Aedes aegypti was investigated. Mosquitoes of similar age were flown to exhaustion on flight mills at various temperatures and relative humidities. Parameters measur...

W. A. Rowley C. L. Graham

1968-01-01

111

A Method for Estimating Blood Meal Volume in Aedes Aegypti using a Radioisotope.  

National Technical Information Service (NTIS)

A study was conducted to determine the feasibility of measuring blood meal volume in Aedes aegypti using a radioisotope blood label in lieu of weight differentials. When mosquitoes were fed on blood labeled with Ce-144, this radioisotope remained complete...

B. C. Redington W. T. Hockmeyer

1976-01-01

112

Potential Use of Pyriproxyfen for Control of Aedes aegypti Diptera: Culicidae) in Iquitos, Peru.  

National Technical Information Service (NTIS)

The effects of pyriproxyfen were tested against a local population of Aedes aegypti (L.) in Iquitos, Peru . Bioassays showed that, when applied to late instars, pyriproxyfen prevented adult emergence at extremely low concentrations (LC50= 0.012 ppb). Ther...

A. Orellana-Rios E. Zamora-Perea J. D. Stancil M. Sihuincha V. Lopez-sifuentes

2005-01-01

113

Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus.  

PubMed

We asked whether climate change might affect the geographic distributions of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). We tested the effects of temperature, diet and the presence of congeneric species on the performance of immature stages of these two aedine species in the laboratory. Mosquitoes in three different species-density combinations were reared at four constant temperatures (20 °C, 25 °C, 30 °C, 35 °C) on low- or high-level diets. Of the four temperatures tested, mortality increased only at 35 °C in both species. Mortality was higher on the high-level diet than on the low-level diet at 35 °C, but not at other temperatures. The presence of congeneric species had a significant positive effect on mortality in Ae. albopictus, but not in Ae. aegypti. Both species developed more quickly at higher temperatures within the range of 20-30 °C; development was not enhanced at 35 °C. Population growth of Ae. albopictus was more stable, regardless of diet and temperature; that of Ae. aegypti varied more according to these two factors. These species-specific attributes may help to explain the latitudinal distribution of the mosquitoes and degree of species dominance where they are sympatric. PMID:21781139

Farjana, T; Tuno, N; Higa, Y

2011-07-22

114

Vertebrate hosts of Aedes aegypti and Aedes mediovittatus (Diptera: Culicidae) in rural Puerto Rico.  

PubMed

The distribution of Aedes (Stegomyia) aegypti (L.), the main vector of dengue viruses (DENV) worldwide, overlaps with Aedes (Gymnometopa) mediovittatus (Coquillett), the Caribbean treehole mosquito, in urban, suburban, and rural areas. Ae. mediovittatus is a competent vector of DENV with high rates of vertical DENV transmission in the laboratory. This study determined whether Ae. mediovittatus feeds on humans and compared its feeding patterns with co-occurring Ae. aegypti in two rural communities of Puerto Rico. Adult mosquitoes were captured for three consecutive days every week from July 2009 to May 2010 using BG-Sentinel traps with skin lures that were placed in the front yard of houses in both communities. Three methods were used to identify the 756 bloodmeals obtained in this study: a multiplex polymerase chain reaction (PCR) for humans and dogs targeting cytochrome b; a PCR targeting the 16S rRNA; and a nested PCR targeting cytochrome b. Ae. mediovittatus fed mostly on humans (45-52%) and dogs (28-32%) but also on cats, cows, horses, rats, pigs, goats, sheep, and chickens. Ae. aegypti fed mostly on humans (76-79%) and dogs (18-21%) but also on cats, horses, and chickens. Our results indicate that Ae. mediovittatus may have a relatively high rate of vector-human contact, which might facilitate virus transmission or harborage in rural areas of Puerto Rico. PMID:22897052

Barrera, Roberto; Bingham, Andrea M; Hassan, Hassan K; Amador, Manuel; Mackay, Andrew J; Unnasch, Thomas R

2012-07-01

115

Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar.  

PubMed

Symbiotic bacteria are known to play important roles in the biology of insects, but the current knowledge of bacterial communities associated with mosquitoes is very limited and consequently their contribution to host behaviors is mostly unknown. In this study, we explored the composition and diversity of mosquito-associated bacteria in relation with mosquitoes' habitats. Wild Aedes albopictus and Aedes aegypti were collected in three different geographic regions of Madagascar. Culturing methods and denaturing gradient gel electrophoresis (DGGE) and sequencing of the rrs amplicons revealed that Proteobacteria and Firmicutes were the major phyla. Isolated bacterial genera were dominated by Bacillus, followed by Acinetobacter, Agrobacterium and Enterobacter. Common DGGE bands belonged to Acinetobacter, Asaia, Delftia, Pseudomonas, Enterobacteriaceae and an uncultured Gammaproteobacterium. Double infection by maternally inherited Wolbachia pipientis prevailed in 98% of males (n=272) and 99% of females (n=413); few individuals were found to be monoinfected with Wolbachia wAlbB strain. Bacterial diversity (Shannon-Weaver and Simpson indices) differed significantly per habitat whereas evenness (Pielou index) was similar. Overall, the bacterial composition and diversity were influenced both by the sex of individuals and by the environment inhabited by the mosquitoes; the latter might be related to both the vegetation and the animal host populations that Aedes used as food sources. PMID:21175696

Zouache, Karima; Raharimalala, Fara Nantenaina; Raquin, Vincent; Tran-Van, Van; Raveloson, Lala Harivelo Ravaomanarivo; Ravelonandro, Pierre; Mavingui, Patrick

2010-12-22

116

Evaluation of Mosquito Densoviruses for Controlling Aedes aegypti (Diptera: Culicidae): Variation in Efficiency due to Virus Strain and Geographic Origin of Mosquitoes  

Microsoft Academic Search

Four mosquito densovirus strains were assayed for mortality and infectivity against Aedes aegypti larvae from different geographic regions. The viral titers were quantified by real-time PCR using TaqMan technology. First- instar larvae were exposed to the same titer of each densovirus strain for 48 hours. All strains of densoviruses exhibited larvicidal activity and caused more than 80% mortality and infectivity

Supanee Hirunkanokpun; Jonathan O. Carlson; Pattamaporn Kittayapong

2008-01-01

117

Stable Transformation of the Yellow Fever Mosquito, Aedes aegypti, with the Hermes Element from the Housefly  

Microsoft Academic Search

The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germline transformation system reported here constitutes a major advance toward the implementation of this control strategy. A

Nijole Jasinskiene; Craig J. Coates; Mark Q. Benedict; Anthony J. Cornel; Cristina Salazar Rafferty; Anthony A. James; Frank H. Collins

1998-01-01

118

Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control  

Microsoft Academic Search

BackgroundBecause no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito

Jacklyn Wong; Steven T. Stoddard; Helvio Astete; Amy C. Morrison; Thomas W. Scott

2011-01-01

119

Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus  

PubMed Central

Sindbis virus expression vectors have been used successfully to express and silence genes of interest in vivo in several mosquito species, including Aedes aegypti, Ae. albopictus, Ae. triseriatus,Culex pipiens, Armigeres subalbatus and Anopheles gambiae. Here we describe the expression of an endogenous gene, defensin, in Ae. aegypti using the orally infectious Sindbis virus, MRE/3?2J expression vector. We optimized conditions to infect mosquito larvae per os using C6/36 Ae. albopictus cells infected with the recombinant virus to maximize virus infection and expression of defensin. Infection with the parental Sindbis virus (MRE/3?2J) did not induce defensin expression. Mosquito larvae infected by ingestion of recombinant Sindbis virus-infected C6/36 cells expressed defensin when they emerged as adults. Defensin expression was observed by western analysis or indirect fluorescent assay in all developmental stages of mosquitoes infected with MRE/3?2J virus that contained the defensin insert. The multiplicity of infection of C6/36 cells and the quantity of infected cells consumed by larvae played an important role in defensin expression. Parental viruses, missing the defensin insert, and/or other defective interfering virus may have contributed to these observations.

Cheng, L.L.; Bartholomay, L.C.; Olson, K.E.; Lowenberger, C.; Vizioli, J.; Higgs, S.; Beaty, B.J.; Christensen, B.M.

2001-01-01

120

Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes  

PubMed Central

Background Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition. Results B2 protein expression from SINV (TE/3'2J) inhibited the accumulation of non-specific small RNAs in Aedes aegypti mosquito cell culture and virus-specific small RNAs both in infected cell culture and Ae. aegypti mosquitoes. More viral genomic and subgenomic RNA accumulated in cells and mosquitoes infected with TE/3'2J virus expressing B2 (TE/3'2J/B2) compared to TE/3'2J and TE/3'2J virus expressing GFP. TE/3'2J/B2 exhibited increased infection rates, dissemination rates, and infectious virus titers in mosquitoes following oral bloodmeal. Following infectious oral bloodmeal, significantly more mosquitoes died when TE/3'2J/B2 was ingested. The virus was 100% lethal following intrathoracic inoculation of multiple mosquito species and lethality was dose-dependent in Ae. aegypti. Conclusion We show that RNAi is active in Ae. aegypti cell culture and that B2 protein inhibits RNAi in mosquito cells when expressed by a recombinant SINV. Also, SINV more efficiently replicates in mosquito cells when RNAi is inhibited. Finally, TE/3'2J/B2 kills mosquitoes in a dose-dependent manner independent of infection route and mosquito species.

2009-01-01

121

Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus  

PubMed Central

Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV.

Ng, Lee Ching; Tan, Cheong Huat

2012-01-01

122

Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti  

Microsoft Academic Search

A degenerate PCR strategy was used to isolate a fragment of the acetylcholinesterase gene (Ace) homolog from Aedes aegypti and screen for a cDNA clone containing the complete open reading frame of the gene. The predicted amino acid sequence of the Aedes gene shares 64% identify with Ace from Drosophila and 87% identity with the acetylcholinesterase gene from another mosquito

Nicola Anthony; Thomas Rocheleau; Giovani Mocelin; Hwa-Jung Lee; Richard ffrench-Constant

1995-01-01

123

Pyrethroid Resistance in Aedes aegypti from Grand Cayman  

PubMed Central

The Grand Cayman population of Aedes aegypti is highly resistant to DDT and pyrethroid insecticides. Glutathione transferase, cytochrome P450, and esterase levels were increased in the Grand Cayman population relative to a susceptible laboratory strain, but synergist studies did not implicate elevated insecticide detoxification as a major cause of resistance. The role of target site resistance was therefore investigated. Two substitutions in the voltage-gated sodium channel were identified, V1016I in domain II, segment 6 (IIS6) (allele frequency = 0.79) and F1534C in IIIS6 (allele frequency = 0.68). The role of the F1534C mutation in conferring resistance to insecticides has not been previously established and so a tetraplex polymerase chain reaction assay was designed and used to genotype mosquitoes that had been exposed to insecticides. The F1534C mutation was strongly correlated with resistance to DDT and permethrin.

Harris, Angela F.; Rajatileka, Shavanthi; Ranson, Hilary

2010-01-01

124

Daily oviposition activity of Aedes aegypti in Orán, Argentina.  

PubMed

The study aimed to determinate the maximum daily peak of Aedes aegypti oviposition in the city of Oran, northwestern Argentina. Biweekly samplings were taken between November 2006 and February 2007 (spring-summer). The city was divided into three areas (north, center, and south) and households were randomly selected. Two ovitraps were placed outdoors in the selected houses. Ovitraps were replaced every four hours, from morning (8 a.m.) to late afternoon (8 p.m.). The largest number of eggs was recorded between 4 p.m. and 8 p.m. (81%). These findings enhance our understanding of the vector and thus its control such as spraying during the hours of peak oviposition activity. PMID:21860910

Estallo, Elizabet Lilia; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Zaidenberg, Mario; Introini, María Virginia; Almirón, Walter Ricardo

2011-08-19

125

Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucat?n State, M?xico, with a summary of published collection records for Ae. cozumelensis  

PubMed Central

We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small, rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México’s Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur.

Garcia-Rejon, Julian E.; Lopez-Uribe, Mildred P.; Lorono-Pino, Maria Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; Lopez-Uribe, Genny M.; Coba-Tun, Carlos; Baak-Baak, Carlos M.; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C.; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black IV, William C.; Beaty, Barry J.; Eisen, Lars

2013-01-01

126

Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucatán State, México, with a summary of published collection records for Ae. cozumelensis.  

PubMed

We collected mosquito immatures from artificial containers during 2010-2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires, and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México's Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur. PMID:23181861

García-Rejón, Julián E; López-Uribe, Mildred P; Loroño-Pino, María Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; López-Uribe, Genny M; Coba-Tún, Carlos; Baak-Baak, Carlos M; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black, William C; Beaty, Barry J; Eisen, Lars

2012-12-01

127

Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana.  

PubMed

The aim of the present study was to evaluate the activity of pacharin isolated from the ethanol extract from roots of Bauhinia acuruana on third-instar larvae of Aedes aegypti Linn. (Diptera: Culicidae). The crude ethanol extract showed larvicidal activity at the concentration of 500 ?g/mL. Given this larvicidal activity, this extract was submitted to chromatographic fractionation on a silica gel column eluted with n-hexane, dichloromethane, ethyl ether, ethyl acetate, and methanol in order to isolate the active compound(s). Pacharin, obtained in pure form from fraction eluted with ethyl ether, was evaluated for their larvicidal effects against A. aegypti. In these bioassays, the larvae were exposed at concentrations of 500, 250, 100, 50, and 25 ?g/mL of the crude ethanol extract or pacharin. After 24 h, the number of dead larvae was counted and the LC?? values for larval mortality were calculated. Pacharin showed LC50 value of 78.9 ± 1.8 ?g/mL. The structure of isolated compound was identified on the basis of their spectral data (IR, 1D- and 2D-NMR) and by comparison with literature spectral data. The results indicate pacharin as a potential natural larvicide. PMID:23604564

da Silva Góis, Roberto Wagner; de Sousa, Leôncio Mesquita; Santiago, Gilvandete Maria Pinheiro; Romero, Nirla Rodrigues; Lemos, Telma Leda Gomes; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo

2013-04-20

128

Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Argentina.  

PubMed

Differences in biological features of immature and adult Aedes aegypti, as well as variability in vector competence, seem consistent with the existence of genetic variation among subpopulations and adaptation to local conditions. This work aims to compare the bionomics of four Ae. aegypti subpopulations derived from different geographical regions reared under temperate conditions. Life statistics of three Ae. aegypti subpopulations from the provinces of Córdoba, Salta, and Misiones were studied based on horizontal life tables. The Rockefeller strain was used as a control. The development time required to complete the larva and pupa stages varied from 6.91 to 7.95 and 1.87 to 2.41 days, respectively. Significant differences were found in mean larval development time between the Córdoba and Orán subpopulations. The larva-pupa development time was similar in all the subpopulations. However, survival values varied significantly between the Orán and San Javier subpopulations. The proportion of emergent males did not differ from females within each subpopulation nor among them. Adult longevity was similar among the subpopulations. The average number of eggs laid by each female was significantly different. The Rockefeller strain laid a significantly greater number of eggs (463.99 eggs/female) than the rest of the subpopulations. Moreover, differences in the demographic growth parameter R(o) were detected among the four subpopulations. The differences obtained in larval development time, larva-pupa survival values, and net reproductive rates among the subpopulations might reflect underlying genetic differences as a result of colonization from different regions that probably involve adaptations to local conditions. PMID:21175932

Grech, Marta Gladys; Ludueña-Almeida, Francisco; Almirón, Walter Ricardo

2010-12-01

129

Gene flow pattern among Aedes aegypti populations in Mexico.  

PubMed

Patterns of gene flow vary greatly among Aedes aegypti populations throughout Mexico. The populations are panmictic along the Pacific coast, isolated by distance in northeast Mexico, and exhibit moderate gene flow across the Yucatan peninsula. Nine Ae. aegypti collections from 6 cities in Oaxaca, Mexico, were taken to examine the local patterns of gene flow. Genetic variation was examined in a 387-bp region of the nicotinamide adenine dinucleotide dehydrogenase subunit 4 mitochondrial gene (ND4) using single-strand conformation polymorphism analysis, and 3 haplotypes were detected. Cluster analysis on the linearized FST genetic distances failed to group collections in geographic proximity. Regression analysis of linear or road distances on linearized F(ST) indicated that proximal collections were as diverse as distant collections across an approximately 800-km range. The geographical distribution of the Mexican mosquito haplotype frequencies was determined for the ND4 sequences from 524 individuals from Oaxaca (this study) and 2,043 individuals from our previous studies. Herein, we report on yet another pattern dominated by genetic drift among 9 Ae. aegypti collections from 6 cities in Oaxaca, Mexico, and compare it to those reported in other regions of Mexico. Molecular analysis of variance showed that there was as much genetic variation among collections 4 km apart as there was among all collections. The numbers of haplotypes and the amount of genetic diversity among the collections from Oaxaca were much lower than detected in previous studies in other regions of Mexico and may reflect the effects of control efforts or adaptations to the altitudinal limits (1,500 m) of the species in Mexico. The geographical distribution of mosquito haplotypes in Mexico is also reported. Furthermore, based on the distribution of the mosquito haplotypes in America, we suggest that mosquito dispersion is very efficient, most likely due to commercial transportation. PMID:23687850

de Lourdes Muñoz, Maria; Mercado-Curiel, Ricardo F; Diaz-Badillo, Alvaro; Pérez Ramirez, Gerardo; Black, William C

2013-03-01

130

Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus.  

PubMed

Differences in midgut bacterial communities of Aedes aegypti, the primary mosquito vector of dengue viruses (DENV), might influence the susceptibility of these mosquitoes to infection by DENV. As a first step toward addressing this hypothesis, comparative analysis of bacterial communities from midguts of mosquito strains with differential genetic susceptibility to DENV was performed. 16S rRNA gene libraries and real-time PCR approaches were used to characterize midgut bacterial community composition and abundance in three Aedes aegypti strains: MOYO, MOYO-R, and MOYO-S. Although Pseudomonas spp.-related clones were predominant across all libraries, some interesting and potentially significant differences were found in midgut bacterial communities among the three strains. Pedobacter sp.- and Janthinobacterium sp.-related phylotypes were identified only in the MOYO-R strain libraries, while Bacillus sp. was detected only in the MOYO-S strain. Rahnella sp. was found in MOYO-R and MOYO strains libraries but was absent in MOYO-S libraries. Both 16S rRNA gene library and real-time PCR approaches confirmed the presence of Pedobacter sp. only in the MOYO-R strain. Further, real-time PCR-based quantification of 16S rRNA gene copies showed bacterial abundance in midguts of the MOYO-R strain mosquitoes to be at least 10-100-folds higher than in the MOYO-S and MOYO strain mosquitoes. Our study identified some putative bacteria with characteristic physiological properties that could affect the infectivity of dengue virus. This analysis represents the first report of comparisons of midgut bacterial communities with respect to refractoriness and susceptibility of Aedes aegypti mosquitoes to DENV and will guide future efforts to address the potential interactive role of midgut bacteria of Aedes aegypti mosquitoes in determining vectorial capacity for DENV. PMID:23636307

Charan, Shakti S; Pawar, Kiran D; Severson, David W; Patole, Milind S; Shouche, Yogesh S

2013-05-01

131

A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus.  

PubMed

The objective of this study was to develop a herbal formulation to control dengue vector mosquitoes. PONNEEM, a novel herbal formulation prepared using the oils of neem (Azadirachta indica), karanj (Pongamia glabra) and their extracts, was tested for larvicidal, ovicidal and oviposition deterrent activities against Aedes aegypti and Aedes albopictus at 1, 0.5, 0.3 and 0.1 ppm concentrations. Cent percent larvicidal and ovicidal activities were observed at 0.1 ppm in the two mosquito species under laboratory and sunlight-exposed conditions up to 12 months from the date of manufacture. Oviposition deterrent activity of 69.97% and 71.05% was observed at 1 ppm concentration of PONNEEM against A. aegypti and A. albopictus, respectively. Reduction in enzyme levels for ?-esterase was 0.089 ± 0.008 and 0.099 ± 0.140 ?g napthol produced/min/mg larval protein; for ?-esterase, it was 0.004 ± 0.009 and 0.001 ± 0.028 ?g napthol produced/min/mg larval protein; for glutathione S-transferase, it was 10.4814 ± 0.23 and 11.4811 ± 0.21 ?mol/min/mg larval protein and for total protein, it was 0.177 ± 0.010 and 0.008 ± 0.005 mg/individual larva in treated groups of A. aegypti and A. albopictus, respectively. The nontarget organisms such as Gambusia affinis and Diplonychus indicus were not affected. No mortality was observed in control. PONNEEM can be used effectively for the management of human vector mosquitoes. PMID:22042505

Maheswaran, Rajan; Ignacimuthu, Savarimuthu

2011-11-01

132

Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)  

Microsoft Academic Search

BACKGROUND: The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with

Sébastien Marcombe; Rodolphe Poupardin; Frederic Darriet; Stéphane Reynaud; Julien Bonnet; Clare Strode; Cecile Brengues; André Yébakima; Hilary Ranson; Vincent Corbel; Jean-Philippe David

2009-01-01

133

Identifi cation of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro State, Brazil  

Microsoft Academic Search

This study discusses the use of geoprocessing to identify key areas for Aedes aegypti control, based on the infestation index obtained in the Aedes aegypti Infestation Index Rapid Survey (LIRAa). The study was conducted in Novem- ber 2004 in Nova Iguaçu, Rio de Janeiro State, Brazil. The results were analyzed on two scales, neighborhoods and blocks, with the building infestation

Marcos Thadeu; Fernandes Lagrotta; Wellington da Costa Silva; Reinaldo Souza-Santos

134

Mosquito protein kinase G phosphorylates flavivirus NS5 and alters flight behavior in aedes aegypti and anopheles gambiae.  

PubMed

Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

Keating, Julie A; Bhattacharya, Dipankar; Rund, Samuel S C; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J; Duffield, Giles E; Striker, Rob

2013-05-13

135

Comparative studies on Aedes aegypti and Aedes albopictus adult females trespassing commercial nets.  

PubMed

ABSTRACT. The abilities of Aedes aegypti and Ae. albopictus females in trespassing 5 different commercial nets, 2 nets impregnated with deltamethrin or permethrin and 3 non-impregnated nets (Guarany, Perame, and Ricca), were compared. The evaluating parameters were their percent trespassing success, the median trespassing time (TT50), and the relation between mosquito wing sizes and their trespassing success. Some mosquito behavioral traits were also observed. The trespassing success, directly related to opening areas, was found to be lower with impregnated nets for both species. The differences between the mosquito species were significant among all the nets except Ricca. Aedes albopictus showed a very high success rate in trespassing the non-impregnated Perame net and a lower success rate in trespassing Guarany. Aedes albopictus also showed a very high success rate in trespassing pyrethroid-impregnated nets. The TT50 values for the Ricca and Guarany nets were not significantly different between the species, but a significantly lower TT50 value was found for the net with the largest opening (Ricca). The smaller wingspan of Ae. albopictus seems to explain the higher trespassing success of this species. PMID:20402360

Andrade, Carlos F S; Cabrini, Isaías

2010-03-01

136

Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia  

PubMed Central

The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population.

Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Flores, J.; Herve, J.P.

2011-01-01

137

IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti.  

PubMed

Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon. PMID:23835045

Wright, Jennifer A; Smith, Ryan C; Li, Xianghong; Craig, Nancy L; Atkinson, Peter W

2013-07-05

138

Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti  

PubMed Central

Most studies on the ability of insect populations to transmit pathogens consider only constant temperatures and do not account for realistic daily temperature fluctuations that can impact vector–pathogen interactions. Here, we show that diurnal temperature range (DTR) affects two important parameters underlying dengue virus (DENV) transmission by Aedes aegypti. In two independent experiments using different DENV serotypes, mosquitoes were less susceptible to virus infection and died faster under larger DTR around the same mean temperature. Large DTR (20 °C) decreased the probability of midgut infection, but not duration of the virus extrinsic incubation period (EIP), compared with moderate DTR (10 °C) or constant temperature. A thermodynamic model predicted that at mean temperatures <18 °C, DENV transmission increases as DTR increases, whereas at mean temperatures >18 °C, larger DTR reduces DENV transmission. The negative impact of DTR on Ae. aegypti survival indicates that large temperature fluctuations will reduce the probability of vector survival through EIP and expectation of infectious life. Seasonal variation in the amplitude of daily temperature fluctuations helps to explain seasonal forcing of DENV transmission at locations where average temperature does not vary seasonally and mosquito abundance is not associated with dengue incidence. Mosquitoes lived longer and were more likely to become infected under moderate temperature fluctuations, which is typical of the high DENV transmission season than under large temperature fluctuations, which is typical of the low DENV transmission season. Our findings reveal the importance of considering short-term temperature variations when studying DENV transmission dynamics.

Lambrechts, Louis; Paaijmans, Krijn P.; Fansiri, Thanyalak; Carrington, Lauren B.; Kramer, Laura D.; Thomas, Matthew B.; Scott, Thomas W.

2011-01-01

139

[Tyrophagus putrescentiae predating adult insects of Aedes aegypti and Aedes albopictus in laboratory].  

PubMed

The present study aimed at identifying a mite infesting a colony of Aedes aegypti and Ae. albopictus as well as investigating the source of infestation. The mite species was identified after it was mounted on slides in Hoyer's medium and examined under an optical microscope. It showed to be Tyrophagus putrescentiae. Fish and rabbit food samples were kept in an environmental chamber at 27 degrees C and 90% humidity for 21 days and were weekly examined. The presence of T. putrescentiae was only observed in rabbit food. It is assumed that T. putrescentiae had been introduced into the colonies through phoresy among guinea pigs, which were kept at the time near the insectary under favorable conditions for their development (28.7 degrees C, 72% humidity, photoperiod of 14L:10D hours). PMID:15499448

Serpa, Lígia Leandro Nunes; Franzolin, Marcia Regina; Barros-Battesti, Darci Moraes; Kakitani, Iná

2004-10-18

140

Identification of novel LTR retrotransposons in the genome of Aedes aegypti  

Microsoft Academic Search

We have detected seventy-six novel LTR retrotransposons in the genome of the mosquito Aedes aegypti by a genome wide analysis using the LTR_STRUC program. We have performed a phylogenetic classification of these novel elements and a distribution analysis in the genome of A. aegypti. These mobile elements belong either to the Ty3\\/gypsy or to the Bel family of retrotransposons and

Crescenzio Francesco Minervini; Luigi Viggiano; Ruggiero Caizzi; Renè Massimiliano Marsano

2009-01-01

141

Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae  

Microsoft Academic Search

The bioactivity of 14 essential oils from five plants has been studied using the brine shrimp lethality test and the Aedes aegypti larvicidal assay. All essential oils screened had LC50 values smaller than 200 ?g\\/ml, showing significant lethality against brine shrimp. In addition, nine of the 14 essential oils tested showed toxicity against the fourth-instar A. aegypti larvae in 24

Sen-Sung Cheng; Hui-Ting Chang; Shang-Tzen Chang; Kun-Hsien Tsai; Wei-June Chen

2003-01-01

142

Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants  

Microsoft Academic Search

The insecticidal activity of 11 extracts from nine South American medicinal plants has been studied using the Aedes aegypti larvicidal assay. Eight of the 11 plant extracts studied showed toxicity against the A. aegypti larvae (LC50<500 ?g\\/ml). The dichloromethane extracts of Abuta grandifolia and Minthostachys setosa demonstrated high larvicidal activity, the most active being the dichloromethane extract of A. grandifolia,

G Ciccia; J Coussio; E Mongelli

2000-01-01

143

Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti  

Microsoft Academic Search

The benzene extract of Citrullus vulgaris was tested against Anopheles stephensi and Aedes aegypti for the larvicidal activity and ovicidal properties. The crude benzene extract was found to be more effective against A. stephensi than A. aegypti. The LC50 values were 18.56 and 42.76 ppm respectively. The LC50 values for silica gel fractions (bioactive fractions I, II, III and IV) were

K. Mullai; A. Jebanesan; T. Pushpanathan

2008-01-01

144

Use of plant products and copepods for control of the dengue vector, Aedes aegypti  

Microsoft Academic Search

The efficacy of plant extracts (neem tree, Azadirachta indica A. Juss.; Meliaceae) and copepods [Mesocyclops aspericornis (Daday)] for the control of the dengue vector Aedes aegypti L. was tested in the laboratory. Neem Seed Kernel Extract (NSKE) at 25, 50, 100, 200 and 400 ppm caused significant mortality\\u000a of Ae. aegypti larvae. Lethal concentrations (LC50 and LC90) were worked out. The

K. Murugan; Jiang-Shiou Hwang; K. Kovendan; K. Prasanna Kumar; C. Vasugi; A. Naresh Kumar

2011-01-01

145

Characteristics of the Spatial Pattern of the Dengue Vector, Aedes aegypti , in Iquitos, Peru  

Microsoft Academic Search

\\u000a We determine the spatial pattern of Aedes aegypti and the containers in which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru. Four variables were\\u000a examined: adult Ae. aegypti, pupae, containers positive for larvae or pupae, and all water-holding containers. Adults clustered strongly within houses\\u000a and weakly to a distance of 30 m beyond the household; clustering

Arthur Getis; Amy C. Morrison; Kenneth Gray; Thomas W. Scott

146

Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti  

NASA Astrophysics Data System (ADS)

Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted ?2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal ?-helix at low pH.

Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

2004-09-01

147

Dengue 3 virus distribution in the mosquito Aedes aegypti: an immunocytochemical study.  

PubMed

The dissemination of dengue (DEN) 3 virus in parenterally infected female Aedes aegypti mosquitoes was studied immunocytochemically. Antigen was first detected in fat body cells near the thoracic site of virus inoculation. The intussuscepted foregut, salivary glands and nervous tissue were the first major tissues infected. Nervous tissue appeared to be the primary site of amplification. Muscles, tracheae, Malphigian tubules and the posterior midgut did not become infected. The only part of the reproductive system to be infected was the calyx (71% of specimens 16-22 days post-infection) consistent with low rates of vertical transmission. After 7 days post-inoculation the salivary glands of 100% of the specimens examined were infected. Virus dissemination was slow and the most common sequence of infection following intrathoracic inoculation was as follows: thoracic fat body, intussuscepted foregut, salivary glands, cardial epithelium, thoracic ganglion, brain, compound eye, anterior midgut, intermediate midgut/anterior abdominal ganglia, and calyx/hindgut/posterior abdominal ganglia. Fat body and intussuscepted foregut tissues lost infections after 16 days post-inoculation. PMID:8834747

Linthicum, K J; Platt, K; Myint, K S; Lerdthusnee, K; Innis, B L; Vaughn, D W

1996-01-01

148

Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions  

PubMed Central

Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99?=?3.95??g/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28??g/L; EI90= 12.47??g/L) and Ae. albopictus (EI50= 1.59??g/L; EI90= 2.63??g/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public health. Nevertheless, they point to the need of constant monitoring of the susceptibility status of vector populations to CSIs.

2013-01-01

149

Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.  

PubMed

Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú. PMID:23033195

Costa, Federico; Fattore, Gladys; Abril, Marcelo

2012-09-01

150

Bioefficacy of crude extract of Cyperus aromaticus (Family: Cyperaceae ) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes  

PubMed Central

Objective To evaluate the growth inhibition activity of the crude extract of Cyperus aromaticus (C. aromaticus) cultured cells against the 3rd instar larvae of Aedes aegypti (Linn.) and Aedes albopictus Skuse (Ae. albopictus) under laboratory conditions, and determine the sublethal effects (EI50) of the crude extract of C. aromaticus cultured cells on some biological and morphological parameters of both Aedes mosquito species during two generations as well. Methods The cell suspension cultures of C. aromaticus were activated from five callus lines (P4, Pa, Z1, Z6 and Ml) derived from the root explants of in vitro plantlets. The cultured cells were extracted in chloroform and used as plant material for the present study. For detection of juvenile hormone III, the crude extracts were analyzed by HPLC. Then the crude extracts of the three C. aromaticus cultured cell lines which contained varied amounts of juvenile hormone III [high level (P4 cell line), medium level (Z1 cell line) and low level (Ml cell line)] were tested against Aedes mosquito species. Laboratory evaluation was performed against late third instar larvae of the Vector Control Research Unit strains of Ae. aegypti and Ae. albopictus using the standard WHO method. The effects of EI50 of the C. aromaticus cultured P4 cells on fecundity, fertility, growth period, sex ratio, adult size and longevity of Aedes mosquitoes were assessed. Results Bioassay tests presented the remarkable growth inhibition activity of the crude extracts of C. aromaticus cultured cells against the two Aedes mosquitoes. Between the two mosquito species, Ae. albopictus was more susceptible to the crude extracts with lower EI50 values. EI50 of the crude extract of C. aromaticus cultured cells (P4) increased the sterility indices in the parental generation females in both Aedes mosquito species. A significant delay in the pupal formation and adult emergence were observed in the parental generation of the both mosquito species. The sex ratio of the adult population either parental or F1 generation of the Aedes mosquito species was not significantly affected by the EI50 dosage of the crude extract of C. aromaticus cultured P4 cells. A significant decrease in the wing length of the treated adult (female and male) of Aedes aegypti as well as the treated female of Ae. albopictus were observed. Longevity of the adult female of the parental generation of both Aedes mosquitoes as well as females of F1 generation of Ae. albopictus were significantly decreased. Conclusions The present study revealed the potential of the crude extract of C. aromaticus cultured cells in controlling vector mosquito populations in the effort to reduce the transmission of vector borne diseases.

Kamiabi, Fatemeh; Jaal, Zairi; Keng, Chan Lai

2013-01-01

151

Insecticide resistance in Aedes aegypti populations from Cear?, Brazil  

PubMed Central

Background Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms. Results Resistance to temephos varied widely across the three studied populations, with resistance ratios (RR95) of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ? 30) imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha) were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain. Conclusions Our results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time the presence of the allele 1016Ile in mosquito populations from northeastern Brazil. A significant association between 1011Met and resistance was observed in one of the populations. Target-site mechanisms seem not to be implicated in temephos resistance, reinforcing the idea that for the studied populations, detoxification enzymes most likely play a major role in the resistance to this insecticide.

2011-01-01

152

Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae)  

Microsoft Academic Search

Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the

A. Abdul Rahuman; Geetha Gopalakrishnan; P. Venkatesan; Kannappan Geetha

2008-01-01

153

Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti L. (AeaCytB) is developm...

154

Structure-Activity Relationships of 33 Piperidines as Adulticides against Aedes aegypti(Diptera: Culicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Using insecticides is one of the major ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a beginning of our collaborative effort to...

155

Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (AaeIAP1, Genbank accession no. DQ993355), however, it is n...

156

Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle  

Microsoft Academic Search

BACKGROUND: One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of

Gustavo Lazzaro Rezende; Ademir Jesus Martins; Carla Gentile; Luana Cristina Farnesi; Marcelo Pelajo-Machado; Alexandre Afrânio Peixoto; Denise Valle

2008-01-01

157

Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti  

Microsoft Academic Search

A composite genetic linkage map for the yellow fever mosquito Aedes aegypti was constructed based on restriction fragment length polymorphism (RFLP), single nucleotide polymorphism (SNP) and single strand conformation polymorphism (SSCP) markers. The map consists of 146 marker loci distributed across 205 cM, and includes several morphological mutant marker loci. Most of the genetic markers are derived from random cDNAs

D. W. Severson; J. K. Meece; D. D. Lovin; G. Saha; I. Morlais

2002-01-01

158

Evaluation of Novel Insecticides for Control of Dengue Vector Aedes aegypti (Diptera: Culicidae)  

Microsoft Academic Search

Insecticides are one of the major tools for controlling vector populations and for reducing the transmission of human pathogens. However, there are few new insecticides being developed and marketed for vector control. Herein, we report on the toxicity of six novel insecticides to both adult and larval Aedes aegypti (L). and the toxicity of three novel insect growth regulators (IGRs)

Ayesa Paul; Laura C. Harrington; Jeffrey G. Scott

2006-01-01

159

Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses  

Microsoft Academic Search

Aedes aegypti was eliminated from Brazil in 1955, but re-infested the country in the 1970s. Dengue outbreaks have occurred since 1981 and became endemic in several cities in Brazil after 1986. Urban yellow fever has not occurred since 1942, and only jungle yellow fever cases have been reported. A population genetic analysis using isoenzyme variation combined with an evaluation of

R Lourenço-de-Oliveira; M Vazeille; A. M. B de Filippis; A. B Failloux

2004-01-01

160

The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti  

Microsoft Academic Search

BackgroundThe mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins

Lisa L. Drake; Dmitri Y. Boudko; Osvaldo Marinotti; Victoria K. Carpenter; Angus L. Dawe; Immo A. Hansen; Pedro Lagerblad Oliveira

2010-01-01

161

Situation d'Aedes aegypti en Martinique et considération sur la stratégie de lutte  

Microsoft Academic Search

STATUSANDCONTROL OFAEDESAEGYPTIIN THEMARTINIQUEISLAND Over 45.000 cases of dengue have been recorded in the last two years in the Martinique. In spire of cotltrol tneasures the Aedes aegypti Breteau Index in the island is rather high generally above 25 reaching 100 in certain places in the rainy season. During the dry periods the index decrease b-v two to three times. The

André YEBAKIMA; Guy SCHUCHT; Michel VERNEREY; Jean MOUCHET

162

Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes  

Microsoft Academic Search

Using standard WHO methodology, this study investigated the susceptibility of 4th instar Aedes aegypti (L) and Culex annulirostris (Skuse) larvae to three extracts from Callitris glaucophylla (J. Thompson & L. Johnson) (1: steam distillation extract, 2: liquefied refrigerant gas extract, and 3: methanol reflux extract), lambda-cyhalothrin (a synthetic pyrethroid insecticide) and fenitrothion (an organophosphorous insecticide). Cx. annulirostris was significantly more

Essam Abdel-Salam Shaalan; Deon Vahid Canyon; Bruce Bowden; Mohamed Wagdy; Faried Younes; Hoda Abdel-Wahab; Abdel-Hamid Mansour

2006-01-01

163

X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding  

Microsoft Academic Search

A Giemsa C-banding technique applied to the mosquito, Aedes aegypti, has revealed a distinctive banding pattern which is described as a reliable means of distinguishing between the morphologically similar X and Y chromosomes during all stages of mitosis and meiosis. The essential difference is that the Y chromosome, unlike the X and the autosomes, is not C-banded in the centromere

M. E. Newton; R. J. Wood

1974-01-01

164

Aedes aegypti (Diptera: Culicidae) Biting Deterrence: Structure- Activity Relationship of Saturated and Unsaturated Fatty Acids.  

National Technical Information Service (NTIS)

In this study we evaluated the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti (L), yellow fever mosquito (Diptera: Culicidae) using the K &D bioassay module system. Saturated(C6:0 to C16:0 and C18:0) an...

A. Ali C. L. Cantrell J. C. Schneider S. O. Duke U. R. Bernier

2012-01-01

165

PROTEASE ACTIVITY IN ADULT AEDES AEGYPTI MOSQUITOES AS RELATED TO FEEDING1  

Microsoft Academic Search

The importance of mosquitoes as disease vectors is now well established, but much remains to be learned about the fundamental processes of digestion in mosquitoes, especially as they relate to the transmission of these diseases. The studies reported here deal with the stimulation of proteolytic enzyme activity in the adult female yellow-fever mosquito, Aedes aegypti L., in relation to the

FRANK W. FISK; GEORGE F. SHAMBAUGH

166

Ammonia as an Attractive Component of Host Odour for the Yellow Fever Mosquito, Aedes aegypti  

Microsoft Academic Search

Behavioural responses of Aedes aegypti mosquitoes to ammonia were investigated in a modified Y-tube olfactometer. Ammonia was attractive in concentrations from 17 ppb to 17 ppm in air when presented together with lactic acid. Aqueous solutions of ammonia salts in concentrations comparable to those found in human sweat also increased the attractiveness of lactic acid. The role of lactic acid

Martin Geier; Oliver J. Bosch; Jürgen Boeckh

1999-01-01

167

Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti  

Microsoft Academic Search

We determined the time and site of secretion of the precursors of the peritrophic membrane (PM) in Aedes aegypti and when the structure is assembled. The fine structure of the developing membrane of blood-feed females was described, and the pattern of secretion of injected tritiated glucosamine analyzed autoradiographically. Immediately following blood feeding, ingested red cells rapidly become compressed, such that

Joseph B. Perrone; Andrew Spielman

1988-01-01

168

Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti  

Microsoft Academic Search

Defensin is the predominant inducible immune peptide in Aedes aegypti . In spite of its activity against Gram- positive bacteria in vitro , defensin expression is detected in mosquitoes inoculated with Gram-positive or negative bacteria, or with filarial worms. Defensin transcription and expression are dependent upon bac- terial dose; however, translation is inconsistent with transcription because peptide is detectable only

L. C. Bartholomay; J. F. Fuchs; L.-L. Cheng; E. T. Beck; J. Vizioli; C. Lowenberger; B. M. Christensen

2004-01-01

169

Functional and Genetic Characterization of Neuropeptide Y-Like Receptors in Aedes aegypti  

PubMed Central

Background Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown. Methodology/Principal Findings Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal. Conclusions In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.

Liesch, Jeff; Bellani, Lindsay L.; Vosshall, Leslie B.

2013-01-01

170

Prevention of dengue outbreaks through Aedes aegypti oviposition activity forecasting method.  

PubMed

Dengue has affected the north provinces of Argentina, mainly Salta province. The 2009 outbreak, with 5 deaths and >27,000 infected, was the most important, and the first to extend into the central area of the country. This article includes research on seasonal Aedes aegypti abundance variation in Orán City (Salta province), and determination of the date of mosquito population increase and an estimation of the date of maximum rate of increase as well as the intrinsic rate of natural increase (r), to detect the optimal time to apply vector control measures. Between September 2005 and March 2007, ovitraps were randomly distributed in the city to collect Ae. aegypti eggs. The variation observed in the number of collected eggs was described by fitting a third-degree polynomial by the least square method, allowing to determine the time when population increase began (week 1), after the temperate and dry season. Eggs were collected throughout the year, with the highest variation in abundance during the warm and rainy season, and the maximum value registered in February 2007. The rate of increase of the number of eggs laid per week peaked between weeks 9 and 10 after the beginning of the population increase (week 1). Week 1 depends on temperature, it occurs after getting over the thermal threshold and the needed accumulation of 160 degree-day is reached. Consequently, week 1 changes depending on temperature. Peak abundance of eggs during 2005-2006 was recorded on week 15 (after week 1); during 2006-2007, the peak was observed on week 22. Estimation of the intrinsic rate of natural increase (r) of Ae. aegypti is useful not only to determine optimal time to apply vector control measures with better cost-benefit, but also to add an insecticide control strategy against the vector to diminish the possibility of resistance. PMID:20925528

Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Visintin, Andrés M; Scavuzzo, Carlos M; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

2010-10-06

171

The energetic costs of diving in Aedes aegypti and Aedes albopictus pupae.  

PubMed

Undisturbed mosquito pupae rest at the water surface and respond to passing shadows or vibrations by diving. Pupae do not feed and rely solely on energy stored from the larval stage. The ability of a newly emerged adult mosquito to survive, and therefore to transmit disease, depends on these energy reserves. Earlier studies of diving behavior in Aedes aegypti, Ae. albopictus, and Ae. triseriatus pupae provided evidence that pupae sense their state of buoyancy and modify their diving behavior accordingly. With strong stimulation pupae tend to dive to a depth where they become neutrally or negatively buoyant and commonly rest on the bottom. This behavior, as well as the tendency to rest when not disturbed, may logically be viewed as energy-conserving. The results of these studies also generated the hypothesis that the diving behavior displayed by these container-breeding mosquitoes helps them avoid being washed from their container by overflowing water during rainfall. Rainfall stimulates diving and logically, prolonged, heavy rainfall stimulates excessive diving, a likely drain on energy reserves. Our objectives were to determine, in Ae. aegypti and Ae. albopictus, the energetic costs associated with resting behavior, with frequent diving, and with buoyancy reduction. Using survival rate, mean survival after adult emergence, and measurement of total calories, we found a clear energetic cost associated with frequent diving. In contrast, relative to diving, essentially no energy cost was associated with buoyancy reduction, that is, pupae behave in response to variations in buoyancy in a way that does not impact significantly on energy reserves. PMID:11345420

Lucas, E A; Romoser, W S

2001-03-01

172

Identification of Aedes aegypti and its respective life stages by real-time polymerase chain reaction.  

PubMed

An Aedes aegypti-specific, fluorogenic probe hydrolysis (Taq-Man), polymerase chain reaction assay was developed for real-time screening using a field-deployable thermocycler. Laboratory-based testing of A. aegypti, A. aegypti (Trinidad strain), Culex pipiens, Culex quinquefasciatus, Anopheles stephensi, and Ochlerotatus taeniorhynchus individual adult mosquitoes and mixed pools (n = 10) demonstrated 100% concordance in both in vitro sensitivity (six of six samples) and specificity (10 of 10 samples). A single adult A. aegypti was identified in a pool of 100 non-A. aegypti mosquitoes. The limit of detection of A. aegypti egg pools was five individual eggs. Field testing was conducted in central Honduras. An A. aegypti and Culex spp. panel of individual and mixed pools (n = 30) of adult mosquitoes, pupae, and larvae demonstrated 100% concordance in sensitivity (22 of 22 samples) and 97% concordance in specificity (29 of 30 samples), with one false-positive result. Field testing of an A. aegypti and Culex spp. blind panel (n = 16) consisting of individual and mixed pools of adult mosquitoes, pupae, and larvae demonstrated 90% concordance in sensitivity (nine of 10 samples) and 88% concordance in specificity (14 of 16 samples). PMID:16491948

McAvin, James C; Bowles, David E; Swaby, James A; Blount, Keith W; Blow, Jamie A; Quintana, Miguel; Hickman, John R; Atchley, Daniel H; Niemeyer, Debra M

2005-12-01

173

Laboratory bioefficacy of nine commercial formulations of temephos against larvae of Aedes aegypti (L.), Aedes albopictus Skuse and Culex quinquefasciatus Say.  

PubMed

The bioefficacy of nine commercial formulations of temephos against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae were evaluated in the laboratory. WHO larval bioassay with operational dosage of temephos at 1 mg/L was performed. The larval mortality was recorded every 5 minutes until complete mortality was achieved. All formulations of temephos exhibited various toxicity level against Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus. Generally, larvae of Cx. quinquefasciatus was susceptible to all formulations of temephos, followed by Ae. aegypti and Ae. albopictus. PMID:20237452

Chen, C D; Lee, H L; Chan, C K; Ang, C L; Azahari, A H; Lau, K W; Sofian-Azirun, M

2009-12-01

174

Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor  

Microsoft Academic Search

Geographic variation in species interactions can have major effects on species distributions and can be important for the\\u000a resistance of resident communities to invasive species. We tested the hypothesis that coexistence or replacement of a resident\\u000a North American mosquito Aedes aegypti with the invasive Aedes albopictus is affected by interpopulation variation in the inherent competitive ability of A. aegypti and

Paul T. LeisnhamS; S. A. Juliano

2010-01-01

175

Resistance in some Caribbean populations of Aedes aegypti to several insecticides.  

PubMed

Thirty-four strains of Aedes aegypti larvae from 17 Caribbean countries were bioassayed for sensitivity to temephos, malathion, fenitrothion, fenthion, and chlorpyrifos. There were fairly high levels of resistance in Tortola (10-12-fold resistance) and Antigua (6-9-fold resistance) strains to temephos and to fenthion (Tortola, 7-10-fold; Antigua, 6-10-fold resistance). Most other strains showed some resistance to malathion, fenitrothion, and chlorpyrifos, but only moderate levels. Adult populations of Ae. aegypti--Aruba, Jamaica, Trinidad, Puerto Rico, St. Lucia, and Antigua strains--also showed moderate resistance to malathion. Mosquito control field data supported the laboratory findings. Doubling the diagnostic dosage of temephos for larval Ae. aegypti was only partially effective against a more resistant strain, and even so, the chemical lost its limited efficacy over a short period of time. Integrated strategies for Ae. aegypti control to mitigate the negative effects of insecticide resistance in the Caribbean strains are suggested. PMID:7542312

Rawlins, S C; Wan, J O

1995-03-01

176

Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico  

PubMed Central

Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti.

Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

2012-01-01

177

Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior in Aedes aegypti  

PubMed Central

Background Dengue is a viral disease transmitted by Aedes mosquitoes. It is a threat for public health worldwide and its primary vector Aedes aegypti is becoming resistant to chemical insecticides. These factors have encouraged studies to evaluate entomopathogenic fungi against the vector. Here we evaluated mortality, infection, insemination and fecundity rates in A. aegypti females after infection by autodissemination with two Mexican strains of Metarhizium anisopliae. Methods Two M. anisopliae strains were tested: The Ma-CBG-1 least virulent (lv), and the Ma-CBG-2 highly virulent (hv) strain. The lv was tested as non mosquito-passed (NMP), and mosquito-passed (MP), while the hv was examined only as MP version, therefore including the control four treatments were used. In the first bioassay virulence of fungal strains towards female mosquitoes was determined by indirect exposure for 48 hours to conidia-impregnated paper. In the second bioassay autodissemination of fungal conidia from fungus-contaminated males to females was evaluated. Daily mortality allowed computation of survival curves and calculation of the LT50 by the Kaplan-Meier model. All combinations of fungal sporulation and mating insemination across the four treatments were analyzed by ?2. The mean fecundity was analyzed by ANOVA and means contrasted with the Ryan test. Results Indirect exposure to conidia allowed a faster rate of mortality, but exposure to a fungal-contaminated male was also an effective method of infecting female mosquitoes. All females confined with the hv strain-contaminated male died in fifteen days with a LT50 of 7.57 (± 0.45) where the control was 24.82 (± 0.92). For the lv strain, it was possible to increase fungal virulence by passing the strain through mosquitoes. 85% of females exposed to hv-contaminated males became infected and of them just 10% were inseminated; control insemination was 46%. The hv strain reduced fecundity by up to 99%, and the lv strain caused a 40% reduction in fecundity. Conclusions The hv isolate infringed a high mortality, allowed a low rate of insemination, and reduced fecundity to nearly zero in females confined with a fungus-contaminated male. This pathogenic impact exerted through sexual transmission makes the hv strain of M. anisopliae worthy of further research.

2011-01-01

178

Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever  

Microsoft Academic Search

A significant challenge to population genetic studies of the dengue vector, Aedes aegypti, has been the lack of polymorphic microsatellite loci. In an effort to develop useful markers, we evaluated the genetic variation at 17 microsatellite loci identified in the A. aegypti genome. Nine loci with at least five alleles were identified in field-collected specimens from Thailand. An additional two

M. A. SLOTMAN; N. B. KELLY; L. C. HARRINGTON; S. KITTHAWEE; J. W. JONES; T. W. SCOTT; A. CACCONE; J. R. POWELL

179

Storm sewers as larval habitats for Aedes aegypti and Culex spp. in a neighborhood of Merida, Mexico.  

PubMed

We report the collection of Aedes aegypti, Culex quinquefasciatus, Cx. interrogator, Cx. thriambus, Cx. coronator, and Cx. salinarius larvae from storm sewers within an endemic area for dengue transmission in Merida, Mexico, during the rainy season of 2011. This is the first record of the dengue vector Ae. aegypti breeding in storm sewers in the southeast of Mexico. PMID:23833907

Manrique-Saide, Pablo; Uc, Valentín; Prado, Christian; Carmona, Carolina; Vadillo, José; Chan, Román; Dzib-Florez, Sergio; Che-Mendoza, Azael; Barrera-Perez, Mario; Sanchez, E Cuauthemoc; Arredondo-Jimenez, Juan I

2012-09-01

180

Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, aedes aegypti  

PubMed Central

Background Aedes aegypti mosquitoes are the main vectors of dengue viruses to humans. Understanding their biology and interactions with the pathogen are prerequisites for development of dengue transmission control strategies. Mosquito salivary glands are organs involved directly in pathogen transmission to vertebrate hosts. Information on the spatial distribution of gene expression in these organs is expected to assist in the development of novel disease control strategies, including those that entail the release of transgenic mosquitoes with impaired vector competence. Results We report here the hybridization in situ patterns of 30 transcripts expressed in the salivary glands of adult Ae. aegypti females. Distinct spatial accumulation patterns were identified. The products of twelve genes are localized exclusively in the proximal-lateral lobes. Among these, three accumulate preferentially in the most anterior portion of the proximal-lateral lobe. This pattern revealed a salivary gland cell type previously undescribed in Ae. aegypti, which was validated by transmission electron microscopy. Five distinct gene products accumulate in the distal-lateral lobes and another five localize in the medial lobe. Seven transcripts are found in the distal-lateral and medial lobes. The transcriptional product of one gene accumulates in proximal- and distal-lateral lobes. Seven genes analyzed by quantitative PCR are expressed constitutively. The most abundant salivary gland transcripts are those localized within the proximal-lateral lobes, while previous work has shown that the distal-lateral lobes are the most active in protein synthesis. This incongruity suggests a role for translational regulation in mosquito saliva production. Conclusions Transgenic mosquitoes with reduced vector competence have been proposed as tools for the control of dengue virus transmission. Expression of anti-dengue effector molecules in the distal-lateral lobes of Ae. aegypti salivary glands has been shown to reduce prevalence and mean intensities of viral infection. We anticipate greater efficiency of viral suppression if effector genes are expressed in all lobes of the salivary glands. Based on our data, a minimum of two promoters is necessary to drive the expression of one or more anti-dengue genes in all cells of the female salivary glands.

2011-01-01

181

Fluctuations at a Low Mean Temperature Accelerate Dengue Virus Transmission by Aedes aegypti  

PubMed Central

Background Environmental factors such as temperature can alter mosquito vector competence for arboviruses. Results from recent studies indicate that daily fluctuations around an intermediate mean temperature (26°C) reduce vector competence of Aedes aeygpti for dengue viruses (DENV). Theoretical predictions suggest that the mean temperature in combination with the magnitude of the diurnal temperature range (DTR) mediate the direction of these effects. Methodology/Principal Findings We tested the effect of temperature fluctuations on Ae. aegypti vector competence for DENV serotype-1 at high and low mean temperatures, and confirmed this theoretical prediction. A small DTR had no effect on vector competence around a high (30°C) mean, but a large DTR at low temperature (20°C) increased the proportion of infected mosquitoes with a disseminated infection by 60% at 21 and 28 days post-exposure compared to a constant 20°C. This effect resulted from a marked shortening of DENV extrinsic incubation period (EIP) in its mosquito vector; i.e., a decrease from 29.6 to 18.9 days under the fluctuating vs. constant temperature treatment. Conclusions Our results indicate that Ae. aegypti exposed to large fluctuations at low temperatures have a significantly shorter virus EIP than under constant temperature conditions at the same mean, leading to a considerably greater potential for DENV transmission. These results emphasize the value of accounting for daily temperature variation in an effort to more accurately understand and predict the risk of mosquito-borne pathogen transmission, provide a mechanism for sustained DENV transmission in endemic areas during cooler times of the year, and indicate that DENV transmission could be more efficient in temperate regions than previously anticipated.

Carrington, Lauren B.; Armijos, M. Veronica; Lambrechts, Louis; Scott, Thomas W.

2013-01-01

182

Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago  

PubMed Central

Background Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. Findings The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. Conclusions As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Keywords Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal

2012-01-01

183

The association of Aedes aegypti and Ae. albopictus in Allende, Nuevo León, Mexico.  

PubMed

The recent appearance of Aedes Stegomyia albopictus (Skuse) in Nuevo León (NL) worries health officials. It is a vector of dengue fever in Asia and is more resistant to lower temperatures than Ae. aegypti. The objective of this study was to learn about some ecological parameters of Ae. albopictus and their association with Ae. aegypti, and other culicids in Allende, NL, Mexico, during 1999. Allende is a small town close to metropolitan Monterrey, which has 4 million inhabitants. The design was random with monthly sampling of 175 ovitraps. Chi-square analyses were performed with data of presence, absence, frequency, and relative abundances. During the study, the species Culex tarsalis (Coquillet), Cx. thriambus (Dyar), Cx. pipiens (Linnaeus), Cx. coronator (Dyar and Knab), Ae. albopictus, Ae. aegypti, Toxorhynchites rutilus (Coquillet), and Ae. triseriatus (Say) were found. April is the month for large numbers of mosquito species. September had the highest populations in positive ovitraps (66.67%), followed by July (63.27% of traps). Aedes aegypti was the most abundant (65.13%), followed by Ae. albopictus (19.71%). Both Ae. albopictus and Ae. aegypti were found from April until December. Aedes aegypti was more abundant than Ae. albopictus, except in August, when they were similar (chi2 = 0.197, P < 0.05). We found significant association between the presence of both species for every study month (chi2 = 9.837, P < 0.05), with a contingency coefficient of 0.247. September and November were the months having the most mosquitoes in this association. Only considering Ae. albopictus, more were found in ovitraps in July (34.6%), followed by September (33.3%). However, its presence was not significant throughout the year. Of 2 zones, in town and at the river, prevalence indicated that Ae. albopictus preferred the river. This mosquito is in its establishment phase in this area and requires further studies. PMID:16646314

Mercado-Hernandez, Roberto; Aguilar-Gueta, Juan de Dios; Fernandez-Salas, Ildefoso; Earl, Paul R

2006-03-01

184

Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment.  

PubMed

Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region. PMID:21805845

Walker, Kathleen R; Joy, Teresa K; Ellers-Kirk, Christa; Ramberg, Frank B

2011-06-01

185

Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection  

PubMed Central

Background Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV? Methodology and Findings We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU). Conclusions Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.

Dubrulle, Mathieu; Mousson, Laurence; Moutailler, Sara; Vazeille, Marie; Failloux, Anna-Bella

2009-01-01

186

Current resistance status to temephos in Aedes aegypti from different regions of Argentina.  

PubMed

In Argentina, more than 25,000 cases of dengue were reported in the summer of 2009, even in provinces where the disease was formerly absent. We analysed the susceptibility levels to the larvicide temephos in seven populations of Aedes aegypti, the primary vector of dengue, collected during summer 2007/2008, using the susceptible Rockefeller strain as a control. Although no control failures were observed during the experiment, a majority of the lethal concentration and resistance ratio values indicate an incipient resistance. An integrative program to monitor the resistance of Ae. aegypti to insecticides is needed in the country. PMID:20209341

Llinás, G Albrieu; Seccacini, E; Gardenal, C N; Licastro, S

2010-02-01

187

Spiroplasma (Mollicutes: Spiroplasmataceae) pathogenic for Aedes aegypti and Anopheles stephensi (Diptera: Culicidae).  

PubMed

Intrathoracic inoculation with the mosquito spiroplasma, Spiroplasma taïwanense Abalain-Colloc et al., was found to reduce significantly the survival of adult male and female Aedes aegypti (L.) and Anopheles stephensi Liston. This spiroplasma also reduced significantly the flight capacity of adult female Ae. aegypti 5-8 d after inoculation and adult female An. stephensi 4 d after inoculation. Adult female An. stephensi were incapable of flight 5 d after inoculation. As such, S. taïwanense joins Bacillus thuringiensis and B. sphaericus as bacteria known to be pathogenic for mosquito vectors. PMID:2056503

Humphery-Smith, I; Grulet, O; Le Goff, F; Chastel, C

1991-03-01

188

Transmission Potential of Two Chimeric Chikungunya Vaccine Candidates in the Urban Mosquito Vectors, Aedes aegypti and Ae. albopictus  

PubMed Central

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus that has caused major epidemics in Africa and Asia. We developed chimeric vaccine candidates using the non-structural protein genes of either Venezuelan equine encephalitis virus (VEEV) attenuated vaccine strain TC-83 or a naturally attenuated strain of eastern equine encephalitis virus (EEEV) and the structural genes of CHIKV. Because the transmission of genetically modified live vaccine strains is undesirable because of the potentially unpredictable evolution of these viruses as well as the potential for reversion, we evaluated the ability of these vaccines to infect the urban CHIKV vectors, Aedes aegypti and Ae. albopictus. Both vaccine candidates exhibited significantly lower infection and dissemination rates compared with the parent alphaviruses. Intrathoracic inoculations indicated that reduced infectivity was mediated by midgut infection barriers in both species. These results indicate a low potential for transmission of these vaccine strains in the event that a vaccinee became viremic.

Darwin, Justin R.; Kenney, Joan L.; Weaver, Scott C.

2011-01-01

189

Transmission potential of two chimeric Chikungunya vaccine candidates in the urban mosquito vectors, Aedes aegypti and Ae. albopictus.  

PubMed

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus that has caused major epidemics in Africa and Asia. We developed chimeric vaccine candidates using the non-structural protein genes of either Venezuelan equine encephalitis virus (VEEV) attenuated vaccine strain TC-83 or a naturally attenuated strain of eastern equine encephalitis virus (EEEV) and the structural genes of CHIKV. Because the transmission of genetically modified live vaccine strains is undesirable because of the potentially unpredictable evolution of these viruses as well as the potential for reversion, we evaluated the ability of these vaccines to infect the urban CHIKV vectors, Aedes aegypti and Ae. albopictus. Both vaccine candidates exhibited significantly lower infection and dissemination rates compared with the parent alphaviruses. Intrathoracic inoculations indicated that reduced infectivity was mediated by midgut infection barriers in both species. These results indicate a low potential for transmission of these vaccine strains in the event that a vaccinee became viremic. PMID:21633043

Darwin, Justin R; Kenney, Joan L; Weaver, Scott C

2011-06-01

190

Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus.  

PubMed

Mosquito larvae experience multiple environmental stressors that may modify how subsequent adults interact with pathogens. We evaluated the effect of larval rearing temperature and intraspecific larval competition on adult mosquito immunity and vector competence for Sindbis virus (SINV). Aedes aegypti larvae were reared at two intraspecific densities (150 and 300 larvae) at 20° C and 30° C and the adults were fed artificially on citrated bovine blood containing 10(5) plaque forming units of SINV. Expression of cecropin, defensin, and transferrin was also evaluated in one- and five-day-old female adults. There was a direct relationship between larval density and SINV infection and dissemination rates at low temperature (20° C) and an inverse relationship between larval density and SINV infection rate at high temperature (30° C). Cecropin was only expressed in five-day-old adults that were raised at high temperature as larvae and was 20-fold over-expressed at low compared to high density treatments. Defensin and transferrin were under-expressed in one-day-old adults and over-expressed in five-day-old adults in all competition-temperature combinations relative to low density treatments at 20° C. These findings suggest that interaction between biotic and abiotic conditions of the larval environment may alter adult mosquito immunity resulting in enhanced vector competence for arboviruses. PMID:22548549

Muturi, Ephantus J; Blackshear, Millon; Montgomery, Allison

2012-06-01

191

[A study on transovarial transmission of dengue type 1 virus in Aedes aegypti].  

PubMed

The main purpose of this study is to determine the possibility of transovarial transmission of dengue type 1 virus, which was isolated from the serum of a patient with dengue fever during the 1987 dengue epidemic in southern Taiwan, in Aedes aegypti of Kaohsiung strain (KH). Parent female mosquitoes were inoculated with dengue 1 virus by intrathoracic inoculation technique. The F1 offspring adults collected from three sequential ovarian cycles were pooled to become 51, 13 and 14 pools, respectively. All pools were individually inoculated into C6/36 cells and then were detected by direct immunofluorescence antibody technique. Ten, five and three pools, respectively, among these three ovarian cycles turned out to be positive. It revealed that the minimum infection rates (MIR), were 1:254.6 (2,546 mosquitoes), 1:133.6 (668 mosquitoes) and 1:238 (714 mosquitoes), respectively. Meanwhile, the estimated filial infection rates were calculated to be 0.44%, 0.97% and 0.48%, respectively. Since viral antigen has been detected in the tissue of maturing eggs within ovarioles, the results exhibited the possibility that dengue type 1 virus can be transovarially transmitted to the next generation. PMID:2100728

Chen, W J; Tsai, S M; Chen, S L; Ko, Y C; Fang, A H

1990-11-01

192

Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti  

PubMed Central

The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells.

Fu, Qiang; Lynn-Miller, Ace; Lan, Que

2011-01-01

193

Agent-Based Model of Dengue Disease Transmission by Aedes aegypti Populations  

Microsoft Academic Search

\\u000a This paper presents an agent based model of the Aedes aegypti mosquito showing not only population dynamics but also the Dengue disease propagation in both the vector and host populations\\u000a (mosquitoes and humans, respectively); this study will focus on the latter aspect. The agents model the main aspects of the\\u000a mosquito’s ecology and behavior, while the environmental components are implemented

Carlos Isidoro; Nuno Fachada; Fábio Barata; Agostinho Rosa

194

Isolation and characterization of the RanGAP gene in the mosquito Aedes aegypti  

Microsoft Academic Search

A duplicated 30-truncated version of RanGAP was previously identified as Segregation distorter (Sd), the meiotic drive gene in Drosophila melanogaster. Here we report the cloning and characterization of the complete gene sequence for the RanGAP homolog from the mosquito Aedes aegypti. The 1995 bp cDNA sequence consists of a 113 bp 50 UTR and 130 bp 30 UTR, and encodes

SUNG-JAE CHA; NEIL LOBO; BECKY DEBRUYN; DAVID W. SEVERSON

2006-01-01

195

PCR detection of Dirofilaria immitis in Aedes aegypti and Culex pipiens from urban temperate Argentina  

Microsoft Academic Search

Dirofilariasis, a mosquito-borne disease of dogs caused by the nematode Dirofilaria immitis (Leidy; Spirurida: Onchocercidae), has now become a growing zoonotic concern. Based on direct microscopical observation,\\u000a Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) have been previously incriminated as potential vectors of D. immitis in urban temperate Argentina. In this study, an effort was made to provide evidence

Darío Vezzani; María Mesplet; Diego F. Eiras; María F. Fontanarrosa; Leonhard Schnittger

2011-01-01

196

Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti  

Microsoft Academic Search

Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of

Vladimir Kokoza; Abduelaziz Ahmed; Wen-Long Cho; Nijole Jasinskiene; Anthony A. James; Alexander Raikhel

2000-01-01

197

Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae)  

Microsoft Academic Search

The acetone, chloroform, ethyl acetate, hexane and methanol leaf extracts of Acalypha indica, Achyranthes aspera, Leucas aspera, Morinda tinctoria and Ocimum sanctum were studied against the early fourth-instar larvae of Aedes aegypti L and Culex quinquefasciatus Say. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the\\u000a highest larval mortality was found in the

A. Bagavan; A. A. Rahuman; C. Kamaraj; Kannappan Geetha

2008-01-01

198

YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L  

Microsoft Academic Search

ABSTRACT Yolk proteins are thought,to enter certain eggs by a process akin to micropinocytosis but the detailed mechanism,has not been,previously depicted. In this study the formation,of protein yolk was,investigated in the mosquito,Aedes aegypti L. Ovaries were fixed in phos- phate-buffered osmium tetroxide, for electron microscopy, before and at intervals after a meal of blood. The deposition of protein yolk in

T. F. Roth; K. R. Porter

1964-01-01

199

Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides  

Microsoft Academic Search

The essential oils from leaves of Hyptis fruticosa (Lamiaceae) Salzm., H. pectinata (Lamiaceae) Poit., and Lippia gracilis (Verbenaceae) HBK were investigated for their larvicidal activity against Aedes aegypti and analyzed by GC\\/MS. Fifty-nine compounds, representing 91.28–98.39% of the essential oils, have been identified. A standard solution was used to make 20mL solutions ranging from 30 to 2000ppm. Twenty larvae between

W. J. Silva; G. A. A. Dória; R. T. Maia; R. S. Nunes; G. A. Carvalho; A. F. Blank; P. B. Alves; R. M. Marçal; S. C. H. Cavalcanti

2008-01-01

200

Identification of Human-Derived Volatile Chemicals that Interfere with Attraction of Aedes aegypti Mosquitoes  

Microsoft Academic Search

It is known that human individuals show different levels of attractiveness to mosquitoes. In this study, we investigated the\\u000a chemical basis for low attractiveness. We recorded behaviors of Aedes aegypti toward the hands of human volunteers and toward the volatile chemicals produced by their bodies. Some individuals, and their\\u000a corresponding volatiles, elicited low upwind flight, relative attraction, and probing activity.

James G. Logan; Michael A. Birkett; Suzanne J. Clark; Stephen Powers; Nicola J. Seal; Lester J. Wadhams; John A. Pickett

2008-01-01

201

Effect of selected marine and freshwater microalgae on development and survival of the mosquito Aedes aegypti  

Microsoft Academic Search

We isolated and identified strains of marine and freshwater planktonic and benthic microalgae from the vicinity of Indian\\u000a River County, Florida (?27.5°N, 80.34°W), cultivated them in batch culture, and examined their allelopathic activity against\\u000a mosquito larvae. Additional algal material was obtained from Syracuse University and the University of Texas—Austin Algal\\u000a Culture Collection. Mosquito larvae (Aedes aegypti (L.)) from colonies maintained

Jorge R. Rey; Paul E. Hargraves; Sheila M. O’Connell

2009-01-01

202

Feeding Deterrent Effects of Catnip Oil Components Compared with Two Synthetic Amides Against Aedes aegypti  

Microsoft Academic Search

Recently, catnip, Nepeta cataria L. (Lamiaceae), essential oil has been formulated and marketed as an alternative repellent for protection against biting arthropods by several vendors. We isolated the major active components of catnip oil, E,Z- and Z,E-nepetalactone, and quantitatively measured their antibiting efÞcacy compared with the repellents N,N-diethyl-3-methylbenzamide (deet) and chiral (1S,2S)-2-methylpiperidinyl-3-cyclohexene-1-carboxamide (SS220) against the yellowfever mosquito, Aedes aegypti (L.),

Kamlesh R. Chauhan; Jerome A. Klun; Mustapha Debboun; Matthew Kramer

2005-01-01

203

Comparative linkage maps for the mosquitoes (Culex pipiens and Aedes aegypti) based on common RFLP loci  

Microsoft Academic Search

We report construction of a comparative linkage map for the mosquito (Culex pi- piens) based on restriction fragment length polymorphisms (RFLPs) using cDNA clones from Aedes aegypti as probes to Southern blots of Cx. pipiens genomic DNA. Seventy-one cDNA clones were screened for hybridization and genetic di- versity among three Cx. pipiens strains. Fifty-two of 71 cDNA clones, isolated from

A. Mori; D. W. Severson; B. M. Christensen

1999-01-01

204

Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand  

Microsoft Academic Search

Previous studies have shown that permethrin resistance in our selected PMD-R strain of Aedes aegypti from Chiang Mai, Thailand, was associated with a homozygous mutation in the knockdown resistance (kdr) gene and other mechanisms. In this study, we investigated the metabolic mechanism of resistance of this strain compared\\u000a to the PMD strain which is susceptible to permethrin. The permethrin susceptibility

Puckavadee Somwang; Jintana Yanola; Warissara Suwan; Catherine Walton; Nongkran Lumjuan; La-aied Prapanthadara; Pradya Somboon

205

Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence  

PubMed Central

Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses.

Ramirez, Jose Luis; Souza-Neto, Jayme; Torres Cosme, Rolando; Rovira, Jose; Ortiz, Alma; Pascale, Juan M.; Dimopoulos, George

2012-01-01

206

Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi.  

PubMed

Larvicidal activity of crude chloroform, dichloromethane and methanol extracts of the leaves and roots of six Indian plants, Aegle marmelos L., Balanites aegyptica L., Calotropis gigantica L., Murraya koenigii L., Nyctanthes arbor-tristis L. and Plumbago zeylanica L., were tested against the early fourth instar larvae of Aedes aegypti L. and Anopheles stephensi. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects. However, the highest larval mortality was found in methanol extracts of P. zeylanica roots and B. aegyptica roots against Ae.aegypti (LC50 169.61 mg/lit, 289.59 mg/lit) and An.stephensi (LC50 222.34 mg/lit, 102.29 mg/lit), respectively. The methanol extracts of plants were more effective than the other extracts. This is an ideal eco-friendly approach aid for the control of mosquito species, Ae. aegypti, and An.stephensi. PMID:21399575

Patil, S V; Patil, C D; Salunkhe, R B; Salunke, B K

2010-12-01

207

Regulation of Aedes aegypti population dynamics in field systems: quantifying direct and delayed density dependence.  

PubMed

Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

Walsh, Rachael K; Aguilar, Cristobal L; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M; Scott, Thomas W; Lloyd, Alun L; Gould, Fred

2013-05-13

208

Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti  

PubMed Central

The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti.

Smith, Ryan C.

2010-01-01

209

Preliminary evaluation of the 'Dengue-MI' technology for Aedes aegypti monitoring and control.  

PubMed

Limitations in the laboratory identification of Aedes aegypti and processing of field data based on larval surveys led to the development of the 'Intelligent Dengue Monitoring' technology (MI-Dengue). MI-Dengue consists of a trap that captures gravid female Ae. aegypti, coupled with a computerized system for field data collection, transmission, and access to georeferenced maps in real time. The current study describe the first experience with a system for monitoring adult Ae. aegypti and presents the preliminary results in three municipalities that adopted MI-Dengue as a strategy to identify key areas and orient control measures. Weekly georeferenced maps and an entomological indicator (Mean Female Aedes Index) provided information on infested areas and infestation levels, color-coded according to the number of captured female Ae. aegypti, and indicated risk-free, dengue alert, and critical situations that triggered appropriate control measures. The preliminary results suggest that the adoption of this control strategy with house-to-house visits in a 200m radius of the positive trap helped reduce dengue in the municipalities that adopted the system. PMID:19287866

Eiras, Alvaro Eduardo; Resende, Marcelo Carvalho

2009-01-01

210

Oxidation of 3-hydroxykynurenine to produce xanthommatin for eye pigmentation: a major branch pathway of tryptophan catabolism during pupal development in the Yellow Fever Mosquito, Aedes aegypti  

Microsoft Academic Search

This study concerns the metabolic pathways of 3-hydroxykynurenine in Aedes aegypti mosquitoes during development with emphasis on its oxidation pathway to produce xanthommatin during eye pigmentation. Oxidation of tryptophan to 3-hydroxykynurenine is the major pathway of tryptophan catabolism in Aedes aegypti, but 3-hydroxykynurenine oxidizes easily under physiological conditions, which stimulate the production of reactive oxygen species. Our data show that

Jianyong Li; Brenda T Beerntsen; Anthony A James

1999-01-01

211

Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti.  

PubMed

Aedes (Stegomyia) aegypti is considered to be the most important dengue vector worldwide. Studies were conducted to design and evaluate a chemically-based baited ovitrap for monitoring Ae. aegypti under laboratory conditions. Several known chemical attractants and three types of ovitraps (ovitraps A, B, and C) were evaluated throughout the oviposition bioassays. Oviposition responses of gravid female Ae. aegypti were evaluated to n-heneicosane, 3-methylindole (skatole), 4-methylphenol (p-cresol), and phenol. Female Ae. aegypti were attracted to all the evaluated compounds. Among them, n-heneicosane at a concentration of 10 ppm (mg/l), skatole from 50 to 1000 ppm, p-cresol at 100 ppm, and phenol at 50 ppm showed a significant positive oviposition response. A blend of the four chemical attractants increased the oviposition response; 67% of the eggs were deposited in the treatment compared to the control. Female Ae. aegypti were signi?cantly more attracted to ovitrap A loaded with the four-component synthetic blend compared to the standard ovitrap in the oviposition bioassays. The compound used in ovitrap A retained its attractant property for up to three days. The chemically-based baited ovitrap may be considered as an option to be integrated during the monitoring of dengue virus vectors in México. PMID:23701623

Baak-Baak, Carlos M; Rodríguez-Ramírez, Américo D; García-Rejón, Julián E; Ríos-Delgado, Silvany; Torres-Estrada, José L

2013-06-01

212

Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru.  

PubMed

The yellow fever mosquito Aedes aegypti was introduced in Peru in 1852 and was considered to be eradicated in 1958. In 2001, Ae. aegypti had been recorded in 15 out of 24 Peruvian Departments. Peru has great ecological differences between the east and west sides of Andes. Because of this, we consider that Ae. aegypti populations of both east and west sides can have a genetically distinct population structure. In this study we examined genetic variability and genealogical relationships among three Ae. aegypti Peruvian populations: Lima, Piura (west Andes), and Iquitos (east Andes) using a fragment of the ND4 gene of the mitochondrial genome. Three haplotypes were detected among 55 samples. Lima and Iquitos showed the same haplotype (Haplotype I), whereas Piura has two haplotypes (Haplotype II and III). Haplotype II is four mutational steps apart from Haplotype I, while Haplotype III is 13 mutational steps apart from Haplotype I in the network. The analysis of molecular variation showed that mostly of the detected genetic variation occurs at interpopulational level. The significant value Phi(st) suggests that Piura population is structured in relation to Lima and Iquitos populations and the gene flow of the ND4 is restricted in Piura when compared to Lima and Iquitos. Genetic relationship between haplotype I and haplotype II suggests introduction of the same mtDNA lineage into those localities. However the existence of a genetically distant haplotype III also suggests introduction of at least two Ae. aegypti lineages in Peru. PMID:16302064

da Costa-da-Silva, André Luis; Capurro, Margareth Lara; Bracco, José Eduardo

2005-11-08

213

Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)  

PubMed Central

Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250??g/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000??g/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves.

Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sonia Pereira

2012-01-01

214

A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion?  

Microsoft Academic Search

We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar

Steven A. Juliano; L. Philip Lounibos; George F. O’Meara

2004-01-01

215

High and Low Risk Dengue Haemorrhagic Fever Areas Affecting Key Breeding Place of Aedes aegypti (L.) and Ae. albopictus (Skuse) in Nakhon Si Thammarat, Southern Thailand  

Microsoft Academic Search

This study investigated key breeding sites of Aedes aegypti (L.) and Ae. albopictus (Skuse) in high and low risk dengue haemorrhagic fever (DHF) areas. Ae. aegypti and Ae. albopictus larvae were found in 11 out of 29 types of water containers in both high and low risk DHF areas. Ae. aegypti larvae were found most in outdoor area containers in

Mullica JAROENSUTASINEE

216

An eco-physiological model of the impact of temperature on Aedes aegypti life history traits.  

PubMed

Physiological processes mediate the impact of ecological conditions on the life histories of insect vectors. For the dengue/chikungunya mosquito, Aedes aegypti, three life history traits that are critical to urban population dynamics and control are: size, development rate and starvation mortality. In this paper we make use of prior laboratory experiments on each of these traits at 2°C intervals between 20 and 30°C, in conjunction with eco-evolutionary theory and studies on A.aegypti physiology, in order to develop a conceptual and mathematical framework that can predict their thermal sensitivity. Our model of reserve dependent growth (RDG), which considers a potential tradeoff between the accumulation of reserves and structural biomass, was able to robustly predict laboratory observations, providing a qualitative improvement over the approach most commonly used in other A.aegypti models. RDG predictions of reduced size at higher temperatures, but increased reserves relative to size, are supported by the available evidence in Aedes spp. We offer the potentially general hypothesis that temperature-size patterns in mosquitoes are driven by a net benefit of finishing the growing stage with proportionally greater reserves relative to structure at warmer temperatures. By relating basic energy flows to three fundamental life history traits, we provide a mechanistic framework for A.aegypti development to which ecological complexity can be added. Ultimately, this could provide a framework for developing and field testing hypotheses on how processes such as climate variation, density dependent regulation, human behavior or control strategies may influence A.aegypti population dynamics and disease risk. PMID:23068992

Padmanabha, Harish; Correa, Fabio; Legros, Mathieu; Nijhout, H Fredrick; Lord, Cynthia; Lounibos, L Philip

2012-10-13

217

Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis  

PubMed Central

Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes aegypti embryogenesis. Furthermore, the results also suggest a role for GSK3 in glycogen balance/distribution during morphological modifications.

2010-01-01

218

Spatial Clustering of Aedes aegypti Related to Breeding Container Characteristics in Coastal Ecuador: Implications for Dengue Control.  

PubMed

Abstract. Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ? 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts. PMID:24002483

Schafrick, Nathaniel H; Milbrath, Meghan O; Berrocal, Veronica J; Wilson, Mark L; Eisenberg, Joseph N S

2013-09-03

219

Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.  

PubMed

Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (?-amyrin), sterol (?-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

2012-03-01

220

Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages  

PubMed Central

Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages. Methodology/Principal Findings Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile “index” cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80–100 meters away (p<0.001). Significantly more Ae. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (p<0.001). The DENV infection rate in contacts was 47.4% in houses with infectious mosquitoes, 28.7% in other houses in the same cluster, and 10.8% in positive clusters without infectious mosquitoes (p<0.001). Ae. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes. Conclusions/Significance Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission).

Yoon, In-Kyu; Getis, Arthur; Aldstadt, Jared; Rothman, Alan L.; Tannitisupawong, Darunee; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Jones, James W.; Morrison, Amy C.; Jarman, Richard G.; Nisalak, Ananda; Mammen, Mammen P.; Thammapalo, Suwich; Srikiatkhachorn, Anon; Green, Sharone; Libraty, Daniel H.; Gibbons, Robert V.; Endy, Timothy; Pimgate, Chusak; Scott, Thomas W.

2012-01-01

221

The V-type H(+)-ATPase in Malpighian tubules of Aedes aegypti: localization and activity.  

PubMed

The V-type H(+)-ATPase is thought to provide the driving force for transepithelial electrolyte and fluid secretion in Malpighian tubules. To confirm the presence of this proton pump in Malpighian tubules of the yellow fever mosquito Aedes aegypti, we used several antibodies raised against the V-type H(+)-ATPase of Manduca sexta. Western blot analysis confirmed the presence of the V-type H(+)-ATPase in Malpighian tubules of Aedes aegypti. In situ immunostaining identified the V-type H(+)-ATPase at the apical membrane of the mitochondrion-rich brush border of principal cells. The V-type H(+)-ATPase was not found in stellate cells. Measurements of ATPase activity revealed that bafilomycin-sensitive and NO(3)(-)-sensitive ATPase activity accounted for 50-60% of total ATPase activity in crude extracts of Malpighian tubules. No significant ouabain- or vanadate-sensitive Na(+)/K(+)-ATPase activity was detected. These results support the conclusion reached previously in electrophysiological studies that the mechanisms for transepithelial electrolyte secretion in the Aedes Malpighian tubules rely on the V-type H(+)-ATPase as the principal energizer of epithelial transport. Measures of transepithelial Na(+) and K(+) secretion and estimates of the H(+) flux mediated by the V-type H(+)-ATPase suggest a 1:1 stoichiometry for Na(+)/H(+) and K(+)/H(+) exchange transport across the apical membrane. PMID:12771170

Weng, Xing-He; Huss, Markus; Wieczorek, Helmut; Beyenbach, Klaus W

2003-07-01

222

Ultrastructural damage of in vitro cultured ookinetes of Plasmodium gallinaceum (Brumpt) by purified proteinases of susceptible Aedes aegypti (L.)  

Microsoft Academic Search

Previous in vivo studies have implicated trypsin-like proteinases in the destruction of ookinetes ofPlasmodium gallinaceum in the gut of the susceptible mosquitoAedes aegypti (Gass 1977). An in vitro study has shown that the ookinetes are destroyed by crude extracts of blood-fedA. aegypti and that this destruction is largely inhibited by an inhibitor of mosquito proteinases, lima bean trypsin inhibitor (Gass

Rodney A. Yeates; Sylvia Steiger

1981-01-01

223

Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.  

PubMed

Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain dengue transmission during the dry season. PMID:20374477

Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

2010-03-31

224

Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota  

PubMed Central

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

Oliveira, Jose Henrique M.; Goncalves, Renata L. S.; Lara, Flavio A.; Dias, Felipe A.; Gandara, Ana Caroline P.; Menna-Barreto, Rubem F. S.; Edwards, Meredith C.; Laurindo, Francisco R. M.; Silva-Neto, Mario A. C.; Sorgine, Marcos H. F.; Oliveira, Pedro L.

2011-01-01

225

Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle  

PubMed Central

Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.

Rezende, Gustavo Lazzaro; Martins, Ademir Jesus; Gentile, Carla; Farnesi, Luana Cristina; Pelajo-Machado, Marcelo; Peixoto, Alexandre Afranio; Valle, Denise

2008-01-01

226

TALEN-based gene disruption in the dengue vector Aedes aegypti.  

PubMed

In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

2013-03-21

227

TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti  

PubMed Central

In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20–40% of fertile survivors produced kmo alleles that failed to complement an existing khw mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1–7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.

Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

2013-01-01

228

Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae).  

PubMed

ABSTRACT Phytochemicals have been considered as alternatives for conventional pesticides because of their low mammalian toxicity and environmental safety. They usually display less potent insecticidal effects than synthetic compounds, but may express as yet unknown modes of action. In the current study, we evaluated 14 plant essential oils for their toxicities and synergistic effects with carbaryl and permethrin against fourth instars of Aedes aegypti (L.) as well as 5-7-d-old adults. Six essential oils showed significant synergistic effects with carbaryl at 10-50 mg/liter, but paradoxically all of them decreased the toxicity of permethrin against Ae. aegypti larvae. None showed toxicity or synergistic effects on Ae. aegypti adults, at doses up to 2,000 ng/ insect. The six essential oils displaying synergistic effects in Ae. aegypti larvae inhibited the in vitro activities of cytochrome P450 monooxygenases and carboxylesterases in the low milligram per liter range. The data indicated that cytochrome P450 monooxygenases and carboxylesterase were probably targets for these natural synergists. Thus, the mechanism of synergism was most likely inhibition of metabolism and not interacting target site effects. PMID:23926781

Tong, Fan; Bloomquist, Jeffrey R

2013-07-01

229

Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes.  

PubMed

Using standard WHO methodology, this study investigated the susceptibility of 4(th) instar Aedes aegypti (L) and Culex annulirostris (Skuse) larvae to three extracts from Callitris glaucophylla (J. Thompson & L. Johnson) (1: steam distillation extract, 2: liquefied refrigerant gas extract, and 3: methanol reflux extract), lambda-cyhalothrin (a synthetic pyrethroid insecticide) and fenitrothion (an organophosphorous insecticide). Cx. annulirostris was significantly more susceptible than Ae. aegypti to all tested chemicals except lambda-cyhalothrin. Responses to the three C. glaucophylla extracts were exceptional for a botanical compound: Cx. annulirostris (LC(50) = 0.23, 9.53 and 38.95 mg/L) and Ae. aegypti (LC(50) = 0.69, 5.21 and 306.43 mg/L). Both Cx. annulirostris and Ae. aegypti larvae were significantly more susceptible to lambda-cyhalothrin (LC(50) = 0.00013 and 0.00016 mg/L) than fenitrothion (LC(50) = 0.0009 and 0.004 mg/L). As expected, the pyrethroid and organophosphorous insecticides were far more potent than the crude C. glaucophylla extracts. The steam distilled extract was fractionated and the major components guaiol and citronellic acid were identified and tested. Activities for these major components were lower than observed for the distillate. Minor components include lactones such as eldanolide, and future testing of minor components may indicate the active component. PMID:17322820

Essam Abdel, S S; Deon Vahid, Canyon; Bruce, Bowden; Mohamed Wagdy, F Y; Hoda Abdel, W Abdel; Abdel Hamid, M

2006-12-01

230

Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).  

PubMed

Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus. PMID:18163189

Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

2007-12-29

231

Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico  

PubMed Central

Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.

2012-01-01

232

Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.  

PubMed

Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

2011-11-01

233

Genetic Mapping a Meiotic Driver That Causes Sex Ratio Distortion in the Mosquito Aedes aegypti  

PubMed Central

An endogenous meiotic driver in the dengue and yellow fever vector mosquito Aedes aegypti can cause highly male-biased sex ratio distortion in crosses from suitable genetic backgrounds. We previously selected a strain that carries a strong meiotic drive gene (D) linked with the male-determining allele (M) on chromosome 1 in A. aegypti. Here, we performed segregation analysis of the MD locus among backcross (BC1) progeny from a driver male and drive-sensitive females. Assessment of sex ratios among BC2 progeny showed ?5.2% recombination between the MD locus and the sex determination locus. Multipoint linkage mapping across this region revealed consistent marker orders and recombination frequencies with the existing reference linkage map and placed the MD locus within a 6.5-cm interval defined by the LF159 locus and microsatellite marker 446GAA, which should facilitate future positional cloning efforts.

2012-01-01

234

Assessing the feasibility of controlling Aedes aegypti with transgenic methods: a model-based evaluation.  

PubMed

Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies. PMID:23284949

Legros, Mathieu; Xu, Chonggang; Okamoto, Kenichi; Scott, Thomas W; Morrison, Amy C; Lloyd, Alun L; Gould, Fred

2012-12-21

235

Post-integration silencing of piggyBac transposable elements in Aedes aegypti.  

PubMed

The piggyBac transposon, originating in the genome of the Lepidoptera Trichoplusia ni, has a broad host range, making it useful for the development of a number of transposon-based functional genomic technologies including gene vectors, enhancer-, gene- and protein-traps. While capable of being used as a vector for the creation of transgenic insects and insect cell lines, piggyBac has very limited mobility once integrated into the genome of the yellow fever mosquito, Aedes aegypti. A transgenic Aedes aegypti cell line (AagPB8) was created containing three integrated piggyBac elements and the remobilization potential of the elements was tested. The integrated piggyBac elements in AagPB8 were transpositionally silent in the presence of functional transposase, which was shown to be capable of catalyzing the movement of plasmid-borne piggyBac elements in the same cells. The structural integrity of one of the integrated elements along with the quality of element-flanking DNA, which is known to influence transposition rates, were tested in D. melanogaster. The element was found to be structurally intact, capable of transposition and excision in the soma and germ-line of Drosophila melanogaster, and in a DNA sequence context highly conducive to element movement in Drosophila melanogaster. These data show that transpositional silencing of integrated piggyBac elements in the genome of Aedes aegypti appears to be a function of higher scale genome organization or perhaps epigenetic factors, and not due to structural defects or suboptimal integration sites. PMID:23861905

Palavesam, Azhahianambi; Esnault, Caroline; O'Brochta, David A

2013-07-04

236

Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to Bacillus thuringiensis israelensis and temephos.  

PubMed

The susceptibility status of field-collected Aedes aegypti (L.) from a dengue endemic area to Bacillus thuringiensis israelensis (Bti) and temephos was determined. Since August 2007, biweekly ovitrap surveillance (OS) was conducted for 12 mo in 2 sites, A & B, in Shah Alam, Selangor. Site A was treated with a Bti formulation, VectoBac® WG at 500 g/ha, from December 2007 - June 2008 while Site B was subjected to routine dengue vector control activities conducted by the local municipality. Aedes aegypti larvae collected from OS in both sites were bred until F3 and evaluated for their susceptibility. The larvae were pooled according to 3 time periods, which corresponded to Bti treatment phases in site A: August - November 2007 (Bti pre-treatment phase); December 2007 - June 2008 (Bti treatment phase); and July - September 2008 (Bti post-treatment phase). Larvae were bioassayed against Bti or temephos in accordance with WHO standard methods. Larvae collected from Site A was resistant to temephos, while incipient temephos resistant was detected in Site B throughout the study using WHO diagnostic dosage of 0.02 mg/L. The LC50 of temephos ranged between 0.007040 - 0.03799 mg/L throughout the year in both sites. Resistance ratios (LC50) indicated that temephos resistance increased with time, from 1.2 - 6.7 folds. The LC50 of Ae. aegypti larvae to Bti ranged between 0.08890 - 0.1814 mg/L throughout the year in both sites, showing uniform susceptibility of field larvae to Bti, in spite of Site A receiving 18 Bti treatments over a period of 7 mo. No cross-resistance of Ae. aegypti larvae from temephos to Bti was detected. PMID:21399591

Loke, S R; Andy-Tan, W A; Benjamin, S; Lee, H L; Sofian-Azirun, M

2010-12-01

237

Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.  

PubMed

Trypsin and chymotrypsin-like enzymes were detected in the gut of Aedes aegypti in the four larval instar and pupal developmental stages. Although overall the amount of trypsin synthesized in the larval gut was 2-fold higher than chymotrypsin, both enzymes are important in food digestion. Feeding Aea-Trypsin Modulating Oostatic Factor (TMOF) to Ae. aegypti and Culex quinquefasciatus larvae inhibited trypsin biosynthesis in the larval gut, stunted larval growth and development, and caused mortality. Aea-TMOF induced mortality in Ae. aegypti, Cx. quinquefasciatus, Culex nigripalpus, Anopheles quadrimaculatus, and Aedes taeniorhynchus larvae, indicating that many mosquito species have a TMOF-like hormone. The differences in potency of TMOF on different mosquito species suggest that analogues in other species are similar but may differ in amino acid sequence or are transported differently through the gut. Feeding of 29 different Aea-TMOF analogues to mosquito larvae indicated that full biological activity of the hormone is achieved with the tetrapeptide YDPA. Using cytoimmunochemical analysis, intrinsic TMOF was localized to ganglia of the central nervous system in larvae and male and female Ae. aegypti adults. The subesophageal, thoracic, and abdominal ganglia of both larval and adult mosquitoes contained immunoreactive cells. Immunoreactive cells were absent in the corpus cardiacum of newly molted 4th instar larvae but were found in late 4th instar larvae. In both males and females, the intrinsic neurosecretory cells of the corpus cardiacum were filled with densely stained immunoreactive material. These results indicate that TMOF-immunoreactive material is synthesized in sugar-fed male and female adults and larvae by the central nervous system cells. PMID:14981657

Borovsky, Dov; Meola, Shirlee M

2004-03-01

238

A MOSQUITO DENSOVIRUS INFECTINGAEDES AEGYPTIAND AEDES ALBOPICTUS FROM THAILAND  

Microsoft Academic Search

A previously undescribed mosquito densovirus was detected in colonies of Aedes aegypti and Ae. albopictus from Thailand, using a polymerase chain reaction (PCR)-based assay. Phylogenetic analysis of this virus showed it to be most closely related to ADNV isolated from Russian Ae. aegypti. Both Aedes species were susceptible to oral infection with the Thai-strain virus. Larval mortality for Ae. albopictus

PATTAMAPORN KITTAYAPONG; KATHY J. BAISLEY

1999-01-01

239

[Levels of resistance to insecticides and their mechanisms in 2 strains of Aedes aegypti from Panama].  

PubMed

The levels of susceptibility and/or resistance to insecticides in larvae and adults of Aedes aegypti from 2 localities of Panama (Rio Abajo and Victoriano Lorenzo) were determined. Among larvae, it was found resistance to methyl- pyrimifos in both localities; however, they were susceptible to the rest of the organophosphate insecticides (temephos, malathion, fenthion fenitrothion and clorpirifos) and to pyrethroids (deltamethrin, lambda-cyhalothrin, cypermethrin and cyfluthrin. In the trials carried out in adults, according to the categories of the World Health Organization, the 2 localities proved to be completely susceptible to deltamethrin, lambda-cyhalothrin, beta cypermethrin and cyfluthrin. PMID:15849925

Bisset, Juan A; Rodríguez, María Magdalena; Cáceres, Lorenzo

240

Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay.  

PubMed

Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

Oliferenko, Polina V; Oliferenko, Alexander A; Poda, Gennadiy I; Osolodkin, Dmitry I; Pillai, Girinath G; Bernier, Ulrich R; Tsikolia, Maia; Agramonte, Natasha M; Clark, Gary G; Linthicum, Kenneth J; Katritzky, Alan R

2013-09-06

241

Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection  

PubMed Central

Dengue, the most important human arboviral disease, is transmitted primarily by Aedes aegypti and, to a lesser extent, by Aedes albopictus. The current distributions of these invasive species overlap and are affected by interspecific larval competition in their container habitats. Here we report that competition also enhances dengue infection and dissemination rates in one of these two vector species. We determined the effects of competition on adult A. aegypti and A. albopictus, comparing their susceptibility to infection with a Southeast Asian strain of dengue-2 virus. High levels of intra- or interspecific competition among larvae enhanced the susceptibility of A. albopictus to dengue virus infection and potential for transmission, as indicated by disseminated infections. Doubling the number of competing larvae (A. albopictus or A. aegypti), led to a significant (more than 60%) increase in the proportion of A. albopictus with disseminated dengue-2 infection. Competition-enhanced vector competence appears to result from a reduction in ‘barriers’ (morphological or physiological) to virus infection and dissemination and may contribute to the importance of A. albopictus in dengue transmission. Similar results for other unrelated arboviruses suggest that larval competition, common in mosquitoes, should be considered in estimates of vector competence for pathogens that infect humans.

Alto, Barry W; Lounibos, L. Philip; Mores, Christopher N; Reiskind, Michael H

2007-01-01

242

Pathogenicity of the Fungus, Aspergillus clavatus, Isolated from the Locust, Oedaleus senegalensis, Against Larvae of the Mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus  

PubMed Central

The use of insect pathogenic fungi is a promising alternative to chemical control against mosquitoes. Among the Hyphomycetes isolated from insects for mosquito control, the genus Aspergillus remains the least studied. In September 2005, four fungi were isolated from the Senegalese locust, Oedaleus senegalensis Kraus (Orthoptera: Acrididae), collected in Dakar, Senegal. One of these fungi, identified as Aspergillus clavatus, Desmazières (Eurotiales: Trichocomaceae) was highly pathogenic against larvae of the mosquitoes Aedes aegypti L., Anopheles gambiae s.l. Giles and Culex quinquefasciatus Say (Diptera: Culicidae). An application of 1.2 mg/ml dry conidia yielded 100% mortality after 24 hours against both Ae. aegypti and Cx. quinquefasciatus while with An. gambiae it was 95%. With unidentified species in the genus Aspergillus, mortality after 24 h was <5% against all the larval species. Application of A. clavatus produced in a wheat powder medium using doses ranging between 4.3 to 21×107 spores/ml, caused 11 to 68% mortality against Cx. quinquefasciatus at 24h, and 37 to 100% against Ae. aegypti. Microscopic observations showed fungal germination on both Ae. aegypti and Cx. quinquefasciatus larvae. Histological studies revealed that A. clavatus penetrated the cuticle, invaded the gut and disintegrated its cells. Some Cx. quinquefasciatus larvae, treated with A. clavatus reached the pupal stage and produced infected adults. However, the infection was mainly located on the extremity of their abdomen. These results suggest that A. clavatus could be an effective tool to manage mosquito proliferation.

Seye, Fawrou; Faye, Oumar; Ndiaye, Mady; Njie, Ebrima; Marie Afoutou, Jose

2009-01-01

243

The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti  

PubMed Central

Background The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Methodology/Principal Findings Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Conclusions/Significance Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

Drake, Lisa L.; Boudko, Dmitri Y.; Marinotti, Osvaldo; Carpenter, Victoria K.; Dawe, Angus L.; Hansen, Immo A.

2010-01-01

244

Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.  

PubMed

Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector. PMID:23142191

Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

2012-11-08

245

Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina  

PubMed Central

Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC?=?0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health Ministry to focus resources more effectively.

Estallo, Elizabet Lilia; Mas, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Luduena-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, Maria Virginia; Zaidenberg, Mario; Almiron, Walter Ricardo

2013-01-01

246

RESISTANCE OF AEDES AEGYPTI TO ORGANOPHOSPHATES IN SEVERAL MUNICIPALITIES IN THE STATE OF RIO DE JANEIRO AND ESPÍRITO SANTO, BRAZIL  

Microsoft Academic Search

Chemical insecticides have been widely used in Brazil for several years. This exposes mosquito populations to an intense selection pressure for resistance to insecticides. In 1999, the Brazilian National Health Foundation started the first program designed to monitor the resistance of Aedes aegypti to insecticides. We analyzed populations from 10 municipalities (from 84 selected in Brazil) in the states of

JOSÉ BENTO PEREIRA LIMA; MARCELLA PEREIRA DA-CUNHA; RONALDO CARNEIRO DA SILVA JÚNIOR; ALLAN KARDEC; RIBEIRO GALARDO; SILVA SOARES; IMA APARECIDA BRAGA; RICARDO PIMENTEL RAMOS; DENISE VALLE

2003-01-01

247

Susceptibility of Aedes aegypti , Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 Pesticides with Different Modes of Action  

Microsoft Academic Search

To access the relative potency of pesticides to control adult mosquitoes, 19 pesticides with various modes of action were evaluated against Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say. On the basis of 24-h LD50 values after topical application, the only pesticide that had higher activity than permethrin was Þpronil, with LD50 values lower than per- methrin for 107-,

Julia W. Pridgeon; Roberto M. Pereira; James J. Becnel; Sandra A. Allan; Gary G. Clark; Kenneth J. Linthicum

2008-01-01

248

Effect of Used Coffee Grounds on Larval Mortality of Aedes aegypti L. (Diptera: Culicidae): Suspension Concentration and Age versus Efficacy  

Microsoft Academic Search

In a previous study, used coffee ground affected the larval development of Aedes aegypti. In this work, we evaluated the duration of the effect on larval mortality of aqueous suspensions of used coffee ground at 75, 150, 250 and 300 mg\\/ml concentrations. The larval mortality was followed daily, in the experimental breeding sites; 300 mg\\/ml was the most efficient concentration,

MARLUCI MONTEIRO GUIRADO

249

Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti  

Microsoft Academic Search

A key tyrosine kinase receptor regulates steroidogenesis during egg maturation in the mosquito Aedes aegypti. This study examined expression patterns and phosphorylation states of the mosquito insulin receptor (MIR) in ovaries during the previtellogenic stage and a reproductive cycle. Little or no MIR protein was present until 24 h after adult eclosion, when the mature MIR appeared as a ~400-kDa

Michael A. Riehle; Mark R. Brown

2002-01-01

250

Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti  

Microsoft Academic Search

The lack of eye pigment in the Aedes aegypti WE (white eye) colony was confirmed to be due to a mutation in the kynurenine hydroxylase gene, which catalyzes one of the steps in the metabolic synthesis of ommochrome eye pigments. Partial restoration of eye color (orange to red phenotype) in pupae and adults occurred in both sexes when first or

Anthony J Cornel; Mark Q. Benedict; Cristina Salazar Rafferty; Antony J Howells; Frank. H Collins

1997-01-01

251

Rapid Estimation of Aedes aegypti Population Size Using Simulation Modeling, with a Novel Approach to Calibration and Field Validation  

Microsoft Academic Search

New approaches for control of the dengue vector Aedes aegypti (L.) are being devel- oped, including the potential introduction of life-shortening symbiont bacteria into Þeld populations and the release of transgenic strains with reduced vector competency. With these new approaches comes the need for rapid estimations of existing Þeld population size. Here, we describe the use of simulation modeling with

Craig R. Williams; Petrina H. Johnson; Sharron A. Long; Luke P. Rapley; Scott A. Ritchie

2008-01-01

252

Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.  

PubMed

This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment. PMID:20232228

Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

2010-03-16

253

Aedes aegypti Larval Indices and Risk for Dengue Epidemics  

PubMed Central

We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BImax (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission.

Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lazara; Marquetti, Maria del Carmen; Guzman, Maria Guadalupe; Bisset, Juan; van der Stuyft, Patrick

2006-01-01

254

Association of insecticide use and alteration on Aedes aegypti susceptibility status.  

PubMed

Dengue and dengue hemorrhagic fever, vector-borne diseases transmitted by the mosquito Aedes aegypti, are presently important public health problems in Brazil. As the strategy for disease control is based on vector control through the use of insecticides, the development of resistance is a threat to programs efficacy. The objective of this study was to compare the Aedes aegypti susceptibility in nine vector populations from the state of São Paulo and seven from Northeast region of Brazil, since there was a difference on group of insecticide used between the areas. Bioassays with larvae and adult were performed according to the World Health Organization methods. The results showed higher resistance levels to organophosphates group in populations from the Northeast region where this group was used for both larvae and adult control than in São Paulo where organophosphates were used for larvae and pyretroids for adult control. Resistance to pyretroids in adults was widespread in São Paulo after ten years of use of cypermethrin while in vector populations from the Northeast region it was punctual. The difference in resistance profile between the areas is in accordance to the group of insecticide used. PMID:18209926

Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Carvalho, Lídia Raquel de; Caldas Júnior, Antonio Luiz; Brogdon, William G

2007-12-01

255

[Periodicity of oviposition of females of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) in laboratory and field].  

PubMed

The object of this work was to determine of gonotrophic diel pattern of female Aedes aegypti in laboratory and field conditions. Three day-old female mosquitoes were the fed on chicken blood and transferred to bioassay cages. Four oviposition substrates were offered: paper sulfite, filter, butter and towel. The results showed that filter paper received a significantly higher (40.4%) percentage of deposited eggs than the other oviposition substrates. After their first blood meal, females started to oviposit on the 3rd model day; 35.7% of the total number of eggs deposited. The oviposition diel patterns of females were observed every two hours during the photoperiod in the laboratory and in the field. In the laboratory, the periodicity of oviposition showed that the highest egg deposition occurred during the 9th- 12th h of photophase and 1st - 2nd h of scotophase. In the field, the highest egg deposition occurred during the 9th - 12th h of photophase and 1st - 4th h of scotophase. These results point out that Aedes aegypti showed an oviposition periodicity pattern that can subsidize monitoring and or control of vector insect. itis suggested that ovitraps should be placed in the field during the morning hours since the captures occur during afternoon. PMID:17119745

Gomes, Adriana Dos Santos; de Sá Sciavico, Célia J; Eiras, Alvaro Eduardo

256

Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-SentinelTM trap catches.  

PubMed

BACKGROUND: An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents SentinelTM (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). METHODS: Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00--12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00--18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. RESULTS: Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. CONCLUSION: Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the pyrethroid compounds transfluthrin and metofluthrin and no change in recapture densities using DDT as compared to matched controls. These findings suggest a combined SR and BGS approach to vector control could function as a push-pull strategy to reduce Ae. aegypti adults in and around homes. PMID:23688176

Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Ojo, Tolulope A; Eisen, Lars; Dureza, Christine; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap

2013-05-20

257

Identification of novel LTR retrotransposons in the genome of Aedes aegypti.  

PubMed

We have detected seventy-six novel LTR retrotransposons in the genome of the mosquito Aedes aegypti by a genome wide analysis using the LTR_STRUC program. We have performed a phylogenetic classification of these novel elements and a distribution analysis in the genome of A. aegypti. These mobile elements belong either to the Ty3/gypsy or to the Bel family of retrotransposons and were not annotated in the mosquito LTR retrotransposon database (TEfam). We have found that approximately 1.8% of the genome is occupied by these newly detected retrotransposons that are distributed predominantly in intergenic genomic sequences and introns. The potential role of retrotransposon insertions linked to host genes is described and discussed. We show that a retrotransposon family belonging to the Osvaldo lineage has peculiar structural features, and its presence is likely to be restricted to the A. aegypti and to the Culex pipiens quinquefasciatus genomes. Furthermore we show that the ninja-like group of elements lacks the Primer Binding Site (PBS) sequence necessary for the replication of retrotransposons. These results integrate the knowledge on the complicate genomic structure of an important disease vector. PMID:19362135

Minervini, Crescenzio Francesco; Viggiano, Luigi; Caizzi, Ruggiero; Marsano, Renè Massimiliano

2009-04-09

258

Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish.  

PubMed

The presence of pathogens or predators in water may alter oviposition behaviour of gravid female Aedes aegypti mosquitoes. We evaluated the oviposition behaviour of A. aegypti in recipients containing larvivorous fish (Betta splendens and Poecilia reticulata). In four breeders, fish specimens were placed in 15 l of dechlorined water. Four control breeders only contained dechlorined water. Breeders with eucatex ovitraps and approximately 100 male and female mosquitoes were placed in wire netting cages. During a period of 7 weeks, eggs on the ovitraps were counted weekly. The median number of eggs laid in recipients with B. splendens (32.5/week) was lower than in those with P. reticulata (200.5/week) and the control group (186.5/week; P < 0.0001). The oviposition activity index (OAI) for P. reticulata did not show any considerable difference between posture in deposits with and without fish (-0005). Deposits with B. splendens showed a lower position than those used as controls (-0627). We conclude that B. splendens can be used to effectively prevent gravid A. aegypti females from laying eggs in large water containers. PMID:19754521

Pamplona, Luciano de Góes Cavalcanti; Alencar, Carlos H; Lima, José Wellington O; Heukelbach, Jörg

2009-09-14

259

Food availability alters the effects of larval temperature on Aedes aegypti growth.  

PubMed

Variation in temperature and food availability in larval habitats can influence the abundance, body size, and vector competence of the mosquito Aedes aegypti. Although increased temperature has energetic costs for growing larvae, how food resources influence the developmental response of this mosquito species to thermal conditions is unknown. We explored how rearing temperature and food affect allometric scaling between wing size and epidermal cell size in Ae. aegypti. Mosquitoes were reared at 22 and 28 degrees C across a gradient of field-collected detritus designed to simulate commonly observed natural larval food resources. Overall, reduced temperature and increased food level increased wing size, but only temperature affected cell size. Females fed the least food had the longest time to maturation, and their increases in wing size induced by cold temperature were associated with larger, rather than more, cells. By contrast, males fed the most food had the shortest time to maturation, and their increases in wing size induced by cold temperature were associated with more, rather than larger, cells. Therefore, food levels can alter the underlying physiological mechanisms generating temperature-size patterns in mosquitoes, suggesting that the control of development is sensitive to the combination of nutrient and thermal conditions, rather than each independently. Conditions prolonging development time may favor increased cell division over growth. We suggest that understanding the effects of climate change on Ae. aegypti vectorial capacity requires an improved knowledge of how water temperature interacts with limited food resources and competition in aquatic container habitats. PMID:21936315

Padmanabha, H; Bolker, B; Lord, C C; Rubio, C; Lounibos, L P

2011-09-01

260

Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti  

PubMed Central

Hemocytes are an essential component of the mosquito immune system but current knowledge of the types of hemocytes mosquitoes produce, their relative abundance, and their functions is limited. Addressing these issues requires improved methods for collecting and maintaining mosquito hemocytes in vitro, and comparative data that address whether important vector species produce similar or different hemocyte types. Toward this end, we conducted a comparative study with Anopheles gambiae and Aedes aegypti. Collection method greatly affected the number of hemocytes and contaminants obtained from adult females of each species. Using a collection method called high injection/recovery, we concluded that hemolymph from An. gambiae and Ae. aegypti adult females contains three hemocyte types (granulocytes, oenocytoids and prohemocytes) that were distinguished from one another by a combination of morphological and functional markers. Significantly more hemocytes were recovered from An. gambiae females than Ae. aegypti. However, granulocytes were the most abundant cell type in both species while oenocytoids and prohemocytes comprised less than 10% of the total hemocyte population. The same hemocyte types were collected from larvae, pupae and adult males albeit the absolute number and proportion of each hemocyte type differed from adult females. The number of hemocytes recovered from sugar fed females declined with age but blood feeding transiently increased hemocyte abundance. Two antibodies tested as potential hemocyte markers (anti-PP06 and anti–Dox-A2) also exhibited alterations in staining patterns following immune challenge with the bacterium Escherichia coli.

Castillo, J. C.; Robertson, A. E.; Strand, M. R.

2009-01-01

261

Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)  

PubMed Central

Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies.

2011-01-01

262

Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly  

PubMed Central

The mosquito Aedes aegypti is the world’s most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species.

Jasinskiene, Nijole; Coates, Craig J.; Benedict, Mark Q.; Cornel, Anthony J.; Rafferty, Cristina Salazar; James, Anthony A.; Collins, Frank H.

1998-01-01

263

Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae.  

PubMed

Aedes aegypti transmits the viruses that cause yellow and dengue fevers. Vector control is essential, since a vaccine for dengue has not as yet been made available. This work reports on the larvicidal activity of Myracrodruon urundeuva leaf lectin (MuLL) against A. aegypti fourth-stage larvae (L(4)). Also, the resistance of MuLL to digestion by L(4) gut proteases and the effects of MuLL on protease, trypsin-like and ?-amylase activities from L(4) gut were evaluated to determine if lectin remains active in A. aegypti gut and if insect enzyme activities can be modulated by MuLL. MuLL promoted mortality of L(4) with LC(50) of 0.202 mg/ml. Haemagglutinating activity of MuLL was detected even after incubation for 96 h with L(4) gut preparation containing protease activity. MuLL affected the activity of gut enzymes, inhibiting protease and trypsin activities and stimulating ?-amylase activity. The results suggest that MuLL may become a new biodegradable larvicidal agent for dengue control. Larvicidal activity of MuLL may be linked to its resistance to proteolysis by larval enzymes and interference in the activity of digestive larval enzymes. PMID:21735148

Napoleão, Thiago Henrique; Pontual, Emmanuel Viana; de Albuquerque Lima, Thâmarah; de Lima Santos, Nataly Diniz; Sá, Roberto Araújo; Coelho, Luana Cassandra Breitenbach Barroso; do Amaral Ferraz Navarro, Daniela Maria; Paiva, Patrícia Maria Guedes

2011-07-07

264

Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

265

A comparison of seven traps used for collection of Aedes albopictus and Aedes aegypti originating from a large tire repository in Harris County (Houston), Texas.  

PubMed

Among 7 traps tested, significantly higher (P < 0.01) mean numbers of Aedes albopictus (269) and Aedes aegypti (55) females were collected within the Mosquito Magnet Liberty trap compared with the remaining traps. The second highest mean captures for both species were obtained from omnidirectional Fay-Prince (77 Ae. albopictus) and Dragonfly (13 Ae. aegypti) traps, which were not significantly different (P > 0.01) from an experimental moving-target trap that produced mean captures of 40 Ae. albopictus and 6 Ae. aegypti (alpha = 0.01). In terms of Ae. albopictus capture, no significant differences (P > 0.01) existed between Dragonfly, CDC without light (CDC -), and CDC with light (CDC +) captures, which were significantly different (P < 0.01) from Mosquito Deleto. No statistical significance existed between moving-target, omnidirectional, CDC +, CDC -, and Mosquito Deleto traps in terms of Ae. aegypti capture (P > 0.01), individual trap positions, or number of Ae. albopictus and Ae. aegypti females collected throughout the 21-day test (P > 0.05). Mosquito Magnet Liberty collected 7,208 Ae. albopictus, 1467 Ae. aegypti, and 13 other species representing 5 genera, which comprised the largest total (9662) and percentage (62.5%) of mosquitoes collected by all traps combined. Omnidirectional and moving-target traps captured 1941 and 1050 Ae. albopictus, 138 and 220 Ae. aegypti, and 2171 (14.0%) and 1397 (9.0%) of the total mosquitoes captured by all traps, with 8 and 10 species representing 5 genera, respectively, included in these collections. The Dragonfly captured 476 Ae. albopictus, 376 Ae. aegypti, and 1008 total specimens (6.5%) representing 8 species and 4 genera in these collections. CDC + and CDC - traps collected nearly identical numbers of Ae. albopictus (431, 450) and Ae. aegypti (71, 71) with 537 (3.4%) and 551 (3.5%) total specimens, respectively. Eight species representing 5 genera were captured from CDC +, whereas CDC - captured 6 species representing 4 genera. Mosquito Deleto captured 118 mosquitoes, including 19 Ae. albopictus and 62 Ae. aegypti females (0.7%), with 6 species representing 4 genera. Battery-powered traps with contrasting color schemes and movement worked considerably better than stationary CDC miniatures without color or movement. Omnidirectional Fay-Prince and moving-target traps without octenol captured Ae. albopictus and Ae. aegypti females as frequently as some commercial traps. Additionally, costs incurred per mosquito trapped, future trap design, and important consumer-centered issues are briefly discussed. PMID:15669373

Dennett, James A; Vessey, Nathan Y; Parsons, Ray E

2004-12-01

266

Application of real-time RT-PCR in vector surveillance and assessment of replication kinetics of an emerging novel ECSA genotype of Chikungunya virus in Aedes aegypti.  

PubMed

Chikungunya has emerged as one of the most important arboviral infection of global significance. Expansion of Chikungunya virus endemic areas can be ascribed to naive population, increasing vector population and adaptability of virus to new vector. In this study, a SYBR Green I based quantitative RT-PCR assay was developed. The assay was found to be 10-fold more sensitive than conventional RT-PCR and no cross reactivity was observed with related alphaviruses and flaviviruses. The detection efficiency of the assay was impervious to mosquitoes of different pool sizes. Vector surveillance has resulted in detection of CHIKV RNA in Aedes aegypti, confirming its vectorial potential for CHIKV in northern India. The assessment of the assay was further carried out by studying the competence of Indian Ae. aegypti for CHIKV, which revealed 100% infection rate and dissemination rate with 60% transmission rate. The replication kinetics of CHIKV in different anatomical sites of Ae. aegypti revealed highest titre at day 6 post infection in midgut and at day 10 post infection in saliva, legs and wings. The implementation of the assay in detecting lower viral load makes it a remarkable tool for surveillance of virus activity in mosquitoes. PMID:23850695

Agarwal, Ankita; Singh, Anil K; Sharma, Shashi; Soni, Manisha; Thakur, Ashish K; Gopalan, N; Parida, M M; Rao, P V L; Dash, Paban K

2013-07-11

267

Chimeric tick-borne encephalitis/dengue virus is attenuated in Ixodes scapularis ticks and Aedes aegypti mosquitoes.  

PubMed

In an effort to derive an efficacious live attenuated vaccine against tick-borne encephalitis, we generated a chimeric virus bearing the structural protein genes of a Far Eastern subtype of tick-borne encephalitis virus (TBEV) on the genetic background of recombinant dengue 4 (DEN4) virus. Introduction of attenuating mutations into the TBEV envelope protein gene, as well as the DEN4 NS5 protein gene and 3' noncoding region in the chimeric genome, results in decreased neurovirulence and neuroinvasiveness in mice, and restricted replication in mouse brain. Since TBEV and DEN4 viruses are transmitted in nature by ticks and mosquitoes, respectively, it was of interest to investigate the infectivity of the chimeric virus for both arthropod vectors. Therefore, parental and chimeric viruses were tested for growth in mosquito and tick cells and for oral infection in vivo. Although all chimeric viruses demonstrated moderate levels of replication in C6/36 mosquito cells, they were unable to replicate in ISE6 tick cells. Further, the chimeric viruses were unable to infect or replicate in Aedes aegypti mosquitoes and Ixodes scapularis tick larvae. The poor infectivity for both potential vectors reinforces the safety of chimeric virus-based vaccine candidates for the environment and for use in humans. PMID:21142950

Engel, Amber R; Mitzel, Dana N; Hanson, Christopher T; Wolfinbarger, James B; Bloom, Marshall E; Pletnev, Alexander G

2010-12-13

268

Chimeric Tick-Borne Encephalitis/Dengue Virus Is Attenuated in Ixodes scapularis Ticks and Aedes aegypti Mosquitoes  

PubMed Central

Abstract In an effort to derive an efficacious live attenuated vaccine against tick-borne encephalitis, we generated a chimeric virus bearing the structural protein genes of a Far Eastern subtype of tick-borne encephalitis virus (TBEV) on the genetic background of recombinant dengue 4 (DEN4) virus. Introduction of attenuating mutations into the TBEV envelope protein gene, as well as the DEN4 NS5 protein gene and 3? noncoding region in the chimeric genome, results in decreased neurovirulence and neuroinvasiveness in mice, and restricted replication in mouse brain. Since TBEV and DEN4 viruses are transmitted in nature by ticks and mosquitoes, respectively, it was of interest to investigate the infectivity of the chimeric virus for both arthropod vectors. Therefore, parental and chimeric viruses were tested for growth in mosquito and tick cells and for oral infection in vivo. Although all chimeric viruses demonstrated moderate levels of replication in C6/36 mosquito cells, they were unable to replicate in ISE6 tick cells. Further, the chimeric viruses were unable to infect or replicate in Aedes aegypti mosquitoes and Ixodes scapularis tick larvae. The poor infectivity for both potential vectors reinforces the safety of chimeric virus-based vaccine candidates for the environment and for use in humans.

Engel, Amber R.; Mitzel, Dana N.; Hanson, Christopher T.; Wolfinbarger, James B.; Bloom, Marshall E.

2011-01-01

269

Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)  

PubMed Central

World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.

Marcombe, Sebastien; Darriet, Frederic; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yebakima, Andre; Corbel, Vincent

2011-01-01

270

Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).  

PubMed

World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

2011-01-01

271

Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.  

PubMed

Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control. PMID:23540124

Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

2013-03-01

272

Comparison of wing geometry data and genetic data for assessing the population structure of Aedes aegypti.  

PubMed

Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of São Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F(ST)=0.062; p<0.05) and low levels of gene flow (Nm=0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure. PMID:22178147

Vidal, Paloma Oliveira; Suesdek, Lincoln

2011-12-08

273

Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control  

PubMed Central

Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating “egg sinks,” treated sites that exploit conspecific attraction of ovipositing females, but reduce emergence of adult mosquitoes via density-dependent larval competition and late acting insecticide.

Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

2011-01-01

274

Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.  

Technology Transfer Automated Retrieval System (TEKTRAN)

An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

275

Relevance of differentiating between residential and non-residential premises for surveillance and control of Aedes aegypti in Rio de Janeiro, Brazil  

Microsoft Academic Search

Entomological surveys on Aedes aegypti (L.) often focus on residential premises, while ignoring non-residential premises. It has been proposed that the latter should be subject to specific monitoring strategies, since they have the potential to contribute a large proportion of the overall mosquito population. In this study, we used traps for ovipositing females to compare the levels of Ae. aegypti

Izabel Cristina dos Reis; Nildimar Alves Honório; Cláudia Torres Codeço; Mônica de Avelar Figueiredo Mafra Magalhães; Ricardo Lourenço-de-Oliveira; Christovam Barcellos

2010-01-01

276

The Developmental Transcriptome of the Mosquito Aedes aegypti, an Invasive Species and Major Arbovirus Vector  

PubMed Central

Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org)

Akbari, Omar S.; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A.

2013-01-01

277

Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti.  

PubMed

The endosymbiont Wolbachia is common among insects and known for the reproductive manipulations it exerts on hosts as well as inhibition of virus replication in their hosts. Recently, we showed that Wolbachia uses host microRNAs to manipulate host gene expression for its efficient maintenance in the dengue mosquito vector, Aedes aegypti. Cytosine methylation is mediated by a group of proteins called DNA (cytosine-5) methyltransferases, which are structurally and functionally conserved from prokaryotes to eukaryotes. The biological functions of cytosine methylation include host defense, genome stability, gene regulation, developmental promotion of organs, and lifespan regulation. Ae. aegypti has only one DNA methyltransferase gene (AaDnmt2) belonging to the cytosine methyltransferase family 2, which is the most deeply conserved and widely distributed gene among metazoans. Here, we show that in mosquitoes the introduced endosymbiont, Wolbachia, significantly suppresses expression of AaDnmt2, but dengue virus induces expression of AaDnmt2. Interestingly, we found that aae-miR-2940 microRNA, which is exclusively expressed in Wolbachia-infected mosquitoes, down-regulates the expression of AaDnmt2. Reversely, overexpression of AaDnmt2 in mosquito cells led to inhibition of Wolbachia replication, but significantly promoted replication of dengue virus, suggesting a causal link between this Wolbachia manipulation and the blocking of dengue replication in Wolbachia-infected mosquitoes. In addition, our findings provide an explanation for hypomethylation of the genome in Wolbachia-infected Ae. aegypti. PMID:23733960

Zhang, Guangmei; Hussain, Mazhar; O'Neill, Scott L; Asgari, Sassan

2013-06-03

278

Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).  

PubMed

The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations. PMID:23691625

Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

2013-03-01

279

Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes.  

PubMed

Small RNA regulatory pathways are used to control the activity of transposons, regulate gene expression and resist infecting viruses. We examined the biogenesis of mRNA-derived endogenous short-interfering RNAs (endo-siRNAs) in the disease vector mosquito Aedes aegypti. Under standard conditions, mRNA-derived endo-siRNAs were produced from the bidirectional transcription of tail-tail overlapping gene pairs. Upon infection with the alphavirus, Sindbis virus (SINV), another class of mRNA-derived endo-siRNAs was observed. Genes producing SINV-induced endo-siRNAs were not enriched for overlapping partners or nearby genes, but were enriched for transcripts with long 3' untranslated regions. Endo-siRNAs from this class derived uniformly from the entire length of the target transcript, and were found to regulate the transcript levels of the genes from which they were derived. Strand-specific quantitative PCR experiments demonstrated that antisense strands of targeted mRNA genes were produced to exonic, but not intronic regions. Finally, small RNAs mapped to both sense and antisense strands of exon-exon junctions, suggesting double-stranded RNA precursors to SINV-induced endo-siRNAs may be synthesized from mature mRNA templates. These results suggest additional complexity in small RNA pathways and gene regulation in the presence of an infecting virus in disease vector mosquitoes. PMID:22458920

Adelman, Z N; Anderson, M A E; Liu, M; Zhang, L; Myles, K M

2012-03-27

280

Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA  

PubMed Central

A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3?2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5? end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo.

Johnson, Barbara W.; Olson, Ken E.; Allen-Miura, Tanya; Rayms-Keller, Alfredo; Carlson, Jonathan O.; Coates, Craig J.; Jasinskiene, Nijole; James, Anthony A.; Beaty, Barry J.; Higgs, Stephen

1999-01-01

281

Impact of water renewal on the residual effect of larvicides in the control of Aedes aegypti.  

PubMed

This study was carried out to evaluate the residual effect of three larvicides under laboratory conditions for 100 days in Aedes aegypti. The larval mortality rate was measured without water renewal or with daily water renewal (80%). With temephos, there was 100% mortality in both groups until the 70th day. In the Bacillus thuringiensis israelensis (Bti)-WDG test, there was no difference during the first 20 days. With Bti-G, without water renewal, mortality was sustained above 90% for up to 35 days. The second experiment (with water renewal) reduced the mortality to below 90% after the first 20 days. When renewed water was provided, the residual effect was significantly lower for all larvicides. PMID:20428685

Pontes, Ricardo José Soares; Dantas Filho, Fábio Fernandes; Alencar, Carlos Henrique Morais de; Regazzi, Ana Cláudia Ferreira; Cavalcanti, Luciano Pamplona de Góes; Ramos, Alberto Novaes; Lima, José Wellington de Oliveira

2010-03-01

282

RNAi-mediated Gene Knockdown and In Vivo Diuresis Assay in Adult Female Aedes aegypti Mosquitoes  

PubMed Central

This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis1. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.

Drake, Lisa L.; Price, David P.; Aguirre, Sarah E.; Hansen, Immo A.

2012-01-01

283

Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L. against Aedes aegypti L.  

PubMed

Ficus carica L., its fruits are delicious and can be eaten by human. Its leaves are commonly used to cure hemorrhoid and clear away heart ache. The milky sap of F. carica have a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an lethal concentration (LC(50)) value of 10.2??g/ml and an LC(90) value of 42.3??g/ml. Two natural furocoumarins, 5-methoxypsoralen and 8-methoxypsoralen were isolated from the milky sap of F. carica. The LC(50) value of 5-methoxypsoralen and 8-methoxypsoralen were 9.4 and 56.3??g/ml, respectively. The above indicates that major compounds may play a more important role in the toxicity of the milky sap of F. carica. PMID:21214422

Chung, Iii-Min; Kim, Sun-Jin; Yeo, Min-A; Park, Se-Won; Moon, Hyung-In

2011-01-10

284

Transcription of detoxification genes following permethrin selection in the mosquito Aedes aegypti  

PubMed Central

Changes in gene expression before, during and after five generations of permethrin laboratory selection were monitored in six strains of Aedes aegypti: five F2 – F3 collections from the Yucatán Peninsula of México and one F2 from Iquitos, Perú. Three biological replicate lines were generated for each strain. The response to selection was measured as changes in the lethal and knockdown permethrin concentrations (LC50, KC50) and in the frequency of the Ile1,016 substitution in the voltage gated sodium channel (para) gene. Changes in expression of 290 metabolic detoxification genes were measured using the “Aedes Detox” microarray. Selection simultaneously increased the LC50, KC50 and Ile1,016 frequency. There was an inverse relationship between Ile1,016 frequency and the numbers of differentially transcribed genes. The Iquitos strain lacked the Ile1,016 allele and 51 genes were differentially transcribed following selection as compared to 10–18 genes in the Mexican strains. Very few of the same genes were differentially transcribed among field strains but ten cytochrome P450 genes were upregulated in more than one strain. Laboratory adaptation to permethrin in Ae. aegypti is genetically complex and largely conditioned by geographic origin and preexisting target site insensitivity in the para gene. The lack of uniformity in the genes that responded to artificial selection as well as differences in the direction of their responses challenges the assumption that one or a few genes control permethrin metabolic resistance. Attempts to identify one or a few metabolic genes that are predictably associated with permethrin adaptation may be futile.

Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Salas, Ildefonso Fernandez; Strode, Clare; Ranson, Hilary; Hemingway, Janet; Black, William C.

2011-01-01

285

Life table characteristics of Aedes aegypti (Diptera:Culicidae) from Saudi Arabia.  

PubMed

Aedes aegypti (= Stegomyia aegypti) mosquito is a world vector of important arboviral diseases like dengue and Rift Valley fever. Despite its wide distribution in the western and southern regions of Saudi Arabia, where dengue outbreaks have occurred, its ecology is largely unknown. In this study we report on the main life table developmental attributes of a laboratory colony of Ae. aegypti reared from field-collected larvae from Madinah Province, west of Saudi Arabia. Females were maintained on daily blood meal and sugar. The female fecundity was ~62 eggs/female at an overall rate of 72% hatchability. The mean time needed for eggs to hatch into larvae was 4.5 d. The mean pupation time (P50) was 11.53 days (d). The proportion of immature survivorships were 0.69 for 1(st) larva to pupa (P/I), 0.98 for pupa to adult (A/P) and an overall 0.67 for 1(st) larva to adult (A/I). Males emerged faster than females with mean emergence time (E50) of 12.83 and 15.31 d, respectively. The average developmental velocity (V) showed that males (V= 0.081) developed faster than females (V= 0.068). The male/female sex ratio at adult emergence was 0.48, and insignificantly different from the 1:1 ratio. The adult mean life expectancy at emergence (eo) was 17.14 d for females compared to 9.59 d for males. The net reproductive rate (Ro) was 101.04 and the intrinsic rate of increase (rm) was 0.15 with a mean generation time (G) of 30.7 d. The instantaneous mean of birth (B) and death rate (D) were 0.30 and 0.15, respectively, with rm/B of 0.529 and B/D of 2.281. Compared to other Ae. aegypti strains from different geographic and ecological settings, the Saudi strain had a relatively low colonization potential. This is the first report on life table characteristics for Ae. aegypti from the Arabian Peninsula, and provides base-line information for wider studies on its natural populations. This is particularly important for understanding its population dynamics in relation to dengue transmission and control under regional conditions. PMID:23959496

Sowilem, Mohamed M; Kamal, Hany A; Khater, Emad I

2013-06-01

286

Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus.  

PubMed

Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

Ocampo, Clara B; Caicedo, Paola A; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M; Cooper, Dawn M; Lowenberger, Carl

2013-04-10

287

Efficacy of various larvicides against Aedes aegypti immatures in the laboratory.  

PubMed

We conducted a laboratory study to evaluate the efficacy of control agents against small larvae, large larvae, and pupae of Aedes aegypti to determine an appropriate larvicide regime to employ in emergency dengue control programs. The control agents included Bacillus thuringiensis var. israelensis (Bti), pyriproxyfen (an insect growth regulator), a larvicidal oil, Aquatain AMF (polydimethylsiloxane, a monomolecular film), and temephos at the recommend application dosages and rates. Our results showed that Bti, pyriproxyfen, and temephos were efficacious (100% mortality) against larvae, irrespective of the instar stage, but not against pupae of Ae. aegypti (1.5-7.8% mortality). Aquatain AMF, on the other hand, was very effective at controlling the pupal stage (100% mortality), but had limited efficacy against small larvae (38.0% mortality) and large larvae (78.0% mortality). The larvicidal oil was effective against all immature stages (93.3-100% mortality). Therefore, we concluded that for effectively interrupting the dengue transmission cycle, larvicides that kill the pupal stage (Aquatain AMF or larvicidal oil) should be included in an emergency dengue control program in addition to Bti, pyriproxyfen, or temephos. PMID:23883850

Wang, Chih-Yuan; Teng, Hwa-Jen; Lee, Si-Jia; Lin, Cheo; Wu, Jhy-Wen; Wu, Ho-Sheng

2013-01-01

288

Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia.  

PubMed

The resistance of Aedes aegypti mosquitoes to insecticides threatens dengue virus control efforts. In this study, Ae. aegypti larvae collected from 12 subdistricts in Surabaya, Indonesia, where dengue is endemic, were tested for resistance to the organophosphate, temephos. Susceptibility testing, performed according to World Health Organization (WHO) methods, showed all field strains were resistant to temephos at a dose of 0.012 mg/l, with mortality rates at 24 hours of 22% to 60%. Another susceptibility test to determine median lethal time (LT50) indicates resistance ratios ranging from 2.2 to 8.5. Although incipient resistance was detected at a dosage of 1 mg/l, as determined by the LT50, mortalities higher than 80% within 24 hours were detected using the WHO method in nine subdistricts of Surabaya, indicating temephos at 1 mg/l is still effective in field conditions in these areas. In three subdistricts (Tambaksari, Gubeng and Sawahan), the mortality rates were under 80%, indicating possible resistance to temephos. PMID:23082551

Mulyatno, Kris Cahyo; Yamanaka, Atsushi; Ngadino; Konishi, Eiji

2012-01-01

289

Larvicidal effects of the major essential oil of Pittosporum tobira against Aedes aegypti (L.).  

PubMed

Essential oil obtained from the leaves of Pittosporum tobira was extracted and its chemical composition and larvicidal effects were studied. Analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) to determine the primary constituents of the essential oil of P. tobira. The yield of P. tobira essential oil (PTEO) was 0.1%, and GC-MS analysis identified its major constituents as undecane (31.11%), 4-methyl-1,3-pentadiene (11.34%), (1,3-dimethyl-2-butenyl)benzene (5.45%), and L-limonene (14.08%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti (L.), with an LC(50) value of 58.92 ppm and an LC(90) value of 111.31 ppm. Finally, the LC(50) and LC(90) values of L-limonene were 39.7 ppm and 78.11 ppm. These results could be useful for seeking newer, safer, and more effective natural larvicidal agents against A. aegypti. PMID:19874194

Chung, Ill-Min; Seo, Su-Hyun; Kang, Eun-Young; Park, Won-Hwan; Moon, Hyung-In

2010-06-01

290

Functional validation of the carbon dioxide receptor genes in Aedes aegypti mosquitoes using RNA interference.  

PubMed

Carbon dioxide (CO(2)) is an important long-range chemosensory cue used by blood-feeding female mosquitoes to find their hosts. The CO(2) receptor in Drosophila melanogaster was previously determined to be a heterodimer comprised of two gustatory receptor (Gr) proteins, DmGr21a and DmGr63a. In the mosquito Aedes aegypti, two putative orthologous genes, AaGr1 and AaGr3, were identified in the genome database, along with an apparent paralogue of AaGr1, AaGr2. In this study, RNA interference (RNAi)-mediated gene knockdown of either AaGr1 or AaGr3 resulted in a loss of CO(2) sensitivity in both male and female mosquitoes, suggesting that these two proteins, like the Drosophila orthologues, function as a heterodimer. RNAi-mediated knockdown of AaGr2 expression had no impact on CO(2) reception. All three Gr genes were expressed in the maxillary palps of both Ae. aegypti and the West Nile virus vector mosquito, Culex pipiens quinquefasciatus. Interestingly, expression of the two CO(2) receptor genes was not equivalent in the two sexes and the implications of differential sex expression of the CO(2) receptor in different species are discussed. The functional identification of the CO(2) receptor in a mosquito could prove invaluable in the strategic design of compounds that disrupt the mosquito's ability to find hosts. PMID:22122783

Erdelyan, C N G; Mahood, T H; Bader, T S Y; Whyard, Steven

2011-11-28

291

Major essential oils composition and immunotoxicity activity from leaves of Foeniculum vulgare against Aedes aegypti L.  

PubMed

The leaves of Foeniculum vulgare (Umbelliferae) were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses conducted by gas chromatography and mass spectroscopy (GC-MS) revealed the essential oils of F. vulgare leaves. The F. vulgare essential oil yield was 0.97%, and GC/MS analysis revealed that its major constituents were methyl clavicol (46.3%), ?-phellandrene (18.2%), fenchone (10.6%), (E)-anethole (11.3%), myrcene (3.4%), and ?-pinene (2.1%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 41.23?ppm and an LC(90) value of 65.24?ppm. Also, methyl clavicol (?98.0%), ?-phellandrene (?95.0%), fenchone (?98.0%), (E)-anethole (?99.0%), myrcene (?99.0%), and ?-pinene (?99.0%) were tested against the F(21) laboratory strain of A. aegypti. Fenchone (?98.0%) and (E)-anethole (?99.0%) have medium activity with an LC(50) value of 73.11?ppm and 102.41?ppm. The above data indicate that major compounds interaction may play a more important role in the toxicity of essential oil. PMID:21077804

Chung, Ill-Min; Ro, Hee-Myong; Moon, Huyng-In

2010-11-16

292

Analysis of cycle Gene Expression in Aedes aegypti Brains by In Situ Hybridization  

PubMed Central

Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc) gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR). Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on) compared to ZT11 (one before light-off), which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized.

Chahad-Ehlers, Samira; Gentile, Carla; Lima, Jose Bento Pereira; Peixoto, Alexandre Afranio; Bruno, Rafaela Vieira

2013-01-01

293

Bioactivity of plant extracts on the larval and pupal stages of Aedes aegypti (Diptera, Culicidea).  

PubMed

Introduction Aedes aegypti is responsible for the transmission of the dengue and yellow fever viruses. This study evaluated the effects of extracts from Cnidosculos phyllacanthus, Ricinus communis, and Coutarea hexandra on the developmental periods of A.aegypti larvae and pupae. Crude extracts of C. phyllacanthus and C. hexandra and oil from R. communis and C. phyllacanthus were used. Methods Bioassays of the larvicidal and pupicidal effects of these products at different concentrations and times of exposure were evaluated. The lethal and sublethal effects were determined using different concentrations in larvicidal tests. Mortality data were evaluated by Probit analysis to determine the LC50 and LC90 values. Results The vegetable oils from C. phyllacanthus and R. communis demonstrated greater efficiency for larval control with an LC50=0.28µl/mL and an LC90=1.48µl/mL and LC50=0.029µl/mL and a LC90=0.26µl/mL, respectively. In pupal tests toxic effects for all insects were verified after exposure to the products at significant LC50 and LC90 values for 24 and 48h. The effects of sublethal concentrations of C. phyllacanthus (oil) were more effective on the insects. Conclusions The vegetables oils from C. phyllacanthus and R. communis demonstrated greater potential from the control of different developmental periods in the life cycle of this insect. PMID:23982096

Candido, Lafayette Pereira; Cavalcanti, Monica Tejo; Beserra, Eduardo Barbosa

294

Iron Loaded Ferritin Secretion and Inhibition by CI-976 in Aedes aegypti larval cells  

PubMed Central

Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by 59Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.

Geiser, Dawn L.; Shen, Meng-Chieh; Mayo, Jonathan J.; Winzerling, Joy J.

2009-01-01

295

Aedes aegypti Mosquitoes Exhibit Decreased Repellency by DEET following Previous Exposure  

PubMed Central

DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them.

Stanczyk, Nina M.; Brookfield, John F. Y.; Field, Linda M.; Logan, James G.

2013-01-01

296

Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito  

PubMed Central

Background Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies have been made in the species and these usually report transcript quantities observed at a certain age or stage of development. However, circadian oscillation is an important characteristic of gene expression in many animals and plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been previously reported but for only a few genes directly involved in the function of the molecular clock. Results Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent® microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known biological pathways. Conclusion These results argue strongly that transcriptional analyses either need to be made over time periods rather than confining analyses to a single time point or development stage or exceptional care needs to be made to synchronize all mosquitoes to be analyzed and compared among treatment groups.

2011-01-01

297

Irritant and repellent behavioral responses of Aedes aegypti male populations developed for RIDL disease control strategies.  

PubMed

Behavioral responses of Aedes aegypti male populations developed for Release of Insects Carrying a Dominant Lethal (RIDL) technology and a Malaysian wild-type population of two age groups (4-5 and 8-10 d old) were tested under laboratory conditions against chemical irritants and repellents using the high-throughput screening system device. Results indicate that all male Ae. aegypti test populations showed significant (P < 0.01) behavioral escape responses when exposed to alphacypermethrin, DDT, and deltamethrin at the test dose of 25 nmol/cm2. In addition, all populations showed significant (P < 0.05) spatial repellent responses to DDT, whereas alphacypermethrin and deltamethrin elicited no directional movement in the assay. These data suggest that genetic modification has not suppressed expected irritancy and repellency behavior. Age effects were minimal in both contact irritant and spatial repellent assays. The magnitude of irritant response, based on percentage responding, was stronger in the RIDL test cohorts as compared with the wild-type Malaysian population, but the impact, if any, that this increased behavioral sensitivity might have on the success of a RIDL strategy has yet to be defined. Information of the type reported in the current study is vital in defining the effects of genetic modification on vector behavior and understanding how these behaviors may influence the success of RIDL technology as they relate to other vector control interventions implemented in the same disease-endemic locale. PMID:21175058

Kongmee, Montathip; Nimmo, Derric; Labbé, Geneviève; Beech, Camilla; Grieco, John; Alphey, Luke; Achees, Nicole

2010-11-01

298

Evaluation of culture filtrates of Culicinomyces clavisporus: Mycoadulticide for Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi.  

PubMed

The Culicinomyces clavisporus is a fungal pathogen of a wide range of mosquito larvae. The C. clavisporus was isolated from the larvae of Culiseta inornata. We have investigated into potential pathogenicity against the adults of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. The culture filtrates released from the strain of C. clavisporus 46258 were grown in the EmYPss broth, were filtered and used for the bioassays after a growth of 15 days. The results demonstrated these metabolites with LC(50), LC(90) and LC(99) values of C. quinquefasciatus, 5.62, 8.71 and 12.59, A. aegypti, 3.0, 7.0 and 9.3, and A. stephensi 2.69, 6.0 and 7.24 ?l/cm(2), respectively after exposure for 24 h. These results compared favorably with the commercial adulticide Gokilaht(®)-S 5EC (d,d-trans-cyphenothrin) that showed 100% mortality at the same concentration. This study successfully identified that the metabolites of C. clavisporus can be used as mosquitoes adulticide as safer alternative to modern synthetic chemical insecticide against mosquito vector of diseases. Further purification can lead to biotechnological exploitation. PMID:21647670

Singh, Gavendra; Prakash, Soam

2011-06-07

299

Effect of gamma irradiation on the hemocyte-mediated immune response of Aedes aegypti against microfilariae  

SciTech Connect

The effect of gamma irradiation on the melanotic encapsulation response of Aedes aegypti black eye Liverpool strain against inoculated Dirofilaria immitis microfilariae (mff) was assessed at 1, 2, 3, and 6 days postinoculation (PI). Mosquitoes received 6000 rad from a 137Cs source (Shepard Mark I irradiator) at 3 days postemergence and were inoculated with 15-20 mff 24 hr later. These mosquitoes were compared to nonirradiated controls that also were inoculated with 15-20 mff at 3 days postemergence. The immune response was significantly reduced in irradiated mosquitoes as compared with controls at all days PI. Although the response was significantly inhibited compared with controls, irradiated mosquitoes were still capable of eliciting a response against 69% of recovered mff at 6 days PI. External gamma irradiation did not significantly affect the proliferation of hemocytes associated with the melanotic encapsulation response of A. aegypti. The number of circulating hemocytes increased in irradiated mosquitoes in response to inoculated mff in a manner similar to nonirradiated, inoculated controls. Hemocyte monophenol oxidase activity, however, was significantly reduced in gamma-irradiated mosquitoes at 12 hr PI as compared with controls. The reduced immunological capacity of irradiated mosquitoes might be related to an interference with gene activity required for the synthesis or activation of enzymes that are directly or indirectly involved in the biochemical processes associated with the production of melanotic substances that sequester mff.

Christensen, B.M.; Huff, B.M.; Li, J. (Univ. of Wisconsin, Madison (USA))

1990-07-01

300

Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones Province, northeastern Argentina.  

PubMed

Life statistics of four Aedes aegypti subpopulations from the subtropical province of Misiones were studied during autumn and winter, under semi-natural conditions, coming from the localities of Posadas (SW), San Javier (SE), Bernardo de Irigoyen (NE) and Puerto Libertad (NW). The eastern subpopulations are geographically separated by the central mountain system of the province from the western subpopulations. High percentages of larval and pupal survival (97-100%) were recorded, and no significant differences were detected among the four subpopulations. Larvae and pupae lasted approximately 8 days to complete their development, no significant differences being detected among the four subpopulations studied. Sex ratio recorded did not differ significantly from 1:1. Male longevity did not show difference among the different subpopulations, but female longevity was remarkably different among the four subpopulations (F=16.27; d.f.=(3;8); P=0.0009), ranging among 11.45 days for San Javier and 57.87 days for Posadas. Fecundity also varied considerably among subpopulations, the greatest number (307.44 eggs/female) being recorded for Posadas (F=4.13; d.f.=(3;8); P=0.04). Ae. aegypti females of the western subpopulations lived longer than the eastern subpopulations studied, therefore, the risk of dengue outbreak would be greater on the Misiones Province border with Paraguay. PMID:18951865

Tejerina, Edmundo Fabricio; Almeida, Francisco Felipe Ludueña; Almirón, Walter Ricardo

2008-10-01

301

A transgenic sensor strain for monitoring the RNAi pathway in the yellow fever mosquito, Aedes aegypti  

PubMed Central

The RNA interference pathway functions as an antiviral defense in invertebrates. In order to generate a phenotypic marker which “senses” the status of the RNAi pathway in Aedes aegypti, transgenic strains were developed to express EGFP and DsRED marker genes in the eye, as well as double-stranded RNA homologous to a portion of the EGFP gene. Transgenic “sensor” mosquitoes exhibited robust eye-specific DsRED expression with little EGFP, indicating RNAi-based silencing. Cloning and high-throughput sequencing of small RNAs confirmed that the inverted-repeat transgene was successfully processed into short-interfering RNAs by the mosquito RNAi pathway. When the Ae. aegypti homologues of the genes DCR-2 or AGO-2 were knocked-down, a clear increase in EGFP fluorescence was observed in the mosquito eyes. Knockdown of DCR-2 was also associated with an increase in EGFP mRNA levels, as determined by Northern blot and real-time PCR. Knockdown of AGO-3, a gene involved in the germline-specific piRNA pathway, did not restore EGFP expression at either the mRNA or protein level. This transgenic sensor strain can now be used to identify other components of the mosquito RNAi pathway and has the potential to be used in the identification of arboviral suppressors of RNAi.

Adelman, Zach N.; Anderson, Michelle A. E.; Morazzani, Elaine M.; Myles, Kevin M.

2008-01-01

302

Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti  

PubMed Central

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.

Saavedra-Rodriguez, Karla; Strode, Clare; Flores Suarez, Adriana; Fernandez Salas, Ildefonso; Ranson, Hilary; Hemingway, Janet; Black, William C.

2008-01-01

303

Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti.  

PubMed

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F(3) advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F(3) adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure. PMID:18723882

Saavedra-Rodriguez, Karla; Strode, Clare; Flores Suarez, Adriana; Fernandez Salas, Ildefonso; Ranson, Hilary; Hemingway, Janet; Black, William C

2008-08-24

304

Biochemical evidence of efficacy of potash alum for the control of dengue vector Aedes aegypti (Linnaeus).  

PubMed

Aedes aegypti is the primary vector of dengue, yellow fever and chikungunya in India and other South East Asian countries, and novel insecticides for vector control are urgently needed. In the present investigation, efficacy of potash alum, a traditionally known double salt in Indian and Chinese medicine system, was tested against the larvae of dengue vector, A. aegypti. LC(50,) LC(90) and LC(99) values were recorded for various instar larvae where I instar larvae were found to be the most susceptible and IV instar larvae as the least susceptible one. The LC(50) values of crude and standard potash alum of various instar larvae ranged between 15.29 and 48.53 ppm and 20.50-65.10 ppm, respectively. Biochemical changes were also evidenced in IV instar A. aegypti larvae following a sublethal exposure for 24 h in the levels of various nutrient reserves and primary metabolites such as sugar, glycogen, lipids and proteins suggesting possible mode of action responsible for larval mortality. Sugar and glycogen concentrations were measured as 24.6 and 10.67 ?g per five larvae in controls which were significantly (p<0.05) reduced by 32.11-93.98% and 39.26-94.47%, respectively, in larvae treated with crude alum. In controls, protein and lipid content were recorded as 210.74 and 94.71 ?g per five larvae which dropped up to 26.53% and 25.5%, respectively, in larvae following treatment with crude alum. Moreover, drastic changes were also recorded for DNA content with 25.39-44.17% decrease in crude alum-treated larvae. It is evident from these results that potash alum, a fairly cheaper and readily available ecofriendly compound could be recommended as a potential chemical larvicide against dengue vector at mosquito breeding sites in the vicinity of human dwellings. PMID:21188602

Preet, Shabad; Sneha, A

2010-12-29

305

Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand.  

PubMed

In spite of the adult body size variability of Aedes aegypti (Linnaeus) and its likely association with life history and vectorial capacity, the causes of size variation itself have been only partially identified. In particular, possible important factors such as climatic variation have not received much attention. The objective of this 2-year study was to describe from field collections the relationship of Ae. aegypti metric properties with available climatic data. The study took place in a dengue hyperendemic area of Thailand. Fourth instar larvae (L(4)) and pupae were collected from the same breeding places allowing the comparisons between seven successive collections, four in 2007 and three in 2008. Climatic data were relative humidity (RH) and temperature (T). They were considered for the periods covering either the pre-imaginal development or, assuming heritability of size, the previous generation. The pre-imaginal period was further subdivided into embryonic and larval phases of development. Size was estimated by traditional and geometric techniques, the latter based on 18 landmarks collected at the intersections of veins also allowing estimation of shape. The shape variation of the wing followed similar patterns as for size and was shown to be a passive allometric change. No significant correlation of size or shape could be disclosed with T. In contrast, significant correlation with RH was found during two periods of examination: (i) the period affecting the generation previous to the time of collection, suggesting possible selective mechanisms on genitors, and (ii) the one occurring during pre-imaginal development. The subdivision of the latter into embryonic and larval phases allowed to evidence a possible selecting effect on embryonic development. The selection would act through the resistance to water loss which is known to depend on the relative surface of the cuticle. In conclusion, our data highlight the importance of the emerged period of Ae. aegypti eggs as a critical time for the size of future adults, and point to the relative humidity as the likely selecting factor. PMID:20123039

Morales Vargas, Ronald Enrique; Ya-Umphan, Phubeth; Phumala-Morales, Noppawan; Komalamisra, Narumon; Dujardin, Jean-Pierre

2010-02-01

306

Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam  

PubMed Central

We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued.

Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

2012-01-01

307

Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control  

PubMed Central

Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes.

Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

2013-01-01

308

Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito, Aedes aegypti.  

PubMed

In this study we describe the purification and molecular cloning of a dopachrome conversion enzyme (DCE) from the yellow fever mosquito, Aedes aegypti. DCE catalyzes the conversion of L-dopachrome to 5,6-dihydroxyindole in the melanization pathway. Melanin biosynthesis is involved with crucial protective phenomena in mosquitoes, including egg chorion and cuticular tanning, wound healing, and the melanotic encapsulation immune response. The enzyme was purified to homogeneity by various chromatographic techniques from A. aegypti larvae and has a relative molecular mass of 51 kDa as-revealed by SDS-PAGE analysis. Physiochemical analysis of DCE revealed a pH optimum of 7.5-8.0 and substrate activity for L-dopachrome and aminochromes generated from dopa methyl ester, alpha-methyl dopa and dopamine. Trypsin digestion of the isolated DCE and subsequent reverse-phase separation resulted in the isolation of several polypeptide fragments, from which two partial internal amino acid sequences were obtained by Edman degradation. PCR amplification, using a degenerate primer based on one internal amino acid sequence and an oligo-dT primer, produced a 650 bp DNA fragment. Subsequent screening of an A. aegypti pupal cDNA library resulted in the isolation of a 1.6 kb clone containing coding sequence for both internal DCE amino acid sequences, thereby confirming the identity of the isolated gene product (pAaDce1) as DCE. Northern analysis revealed the constitutive expression of DCE message in developmental stages and adults, with the majority of transcript localized in the fat body and ovaries of adult females. AaDce1 mRNA increased in abundance above constitutive levels in adult females when a melanotic encapsulation immune response was initiated by the intrathoracic inoculation of Dirofilaria immitis microfilariae. PMID:11520691

Johnson, J K; Li, J; Christensen, B M

2001-10-01

309

Surveillance for the dengue vector Aedes aegypti in Tobago, West Indies.  

PubMed

An island-wide house survey was conducted in January 2002 to determine the geographic distribution, container profile, and population density of the Aedes aegypti in Tobago, West Indies. The results showed the Ae. aegypti infestation levels were significantly different (P > 0.01) among the 4 districts, with greater infestation levels (P > 0.01) observed in the Northern and Windward districts than in the Central and Leeward districts. From the 50 towns in Tobago, houses were found positive in Delaford (21), Argyle (18), and Goodwood (14). representing 42.1% of the total number of positive houses in the Windward district (3,971 houses); Parlatuvier (15), Whim (14), Castara (12), and Bloody Bay (12), representing 62.3% of the total number of positive houses in the Northern district (3,087 houses); Calderhall (12), Mason Hall (11), and Government House (10), representing 46.5% of the total number of positive houses in the Central district (4,706 houses); and Lambeau (10), Bucco (6), and Bethel (6), representing 53.7% of the total number of positive houses in the Leeward district (3,175 houses). The majority (66 or 63.5%) of dengue cases occurred in the Central district where the Breteau indices ranged from 7.1 to 44.0 (mean = 16.6). These results suggest that a more systematic and sustained vector control program that uses both biological and chemical control methods should be adopted to reduce Ae. aegypti populations to below dengue transmission thresholds. PMID:14524540

Chadee, Dave D

2003-09-01

310

TEMPERATURE INDUCES TRADE-OFFS BETWEEN DEVELOPMENT AND STARVATION RESISTANCE IN AEDES AEGYPTI (L.) LARVAE  

PubMed Central

While heightened temperature increases the development rate of mosquitoes, for Aedes aegypti, larvae that commonly experience food limitation in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments at 2°C intervals between 20 and 30°C on the growth, maturation rate and the longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) as compared to L4, in which greater than 75% of growth occurred. While increased temperature reduced the duration of each instar, it had a U-shaped impact the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 and 30°C, remained constant at 22 and 28°C, and decreased at 24 and 26°C. Growth from L2 to L3 significantly increased starvation resistance only from 26-30°C. Increased temperature (above 22°C) consistently reduced starvation resistance in L1. In L2-L4, 2°C increments decreased starvation resistance between 20 and 24°C, but had weaker and instar-specific effects above 24°C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, generating a tradeoff between increased development rate and reduced starvation survival of early instar larvae, particularly in the lower and middle temperatures of the dengue endemic 20-30°C range. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify density regulation of Ae. aegypti populations.

Padmanabha, H; Lord, CC; Lounibos, LP

2011-01-01

311

Variation of major limonoids in Azadirachta indica fruits at different ripening stages and toxicity against Aedes aegypti.  

PubMed

The azadirachtin, salannin, nimbin, deacetylnimbin, azadiradione and epoxyazadiradione contents were determined by HPLC in the fractions prepared from the kernel of neem fruits (Azadirachta indica) collected at different ripening stages. The fully mature fruit (yellow fruits) kernels contained the highest concentration of azadirachtin, nimbin and salannin, whereas the concentration of azadiradione (NC) and epoxyazadiradione (NL) was high in the unripe green berries. The toxicity of the fractions (KEA-1 to KEA-5) obtained from the kernels collected at successive intervals, as well as of the pure limonoids referred to above was evaluated against 3rd instar larvae of Aedes aegypti L. (wild strain). It was observed that the toxicity of these fractions increased with the maturity of the fruits. An interesting observation was that the toxicities of KEA-3 to KEA-5 are comparable and the concentration of all the major limonoids is optimum in KEA-3, which suggested that these exert a joint effect against Aedes aegypti. PMID:19475987

Siddiqui, Bina Shaheen; Ali, Syed Kashif; Ali, Syed Tariq; Naqvi, Syed Naeem ul Hassan; Tariq, Rajput Muhammad

2009-04-01

312

Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus.  

PubMed

About 1 million people in the world die each year from diseases spread by mosquitoes, and understanding the mechanism of host identification by the mosquitoes through olfaction is at stake. The role of odorant binding proteins (OBPs) in the primary molecular events of olfaction in mosquitoes is becoming an important focus of biological research in this area. Here, we present a comprehensive comparative genomics study of OBPs in the three disease-transmitting mosquito species Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus starting with the identification of 110 new OBPs in these three genomes. We have characterized their genomic distribution and orthologous and phylogenetic relationships. The diversity and expansion observed with respect to the Aedes and Culex genomes suggests that the OBP gene family acquired functional diversity concurrently with functional constraints posed on these two species. Sequences with unique features have been characterized such as the "two-domain OBPs" (previously known as Atypical OBPs) and "MinusC OBPs" in mosquito genomes. The extensive comparative genomics featured in this work hence provides useful primary insights into the role of OBPs in the molecular adaptations of mosquito olfactory system and could provide more clues for the identification of potential targets for insect repellants and attractants. PMID:23292137

Manoharan, Malini; Ng Fuk Chong, Matthieu; Vaïtinadapoulé, Aurore; Frumence, Etienne; Sowdhamini, Ramanathan; Offmann, Bernard

2013-01-01

313

Imaginal Discs - A New Source of Chromosomes for Genome Mapping of the Yellow Fever Mosquito Aedes aegypti  

PubMed Central

Background The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ?31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti. Methodology/Principal Findings In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions. Conclusion The study identified imaginal discs of 4th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.

Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Yang, Fan; Demin, Sergei Iu.; Severson, David W.; Sharakhov, Igor V.

2011-01-01

314

[State of the resistance to insecticides in adult Aedes aegypti mosquitoes from playa municipality, Havana City, Cuba].  

PubMed

The level of susceptibility and/or resistance of adult mosquitoes to lambda-cyhalothrin, clorpirifos and cypermethrin insecticides was determined in a strain of Aedes aegypti (L) collected in Playa municipality, Havana City. According to the results, the strain under study is not resistant to lambda-cyhalothrin and cypermethrin (FR < 5X), and it is as susceptible as the CAREC reference strain (FR=1) to chlorpyrifos. PMID:17966584

Montada Dorta, Domingo; Castex Rodríguez, Mayda; Suárez Delgado, Silvia; Figueredo Sánchez, Daisy; Leyva Silva, Maureen

315

Genetic and molecular evidence for a trans -acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti  

Microsoft Academic Search

The amount of glutathione S-transferase-2 (GST-2) protein and enzyme activity in a mutant strain (strain GG) of the yellow fever mosquito (Aedes aegypti) is approximately 25-fold higher than in the wild-type (+ +) strain. The mode of inheritance of the GG phenotype was studied in F1 and backcross progeny using GST enzyme assays, isozyme-specific antisera, and Northern blot analysis. Enzyme

David F. Grant; Bruce D. Hammock

1992-01-01

316

Antennal expressed genes of the yellow fever mosquito ( Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout  

Microsoft Academic Search

A small cDNA library was constructed from antennae of 100 adult male Aedes aegypti yellow fever mosquitoes. Sequencing of 80 clones identified 49 unique gene products, including a member of the Odorant Binding Protein family (Aaeg-OBP10), a homologue of Takeout (Aaeg-TO), and transposable elements of the LINE, SINE and MITE classes. Aaeg-OBP10 encodes a 140 amino acid protein including a

Jonathan Bohbot; Richard G. Vogt

2005-01-01

317

Effects of a Five-Year Citywide Intervention Program To Control Aedes aegypti and Prevent Dengue Outbreaks in Northern Argentina  

Microsoft Academic Search

BackgroundDengue has propagated widely through the Americas. Most countries have not been able to maintain permanent larval mosquito control programs, and the long-term effects of control actions have rarely been documented.MethodologyThe study design was based on a before-and-after citywide assessment of Aedes aegypti larval indices and the reported incidence of dengue in Clorinda, northeastern Argentina, over 2003–2007. Interventions were mainly

Ricardo E. Gürtler; Fernando M. Garelli; Héctor D. Coto

2009-01-01

318

The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens  

Microsoft Academic Search

The larvicidal activity of commercial bark saponin extract (Sigma) from Quillaja saponaria was studied on 3rd–4th instar larvae of Aedes aegypti and Culex pipiens (vectors for dengue fever and Western Nile virus, respectively). The larvae were exposed to serial concentrations (1000, 800, 500, 300, 100, 10, 1, 0.1 and 0.01 mg\\/l) of the extract for 1, 3, 5, 7 and

D Pelah; Z Abramovich; A Markus; Z Wiesman

2002-01-01

319

The Interactive Roles of Aedes aegypti Super-Production and Human Density in Dengue Transmission  

PubMed Central

Background A. aegypti production and human density may vary considerably in dengue endemic areas. Understanding how interactions between these factors influence the risk of transmission could improve the effectiveness of the allocation of vector control resources. To evaluate the combined impacts of variation in A. aegypti production and human density we integrated field data with simulation modeling. Methodology/Principal Findings Using data from seven censuses of A. aegypti pupae (2007–2009) and from demographic surveys, we developed an agent-based transmission model of the dengue transmission cycle across houses in 16 dengue-endemic urban ‘patches’ (1–3 city blocks each) of Armenia, Colombia. Our field data showed that 92% of pupae concentrated in only 5% of houses, defined as super-producers. Average secondary infections (R0) depended on infrequent, but highly explosive transmission events. These super-spreading events occurred almost exclusively when the introduced infectious person infected mosquitoes that were produced in super-productive containers. Increased human density favored R0, and when the likelihood of human introduction of virus was incorporated into risk, a strong interaction arose between vector production and human density. Simulated intervention of super-productive containers was substantially more effective in reducing dengue risk at higher human densities. Significance/Conclusions These results show significant interactions between human population density and the natural regulatory pattern of A. aegypti in the dynamics of dengue transmission. The large epidemiological significance of super-productive containers suggests that they have the potential to influence dengue viral adaptation to mosquitoes. Human population density plays a major role in dengue transmission, due to its potential impact on human-A. aegypti contact, both within a person's home and when visiting others. The large variation in population density within typical dengue endemic cities suggests that it should be a major consideration in dengue control policy.

Padmanabha, Harish; Durham, David; Correa, Fabio; Diuk-Wasser, Maria; Galvani, Alison

2012-01-01

320

[Genetic variability of Aedes Aegypti determined by mitochondrial gene ND4 analysis in eleven endemic areas for dengue in Peru].  

PubMed

In order to establish the genetic variability of Aedes aegypti determined by the analysis of the MT-ND4 gene, in eleven endemic regions for dengue in Peru, 51 samples of Ae. Aegypti were tested. The genetic variability was determined through the amplification and sequencing of a fragment of 336 base-pairs of MT ND4, the analysis of intra-specific phylogeny was conducted with the Network Ver. 4.6.10 program; and the phylogenetic analysis, with the Neighbor Joining distance method. The presence of five haplotypes of Ae. Aegypti grouped in two lineages was identified: the first one includes haplotypes 1, 3 and 5, and the second one comprises haplotypes 2 and 4. The geographic distribution of each of the haplotypes found is also shown. It is concluded that this variability is caused by the active migration of this vector and the human activity-mediated passive migration. PMID:23949510

Yáñez, Pamela; Mamani, Enrique; Valle, Jorge; García, María Paquita; León, Walter; Villaseca, Pablo; Torres, Dina; Cabezas, César

2013-06-01

321

Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti  

PubMed Central

Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent) response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI) dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2) within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA) Compendium Method TO-10A and thermal desorption (TD). Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality) in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency) into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions This study is the first to describe two air sampling methodologies that are appropriate for detecting and quantifying repellent chemicals within a treated air space during mosquito behavior evaluations. Results demonstrate that the quantity of AI detected by the mosquito vector, Ae. aegypti, that elicits repellency is far lower than that needed for toxicity. These findings have important implications for evaluation and optimization of new vector control tools that function through mosquito behavior modification as opposed to mortality.

2012-01-01

322

Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti.  

PubMed

This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC(50) 83.426?mg/L and LC(50) 138.896?mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC(50) 0.94?mg/L, LC(50) 13.51?mg/L, and LC(50) 20.22?mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

Dos Santos, Edilson Alves; de Carvalho, Cenira M; Costa, Ana L S; Conceição, Adilva S; Moura, Flávia de B Prado; Santana, Antônio Euzébio Goulart

2011-12-11

323

Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti  

PubMed Central

Controlled sex-, stage- and tissue-specific expression of anti-pathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of anti-pathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5’- and 3’-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An anti-dengue effector gene, Mnp, driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva.

Mathur, Geetika; Sanchez-Vargas, Irma; Alvarez, Danielle; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

2010-01-01

324

Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites  

PubMed Central

Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites.

Doucoure, Souleymane; Mouchet, Francois; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothee; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

2012-01-01

325

Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina.  

PubMed

In temperate regions, populations of Aedes aegypti survive the cold season in the egg stage. In the present work, we studied the cold-season mortality of Ae. aegypti eggs and their subsequent hatching pattern in Buenos Aires city. Eggs were exposed during the winter season (three months) in three neighborhoods located along a gradient of distance toward the Río de la Plata River, coincident with a gradient of activity of Ae. aegypti. Results showed mortalities lower (30.6%) than those from tropical regions during the dry season. Significant differences were detected among the egg mortalities of each site with a maximum value at the site nearest the Río de la Plata River (50%), and a minimum value at the most continental site (9%). Post-experimental hatching response of eggs differed between sites, with the highest proportion of hatched eggs during the first immersion in the site nearest to the river and the lowest proportion in the most continental site. The hatching proportion also differed between age classes, with older (early-laid) eggs hatching later than new (late-laid) ones. Our results provide the first information of Ae. aegypti egg mortality in temperate South America and support the hypothesis that differences in egg mortality are associated with abundance patterns of Ae. aegypti in Buenos Aires city. PMID:21635646

Fischer, Sylvia; Alem, Iris Soledad; De Majo, María Sol; Campos, Raúl Ernesto; Schweigmann, Nicolás

2011-06-01

326

Seasonal changes in the larvel populations of Aedes aegypti in two biotopes in Dar es Salaam, Tanzania  

PubMed Central

The seasonal dynamics of larval populations of Aedes aegypti was studied in two different biotopes in Dar es Salaam, Tanzania. The first biotope was located on the Msasani peninsula on the coast 6 km north of Dar es Salaam, where A. aegypti breeds exclusively in coral rock holes. The population dynamics was studied during both the rainy and the dry season. Seasonal changes in the density of A. aegypti larvae depend primarily on variation in rainfall. The population of larvae dropped to zero only for a short time during the driest period while the adult population was maintained at a low level. The second biotope was in an automobile dump in a Dar es Salaam suburb, where A. aegypti breeds in artificial containers such as tires, automobile parts, tins, coconut shells, and snail shells. The greater part of the A. aegypti population of this biotope is maintained in the egg stage during the dry season. It serves as a focal point for breeding during the dry season: with the coming of the rains, the population expands into the surrounding residential areas. More than 70% of the larval population developed in tires, 20% in tins, 5% in coconut shells, and 1% in snail shells.

Trpis, Milan

1972-01-01

327

Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection.  

PubMed

A sample of Aedes aegypti L. from Santiago de Cuba with a high level of deltamethrin resistance (113.7 x at the 50% lethal concentration [LC50]), was subjected to deltamethrin selection to determine the capacity of this population to evolve higher resistance under intensive laboratory selection pressure, to characterize that resistance, to attempt to identify some of the mechanisms involved, and to use it as a reference strain for future molecular research. High resistance developed after 12 generations of selection (1,425 x). After selection for 12 generations with deltamethrin, the Santiago de Cuba colony (SAN-F12) showed little or no cross-resistance to the organophosphates evaluated, but high cross-resistance was observed for all the pyrethroids in larvae from this strain: lambdacyhalothrin (197.5 x), cypermethrin (45 x), and cyfluthrin (41.2 x). Adult bioassays reveal that a SAN-F12 strain was resistant to the pyrethroid and the organochlorine dichlorodiphenyltrichloroethane (DDT). Synergism tests implicated detoxifying esterase or glutathione S-transferase (GST) and monooxygenase in pyrethroid resistance. Biochemical tests reveal that acetylcholinesterase was not involved in deltamethrin resistance. The frequency of GST enzyme increased from 0.43 in Santiago de Cuba to 0.88 in SAN-F12. Esterase frequency increased from 0.12 in Santiago de Cuba to 0.63 in SAN-F6 and it diminished to 0.38 in SAN-F12. The polyacrylamide gel electrophoresis and inhibition study suggests the presence of elevated esterase activity not associated with pyrethroid resistance. The presence of both DDT and pyrethroid resistance in the SAN-F12 strain suggests the presence of a knockdown (Kdr)-type resistance mechanism, although the frequency of this mechanism was low. Resistance to deltamethrin could be associated with esterase or GST mechanisms, and more investigation is required. This information contributes to the improvement of resistance management strategies in the Cuban Ae. aegypti control program. PMID:16506569

Rodríguez, María M; Bisset, Juan A; De Armas, Yaxsier; Ramos, Francisco

2005-12-01

328

Insecticide resistance status of Aedes aegypti in 10 localities in Colombia.  

PubMed

Insecticide resistance is one of the major threats to the effectiveness of vector control programs. In order to establish a baseline susceptibility profile of Aedes aegypti in the southwest of Colombia, 10 localities in four Departments (States) were evaluated. Standardized WHO bioassay, CDC bottle bioassay and microplate biochemical assays of non-specific ?-esterase (NSE), mixed function oxidases (MFO) and acetylcholinesterase were used. Cross resistance was evaluated with field collected mosquitoes that underwent selection pressure in the laboratory from DDT, propoxur and lambdacyhalothrin during three alternate generations. Mosquitoes with mortality rates below 80% in bioassays were considered resistant. Insecticide resistance varied geographically. Insecticide resistance was observed in 100% of localities in which mosquitoes were exposed to DDT, bendiocarb and temephos using both assays. WHO bioassays showed susceptibility to pyrethroids in all the localities evaluated, however CDC bottle bioassays showed decreases in susceptibility especially with lambdacyhalothrin. All localities showed susceptibility to the organophosphate malathion. Mosquitoes from eight regions with evidence of resistance to any of the insecticide evaluated were also evaluated biochemically. Mosquitoes from five of these regions had increased levels of NSE and two regions had increased levels of MFO. Increase levels of NSE explain partially the low susceptibility to temephos found in all the localities. However, the biochemical mechanisms evaluated do not explain all the resistance observed. Cross resistance was observed between the DDT-selected strain and lambdacyhalothrin, and between the lambdacyhalothrin-selected strain and propoxur and vice versa. The selected strains do not show changes in the biochemical assays evaluated, therefore the observed cross-resistance suggests different biochemical mechanisms. This study shows that Ae. aegypti from Colombia can develop resistance to most of the insecticide classes in the market. Periodic surveillance of insecticide resistance is necessary in order to maintain effective interventions. This study helped to establish the National Network for the surveillance of the insecticide resistance in Colombia. PMID:21300017

Ocampo, Clara B; Salazar-Terreros, Myriam J; Mina, Neila J; McAllister, Janet; Brogdon, William

2011-02-12

329

The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal  

PubMed Central

Background The fat body is the main organ of intermediary metabolism in insects and the principal source of hemolymph proteins. As part of our ongoing efforts to understand mosquito fat body physiology and to identify novel targets for insect control, we have conducted a transcriptome analysis of the fat body of Aedes aegypti before and in response to blood feeding. Results We created two fat body non-normalized EST libraries, one from mosquito fat bodies non-blood fed (NBF) and another from mosquitoes 24 hrs post-blood meal (PBM). 454 pyrosequencing of the non-normalized libraries resulted in 204,578 useable reads from the NBF sample and 323,474 useable reads from the PBM sample. Alignment of reads to the existing reference Ae. aegypti transcript libraries for analysis of differential expression between NBF and PBM samples revealed 116,912 and 115,051 matches, respectively. De novo assembly of the reads from the NBF sample resulted in 15,456 contigs, and assembly of the reads from the PBM sample resulted in 15,010 contigs. Collectively, 123 novel transcripts were identified within these contigs. Prominently expressed transcripts in the NBF fat body library were represented by transcripts encoding ribosomal proteins. Thirty-five point four percent of all reads in the PBM library were represented by transcripts that encode yolk proteins. The most highly expressed were transcripts encoding members of the cathepsin b, vitellogenin, vitellogenic carboxypeptidase, and vitelline membrane protein families. Conclusion The two fat body transcriptomes were considerably different from each other in terms of transcript expression in terms of abundances of transcripts and genes expressed. They reflect the physiological shift of the pre-feeding fat body from a resting state to vitellogenic gene expression after feeding.

Price, David P.; Nagarajan, Vijayaraj; Churbanov, Alexander; Houde, Peter; Milligan, Brook; Drake, Lisa L.; Gustafson, John E.; Hansen, Immo A.

2011-01-01

330

Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost  

PubMed Central

Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious effects.

Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, Jose Bento P.; Valle, Denise; Martins, Ademir J.

2013-01-01

331

Characterization of an Isopentenyl Diphosphate Isomerase involved in the Juvenile Hormone pathway in Aedes aegypti  

PubMed Central

Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterwards IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.

Diaz, Miguel; Mayoral, Jaime G.; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G.

2012-01-01

332

Alkalinization in the Isolated and Perfused Anterior Midgut of the Larval Mosquito, Aedes aegypti  

PubMed Central

In the present study, isolated midguts of larval Aedes aegypti L. (Diptera: Culicidae) were mounted on perfusion pipettes and bathed in high buffer mosquito saline. With low buffer perfusion saline, containing m-cresol purple, transepithelial voltage was monitored and luminal alkalinization became visible through color changes of m-cresol purple after perfusion stop. Lumen negative voltage and alkalinization depended on metabolic energy and were stimulated in the presence of serotonin (0.2 µmol l-1). In some experiments a pH microelectrode in the lumen recorded pH values up to 10 within minutes after perfusion stop. The V-ATPase inhibitor concanamycin (50 µmol l-1) on the hemolymph side almost abolished Vte and inhibited luminal alkalinization. The carbonic anhydrase inhibitor, methazolamide (50 µmol l-1), on either the luminal or hemolymph-side, or the inhibitor of anion transport, DIDS (1 mmol l-1) on the luminal side, had no effect on Vte or alkalinization. Cl- substitution in the lumen or on both sides of the tissue affected Vte, but the color change of m-cresol purple was unchanged from control conditions. Hemolymph-side Na+ substitution or addition of the Na+/H+ exchange inhibitor, amiloride (200 µmol l-1), reduced Vte and luminal alkalinization. Luminal amiloride (200 µmol l-1) was without effects on Vte or alkalinization. High K+ (60 mmol l-1) in the lumen reduced Vte without affecting alkalinization. These results indicate that strong luminal alkalinization in isolated and perfused anterior midgut of larval A. aegypti depends on basolateral V-ATPase, but is apparently independent of carbonic anhydrase, apical Cl-/HCO3- exchange or apical K+/2H+ antiport.

Onken, Horst; Moffett, Stacia B.; Moffett, David F.

2008-01-01

333

Prevalence of Acanthamoeba spp. (Sarcomastigophora: Acanthamoebidae) in wild populations of Aedes aegypti (Diptera: Culicidae).  

PubMed

Studies of interrelationship between microorganisms and mosquitoes are of great importance, since it can provide support for better understand related to biology, development and their control. In this way, it is known that mosquito larvae and free-living amoebae (FLA) normally occupy similar aquatic microhabitats. However, few studies have been conducted about such coexistence. For that reason, the objective of the present study was to verify the prevalence of Acanthamoeba spp. in wild populations of Aedes aegypti, as well as to characterize the genotypic lineage, and their possible pathogenicity through thermo- and osmotolerance. Amoebae were investigated in 60 pools, each containing ten larvae of A. aegypti, collected in Porto Alegre (Rio Grande do Sul, Brazil). The Acanthamoeba isolates were morphologically characterized and submitted to the polymerase chain reaction technique to confirm identification of the genus. In addition, genotype analyses as well as tests for presumptive pathogenicity in some samples were performed. Of the 60 pools examined, 54 (90 %) were positive for FLA. Of these isolates, 47 (87 %) belonged to the genus Acanthamoeba. The genotypic groups T4, T3 and T5 were identified, numbering 14 (53.8 %), ten (38.5 %) and two (7.7 %) isolates, respectively. The physiological tests performed with 14 strains showed that 12 (85.7 %) were non-pathogenic, while two (14.3 %) were considered as having low pathogenic potential. These results provide a basis for a better understanding of the interaction between these protozoan and mosquitoes in their natural habitat. This study is the first to report the isolation of Acanthamoeba spp. from wild mosquitoes. PMID:22828934

Otta, Dayane Andriotti; Rott, Marilise Brittes; Carlesso, Ana Maris; da Silva, Onilda Santos

2012-07-25

334

Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors.  

PubMed

The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal region, Aaop9 is expressed in both the cell body and rhabdomere of R7 and R8 cells. In other retinal regions Aaop9 is expressed only in R7 cells, being localized to the R7 rhabdomere in the central and ventral regions and in both the cell body and rhabdomere within the ventral stripe. Within the dorsal-central transition area ommatidia do not show a strict pairing of R7-R8 cell types. Thus, Aaop9 is coexpressed in the two classes of R7 photoreceptors previously distinguished by the non-overlapping expression of Aaop8 and Aaop2 rhodopsins. Electroretinogram analysis of transgenic Drosophila shows that Aaop9 is a short wavelength rhodopsin with an optimal response to 400-450 nm light. The coexpressed Aaop2 rhodopsin has dual wavelength sensitivity of 500-550 nm and near 350 nm in the UV region. As predicted by the spectral properties of each rhodopsin, Drosophila photoreceptors expressing both Aaop9 and Aaop2 rhodopsins exhibit a uniform sensitivity across the broad 350-550 nm light range. We propose that rhodopsin coexpression is an adaptation within the R7 cells to improve visual function in the low-light environments in which Ae. aegypti is active. PMID:21858005

Hu, Xiaobang; Whaley, Michelle A; Stein, Michelle M; Mitchell, Bronwen E; O'Tousa, Joseph E

2011-08-08

335

Determinants of male Aedes aegypti and Aedes polynesiensis (Diptera: Culicidae) response to sound: efficacy and considerations for use of sound traps in the field.  

PubMed

Understanding the mating competitiveness of male mosquitoes in field settings is essential to programs relying on the mass release of modified male mosquitoes, yet studies on male ecology have been hampered by the lack of a convenient trapping method. An existing promising method makes use of the innate attraction of males to female flight tones. Here, we present laboratory, greenhouse, and field experiments on the efficacy of sound traps for the collection of Aedes aegypti (L.) and Aedes polynesiensis Marks, and laboratory experiments with Ae. aegypti on the effects of male age, size, and mating status on responsiveness to a range of frequencies. Age and mating status influenced the overall responsiveness to sound, whereas male size did not. There were no interactions between these factors and sound frequency. A Centers for Disease Control and Prevention miniature light trap modified to produce a tone of 465 Hz collected 76.2% of Ae. aegypti males in laboratory cages, and 49.7% of males in a greenhouse enclosure. In two sets of experiments in laboratory cages, 50.8 and 46.5% of male Ae. polynesiensis were captured with a trap producing a tone of 440 Hz. In the field, CDC miniature light traps or BG-Sentinel traps fitted with a portable speaker producing tones of 440 or 465 Hz captured significantly more male Ae. polynesiensis when placed near a male swarm than did traps that did not produce sound. When the trap was placed at a distance of 16.5 m from the nearest swarm, there was no significant difference in the number of males caught between control and sound-producing traps. The numbers of Ae. aegypti males captured were low under all circumstances in the field. PMID:23926769

Stone, C M; Tuten, H C; Dobson, S L

2013-07-01

336

Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes.  

PubMed

Bioassays and biochemical assays were conducted on eight Trinidadian strains of Aedes aegypti larvae to determine the involvement of biochemical mechanisms in resistance to insecticides. Larval strains were assayed to dichlorodiphenyltrichloroethane (DDT), bendiocarb, temephos and permethrin, using the Centers for Disease Control and Prevention (CDC) time-mortality bioassay method. A Resistance Threshold (RT) was calculated for each insecticide in relation to the CAREC reference susceptible Ae. aegypti strain and larval strains with <80% mortality were considered to be resistant. Biochemical assays were performed to determine the activities of nonspecific esterases (?- and ?-), PNPA-esterases, mixed function oxidases (MFO), glutathione-S-transferases (GST) and acetylcholinesterase (AChE) enzymes which are involved in insecticide resistance in mosquitoes. Enzyme profiles of each strain were compared with those of the CAREC reference susceptible strain by Kruskal-Wallis and Dunn's multiple comparison tests (p<0.05). The CAREC 99th percentile was calculated for each enzyme and the percentage of individuals with enzyme activities above that of the CAREC 99th percentile was calculated. Activities were classified as unaltered (<50%), incipiently altered (15-50%) or altered (>50%) for each strain. The established RTs for permethrin and bendiocarb were 30 and 75 min, respectively; and 120 min for DDT and temephos. All strains were resistant to DDT (1.00-40.25% mortality) and temephos (11.50-74.50% mortality) while six strains were resistant to bendiocarb (51.50-78.50% mortality) and five to permethrin (6.50-42.50% mortality). Biochemical assays revealed that the median activity levels for all enzymes varied significantly (p<0.05). The Curepe strain had incipiently altered levels of ?-esterase while the other seven strains had altered activity with five of them registering 100%. The St Clair strain showed altered activity levels of ?-esterase while three strains had incipiently altered levels. The majority of strains had altered activity of MFO enzymes but only the St Clair strain showed altered activity of GST. PNPA-esterases activity was unaltered in all strains and only the Haleland Park strain showed altered remaining AChE activity in the presence of propoxur. Elevated levels of enzymes (incipiently altered or altered), except in the case of PNPA-esterases, show that biochemical resistance may play an important role in the manifestation of insecticide resistance in Trinidadian populations of Ae. aegypti. It is therefore important for insecticide resistance surveillance to be ongoing as the detection of resistance before it spreads throughout an entire population makes it possible for early intervention. PMID:20858454

Polson, Karen A; Brogdon, William G; Rawlins, Samuel C; Chadee, Dave D

2010-09-19

337

Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen.  

PubMed

In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130km south of Al Hodayda) and Al Muneera district (100km north). Mosquito adults were collected from houses using BG-sentinel™ traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent and reduce the spread of mosquito-borne viruses like CHIKV and DENV in Yemen. PMID:22469818

Zayed, Alia; Awash, Abdullah A; Esmail, Mohammed A; Al-Mohamadi, Hani A; Al-Salwai, Mostafa; Al-Jasari, Adel; Medhat, Iman; Morales-Betoulle, Maria E; Mnzava, Abraham

2012-03-26

338

[Entomological surveillance over Aedes (S) aegypti and other culicids in Ciudad de La Habana, Cuba 1991-1996].  

PubMed

The results of the entomologic surveillance carried out from 1991 to 1996 in Boyeros municipality, City of Havana within the Program for Eradication of Aedes aegypti were analyzed. Data on mosquitoes fauna collected in the municipality by various sampling methods, larval survey, human bait, capture at rest and larval traps. Culex quinquefasciatus, Aedes mediovittatus and Aedes aegypti species were the most found by the different methods. It was proved that water tanks, man-made deposits, other kinds of tanks and low tanks were the most exploited resources by mosquitoes for their breeding in this municipality whereas larval surveys were the most sensitive method for detecting species since it contributed a greater variety of species. Reference is made to the search for a mechanism that help estimate adult populations from larval indices provided by surveys and the method of capture at rest is stressed as the most sensitive method for adult mosquitoes, particularly for dengue vector within the surveillance system aimed at this species. PMID:11107908

Marquetti, M C; Valdés, V; Aguilera, L; Navarro, A

339

Dynamics and Characterization of Aedes aegypti (L.) (Diptera: Culicidae) Key Breeding Sites.  

PubMed

The present study aimed to analyze the dynamics of containers used as breeding sites by Aedes aegypti (L.) in the city of Aracaju, SE, one of the Northeast Brazilian states. A total of three entomological surveys were performed during different precipitation levels. Breeding sites were categorized according to their function into storage, disposable containers, and reusable containers. "Mean number of pupae" and "frequency of each type of breeding site" were the criteria considered to identify key breeding sites. House index and Breteau index were calculated in each survey. A total of 3,647 water reservoirs were found, of which 220 were breeding sites, where 22,880 immature forms were identified. There were no differences in the mean number of larvae of several types of breeding sites and in the number of larvae among surveys. Larval indices showed a reduction in the second visit, but with no effect on adult occurrence when the number of pupae was considered. Key breeding sites resulted from containers used for water storage. The area studied showed conditions favorable to a new epidemic of dengue fever. PMID:23949815

Valença, M A; Marteis, L S; Steffler, L M; Silva, A M; Santos, R L C

2013-03-15

340

[Comparison of 2 populations of Aedes aegypti mosquitoes from Santiago de Cuba with different rest conduct].  

PubMed

Two populations of Aedes aegypti that were collected in Santiago de Cuba during the epidemics of 1971 were separated for having different rest habits, some of them rested naturally on the walls up to 1 m high (Santiago de Cuba strain) and the others were found resting in the roofs of the houses (Santiago de Cuba Techo strain). These strains did not show significant differences as regards their morphological characteristics. The mosquitoes corresponding to Santiago de Cuba Techo strain presented the same patches that those of Santiago de Cuba. The resistance to organophosphate insecticides is very similar in both populations; however, the Santiago de Cuba Techo strain shows a higher resistance to pyrethroid deltamethrin than the Santiago de Cuba strain. From the biochemical point of view and by using the DEF synergist, it was proved that esterases are associated with the high resistance to clorpirifos in both strains. It was not so with the MFO, which was demonstrated by means of the piperomyl butoxide sinergist. Nevertheless, the GST enzyme seems to be responsible for the high resistance to deltamethrin detected in the Santiago de Cuba Techo strain due to the elevated frequency value of that gene in this strain. The random amplified polymorphic DNA technique was used to observe the genetic variability between the 2 populations. The results revealed that there was genetic polymorphism between the populations under study, which could have an impact on the ecology and epidemiology of the vector. PMID:17966585

Bisset, Juan A; Rodríguez, Magdalena; De Armas, Yaxsier

341

Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits.  

PubMed

Seasonal variation in dengue virus transmission in northwestern Thailand is inversely related to the magnitude of diurnal temperature fluctuations, although mean temperature does not vary significantly across seasons. We tested the hypothesis that diurnal temperature fluctuations negatively influence epidemiologically important life-history traits of the primary dengue vector, Aedes aegypti (L.), compared with a constant 26 degrees C temperature. A large diurnal temperature range (DTR) (approximately equals 18 degrees C daily swing) extended immature development time (>1 d), lowered larval survival (approximately equals 6%), and reduced adult female reproductive output by 25% 14 d after blood feeding, relative to the constant 26 degreesC temperature. A small DTR (approximately equal 8 degrees C daily swing) led to a negligible or slightly positive effect on the life history traits tested. Our results indicate that there is a negative impact of large DTR on mosquito biology and are consistent with the hypothesis that, in at least some locations, large temperature fluctuations contribute to seasonal reduction in dengue virus transmission. PMID:23427651

Carrington, Lauren B; Seifert, Stephanie N; Willits, Neil H; Lambrechts, Louis; Scott, Thomas W

2013-01-01

342

Morphological variants of Aedes aegypti collected from the Leeward Island of Antigua.  

PubMed

Nineteen Aedes aegypti larvae were collected in rural Antigua, West Indies, from an 18-liter plastic bucket. The location was in a rural area at the northern end of Antigua bordering the coast of Dickenson Bay and approximately 50 m south of Halcyon Cove Beach (17 degrees 09'42.54"N, 61 degrees 50'44.50"W; elevation 16 m). Atypical morphology was noted in larvae and 3 reared adult females. Fourth instars showed a reduction in length of the lateral hair on the saddle (seta 1-X) with measurements ranging from 0.36 to 0.57 the length of the saddle. Two atypical female specimens displayed an abundance of dull white to gold scales that blanketed the abdomen. A 3rd specimen bore fine, golden scales on the mesonotum and bronze scales on the vertices of the head. These adult specimens demonstrated morphological characteristics that closely parallel described mutations, although the genetic basis for these characters was not confirmed. The remaining adults in the collection were morphologically typical. Adults and larvae were compared to field populations from Florida, Bahamas, and Antigua, as well as to the Rockefeller strain maintained at Rutgers University. PMID:22017096

Verna, Thomas N; Munstermann, Leonard E

2011-09-01

343

Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito  

PubMed Central

Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding.

Goncalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

2009-01-01

344

Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti.  

PubMed

Information on genetic variation within and between populations is critical for understanding the evolutionary history of mosquito populations and disease epidemiology. Previous studies with Drosophila suggest that genetic variation of selectively neutral loci in a large fraction of genome may be constrained by fixation of advantageous mutations associated with hitchhiking effect. This study examined restriction fragment length polymorphisms of four natural Aedes aegypti mosquito populations from Trinidad and Tobago, at 16 loci. These populations have been subjected to organophosphate (OP) insecticide treatments for more than two decades, while dichlor-diphenyltrichlor (DDT) was the insecticide of choice prior to this period. We predicted that genes closely linked to the OP target loci would exhibit reduced genetic variation as a result of the hitchhiking effect associated with intensive OP insecticide selection. We also predicted that genetic variability of the genes conferring resistance to DDT and loci near the target site would be similar to other unlinked loci. As predicted, reduced genetic variation was found for loci in the general chromosomal region of a putative OP target site, and these loci generally exhibited larger F(ST) values than other random loci. In contrast, the gene conferring resistance to DDT and its linked loci show polymorphisms and genetic differentiation similar to other random loci. The reduced genetic variability and apparent gene deletion in some regions of chromosome 1 likely reflect the hitchhiking effect associated with OP insecticide selection. PMID:9504925

Yan, G; Chadee, D D; Severson, D W

1998-02-01

345

Protein catabolism in mosquitoes: ureotely and uricotely in larval and imaginal Aedes aegypti.  

PubMed

Catabolism of excess dietary protein by Aedes aegypti was investigated during larval development, during and after metamorphosis. Activity profiles were established for xanthine dehydrogenase (XDH, uricotelic pathway) and arginase (ureotelic pathway). Both enzymes are active at all times during the life-cycle. During the aquatic larval and pupal instars, XDH and arginase activities increase with body size. Maximal activities of these two enzyme systems coincide with the time of metamorphic restructuring.Both enzymes are found in the fatbody tissue: XDH activity is found in 80% of the tissue, while arginase activity is distributed equally between abdominal fatbody and the thorax. This might indicate a role for arginase other than catabolic, such as energy metabolism.Arginase activity is high in the aquatic instars and low in sugar-fed females but increases after blood-feeding. XDH activity, also high in larvae and pupae, increases markedly after a blood meal.Larval excretion is characterized by the ureotelic pathway. The pupae as closed systems excrete neither uric acid nor urea; urate accumulates during larval and pupal periods, is conserved throughout metamorphosis, and is finally voided with the meconium by the teneral imago. This presents a form of transient storage-excretion. PMID:11064020

von Dungern P; Briegel

2001-02-01

346

YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L  

PubMed Central

Yolk proteins are thought to enter certain eggs by a process akin to micropinocytosis but the detailed mechanism has not been previously depicted. In this study the formation of protein yolk was investigated in the mosquito Aedes aegypti L. Ovaries were fixed in phosphate-buffered osmium tetroxide, for electron microscopy, before and at intervals after a meal of blood. The deposition of protein yolk in the oocyte was correlated with a 15-fold increase in 140 mµ pit-like depressions on the oocyte surface. These pits form by invagination of the oocyte cell membrane. They have a 20 mµ bristle coat on their convex cytoplasmic side. They also show a layer of protein on their concave extracellular side which we propose accumulates by selective adsorption from the extraoocyte space. The pits, by pinching off from the cell membrane become bristle-coated vesicles which carry the adsorbed protein into the oocyte. These vesicles lose the coat and then fuse to form small crystalline yolk droplets, which subsequently coalesce to form the large proteid yolk bodies of the mature oocyte. Preliminary radioautographs, and certain morphological features of the fat body, ovary, and midgut, suggest that the midgut is the principal site of yolk protein synthesis in the mosquito.

Roth, Thomas F.; Porter, Keith R.

1964-01-01

347

MORPHOLOGICAL VARIANTS OF AEDES AEGYPTI COLLECTED FROM THE LEEWARD ISLAND OF ANTIGUA  

PubMed Central

Nineteen Aedes aegypti larvae were collected in rural Antigua, West Indies, from an 18-liter plastic bucket. The location was in a rural area at the northern end of Antigua bordering the coast of Dickenson Bay and approximately 50 m south of Halcyon Cove Beach (17°09?42.54?N, 61°50?44.50?W; elevation 16 m). Atypical morphology was noted in larvae and 3 reared adult females. Fourth instars showed a reduction in length of the lateral hair on the saddle (seta 1–X) with measurements ranging from 0.36 to 0.57 the length of the saddle. Two atypical female specimens displayed an abundance of dull white to gold scales that blanketed the abdomen. A 3rd specimen bore fine, golden scales on the mesonotum and bronze scales on the vertices of the head. These adult specimens demonstrated morphological characteristics that closely parallel described mutations, although the genetic basis for these characters was not confirmed. The remaining adults in the collection were morphologically typical. Adults and larvae were compared to field populations from Florida, Bahamas, and Antigua, as well as to the Rockefeller strain maintained at Rutgers University.

VERNA, THOMAS N.; MUNSTERMANN, LEONARD E.

2012-01-01

348

Regulation of the ribonucleotide reductase small subunit (R2) in the yellow fever mosquito, Aedes aegypti.  

PubMed

Ribonucleotide reductase (RNR) catalyzes the formation of deoxyribonucleotides, a rate limiting step in DNA synthesis. Class I RNR is a tetramer that consists of two subunits, R1 and R2; enzymatic activity requires association of R1 with R2. The R2 subunit is of special interest because it dictates the interaction with R1 that is required for enzymatic activity expression, and it is expressed only during the S phase of the cell cycle. We previously sequenced an R2 cDNA clone from the yellow fever mosquito, Aedes aegypti. We found the message was upregulated by blood feeding. We now report the sequence of an R2 genomic clone. The gene consists of 4 introns and 5 exons. Both major and minor transcriptional start sites have been identified, and their use differs in sugar-fed versus blood-fed females. The gene contains putative cis-regulatory sites for E2F, Caudal (Cdx) and Dearolf (Dfd). The mosquito R2 gene contains iron-specific regulatory elements immediately upstream of the minimal promoter region. Binding of a factor to the distal putative Cdx site in the -400 region is altered by iron treatment of cells. Further, following blood feeding, R2 message is significantly induced in mosquito ovaries (tissues that are involved in oogenesis--a process requiring DNA synthesis). PMID:16530987

Pham, Daphne Q-D; Kos, Peter J; Mayo, Jonathan J; Winzerling, Joy J

2006-03-10

349

Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L.  

PubMed

This study assessed new insecticidal activities of essential oils from Lippia sidoides and Croton species (Croton zehntneri, Croton nepetaefolius, Croton argyrophylloides, and Croton sonderianus) against Aedes aegypti mosquito. In addition, the acute toxicity upon mice was determined. All essential oils showed inhibition of egg hatching, with IC50 values ranging from 66.4 to 143.2 ?g?mL(-1), larvicidal activity with LC50 ranging from 25.5 to 94.6 ?g?mL(-1), and pupicidal action with PC50 ranging from 276.8 to over 500 ?g?mL(-1). Only L. sidoides, C. zehntneri, and C. argyrophylloides essential oils were able to inhibit the oviposition of female gravid mosquitoes with OD50 values of 35.3, 45.3, and 45.8 ?g?mL(-1), respectively. Oral acute toxicity in mice showed that C. sonderianus and C. argyrophylloides oils are nontoxic (LD50?>?6,000 mg.kg(-1)) while C. nepetaefolius, C. zehntneri, and L. sidoides oils are moderately toxic (LD50 3,840; 3,464, and 2,624 mg.kg(-1), respectively). The results indicate that these oils are promising sources of bioactive compounds, showing low or no toxicity to mammals. PMID:23435925

de Lima, Glauber Pacelli Gomes; de Souza, Terezinha Maria; de Paula Freire, Gabrielle; Farias, Davi Felipe; Cunha, Arcelina Pacheco; Ricardo, Nágila Maria Pontes Silva; de Morais, Selene Maia; Carvalho, Ana Fontenele Urano

2013-02-23

350

Models for predicting Aedes aegypti larval indices based on satellite images and climatic variables.  

PubMed

Forecasting models were developed for predicting Aedes aegypti larval indices in an endemic area for dengue (cities of Tartagal and Orán, northwestern Argentina), based on the Breteau and House indices and environmental variables considered with and without time lags. Descriptive models were first developed for each city and each index by multiple linear regressions, followed by a regional model including both cities together. Finally, two forecasting regional models (FRM) were developed and evaluated. FRM2 for the Breteau index and House index fit the data significantly better than FRMI. An evaluation of these models showed a higher correlation FRM1 than for FRM2 for the Breteau index (r = 0.83 and 0.62 for 3 months; r = 0.86 and 0.67 for 45 days) and the House index (r = 0.85 and 0.79 for 3 months; r = 0.79 and 0.74 for 45 days). Early warning based on these forecasting models can assist health authorities to improve vector control. PMID:18939688

Estallo, Elizabet L; Lamfri, Mario A; Scavuzzo, Carlos M; Almeida, Francisco F Ludueña; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

2008-09-01

351

Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti.  

PubMed

Male mosquitoes are attracted by the flight sounds of conspecific females. In males only, the antennal flagellum bears a large number of long hairs and is therefore said to be plumose. As early as 1855, it was proposed that this remarkable antennal anatomy served as a sound-receiving structure. In the present study, the sound-induced vibrations of the antennal flagellum in male and female Aedes aegypti were compared, and the functional significance of the flagellar hairs for audition was examined. In both males and females, the antennae are resonantly tuned mechanical systems that move as simple forced damped harmonic oscillators when acoustically stimulated. The best frequency of the female antenna is around 230 Hz; that of the male is around 380 Hz, which corresponds approximately to the fundamental frequency of female flight sounds. The antennal hairs of males are resonantly tuned to frequencies between approximately 2600 and 3100 Hz and are therefore stiffly coupled to, and move together with, the flagellar shaft when stimulated at biologically relevant frequencies around 380 Hz. Because of this stiff coupling, forces acting on the hairs can be transmitted to the shaft and thus to the auditory sensory organ at the base of the flagellum, a process that is proposed to improve acoustic sensitivity. Indeed, the mechanical sensitivity of the male antenna not only exceeds the sensitivity of the female antenna but also those of all other arthropod movement receivers studied so far. PMID:10504309

Göpfert, M C; Briegel, H; Robert, D

1999-10-01

352

Oviposition deterrent activity from the ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves against Aedes aegypti and Culex quinquefaciatus.  

PubMed

Mosquitoes are responsible for spread of many diseases than any other group of arthropods. Diseases such as malaria, filariasis, dengue hemorrhagic fever (DHF), and chikunguinya are real threat to mankind. In the present study, ethanolic extracts of leaves of Pongamia pinnata, Coleus forskohlii, and Datura stramonium were evaluated for oviposition deterrent activity against Aedes aegypti and Culex quinquefasciatus. The oviposition deterrent tests of ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves reduced egg laying by 97.62%, 77.3%, 100% against Aedes aegypti and 59.10%, 39.22%, 82% against Culex quinquefasciatus at higher concentration (0.1%). PMID:21120036

Swathi, S; Murugananthan, G; Ghosh, S K

2010-10-01

353

Evaluation of mosquito densoviruses for controlling Aedes aegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes.  

PubMed

Four mosquito densovirus strains were assayed for mortality and infectivity against Aedes aegypti larvae from different geographic regions. The viral titers were quantified by real-time PCR using TaqMan technology. Firstinstar larvae were exposed to the same titer of each densovirus strain for 48 hours. All strains of densoviruses exhibited larvicidal activity and caused more than 80% mortality and infectivity in the three mosquito strains. AalDNV-exposed larvae had the highest mortality rate. The mean time to death of AalDNV-exposed larvae was shorter than other DNVs-exposed larvae. We can conclude that different densovirus strains exhibit some variations in their pathogenicity to different populations of Ae. aegypti mosquitoes. A few mosquitoes from Chachoengsao and Bangkok exposed to AeDNV and AThDNV survived to the adult stage to lay eggs and showed 22% to 50% vertical transmission in the F1 generation. Phylogenetic analysis of four densovirus strains indicated that mosquito densoviruses are separated into two distinct clades. PMID:18458314

Hirunkanokpun, Supanee; Carlson, Jonathan O; Kittayapong, Pattamaporn

2008-05-01

354

Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti.  

PubMed

The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum, native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C s. stercusmuscarum, M. s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration. PMID:11480819

Russell, B M; Wang, J; Williams, Y; Hearnden, M N; Kay, B H

2001-06-01

355

Worldwide patterns of genetic differentiation imply multiple 'domestications' of Aedes aegypti, a major vector of human diseases  

PubMed Central

Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.

Brown, Julia E.; McBride, Carolyn S.; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Herve; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J.; Black, William C.; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O.; Walker, Christopher; Powell, Jeffrey R.

2011-01-01

356

Use of the checkerboard DNA-DNA hybridization technique for bacteria detection in Aedes aegypti (Diptera:Culicidae) (L.)  

PubMed Central

Background Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of Aedes aegypti-associated bacterial species in larvae, pupae and adults of A. aegypti. Findings Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from A. aegypti single whole individuals and midguts. A. aegypti associated bacterial species were also detected in the midgut of four other insect species, Lutzomyia longipalpis, Drosophila melanogaster, Bradysia hygida and Apis mellifera. Conclusions Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.

2011-01-01

357

Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti.  

PubMed

The lack of eye pigment in the Aedes aegypti WE (white eye) colony was confirmed to be due to a mutation in the kynurenine hydroxylase gene, which catalyzes one of the steps in the metabolic synthesis of ommochrome eye pigments. Partial restoration of eye color (orange to red phenotype) in pupae and adults occurred in both sexes when first or second instar larvae were reared in water containing 3-hydroxykynurenine, the metabolic product of the enzyme kynurenine hydroxylase. No eye color restoration was observed when larvae were reared in water containing kynurenine sulfate, the precursor of 3-hydroxykynurenine in the ommochrome synthesis pathway. In addition, a plasmid clone containing the wild type Drosophila melanogaster gene encoding kynurenine hydroxylase, cinnabar (cn), was also able to complement the kynurenine hydroxylase mutation when it was injected into embryos of the A. aegypti WE strain. The ability to complement this A. aegypti mutant with the transiently expressed D. melanogaster cinnabar gene supports the value of this gene as a transformation reporter for use with A. aegypti WE and possibly other Diptera with null mutations in the kynurenine hydroxylase gene. PMID:9569641

Cornel, A J; Benedict, M Q; Rafferty, C S; Howells, A J; Collins, F H

1997-12-01

358

Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae).  

PubMed

The toxicity of several compounds isolated from Asarum heterotropoides root steam distillate to third-instar larvae of Culex pipiens pallens Coquillett, Aedes aegypti (L.), and Ochlerotatus togoi Theobald was examined using a direct contact mortality bioassay. Safrole was the most toxic constituent to Cx. p. pallens and Ae. aegypti larvae, whereas terpinolene was most toxic to Oc. togoi. However, LC50 values of these three mosquito larvae to both essential oils as well as the remainder of the 26 compounds identified in A. heterotropoides were considerably greater than for fenthion or temephos. However, we suggest that constituents of A. heterotropoides root steam distillate merit further study as potential mosquito larvicides due to global efforts to reduce the level of highly toxic synthetic pesticides in the aquatic environment. PMID:19960690

Perumalsamy, Haribalan; Kim, Nam-Jin; Ahn, Young-Joon

2009-11-01

359

Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in S?o Paulo, Brazil  

PubMed Central

Population genetic studies of insect vectors can generate knowledge to improve epidemiological studies focused on the decrease of pathogen transmission. In this study, we used nine SNPs across the Aedes aegypti genome to characterize seasonal population variations of this important dengue vector. Mosquito samples were obtained by ovitraps placed over Botucatu SP from 2005 to 2010. Our data show that, regardless of the large variation in mosquito abundance (deduced from the number of eggs obtained from ovitraps), the effective population size remained stable over the years. These results suggest that Ae. aegypti is able to maintain a sufficiently large active breeding population during the dry season to keep genetic frequencies stable. These results open new perspectives on mosquito survey and control methods.

Campos, Melina; Spenassatto, Carine; Lourdes da Graca Macoris, Maria; Paduan, Karina dos Santos; Pinto, Joao; Ribolla, Paulo Eduardo Martins

2012-01-01

360

Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison).  

PubMed

The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes. PMID:22299433

Phasomkusolsil, Siriporn; Soonwera, Mayura

2011-09-01

361

Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti  

NASA Astrophysics Data System (ADS)

Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N, N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.

Sanford, Jillian L.; Shields, Vonnie D. C.; Dickens, Joseph C.

2013-03-01

362

Establishment and characterization of a new Aedes aegypti (L.) (Diptera: Culicidae) cell line with special emphasis on virus susceptibility.  

PubMed

A new cell line from the neonate larvae of Aedes aegypti (L) mosquito was established and characterized. The cell line at the 50th passage (P) level consisted of three prominent cell types, i.e., epithelial-like cells (92%), fibroblast-like cells (7%), and giant cells ( approximately 1%). Karyological analysis showed diploid (2n = 6) number of chromosomes in >75% cells at P-50. The growth kinetics studied at 52nd passage level showed approximately tenfold increase in cell number over a 10-d study period. The species specificity studies using DNA amplification fingerprinting profile analysis using RAPD primers demonstrated 100% homology with the host profile showing the integrity of the cell line. Electron microscopy revealed the absence of mycoplasma or other adventitious agents. The cell line supported the multiplication of seven arboviruses, i.e., Chikungunya (CHIK), Japanese encephalitis, West Nile, dengue 2 (DEN-2), Chandipura, vesicular stomatitis, and Chittoor viruses. The cell line did not replicate Ganjam and Kaisodi viruses. CHIK virus yield in the new cell line was approximately 3log and 0.5log 50% tissue culture infective dose (TCID(50))/mL higher than Vero E6 and C6/36 cell lines, respectively. In the case of DEN-2 virus, it yielded 1log TCID(50)/mL higher than Vero E6, but lesser than C6/36 cell line. Due to its high susceptibility to a broad spectrum of viruses, the new cell line may find application in virus isolation during epidemics and in antigen production. PMID:19533252

Sudeep, A B; Parashar, Deepti; Jadi, Ramesh S; Basu, Atanu; Mokashi, Chetan; Arankalle, Vidya A; Mishra, Akhilesh C

2009-06-16

363

Wing Shape as an Indicator of Larval Rearing Conditions for Aedes albopictus and Ae. aegypti (Diptera: Culicidae)  

PubMed Central

Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti.

Stephens, C. R.; Juliano, S. A.

2012-01-01

364

[Establishment of the feeding methodology of Aedes aegypti (Diptera-Culicidae) in Swiss mice and evaluation of the toxicity and residual effect of essential oil from Tagetes minuta L (Asteraceae), in populations of Aedes aegypti].  

PubMed

The objectives here were to develop a procedure for feeding females of Aedes aegypti that does not cause stress in Swiss mice and to evaluate the toxicity and residual effect of essential oil from Tagetes minuta L. (Asteraceae) in Aedes aegypti populations. Two mice were anesthetized: one was used to observe the duration of sedation and the other was placed in a cage to feed the female mosquitoes. Essential oil was diluted in acetone and used in bioassays to assess the lethal concentrations in larvae from the Cities of Bauru (SP) and São José do Rio Preto (SP) that were sensitive and resistant to temephos, respectively. The data obtained were compared with the American Rockefeller strain. The procedure with mice was approved. There was no difference between the populations regarding susceptibility to Tagetes minuta, and the assays showed LC50 of 0.24, 0.25 and 0.21 ml/l and LC99.9 of 0.35, 0.39 and 0.42 ml/l, for Rockefeller, Bauru and São José do Rio Preto, respectively. The solution did not show any residual effect. PMID:20209346

Lima, Waldemir Pereira; Chiaravalloti Neto, Francisco; Macoris, Maria de Lourdes da Graça; Zuccari, Débora Aparecida Pires de Campos; Dibo, Margareth Regina

365

Evolution of insect arylalkylamine N-acetyltransferases: Structural evidence from the yellow fever mosquito, Aedes aegypti  

PubMed Central

Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation from acetyl-CoA to arylalkylamines. aaNATs are involved in sclerotization and neurotransmitter inactivation in insects. Phyletic distribution analysis confirms three clusters of aaNAT-like sequences in insects: typical insect aaNAT, polyamine NAT-like aaNAT, and mosquito unique putative aaNAT (paaNAT). Here we studied three proteins: aaNAT2, aaNAT5b, and paaNAT7, each from a different cluster. aaNAT2, a protein from the typical insect aaNAT cluster, uses histamine as a substrate as well as the previously identified arylalkylamines. aaNAT5b, a protein from polyamine NAT -like aaNAT cluster, uses hydrazine and histamine as substrates. The crystal structure of aaNAT2 was determined using single-wavelength anomalous dispersion methods, and that of native aaNAT2, aaNAT5b and paaNAT7 was detected using molecular replacement techniques. All three aaNAT structures have a common fold core of GCN5-related N-acetyltransferase superfamily proteins, along with a unique structural feature: helix/helices between ?3 and ?4 strands. Our data provide a start toward a more comprehensive understanding of the structure–function relationship and physiology of aaNATs from the mosquito Aedes aegypti and serve as a reference for studying the aaNAT family of proteins from other insect species. The structures of three different types of aaNATs may provide targets for designing insecticides for use in mosquito control.

Han, Qian; Robinson, Howard; Ding, Haizhen; Christensen, Bruce M.; Li, Jianyong

2012-01-01

366

Effects of Fluctuating Daily Temperatures at Critical Thermal Extremes on Aedes aegypti Life-History Traits  

PubMed Central

Background The effect of temperature on insect biology is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. A fluctuating temperature profile around a mean of 26°C can alter Aedes aegypti vector competence for dengue viruses as well as numerous life-history traits, however, the effect of fluctuations on mosquitoes at critical thermal limits is unknown. Methodology/Principal Findings We investigated the effects of large and small daily temperature fluctuations at low (16°C) and high (35–37°C) mean temperatures, after we identified these temperatures as being thresholds for immature development and/or adult reproduction under constant temperature conditions. We found that temperature effects on larval development time, larval survival and adult reproduction depend on the combination of mean temperature and magnitude of fluctuations. Importantly, observed degree-day estimates for mosquito development under fluctuating temperature profiles depart significantly (around 10–20%) from that predicted by constant temperatures of the same mean. At low mean temperatures, fluctuations reduce the thermal energy required to reach pupation relative to constant temperature, whereas at high mean temperatures additional thermal energy is required to complete development. A stage-structured model based on these empirical data predicts that fluctuations can significantly affect the intrinsic growth rate of mosquito populations. Conclusions/Significance Our results indicate that by using constant temperatures, one could under- or over-estimate values for numerous life-history traits compared to more natural field conditions dependent upon the mean temperature. This complexity may in turn reduce the accuracy of population dynamics modeling and downstream applications for mosquito surveillance and disease prevention.

Carrington, Lauren B.; Armijos, M. Veronica; Lambrechts, Louis; Barker, Christopher M.; Scott, Thomas W.

2013-01-01

367

Proteomic Biomarkers for Ageing the Mosquito Aedes aegypti to Determine Risk of Pathogen Transmission  

PubMed Central

Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting mosquito longevity.

Hugo, Leon E.; Monkman, James; Dave, Keyur A.; Wockner, Leesa F.; Birrell, Geoff W.; Norris, Emma L.; Kienzle, Vivian J.; Sikulu, Maggy T.; Ryan, Peter A.; Gorman, Jeffery J.; Kay, Brian H.

2013-01-01

368

Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia  

PubMed Central

Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.

Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbe, Genevieve; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz

2012-01-01

369

Residual effects of TMOF-Bti formulations against 1st instar Aedes aegypti Linnaeus larvae outside laboratory  

PubMed Central

Objective To evaluate the effectiveness and residual effects of trypsin modulating oostatic factor-Bacillus thuringiensis israeliensis (TMOF-Bti) formulations against Aedes aegypti (Ae. aegypti) (L.) larvae at UKM Campus Kuala Lumpur. Methods Twenty first instar Ae. aegypti larvae were added in each bucket containing 4 L of water supplied with crushed dried leaf powder as their source of food. Combination of TMOF-Bti in rice husk formulation with the following weights viz 10, 25, 50 and 100 mg, respectively in duplicate was distributed in the buckets; while TMOF-Bti in wettable powder formulation each weighing viz 2, 5, 10 and 20 mg, respectively in duplicate was also placed in the buckets. The control buckets run in duplicate with 4 L of water and 20 first instar Ae. aegypti larvae. All buckets were covered with mosquito netting. Larval mortality was recorded after 24 hours and weekly for five weeks. A new batch of 20 1st instar larvae Ae. aegypti was introduced into each bucket weekly without additional TMOF-Bti rice husk formulation or wettable powder. The experiment was repeated for four times. Results The result of the study showed that all formulations were very effective on the first two weeks by giving 100% larval mortality for all concentrations applied. The TMOF (2%) + Bti (2%) had a good residual effect until the end of 3rd week, TMOF (4%) + Bti (4%) until 4th week, wettable powder TMOF (20%) + Bti (20%) until the third week. Conclusions From the results it can be concluded that the TMOF-Bti formulations can be utilized in dengue vector control.

Saiful, AN; Lau, MS; Sulaiman, S; Hidayatulfathi, O

2012-01-01

370

Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae).  

PubMed

Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC 50 and LC 90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

Govindarajan, M; Rajeswary, M; Sivakumar, R

2013-07-01

371

Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti  

PubMed Central

Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control.

Strode, Clare; de Melo-Santos, Maria; Magalhaes, Tereza; Araujo, Ana; Ayres, Contancia

2012-01-01

372

Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)  

PubMed Central

Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes.

Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

2013-01-01

373

Three Novel Families of Miniature Inverted-Repeat Transposable Elements are Associated with Genes of the Yellow Fever Mosquito, Aedes aegypti  

Microsoft Academic Search

Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal

Zhijian Tu

1997-01-01

374

The kinin receptor is expressed in the Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): a new model needed to explain ion transport?  

PubMed Central

It is known that insect kinins increase diuresis and fluid secretion in the Aedes aegypti Malpighian tubule, causing a rapid drop of the transepithelial resistance and increasing chloride conductance from the hemolymph towards the tubule lumen. The tubule is composed of both principal and stellate cells. The main route for increased chloride influx upon kinin treatment is proposed to be paracellular, with septate junctions acquiring increased chloride selectivity and conductance. Therefore, kinin treatment renders the Aedes aegypti tubule a “leaky epithelium”, and under this model the kinin receptor is postulated to be expressed in principal cells. However, in another dipteran, the fruit fly Drosophila melanogaster, the main route for chloride transport is transcellular through stellate cells. In both the fruit fly and the mosquito Anopheles stephensi the kinin receptor has been immunolocalized in stellate cells, where it regulates transepithelial chloride permeability. Here we show that in Aedes aegypti, similarly, the stellate cells express the kinin receptor. This was confirmed through immunohistochemistry with two specific anti-kinin receptor antibodies and confocal analysis. The receptor is detected as a 75kDa band in western blot. These results indicate that the currently accepted model for chloride transport must be re-evaluated in Aedes aegypti and suggest the kinin regulatory signals controlling intercellular junctions originate in the stellate cells.

Lu, Hsiao-Ling; Kersch, Cymon; Pietrantonio, Patricia V.

2011-01-01

375

Aedes aegypti, Dengue and Re-urbanization of Yellow Fever in Brazil and other South American Countries - Past and Present Situation and Future Perspectives By  

Microsoft Academic Search

Dengue (DEN) and yellow fever (YF) viruses are two important arboviruses causing human disease. Dengue fever and dengue haemorrhagic fever (DF\\/DHF) reemerged in the Americas after Aedes aegypti had reinfested most tropical and subtropical regions in the hemisphere. The number of DF\\/DHF cases being reported are increasing each year; and in South America only Chile and Uruguay have not reported

Pedro F. C. Vasconcelos; Amélia P. A. T. Rosa; Francisco P. Pinheiro; Sueli G. Rodrigues; Ana C. R. Cruz; Jorge F. S. T. Rosa

376

Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India  

PubMed Central

Background In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Methods Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations. Results Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda. Conclusions Poecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude that Poecilia + IEC is an effective intervention strategy. The operational cost was 0.50 (US$ 0.011, 1 US$= 47) per capita per application. Proper water storage practices, focused IEC with Poecilia introductions and vector sanitation involving the local administration and community, is suggested as the best strategy for Aedes control.

2011-01-01

377

[Evaluation of the inhibiting activity of the diflubenzuron on the ecdysis of larvae of Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae)].  

PubMed

The inhibiting activity of diflubenzuron on the ecdysis of Aedes aegypti larvae was evaluated, with a view to using this product in mosquito control. This study also aimed to determine the interaction between this product, the type of artificial containers and the susceptibility of the mosquito. Bioassays were carried out in the backyard of a residence, using seven kinds of artificial habitats: tires, glass, concrete roofing, cans, plastic containers, cement and pottery. In each kind of artificial habitat, 20 Aedes aegypti larvae in the 4th instar were set. The same number of larvae was used as a control. Each test was repeated five times and the observation of mortality was done once every 24 hours, until 100% mortality was reached at 1 ppm. There was no significant difference between the main surveillance periods of the larvae, nor between the various kinds of artificial habitats. A significant difference was found between the instars, in that the 3rd instar was the most resistant to diflubenzuron inhibiting activity. It was also shown that concentrations did not interact with instars or material of the artificial habitats at the 5% significance level. PMID:15094897

Martins, Flávia; da Silva, Ionizete Garcia

2004-04-13

378

In-silico homology modeling of three isoforms of insect defensins from the dengue vector mosquito, Aedes aegypti (Linn., 1762).  

PubMed

Dengue is a serious public health problem in tropical and subtropical countries. It is caused by any of the four serologically distinct dengue viruses, namely DENV1-4. The viruses are transmitted by Aedes mosquitoes. Understanding various defence mechanisms of insects has become a prime area of research worldwide. In insects, the first line of defence against invading pathogens includes cellular mechanisms and a battery of antimicrobial peptides such as defensins, cecropins etc. Defensins--cationic, cysteine-rich peptides consisting of approximately 40 amino acids with broad-spectrum activity against Gram-positive bacteria--have been reported from a wide range of organisms. In the dengue vector mosquito, Aedes aegypti, three isoforms of defensins are reported to be expressed in a spatial and temporal fashion. This report presents the three-dimensional structures of the three isoforms of Ae. aegypti defensins predicted by comparative modeling. Prediction was done with Modeller 9v1 and the structures validated through a series of tests. The best results of the prediction study are presented, and may help lead to the discovery of new synthetic peptides or derivatives of defensins that could be useful in the control of vector-borne diseases. PMID:19085024

Dhananjeyan, K J; Sivaperumal, R; Paramasivan, R; Thenmozhi, V; Tyagi, B K

2008-12-16

379

Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India.  

PubMed

A temephos-induced resistance in Aedes aegypti that was developed for 24 generations exhibited 20.3-fold resistance as compared to susceptible strain. The diagnostic dose of temephos 0.02 mg/l exhibited gradual decrease in larval mortality with the progression of generations. An operational dose (1 mg/l) exhibited the LT(50) value of 41.42 min in the susceptible population, whereas the value of the resistant population increased to 72.62, 108.86, 122.34, 182.03, 244.82 and 304.86 min in the fourth, eighth, 12th, 16th, 20th and 24th generation, respectively. The study carried out showed 120 min as the cut-off limit for differentiation between susceptible and resistant A. aegypti. Cross-resistance studies showed a varied degree of cross-resistance to fenthion, chlorpyrifos, malathion and DDT, whereas comparatively higher cross-resistance was observed to chlorpyrifos. Study on diagnostic doses of insecticides to A. aegypti females indicated a gradual decrease in adult mortality at every eighth generation as compared to susceptible population when exposed to malathion 0.8%, fenthion 0.25%, DDT 4%, permethrin 0.25% and temephos 6.5%, whereas little or no change in mortality when exposed to lambda-cyhalothrin 0.03% and propoxur 0.1%, was observed. Thus, the expression of larval resistance was observed in adult stages also. PMID:19229558

Tikar, S N; Kumar, Arkaja; Prasad, G B K S; Prakash, Shri

2009-02-20

380

Survival of larvivorous fish used for biological control of Aedes aegypti larvae in domestic containers with different chlorine concentrations.  

PubMed

The two fish species Betta splendens (Regan) and Poecilia reticulata (Peters) are known predators of Aedes aegypti (L., 1762) larvae. Both species have been used for biological control in northeastern Brazil. However, the feasibility of these fish for the control of Ae. aegypti larvae in domestic containers may be limited by their survival in chlorinated water, as supplied by the public water system. We exposed fish to three different concentrations of chlorine: 1, 1.5, and 2.0 mg/liter. All B. splendens survived at 1.0 mg/liter chlorine concentration; 72.5 and 39.3% of B. splendens survived chlorine concentrations of 1.5 and 2.0 mg/liter, respectively. In contrast, only 4.4% of P. reticulata survived at a chlorine concentration of 1.0 mg/liter. We conclude that B. splendens may be an appropriate species for biological control of Ae. aegypti in domestic water tanks. PMID:19645286

Cavalcanti, Luciano Pamplona de Góes; de Paula, Francisco José Júnior; Pontes, Ricardo José Soares; Heukelbach, Jorg; Lima, José Wellington de Oliveira

2009-07-01

381

Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action.  

PubMed

To access the relative potency of pesticides to control adult mosquitoes, 19 pesticides with various modes of action were evaluated against Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say. On the basis of 24-h LD50 values after topical application, the only pesticide that had higher activity than permethrin was fipronil, with LD50 values lower than permethrin for 107-, 4,849-, and 2-fold against Ae. aegypti, Cx. quinquefasciatus Say, and An. quadrimaculatus Say, respectively. Abamectin, imidacloprid, spinosad, diazinon, and carbaryl showed slightly lower activity than permethrin (<20-fold). However, bifenazate showed very low activity against the three mosquito species tested, with LD50 values higher than permthrin for >1000-fold. On the basis of 24-h LD50 values, Cx. quinquefasciatus was the least susceptible species to nine pesticides tested (DNOC, azocyclotin, chlorfenapyr, carbaryl, spinosad, imidaclorid, diazinon, abamectin, and permethrin) , whereas Ae. aegypti was the least susceptible species to six pesticides tested (dicofol, amitraz, propargite, hydramethylnon, cyhexatin, and diafenthiuron), and An. quadrimaculatus was the least susceptible species to four pesticides tested (bifenazate, pyridaben, indoxacarb, and fipronil). Our results revealed that different species of mosquitoes had different susceptibility to pesticides, showing the need to select the most efficacious compounds for the least susceptible mosquito species to achieve successful mosquito control. PMID:18283946

Pridgeon, Julia W; Pereira, Roberto M; Becnel, James J; Allan, Sandra A; Clark, Gary G; Linthicum, Kenneth J

2008-01-01

382

Role of UPR Pathway in Defense Response of Aedes aegypti against Cry11Aa Toxin from Bacillus thuringiensis.  

PubMed

The insecticidal Cry toxins are pore-forming toxins produced by the bacteria Bacillus thuringiensis that disrupt insect-midgut cells. Cells can trigger different survival mechanisms to counteract the effects of sub-lytic doses of pore forming toxins. Particularly, two signaling pathways have been demonstrated to play a role in the defense mechanism to other toxins in Caenorhabditis elegans and in mammalian cells. These are the unfolded protein response (UPR) and the sterol regulatory element binding proteins (SREBP) pathways, which are proposed to facilitate membrane repair responses. In this work we analyzed the role of these pathways in Aedes aegypti response to intoxication with Cry11Aa toxin. We show that UPR is activated upon toxin ingestion. The role of these two pathways was analyzed in vivo by using RNA interference. We silenced the expression of specific proteins in A. aegypti larvae. Gene silencing of Ire-1 and Xbp-1 proteins from UPR system, resulted in hypersensitive to Cry11Aa toxin action. In contrast, silencing of Cas-1, Scap and S2P from SREBP pathway had no affect on Cry11Aa toxicity in A. aegypti larvae. However, the role of SREBP pathway requires further studies to be conclusive. Our data indicate that the UPR pathway is involved in the insect defense against Cry toxins. PMID:23594997

Bedoya-Pérez, Leidy P; Cancino-Rodezno, Angeles; Flores-Escobar, Biviana; Soberón, Mario; Bravo, Alejandra

2013-04-17

383

Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments.  

PubMed

Aedes aegypti L. (Diptera: Culicidae) is a common pantropical urban mosquito, vector of dengue, Yellow Fever and chikungunya viruses. Studies have shown Ae. aegypti abundance to be associated with environmental fluctuations, revealing patterns such as the occurrence of delayed mosquito outbreaks, i.e., sudden extraordinary increases in mosquito abundance following transient extreme high temperatures. Here, we use a two-stage (larvae and adults) matrix model to propose a mechanism for environmental signal canalization into demographic parameters of Ae. aegypti that could explain delayed high temperature induced mosquito outbreaks. We performed model simulations using parameters estimated from a weekly time series from Thailand, assuming either independent or autocorrelated environments. For autocorrelated environments, we found that long delays in the association between the onset of "hot" environments and mosquito outbreaks (10 weeks, as observed in Thailand) can be generated when "hot" environments sequentially trigger a larval survival decrease and over-compensatory fecundity increase, which lasts for the whole "hot" period, in conjunction with a larval survival increase followed by a fecundity decrease when the environment returns to "normal". This result was not observed for independent environments. Finally, we discuss our results implications for prospective entomological research and vector management under changing environments. PMID:23537497

Chaves, Luis Fernando; Scott, Thomas W; Morrison, Amy C; Takada, Takenori

2013-03-26