Science.gov

Sample records for aedes aegypti infected

  1. Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to compare the response of Aedes aegypti (L.) and Aedes albopictus (Skuse) adults, uninfected and infected with four serotypes of dengue virus, to a repellent containing 5% deet. The results showed that mosquitoes infected with the four serotypes of dengue respond i...

  2. BIOTIC AND ABIOTIC FACTORS AFFECTING LEPTOLEGNIA CHAPMANII INFECTION IN AEDES AEGYPTI L. (DIPTERA: CULICIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of water volume, container surface area and the density of hosts and fungal zoospores on the infectivity of the oomycete fungus, Leptolegnia chapmanii Seymour to Aedes aegypti (L.) were investigated in the laboratory. Late third or early fourth instar larvae from a laboratory colony of A...

  3. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein.

    PubMed

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M

    2015-10-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ?5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  4. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    PubMed Central

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M.; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M.

    2015-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ?5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  5. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health

    PubMed Central

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L.; Kyrylos, Peter P.; Carrington, Lauren B.; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P.

    2015-01-01

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52–.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present. PMID:25784733

  6. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health.

    PubMed

    Whitehorn, James; Kien, Duong Thi Hue; Nguyen, Nguyet Minh; Nguyen, Hoa L; Kyrylos, Peter P; Carrington, Lauren B; Tran, Chau Nguyen Bich; Quyen, Nguyen Thanh Ha; Thi, Long Vo; Le Thi, Dui; Truong, Nguyen Thanh; Luong, Tai Thi Hue; Nguyen, Chau Van Vinh; Wills, Bridget; Wolbers, Marcel; Simmons, Cameron P

    2015-10-15

    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present. PMID:25784733

  7. Complement-Related Proteins Control the Flavivirus Infection of Aedes aegypti by Inducing Antimicrobial Peptides

    PubMed Central

    Xiao, Xiaoping; Liu, Yang; Zhang, Xiaoyan; Wang, Jing; Li, Zuofeng; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2014-01-01

    The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE)-containing proteins (TEPs), which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR), belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C), which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs), which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods. PMID:24722701

  8. Microevolution of Aedes aegypti

    PubMed Central

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have yet to be investigated. PMID:26360876

  9. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands

    PubMed Central

    2012-01-01

    Background Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission. Methods We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis. Results We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI) with chikungunya virus (CHIKV). Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling. Conclusion Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection. PMID:23153178

  10. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence.

    PubMed

    McMeniman, Conor J; O'Neill, Scott L

    2010-01-01

    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters. PMID:20644622

  11. A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence

    PubMed Central

    McMeniman, Conor J.; O'Neill, Scott L.

    2010-01-01

    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters. PMID:20644622

  12. Larval Competition Extends Developmental Time and Decreases Adult Size of wMelPop Wolbachia-Infected Aedes aegypti

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Yeap, Heng Lin; Hoffmann, Ary A.

    2014-01-01

    The intracellular endosymbiont Wolbachia has been artificially transinfected into the dengue vector Aedes aegypti, where it is being investigated as a potential dengue biological control agent. Invasion of Wolbachia in natural populations depends upon the fitness of Wolbachia-infected Ae. aegypti relative to uninfected competitors. Although Wolbachia infections impose fitness costs on the adult host, effects at the immature stages are less clear, particularly in competitive situations. We look for effects of two Wolbachia infections, wMel and wMelPop, on intra-strain and inter-strain larval competition in Ae. aegypti. Development of Wolbachia-infected larvae is delayed in mixed cohorts with uninfected larvae under crowded-rearing conditions. Slow developing wMelPop-infected larvae have reduced adult size compared with uninfected larvae, and larvae with the wMel infection are somewhat larger and have greater viability relative to uninfected larvae when in mixed cohorts. Implications for successful invasion by these Wolbachia infections under field conditions are considered. PMID:24732463

  13. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti

    PubMed Central

    Ferguson, Neil M.; Kien, Duong Thi Hue; Clapham, Hannah; Aguas, Ricardo; Trung, Vu Tuan; Chau, Tran Nguyen Bich; Popovici, Jean; Ryan, Peter A.; O’Neill, Scott L.; McGraw, Elizabeth A.; Long, Vo Thi; Dui, Le Thi; Nguyen, Hoa L; Van Vinh Chau, Nguyen; Wills, Bridget; Simmons, Cameron P.

    2015-01-01

    Dengue is the most common arboviral infection of humans and a public health burden in over 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but importantly did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection within humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66–75%. Our results suggest that establishment of wMelPop-infected A. aegypti at high frequency in a dengue endemic setting would result in complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings, but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact. PMID:25787763

  14. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti

    PubMed Central

    Ye, Yixin H.; Carrasco, Alison M.; Frentiu, Francesca D.; Chenoweth, Stephen F.; Beebe, Nigel W.; van den Hurk, Andrew F.; Simmons, Cameron P.; O’Neill, Scott L.; McGraw, Elizabeth A.

    2015-01-01

    Background Dengue viruses (DENV) are the causative agents of dengue, the world’s most prevalent arthropod-borne disease with around 40% of the world’s population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia’s efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito’s ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites. Methodology/Principal Findings We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival. Conclusions/Significance The saliva-based traits reported here offer more disease-relevant measures of Wolbachia’s effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field. PMID:26115104

  15. Naturally-Acquired Dengue Virus Infections Do Not Reduce Short-Term Survival of Infected Aedes aegypti from Ho Chi Minh City, Vietnam

    PubMed Central

    Carrington, Lauren B.; Nguyen, Hoa L.; Nguyen, Nguyet Minh; Duong, T. H. Kien; Tuan, Trung Vu; Giang, Nguyen Thi; Tuyet, Nhu Vu; Thi, Dui Le; Thi, Long Vo; Tran, Chau N.; Simmons, Cameron P.

    2015-01-01

    Transmission of dengue virus (DENV) from mosquito to human is dependent upon the survival of the mosquito beyond the virus extrinsic incubation period. Previous studies report conflicting results of the effects of DENV on Aedes aegypti survival. Here, we describe the effect of DENV on the short-term survival (up to 12 d) of 4,321 Ae. aegypti mosquitoes blood-fed on 150 NS1-positive dengue patients hospitalized in the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. Mosquito survival was not different between cohorts that fed upon blood from which 0% of mosquitoes became DENV infected (N = 88 feeds), or 100% became infected (N = 116 feeds). Subgroup analysis also did not reveal serotype-dependent differences in survival, nor a relationship between survival and human plasma viremia levels. These results suggest that DENV infection adds minimal cost to Ae. aegypti, an important finding when parameterizing the vector competence of this mosquito. PMID:25561566

  16. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  17. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  18. Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti

    PubMed Central

    Etebari, Kayvan; Osei-Amo, Solomon; Blomberg, Simon Phillip; Asgari, Sassan

    2015-01-01

    Recent discoveries regarding the importance of isomiRs have increased our understanding of the regulatory complexities of the miRNAome. Observed changes in the miRNA profiles in mosquitoes infected with flaviviruses have implicated small RNAs in the interactions between viruses and their vectors. Here we analysed the isomiR profiles of both uninfected and infected Aedes aegypti mosquitoes with the major human pathogen dengue virus (DENV). We found that several specific isomiRs were significantly altered in their abundance patterns in response to DENV infection potentially affecting their target repertoire. Notable among these were isomiR variants which displayed arm-switching. We also demonstrate that modifications to the 3p end of miRNAs are vastly more prevalent than those at the 5p ends. We also observed that in only 45% of Ae. aegypti miRNAs the most abundant read matches the exact sequence reported in miRBase. Further, we found positive correlations between the number of mature miRNA reads, pre-miRNA length, GC content and secondary structure minimum free energy with the number of isomiRs. The findings presented here provide some evidence that isomiR production is not a random phenomenon and may be important in DENV replication in its vector. PMID:26514826

  19. Comparative potential of Aedes triseriatus, Aedes albopictus, and Aedes aegypti (Diptera: Culicidae) to transovarially transmit La Crosse virus.

    PubMed

    Hughes, Mark T; Gonzalez, Janice A; Reagan, Krystle L; Blair, Carol D; Beaty, Barry J

    2006-07-01

    Aedes triseriatus (Say) (Diptera: Culicidae), the major vector of La Crosse (LAC) virus, efficiently transmits LAC virus both horizontally and transovarially. We compared the vector competence and transovarial transmission ability of Ae. triseriatus, Aedes albopictus Skuse, and Aedes aegypti (L.) for LAC virus. Ae. triseriatus and Ae. albopictus were significantly more susceptible to oral infection with LAC virus than Ae. aegypti. The three species also differed in oral and disseminated infection rates (DIRs). Transovarial transmission (TOT) rates and filial infection rates (FIRs) were greater for Ae. triseriatus than either Ae. albopictus or Ae. aegypti. These measures were integrated into a single numerical score, the transmission amplification potential (TAP) for each species. Differences in TAP scores were due mainly to the differences in DIRs and FIRs among these mosquitoes. Although the TAP score for Ae. albopictus was lower than that of Ae. triseriatus, it was 10-fold greater than that for Ae. aegypti. PMID:16892636

  20. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  1. Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours.

    PubMed

    Turley, A P; Smallegange, R C; Takken, W; Zalucki, M P; O'Neill, S L; McGraw, E A

    2014-12-01

    The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary effect of the wMel strain is pathogen protection whereby infection with the symbiont limits replication of dengue virus inside the mosquito. A second strain, wMelPop, induces pathogen protection, reduces the adult mosquito lifespan and decreases blood feeding success in mosquitoes after 15 days of age. Here we test whether Wolbachia infection affects mosquito attraction to host odours in adults aged 5 and 15 days. We found no evidence of reduced odour attraction of mosquitoes, even for those infected with the more virulent wMelPop. This bodes well for fitness and competitiveness in the field given that the mosquitoes must find hosts to reproduce for the biocontrol method to succeed. PMID:24797695

  2. Aedes FADD: A novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti

    E-print Network

    Lowenberger, Carl

    Aedes FADD: A novel death domain-containing protein required for antibacterial immunity September 2008 Keywords: Mosquito Aedes aegypti FADD adaptor Antibacterial immunity IMD signaling AMP expression Aedes DREDD a b s t r a c t Microbial infections in insects activate a series of immune responses

  3. Dispersal of Engineered Male Aedes aegypti Mosquitoes

    PubMed Central

    Capurro, Margareth L.; Alphey, Luke; Donnelly, Christl A.; McKemey, Andrew R.

    2015-01-01

    Background Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of ‘genetically sterile’ male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. Methodology/Principal Findings The dispersal ability of released ‘genetically sterile’ male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of ‘genetically sterile’ male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8m (95% CI: 49.9m, 56.8m) and Malaysia: 58.0m (95% CI: 51.1m, 71.0m). Conclusions/Significance Our results provide specific, detailed estimates of the dispersal characteristics of released ‘genetically sterile’ male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects’ dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using ‘genetically sterile’ male Aedes aegypti. PMID:26554922

  4. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  5. Bicluster Pattern of Codon Context Usages between Flavivirus and Vector Mosquito Aedes aegypti: Relevance to Infection and Transcriptional Response of Mosquito Genes

    PubMed Central

    Behura, Susanta K.; Severson, David W.

    2014-01-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

  6. Thiosemicarbazones as Aedes aegypti larvicidal.

    PubMed

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic. PMID:26087027

  7. Oviposition Responses of the Mosquitoes Aedes aegypti and Aedes albopictus to Experimental Plant Infusions

    E-print Network

    Oviposition Responses of the Mosquitoes Aedes aegypti and Aedes albopictus to Experimental Plant Attraction of the mosquitoes Aedes aegypti and Ae. albopictus to plant infusions was evaluated by using a modified sticky-screen bioassay that improved the resolu- tion of mosquito responses to odorants. Under

  8. Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas

    PubMed Central

    Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet

    2015-01-01

    Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by the accuracy, sensitivity, specificity, and mean absolute error (MAE). PMID:25961289

  9. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations???30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  10. Experimental transmission of Mayaro virus by Aedes aegypti.

    PubMed

    Long, Kanya C; Ziegler, Sarah A; Thangamani, Saravanan; Hausser, Nicole L; Kochel, Tadeusz J; Higgs, Stephen; Tesh, Robert B

    2011-10-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log(10) and 7.3 log(10) plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log(10) PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  11. Malathion resistance in Aedes aegypti and Culex quinquefasciatus after its use in Aedes aegypti control programs.

    PubMed

    Coto, M M; Lazcano, J A; de Fernández, D M; Soca, A

    2000-12-01

    The continued widespread use of malathion in Aedes aegypti control programs in Latin America has generated insecticide resistance to this chemical in Culex quinquefasciatus but not in Ae. aegypti. To determine the extent of this resistance, the susceptibility of Cx. quinquefasciatus and Ae. aegypti from several countries to malathion was evaluated. Bioassay results indicated that all Ae. aegypti strains evaluated from Cuba, Venezuela, Costa Rica, and Jamaica were susceptible to malathion in spite of the historical use of this insecticide in Ae. aegypti control programs in these countries. In contrast, a high level of resistance to this insecticide was found in Cx. quinquefasciatus from Venezuela, Colombia, Brazil, and Cuba. Synergist assays indicated that neither esterases nor mixed-function oxidases (MFOs) were involved as the resistance mechanism to malathion in any of the Ae. aegypti strains tested. In Cx. quinquefasciatus, synergist assays confirmed that esterases played an important role in malathion resistance but MFOs were not involved in causing malathion resistance in this species. Biochemical assays showed that both resistance mechanisms were present in the Ae. aegypti and Cx. quinquefasciatus populations. Acrylamide electrophoresis gels revealed that all Ae. aegypti strains had a strongly staining, clear band, named A4, and had a relative mobility (Rm) value of 0.7. Analysis if the results of this study suggested that malathion could continue to be used for the emergency control of Ae. aegypti, the mosquito vector for dengue and dengue hemorrhagic fever in the Americas, but that malathion is probably not effective for the control of adult Cx. quinquefasciatus in urban areas. Therefore, control operations should integrate nonorganophosphate insecticides such as pyrethroids for control of these 2 species found in the urban environment. PMID:11198919

  12. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  13. Permethrin induces overexpression of multiple genes in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

  14. Permethrin induces overexpression of multiple genes in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

  15. Free flight of the mosquito Aedes aegypti

    E-print Network

    Iams, S M

    2012-01-01

    High speed video observations of free flying male Aedes aegypti mosquitoes, the dengue and yellow fever vector, along with custom measurement methods, enable measurement of wingbeat frequency, body position and body orientation of mosquitoes during flight. We find these mosquitoes flap their wings at approximately 850 Hz. We also generate body yaw, body pitch and wing deviation measurements with standard deviations of less than 1 degree and find that sideways velocity and acceleration are important components of mosquito motion. Rapid turns involving changes in flight direction often involve large sideways accelerations. These do not correspond to commensurate changes in body heading, and the insect's flight direction and body heading are decoupled during flight. These findings call in to question the role of yaw control in mosquito flight. In addition, using orientation data, we find that sideways accelerations are well explained by roll-based rotation of the lift vector. In contrast, the insect's body pitch...

  16. Public Health Response to Aedes aegypti and Ae. albopictus Mosquitoes Invading California, USA

    PubMed Central

    Kramer, Vicki; Yoshimizu, Melissa Hardstone; Metzger, Marco; Hu, Renjie; Padgett, Kerry; Vugia, Duc J.

    2015-01-01

    Aedes aegypti and Ae. albopictus mosquitoes, primary vectors of dengue and chikungunya viruses, were recently detected in California, USA. The threat of potential local transmission of these viruses increases as more infected travelers arrive from affected areas. Public health response has included enhanced human and mosquito surveillance, education, and intensive mosquito control. PMID:26401891

  17. Gustatory receptor expression in the labella and legs of aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow-fever mosquito, Aedes aegypti, is a dangerous disease vector, infecting a growing number of people every year with dengue, yellow fever and chikungunya viruses. Contact chemoreception in mosquitoes influences a number of behaviors including host-selection, oviposition and feeding. While...

  18. TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti

    E-print Network

    Shaw, Janet M.

    TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti Azadeh Aryan, Michelle A. E as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other MAE, Myles KM, Adelman ZN (2013) TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti. PLo

  19. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  20. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  1. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.

    PubMed

    Rodrigues, A M S; de Paula, J E; Roblot, F; Fournet, A; Espíndola, L S

    2005-12-01

    The larvicidal activity against Aedes aegypti larvae of a stem wood hexane extract of Cybistax antisyphilitica was evaluated. Bioassay-guided fractionation of the crude extract, monitored by larvicidal assay, led to the isolation of a natural quinone identified as 2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone (lapachol). This compound was quite potent against A. aegypti larvae (LC50 26.3 microg/ml). PMID:16229968

  2. Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent

    PubMed Central

    Dickson, Laura B.; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C.

    2014-01-01

    Background Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Methodology/Principal Findings Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Conclusions/Significance Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV. PMID:25275366

  3. USDA Research on New Strategies for Controlling Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA researchers are currently studying new methods to control Aedes aegypti. One involves molecular pesticides which target critical genes/proteins (such as inhibitors of apoptosis proteins, IAPs) in mosquitoes using RNA interference (RNAi). RNAi constructs are evaluated in vivo in adult mosquito...

  4. Aedes aegypti mosquitoes imported into the Netherlands, 2010.

    PubMed

    Brown, Julia E; Scholte, Ernst-Jan; Dik, Marian; Den Hartog, Wietse; Beeuwkes, Jacob; Powell, Jeffrey R

    2011-12-01

    During summer 2010, Aedes aegypti mosquitoes were discovered in the Netherlands. Using genetic markers, we tracked the origin of these mosquitoes to a tire shipment from Miami, Florida, USA. Surveillance of tire exports from the United States should be included as part of a comprehensive surveillance system. PMID:22172498

  5. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  6. Functional development of the octenol response in aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, lik...

  7. Cytochromr b expression and RNAi knockdown in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in the electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in mitoptosis, i.e. a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti (Ae...

  8. Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus.

    PubMed

    Muniaraj, M; Arunachalam, N; Paramasivan, R; Mariappan, T; Philip Samuel, P; Rajamannar, V

    2012-12-01

    The vector mosquitoes of dengue and chikungunya fever, Aedes aegypti and Aedes albopictus have adapted to feed on humans and undergo larval and pupal development in natural and artificial freshwater collections. Although several studies reported, still, much information is required to understand the successful survival of Aedes mosquitoes in small temporary containers. In an investigation conducted in the chikungunya affected areas of Kerala state, India, the presence of Bdelloid rotifer, Philodina in 95% of breeding habitats of Ae. aegypti and Ae. albopictus was recorded. The role of Philodina in the breeding containers was investigated. It was found that while in control the number of Philodina was found increasing in the water sample during the study period of seven days, the number found decreased in the containers with larvae of Aedes. The gut content analysis also confirmed the presence of the rotating wheel, corona of Philodina in some of the specimen suggests its role as major larval food. PMID:23202612

  9. Gene Flow, Subspecies Composition, and Dengue Virus-2 Susceptibility among Aedes aegypti Collections in Senegal

    PubMed Central

    Sylla, Massamba; Bosio, Christopher; Urdaneta-Marquez, Ludmel; Ndiaye, Mady; Black, William C.

    2009-01-01

    Background Aedes aegypti, the “yellow fever mosquito”, is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4) and yellow fever virus (YFV) and is a known vector of Chikungunya virus. There are two recognized subspecies of Ae. aegypti sensu latu (s.l.): the presumed ancestral form, Ae. aegypti formosus (Aaf), a primarily sylvan mosquito in sub-Saharan Africa, and Ae. aegypti aegypti (Aaa), found globally in tropical and subtropical regions typically in association with humans. The designation of Ae. aegypti s.l. subspecies arose from observations made in East Africa in the late 1950s that the frequency of pale “forms” of Ae. aegypti was higher in populations in and around human dwellings than in those of the nearby bush. But few studies have been made of Ae. aegypti s.l. in West Africa. To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal. Methods and Findings A population genetic analysis of gene flow was conducted among 1,040 Aedes aegypti s.l. from 19 collections distributed across the five phytogeographic regions of Senegal. Adults lacking pale scales on their first abdominal tergite were classified as Aedes aegypti formosus (Aaf) following the original description of the subspecies and the remainder were classified as Aedes aegypti aegypti (Aaa). There was a clear northwest–southeast cline in the abundance of Aaa and Aaf. Collections from the northern Sahelian region contained only Aaa while southern Forest gallery collections contained only Aaf. The two subspecies occurred in sympatry in four collections north of the Gambia in the central Savannah region and Aaa was a minor component of two collections from the Forest gallery area. Mosquitoes from 11 collections were orally challenged with DENV-2 virus. In agreement with the early literature, Aaf had significantly lower vector competence than Aaa. Among pure Aaa collections, the disseminated infection rate (DIR) was 73.9% with a midgut infection barrier (MIB) rate of 6.8%, and a midgut escape barrier (MEB) rate of 19.3%, while among pure Aaf collections, DIR?=?34.2%, MIB rate?=?7.4%, and MEB rate?=?58.4%. Allele and genotype frequencies were analyzed at 11 nuclear single nucleotide polymorphism (SNP) loci using allele specific PCR and melting curve analysis. In agreement with a published isozyme gene flow study in Senegal, only a small and statistically insignificant percentage of the variance in allele frequencies was associated with subspecies. Conclusions These results add to our understanding of the global phylogeny of Aedes aegypti s.l., suggesting that West African Aaa and Aaf are monophyletic and that Aaa evolved in West Africa from an Aaf ancestor. PMID:19365540

  10. Transcriptome Analysis of Aedes aegypti Transgenic Mosquitoes with Altered Immunity

    PubMed Central

    Xi, Zhiyong; Kokoza, Vladimir; Shin, Sang Woon; Dimopoulos, George; Raikhel, Alexander

    2011-01-01

    The mosquito immune system is involved in pathogen-elicited defense responses. The NF-?B factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+) or REL2 (REL2+) in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated) and 299 (123 up- and 176 down-regulated) genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-?B factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi)-depleted mosquitoes (50%). In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated), suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated) relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating the involvement of the JAK-STAT pathway in anti-Plasmodium defense in this infection model. PMID:22114564

  11. History of domestication and spread of Aedes aegypti - A Review

    PubMed Central

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  12. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar

    PubMed Central

    2012-01-01

    Background In the past ten years, the Indian Ocean region has been the theatre of severe epidemics of chikungunya and dengue. These outbreaks coincided with a high increase in populations of Aedes albopictus that outcompete its sister taxon Aedes aegypti in most islands sampled. The objective of this work was to update the entomological survey of the two Aedes species in the island of Madagascar which has to face these arboviroses. Methods The sampling of Aedes mosquitoes was conducted during two years, from October 2007 to October 2009, in fifteen localities from eight regions of contrasting climates. Captured adults were identified immediately whereas immature stages were bred until adult stage for determination. Phylogenetic analysis was performed using two mtDNA genes, COI and ND5 and trees were constructed by the maximum likelihood (ML) method with the gene time reversible (GTR) model. Experimental infections with the chikungunya virus strain 06.21 at a titer of 107.5 pfu/mL were performed to evaluate the vector competence of field-collected mosquitoes. Disseminated infection rates were measured fourteen days after infection by immunofluorescence assay performed on head squashes. Results The species Aedes aegypti was detected in only six sites in native forests and natural reserves. In contrast, the species Aedes albopictus was found in 13 out of the 15 sites sampled. Breeding sites were mostly found in man-made environments such as discarded containers, used tires, abandoned buckets, coconuts, and bamboo cuts. Linear regression models showed that the abundance of Ae. albopictus was significantly influenced by the sampling region (F = 62.00, p < 2.2 × 10-16) and period (F = 36.22, p = 2.548 × 10-13), that are associated with ecological and climate variations. Phylogenetic analysis of the invasive Ae. albopictus distinguished haplotypes from South Asia and South America from those of Madagascar, but the markers used were not discriminant enough to discern Malagasy populations. The experimental oral infection method showed that six Ae. albopictus populations exhibited high dissemination infection rates for chikungunya virus ranging from 98 to 100%. Conclusion In Madagascar, Ae. albopictus has extended its geographical distribution whereas, Ae. aegypti has become rare, contrasting with what was previously observed. Changes are predominantly driven by human activities and the rainfall regime that provide suitable breeding sites for the highly anthropophilic mosquito Ae. albopictus. Moreover, these populations were found to be highly susceptible to chikungunya virus. In the light of this study, Ae. albopictus may have been involved in the recent outbreaks of chikungunya and dengue epidemics in Madagascar, and consequently, control measures should be promoted to limit its current expansion. PMID:22433186

  13. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  14. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  15. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  16. Edhazardia aedis, a microsporidian pathogen of Aedes aegypti: Possibilities and challenges for classical biocontrol in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edhazardia aedis, a pathogen of Aedes aegypti, has a complex life cycle involving both horizontal and vertical transmission affecting two successive generations of the host. Usually, one sporulation sequence occurs in the adult female (infected orally as a larva) and results in the formation of bin...

  17. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  18. Cytotoxicity of piperamides towards Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Ferreira, Bruna; Mallet, Jacenir; Guimarães, Anthony; Kato, Massuo

    2014-03-01

    The effectiveness of the amides piplartine and piperlonguminine isolated from Piper species for controlling L3 and L4 of Aedes aegypti (L.) was assessed through bioassays at concentrations ranging from 1 to 300 g/l ml. Piplartine reduced the mosquito development period and caused larval mortality only at concentrations > 100 microg/ml, whereas piperlonguminine resulted in an extended period of mosquito development (10 microg/ml) and caused 100% larval mortality (30 microg/ml) within 24 h. The toxicity and cytotoxic effects of piperlonguminine on epithelial cells of the digestive system of Ae. aegypti were viewed using transmission electron microscopy, which indicated vacuolization of cytoplasm, mitochondrial swelling and leaking of nuclear material. Piperlonguminine was the more effective amide, showing toxic activity with LD50 of approximately 12 microg/ml against the larvae of Ae. aegypti. PMID:24724297

  19. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  20. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, Y. C.; Chan, K. L.; Ho, B. C.

    1971-01-01

    The distribution and density of Ae. aegypti and Ae. albopictus in Singapore were assessed from extensive larval surveys carried out from 1966 to 1968 to evaluate their respective roles in the epidemiology of dengue haemorrhagic fever and to study their ecology in the urban areas. Ten urban areas where the majority of dengue haemorrhagic fever cases occurred were surveyed. The results showed that both species were common in the city, with Ae. aegypti being the dominant species. The distribution of Ae. aegypti was more uniform and related to the prevailing housing types and conditions. Its premise index was highest in slum houses, intermediate in shop houses, and lowest in multistorey flats. Ae. albopictus, on the other hand, did not seem to be related to the prevailing housing type in its distribution but tended to be more widespread in areas with open spaces. The larval density index (the average number of larvae per housing unit) was higher for Ae. aegypti than for Ae. albopictus, in agreement with the relative densities shown by their premise indices. The larval density index correlated well with the premise index and correlated best with the infested-receptacle index. For practical purposes, the most suitable, convenient, and reliable measure of density of Ae. aegypti population seems to be the infested-receptacle index. An attempt was made to estimate the rate of dispersal of Ae. aegypti from a stable population to an adjacent area of multistorey flats. The rate of dispersal, estimated from the premise index and the larval density index, was approximately 2% per year of the ”donor” population. PMID:5316745

  1. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to ?-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-?-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  2. Gene flow networks among American Aedes aegypti populations

    PubMed Central

    Gonçalves da Silva, Anders; Cunha, Ivana C L; Santos, Walter S; Luz, Sérgio L B; Ribolla, Paulo E M; Abad-Franch, Fernando

    2012-01-01

    The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread. PMID:23144654

  3. Association of Human Immune Response to Aedes aegypti Salivary Proteins with Dengue Disease Severity

    PubMed Central

    Machain-Williams, Carlos; Mammen, Mammen P; Zeidner, Nordin S; Beaty, Barry J; Prenni, Jessica E.; Nisalak, Ananda

    2011-01-01

    SUMMARY Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins, and fractionated them by non-denaturing polyacrylamide gel electrophoresis (PAGE). By use of immunoblots we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans. PMID:21995849

  4. Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi.

    PubMed

    Lowenberger, C A; Ferdig, M T; Bulet, P; Khalili, S; Hoffmann, J A; Christensen, B M

    1996-07-01

    The effect of host immune activation on the development of Brugia malayi in one susceptible and four refractory strains of Aedes aegypti and in Armigeres subalbatus was assessed. A. aegypti that were immune activated by the injection of saline or bacteria 24 hr before feeding on a B. malayi-infected gerbil had significantly reduced prevalences and mean intensities of infection from those of naive controls when exposed to bloodmeals with low (105 mf/20 microliters) and medium (160 mf/20 microliters) microfilaremias. At a higher microfilaremia (237 mf/20 microliters) there were no significant differences in mean intensities, suggesting that the number of parasites ingested may affect the host's ability to mount an effective defense response. Because the major immune proteins in A. aegypti are defensins, we did Northern analyses of fat body RNA 8 hr after immune activation or bloodfeeding. All mosquitoes demonstrated rapid transcriptional activity for defensins following immune activation by intrathoracic inoculation with either saline or bacteria. However, no strain of A. aegypti, susceptible or refractory to B. malayi, nor Ar. subalbatus produced defensin transcripts after bloodfeeding on an uninfected or a B. malayi-infected gerbil. These data suggest that inducible immune proteins of mosquitoes can reduce the prevalence and mean intensity of infections with ingested parasites, but these proteins are not expressed routinely after parasite ingestion and midgut penetration and probably do not contribute to existing refractory mechanisms. Immune proteins such as defensins, however, represent potential candidates to genetically engineer mosquitoes for resistance to filarial worms. PMID:8682188

  5. Behavioral responses of two dengue virus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), to DUET TM and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultralow volume (ULV) droplets of DUET TM, prallethrin and sumithrin at a sublethal dose were applied to unfed (non bloodfed) and bloodfed female Aedes aegypti Linn. and Aedes albopictus (Skuse) in a wind tunnel. Control spray droplets only contained inactive ingredients. Individual mosquitoes wer...

  6. Occurrence of Natural Vertical Transmission of Dengue-2 and Dengue-3 Viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil

    PubMed Central

    Martins, Victor Emanuel Pessoa; Alencar, Carlos Henrique; Kamimura, Michel Tott; de Carvalho Araújo, Fernanda Montenegro; De Simone, Salvatore Giovanni; Dutra, Rosa Fireman; Guedes, Maria Izabel Florindo

    2012-01-01

    Background Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza. Methods From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome. Results The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively. Conclusions This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods. PMID:22848479

  7. Evaluation of Sumithion L-40 against Aedes aegypti (L.) and Aedes albopictus Skuse.

    PubMed

    Loke, S R; Sing, K W; Teoh, G N; Lee, H L

    2015-03-01

    Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality. PMID:25801256

  8. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti.

    PubMed

    Ritchie, Scott A; Townsend, Michael; Paton, Chris J; Callahan, Ashley G; Hoffmann, Ary A

    2015-07-01

    The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control. PMID:26204449

  9. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti

    PubMed Central

    Ritchie, Scott A.; Townsend, Michael; Paton, Chris J.; Callahan, Ashley G.; Hoffmann, Ary A.

    2015-01-01

    The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control. PMID:26204449

  10. Functional Development of the Octenol Response in Aedes aegypti

    PubMed Central

    Bohbot, Jonathan D.; Durand, Nicolas F.; Vinyard, Bryan T.; Dickens, Joseph C.

    2013-01-01

    Attraction of female Aedes aegypti mosquitoes to 1-octen-3-ol (octenol), CO2, lactic acid, or ammonia emitted by vertebrate hosts is not only contingent on the presence of odorants in the environment, but is also influenced by the insect’s physiological state. For anautogenous mosquito species, like A. aegypti, newly emerged adult females neither respond to host odors nor engage in blood-feeding; the bases for these behaviors are poorly understood. Here we investigated detection of two components of an attractant blend emitted by vertebrate hosts, octenol, and CO2, by female A. aegypti mosquitoes using electrophysiological, behavioral, and molecular approaches. An increase in sensitivity of octenol olfactory receptor neurons (ORNs) was correlated with an increase in odorant receptor gene (Or) expression and octenol-mediated attractive behavior from day 1 to day 6 post-emergence. While the sensitivity of octenol ORNs was maintained through day 10, behavioral responses to octenol decreased as did the ability of females to discriminate between octenol and octenol?+?CO2. Our results show differing age-related roles for the peripheral receptors for octenol and higher order neural processing in the behavior of female mosquitoes. PMID:23471139

  11. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  12. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.

    PubMed

    Kistler, Kathryn E; Vosshall, Leslie B; Matthews, Benjamin J

    2015-04-01

    The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification. PMID:25818303

  13. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings

    PubMed Central

    2013-01-01

    Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics. PMID:24330720

  14. Resistance of Puerto Rican Aedes aegypti to permethrin, etofenprox, and propoxur

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insecticide resistance impacts vector control. Characterizing resistance of mosquitoes allows for optimization of control strategies. Resistance to three insecticides was determined for susceptible and resistant (Puerto Rico) strains of Aedes aegypti. Groups of 10 females were topically dosed in tri...

  15. Vertebrate hosts of Aedes aegypti and Aedes mediovittatus (Diptera: Culicidae) in rural Puerto Rico.

    PubMed

    Barrera, Roberto; Bingham, Andrea M; Hassan, Hassan K; Amador, Manuel; Mackay, Andrew J; Unnasch, Thomas R

    2012-07-01

    The distribution of Aedes (Stegomyia) aegypti (L.), the main vector of dengue viruses (DENV) worldwide, overlaps with Aedes (Gymnometopa) mediovittatus (Coquillett), the Caribbean treehole mosquito, in urban, suburban, and rural areas. Ae. mediovittatus is a competent vector of DENV with high rates of vertical DENV transmission in the laboratory. This study determined whether Ae. mediovittatus feeds on humans and compared its feeding patterns with co-occurring Ae. aegypti in two rural communities of Puerto Rico. Adult mosquitoes were captured for three consecutive days every week from July 2009 to May 2010 using BG-Sentinel traps with skin lures that were placed in the front yard of houses in both communities. Three methods were used to identify the 756 bloodmeals obtained in this study: a multiplex polymerase chain reaction (PCR) for humans and dogs targeting cytochrome b; a PCR targeting the 16S rRNA; and a nested PCR targeting cytochrome b. Ae. mediovittatus fed mostly on humans (45-52%) and dogs (28-32%) but also on cats, cows, horses, rats, pigs, goats, sheep, and chickens. Ae. aegypti fed mostly on humans (76-79%) and dogs (18-21%) but also on cats, horses, and chickens. Our results indicate that Ae. mediovittatus may have a relatively high rate of vector-human contact, which might facilitate virus transmission or harborage in rural areas of Puerto Rico. PMID:22897052

  16. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae).

    PubMed

    Chihota, C M; Rennie, L F; Kitching, R P; Mellor, P S

    2001-04-01

    Aedes aegypti female mosquitoes are capable of the mechanical transmission of lumpy skin disease virus (LSDV) from infected to susceptible cattle. Mosquitoes that had fed upon lesions of LSDV-infected cattle were able to transmit virus to susceptible cattle over a period of 2-6 days post-infective feeding. Virus was isolated from the recipient animals in 5 out of 7 cases. The clinical disease recorded in the animals exposed to infected mosquitoes was generally of a mild nature, with only one case being moderate. LSDV has long been suspected to be insect transmitted, but these findings are the first to demonstrate this unequivocally, and they suggest that mosquito species are competent vectors. PMID:11349983

  17. Characterization of the Structural Gene Promoter of Aedes aegypti Densovirus

    PubMed Central

    Ward, Todd W.; Kimmick, Michael W.; Afanasiev, Boris N.; Carlson, Jonathan O.

    2001-01-01

    Aedes aegypti densonucleosis virus (AeDNV) has two promoters that have been shown to be active by reporter gene expression analysis (B. N. Afanasiev, Y. V. Koslov, J. O. Carlson, and B. J. Beaty, Exp. Parasitol. 79:322–339, 1994). Northern blot analysis of cells infected with AeDNV revealed two transcripts 1,200 and 3,500 nucleotides in length that are assumed to express the structural protein (VP) gene and nonstructural protein genes, respectively. Primer extension was used to map the transcriptional start site of the structural protein gene. Surprisingly, the structural protein gene transcript began at an initiator consensus sequence, CAGT, 60 nucleotides upstream from the map unit 61 TATAA sequence previously thought to define the promoter. Constructs with the ?-galactosidase gene fused to the structural protein gene were used to determine elements necessary for promoter function. Deletion or mutation of the initiator sequence, CAGT, reduced protein expression by 93%, whereas mutation of the TATAA sequence at map unit 61 had little effect. An additional open reading frame was observed upstream of the structural protein gene that can express ?-galactosidase at a low level (20% of that of VP fusions). Expression of the AeDNV structural protein gene was shown to be stimulated by the major nonstructural protein NS1 (Afanasiev et al., Exp. parasitol., 1994). To determine the sequences required for transactivation, expression of structural protein gene–?-galactosidase gene fusion constructs differing in AeDNV genome content was measured with and without NS1. The presence of NS1 led to an 8- to 10-fold increase in expression when either genomic end was present, compared to a 2-fold increase with a construct lacking the genomic ends. An even higher (37-fold) increase in expression occurred with both genomic ends present; however, this was in part due to template replication as shown by Southern blot analysis. These data indicate the location and importance of various elements necessary for efficient protein expression and transactivation from the structural protein gene promoter of AeDNV. PMID:11152505

  18. Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus

    PubMed Central

    Ng, Lee Ching; Tan, Cheong Huat

    2012-01-01

    Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV. PMID:22953014

  19. Impact of deltamethrin-impregnated container covers on Aedes aegypti oviposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA researchers are studying novel methods to control Aedes aegypti. One approach focuses on prevention of oviposition by female Ae. aegypti. In collaboration with Vestergaard Frandsen Ltd., deltamethrin-treated PermaNet® Container Covers (jar lids) were evaluated with different configurations of...

  20. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  1. Cumulative mortality of Aedes aegypti larvae treated with compounds.

    PubMed

    Torres, Sandra Maria; Cruz, Nadine Louise Nicolau da; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; Silva Júnior, Valdemiro Amaro da

    2014-06-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  2. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    PubMed

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs. PMID:26675452

  3. Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti.

    PubMed

    Hill, Casey L; Sharma, Avinash; Shouche, Yogesh; Severson, David W

    2014-12-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  4. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens. PMID:26296606

  5. CAGE TRIALS USING AN ENDOGENOUS MEIOTIC DRIVE GENE IN THE MOSQUITO AEDES AEGYPTI TO PROMOTE POPULATION REPLACEMENT

    E-print Network

    Severson, David

    CAGE TRIALS USING AN ENDOGENOUS MEIOTIC DRIVE GENE IN THE MOSQUITO AEDES AEGYPTI TO PROMOTE potential, and have previously been reported in two mosquito species: Aedes aegypti and Culex pipiens established three experimental population types that were initiated with 100%, 10%, and 1% male mosquitoes

  6. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  7. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene. PMID:25973508

  8. Evidence of Experimental Vertical Transmission of Emerging Novel ECSA Genotype of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Agarwal, Ankita; Dash, Paban Kumar; Singh, Anil Kumar; Sharma, Shashi; Gopalan, Natarajan; Rao, Putcha Venkata Lakshmana; Parida, Man Mohan; Reiter, Paul

    2014-01-01

    Background Chikungunya virus (CHIKV) has emerged as one of the most important arboviruses of public health significance in the past decade. The virus is mainly maintained through human-mosquito-human cycle. Other routes of transmission and the mechanism of maintenance of the virus in nature are not clearly known. Vertical transmission may be a mechanism of sustaining the virus during inter-epidemic periods. Laboratory experiments were conducted to determine whether Aedes aegypti, a principal vector, is capable of vertically transmitting CHIKV or not. Methodology/Principal Findings Female Ae. aegypti were orally infected with a novel ECSA genotype of CHIKV in the 2nd gonotrophic cycle. On day 10 post infection, a non-infectious blood meal was provided to obtain another cycle of eggs. Larvae and adults developed from the eggs obtained following both infectious and non-infectious blood meal were tested for the presence of CHIKV specific RNA through real time RT-PCR. The results revealed that the larvae and adults developed from eggs derived from the infectious blood meal (2nd gonotrophic cycle) were negative for CHIKV RNA. However, the larvae and adults developed after subsequent non-infectious blood meal (3rd gonotrophic cycle) were positive with minimum filial infection rates of 28.2 (1?35.5) and 20.2 (1?49.5) respectively. Conclusion/Significance This study is the first to confirm experimental vertical transmission of emerging novel ECSA genotype of CHIKV in Ae. aegypti from India, indicating the possibilities of occurrence of this phenomenon in nature. This evidence may have important consequence for survival of CHIKV during adverse climatic conditions and inter-epidemic periods. PMID:25080107

  9. Persistence of dengue virus RNA in dried Aedes aegypti (Diptera: Culicidae) exposed to natural tropical conditions.

    PubMed

    Bangs, Michael J; Pudiantari, Ratna; Gionar, Yoyo R

    2007-01-01

    Aedes aegypti (L.) is the primary vector of dengue viruses, a group of four serotypic single-stranded RNA viruses. Dengue virus RNA can be readily detected in fresh or dried infected mosquitoes by using reverse transcriptase-polymerase chain reaction (RT-PCR). The current study examined the persistence and limit of dengue virus RNA detection in infected Ae. aegypti killed and exposed to natural ambient tropical conditions of temperature and humidity. Under relatively harsh conditions, dengue RNA retained sufficient integrity to be detected in dried mosquitoes up to 13 wk after exposure to relatively high ambient temperatures (26.3-31.7 degrees C) and relative humidity (49.4-69.9%). These findings confirm that the necessity for testing either fresh or frozen mosquitoes is not a prerequisite when using RT-PCR as the viral detection method, and under particular epidemiological circumstances it allows for a more convenient means of conducting vector-virus surveillance activities where collection methods and logistics may preclude immediate testing or access to a cold chain. PMID:17294936

  10. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    PubMed

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-?, TNF-?, IL-1? and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD. PMID:25770821

  11. Interaction between the predator Toxorhynchites brevipalpis and its prey Aedes aegypti1

    PubMed Central

    Trpis, Milan

    1973-01-01

    In a circumscribed area in Tanzania where the predacious larvae of Toxorhynchites brevipalpis were particularly abundant, it was found that water-filled tires and tins containing Toxorhynchites larvae had fewer larvae of Aedes aegypti than those without the predator larvae. The peaks of infestation with Toxorhynchites larvae occurred almost a month later than the peaks of A. aegypti infestation. Cannibalism was observed among the predator larvae in these containers. PMID:4152925

  12. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia.

    PubMed

    Wong, Hui Vern; Vythilingam, Indra; Sulaiman, Wan Yusof Wan; Lulla, Aleksei; Merits, Andres; Chan, Yoke Fun; Sam, I-Ching

    2016-01-01

    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection. PMID:26598564

  13. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  14. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations.

    PubMed

    Mousson, Laurence; Dauga, Catherine; Garrigues, Thomas; Schaffner, Francis; Vazeille, Marie; Failloux, Anna-Bella

    2005-08-01

    Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns. PMID:16181519

  15. Comparative organophosphorus insecticide susceptibility in Caribbean populations of Aedes aegypti and Toxorhynchites moctezuma.

    PubMed

    Rawlins, S C; Ragoonansingh, R

    1990-06-01

    Aedes aegypti larvae from Antigua, Jamaica, Puerto Rico, St. Lucia, Trinidad and Union Island and predatory larvae, Toxorhynchites moctezuma, from Trinidad were tested for susceptibility to temephos, malathion, fenthion, fenitrothion and chlorpyrifos. There was some organophosphorus resistance in all strains of Ae. aegypti, in the approximate order: Antigua greater than Jamaica greater than Puerto Rico greater than St. Lucia greater than Trinidad greater than Union Island. Toxorhynchites moctezuma was much less susceptible to temephos than the Ae. aegypti strain, indicating its possible usefulness in an integrated management program. PMID:1973450

  16. Reduction of Aedes aegypti Vector Competence for Dengue Virus under Large Temperature Fluctuations

    PubMed Central

    Carrington, Lauren B.; Seifert, Stephanie N.; Armijos, M. Veronica; Lambrechts, Louis; Scott, Thomas W.

    2013-01-01

    Diurnal temperature fluctuations can fundamentally alter mosquito biology and mosquito-virus interactions in ways that impact pathogen transmission. We investigated the effect of two daily fluctuating temperature profiles on Aedes aegypti vector competence for dengue virus (DENV) serotype-1. A large diurnal temperature range of 18.6°C around a 26°C mean, corresponding with the low DENV transmission season in northwestern Thailand, reduced midgut infection rates and tended to extend the virus extrinsic incubation period. Dissemination was first observed at day 7 under small fluctuations (7.6°C; corresponding with high DENV transmission) and constant control temperature, but not until Day 11 for the large diurnal temperature range. Results indicate that female Ae. aegypti in northwest Thailand are less likely to transmit DENV during the low than high transmission season because of reduced DENV susceptibility and extended virus extrinsic incubation period. Better understanding of DENV transmission dynamics will come with improved knowledge of temperature effects on mosquito-virus interactions. PMID:23438766

  17. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú. PMID:23033195

  18. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Ruktanonchai, N W; Lounibos, L P; Smith, D L; Allan, S A

    2015-09-01

    In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg-laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg-laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg-laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood-fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful. PMID:25982411

  19. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. PMID:26611965

  20. The Effect of Mycobacterium ulcerans Exotoxin on Host-Seeking and Oviposition Behavior of Aedes aegypti aegypti (L.) (Diptera: Culicidae) 

    E-print Network

    Sanders, Michael Lee

    2015-08-03

    , with Staphylococcus epidermidis being the primary bacteria, were determined to be significant attractants for host-seeking behavior (15). Gravid female Aedes aegypti (Linnaeus) (Diptera: Culicidae) females were allowed a choice test between water sources containing... to be influenced by chemical cues, with CO2 being the most important; however more recent studies have shown that volatiles released by bacteria can cause a change in the behavior of the mosquito (35). Volatiles released by Staphylococcus epidermidis, which...

  1. AN INSULIN-LIKE PEPTIDE REGULATES EGG MATURATION AND METABOLISM IN THE MOSQUITO AEDES AEGYPTI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of vertebrate blood is essential for egg maturation and transmission of disease-causing parasites by female mosquitoes. Prior studies with the yellow fever mosquito, Aedes aegypti, indicated blood feeding stimulates egg production by triggering the release of hormones from MNCs in the mosq...

  2. Changes in host-seeking behavior of Puerto Rican Aedes aegypti (L.) following colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of colonization on host-seeking behavior of mosquitoes was examined by comparing attraction responses of newly colonized Aedes aegypti (L.) from field-collected eggs in Puerto Rico to that of the Gainesville (Florida) strain, originally from Orlando (Florida) and in colony since 1952. Fe...

  3. Toxicity of Cephalaria species and their individual constituents against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mort...

  4. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  5. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  6. Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...

  7. The maxillary palp of aedes aegypti, a model of multisensory integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary...

  8. Structure-Activity Relationships of 33 Carboxamides as Toxicants Against Female Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to search for new ...

  9. Structure-Activity Relationships of 33 Piperidines as Adulticides against Aedes aegypti(Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aedes aegypti (L.) is the primary vector of both dengue and yellow fever. Using insecticides is one of the major ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a beginning of our collaborative effort to...

  10. Comparative study of four membranes for evaluation of new insect/arthropod repellents using Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different membranes: Baudruche; Hemotek, sausage, and silicone-based membrane were evaluated as human skin substitute for an in vitro repellent study using Aedes aegypti. No significant difference was observed in repellent activity (ED50) of DEET among the membranes. Sausage membrane was selec...

  11. Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (AaeIAP1, Genbank accession no. DQ993355), however, it is n...

  12. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  13. Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin from

    E-print Network

    Jurat-Fuentes, Juan Luis

    Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular

  14. Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti L. (AeaCytB) is developm...

  15. LABORATORY AND FIELD ASSESSMENT OF SOME KAIROMONE BLENDS FOR HOST-SEEKING AEDES AEGYPTI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using laboratory y-tube olfactometers we examined whether lactic acid, a key Aedes aegypti (L.) attractant, and two proprietary kairomone blends (the USDA blend and the BG blend) incorporating this compound, were attractive to a range of geographically disparate populations from North Queensland Aus...

  16. Ovicidal activity of Ageratina adenophora (Family: Asteraceae) against dengue vector, Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...

  17. Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation

    E-print Network

    Lloyd, Alun

    the importance of detailed spatial models for guiding genetic mosquito control strategies. Citation: Legros M, XuAssessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model of America Abstract Suppression of dengue and malaria through releases of genetically engineered mosquitoes

  18. Synthesis and larvicidal and adult topical activity of some hydrazide-hydrazone derivatives against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of novel hydrazide-hydrazone derivatives were synthesized and evaluated for their larvicidal and adult topical activity against Aedes aegypti. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Com...

  19. Different repellents for Aedes aegypti against blood-feeding and oviposition.

    PubMed

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. PMID:25079819

  20. Different Repellents for Aedes aegypti against Blood-Feeding and Oviposition

    PubMed Central

    Afify, Ali; Horlacher, Bérénice; Roller, Johannes; Galizia, C. Giovanni

    2014-01-01

    Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs. PMID:25079819

  1. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  2. [Main breeding-containers for Aedes aegypti and associated culicids, Argentina].

    PubMed

    Stein, Marina; Oria, Griselda Inés; Almirón, Walter Ricardo

    2002-10-01

    Breeding containers for Aedes (Stegomyia) aegypti were identified in two cities of Chaco Province (northeast Argentina): Presidencia Roque Saenz Peña and Machagai. All water-retaining recipients found in house backyards capable to retain water were classified according to their type and size, counted and checked. Aedes aegypti and Culex quinquefasciatus were the most frequently collected species, being also found Cx. maxi, Cx. saltanensis and Ochlerotatus scapularis. Tires and car batteries represented the most important type of container where immature forms of culicids could be found. Rain was an important factor for Ae. aegypti proliferation, as well as the widespread habit of the population of keeping useless containers at home, which allows the development of culicids. PMID:12471389

  3. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously. PMID:26255841

  4. Identification of Aedes aegypti and its respective life stages by real-time polymerase chain reaction.

    PubMed

    McAvin, James C; Bowles, David E; Swaby, James A; Blount, Keith W; Blow, Jamie A; Quintana, Miguel; Hickman, John R; Atchley, Daniel H; Niemeyer, Debra M

    2005-12-01

    An Aedes aegypti-specific, fluorogenic probe hydrolysis (Taq-Man), polymerase chain reaction assay was developed for real-time screening using a field-deployable thermocycler. Laboratory-based testing of A. aegypti, A. aegypti (Trinidad strain), Culex pipiens, Culex quinquefasciatus, Anopheles stephensi, and Ochlerotatus taeniorhynchus individual adult mosquitoes and mixed pools (n = 10) demonstrated 100% concordance in both in vitro sensitivity (six of six samples) and specificity (10 of 10 samples). A single adult A. aegypti was identified in a pool of 100 non-A. aegypti mosquitoes. The limit of detection of A. aegypti egg pools was five individual eggs. Field testing was conducted in central Honduras. An A. aegypti and Culex spp. panel of individual and mixed pools (n = 30) of adult mosquitoes, pupae, and larvae demonstrated 100% concordance in sensitivity (22 of 22 samples) and 97% concordance in specificity (29 of 30 samples), with one false-positive result. Field testing of an A. aegypti and Culex spp. blind panel (n = 16) consisting of individual and mixed pools of adult mosquitoes, pupae, and larvae demonstrated 90% concordance in sensitivity (nine of 10 samples) and 88% concordance in specificity (14 of 16 samples). PMID:16491948

  5. The Molecular Characterization of a Diuretic Hormone Receptor (GPRdih1) From Females of the Yellow Fever Mosquito, Aedes aegypti (L.) 

    E-print Network

    Jagge, Christopher Lloyd

    2011-02-22

    In the yellow fever mosquito, Aedes aegypti (L.), hemolymph-circulating diuretic hormones act upon the renal organs (Malpighian tubules) to regulate primary urine composition and secretion rate; however, the molecular ...

  6. Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

  7. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway

    PubMed Central

    Choy, Milly M.; Sessions, October M.; Gubler, Duane J.; Ooi, Eng Eong

    2015-01-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  8. Resistance in some Caribbean populations of Aedes aegypti to several insecticides.

    PubMed

    Rawlins, S C; Wan, J O

    1995-03-01

    Thirty-four strains of Aedes aegypti larvae from 17 Caribbean countries were bioassayed for sensitivity to temephos, malathion, fenitrothion, fenthion, and chlorpyrifos. There were fairly high levels of resistance in Tortola (10-12-fold resistance) and Antigua (6-9-fold resistance) strains to temephos and to fenthion (Tortola, 7-10-fold; Antigua, 6-10-fold resistance). Most other strains showed some resistance to malathion, fenitrothion, and chlorpyrifos, but only moderate levels. Adult populations of Ae. aegypti--Aruba, Jamaica, Trinidad, Puerto Rico, St. Lucia, and Antigua strains--also showed moderate resistance to malathion. Mosquito control field data supported the laboratory findings. Doubling the diagnostic dosage of temephos for larval Ae. aegypti was only partially effective against a more resistant strain, and even so, the chemical lost its limited efficacy over a short period of time. Integrated strategies for Ae. aegypti control to mitigate the negative effects of insecticide resistance in the Caribbean strains are suggested. PMID:7542312

  9. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  10. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  11. Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, aedes aegypti

    PubMed Central

    2011-01-01

    Background Aedes aegypti mosquitoes are the main vectors of dengue viruses to humans. Understanding their biology and interactions with the pathogen are prerequisites for development of dengue transmission control strategies. Mosquito salivary glands are organs involved directly in pathogen transmission to vertebrate hosts. Information on the spatial distribution of gene expression in these organs is expected to assist in the development of novel disease control strategies, including those that entail the release of transgenic mosquitoes with impaired vector competence. Results We report here the hybridization in situ patterns of 30 transcripts expressed in the salivary glands of adult Ae. aegypti females. Distinct spatial accumulation patterns were identified. The products of twelve genes are localized exclusively in the proximal-lateral lobes. Among these, three accumulate preferentially in the most anterior portion of the proximal-lateral lobe. This pattern revealed a salivary gland cell type previously undescribed in Ae. aegypti, which was validated by transmission electron microscopy. Five distinct gene products accumulate in the distal-lateral lobes and another five localize in the medial lobe. Seven transcripts are found in the distal-lateral and medial lobes. The transcriptional product of one gene accumulates in proximal- and distal-lateral lobes. Seven genes analyzed by quantitative PCR are expressed constitutively. The most abundant salivary gland transcripts are those localized within the proximal-lateral lobes, while previous work has shown that the distal-lateral lobes are the most active in protein synthesis. This incongruity suggests a role for translational regulation in mosquito saliva production. Conclusions Transgenic mosquitoes with reduced vector competence have been proposed as tools for the control of dengue virus transmission. Expression of anti-dengue effector molecules in the distal-lateral lobes of Ae. aegypti salivary glands has been shown to reduce prevalence and mean intensities of viral infection. We anticipate greater efficiency of viral suppression if effector genes are expressed in all lobes of the salivary glands. Based on our data, a minimum of two promoters is necessary to drive the expression of one or more anti-dengue genes in all cells of the female salivary glands. PMID:21205315

  12. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak. PMID:26611963

  13. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect

    PubMed Central

    Russell, Tanya L.; Braks, Marieta A. H.

    2015-01-01

    Background Dengue is the most prevalent arboviral disease transmitted by Aedes aegypti worldwide, whose chemical control is difficult, expensive, and of inconsistent efficacy. Releases of Metarhizium anisopliae—exposed Ae. aegypti males to disseminate conidia among female mosquitoes by mating represents a promising biological control approach against this important vector. A better understanding of fungus virulence and impact on reproductive parameters of Ae. aegypti, is need before testing auto-dissemination strategies. Methodology/Principal Findings Mortality, mating competitiveness, sperm production, and the capacity to auto-disseminate the fungus to females up to the 5thcopulation, were compared between Aedes aegypti males exposed to 5.96 x 107 conidia per cm2 of M. anisopliae and uninfected males. Half (50%) of fungus-exposed males (FEMs) died within the first 4 days post-exposure (PE). FEMs required 34% more time to successively copulate with 5 females (165 ± 3 minutes) than uninfected males (109 ± 3 minutes). Additionally, fungus infection reduced the sperm production by 87% at 5 days PE. Some beneficial impacts were observed, FEMs were able to successfully compete with uninfected males in cages, inseminating an equivalent number of females (about 25%). Under semi-field conditions, the ability of FEMs to search for and inseminate females was also equivalent to uninfected males (both inseminating about 40% females); but for the remaining females that were not inseminated, evidence of tarsal contact (transfer of fluorescent dust) was significantly greater in FEMs compared to controls. The estimated conidia load of a female exposed on the 5th copulation was 5,200 mL-1 which was sufficient to cause mortality. Conclusion/Significance Our study is the first to demonstrate auto-dissemination of M. anisopliae through transfer of fungus from males to female Ae. aegypti during mating under semi-field conditions. Our results suggest that auto-dissemination studies using releases of FEMs inside households could successfully infect wild Ae. aegypti females, providing another viable biological control tool for this important the dengue vector. PMID:26473490

  14. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. PMID:25102062

  15. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

  16. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females are parous for the mean temperatures of 27°C and 30°C. Conclusion Parity rates can be determined for field collected females and could be a good proxy of the expectation of infective life according to temperatures. However, for the same parity rates, the estimation of infective life expectation is very different between Ae. aegypti and Anopheles gambiae mosquitoes. Correlation of field parity rates with transmission risks requires absolutely to be based on Ae. aegypti models, since available Anopheles sp. models underestimate greatly the females longevity. PMID:26258684

  17. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.

    PubMed

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M; Adelman, Zach N

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has surpassed the proof of principle stage and is now utilized in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  18. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  19. Pathogenicity of some hypocrealean fungi to adult Aedes aegypti (Diptera: Culicidae).

    PubMed

    Leles, Renan Nunes; Sousa, Nathalia Almeida; Rocha, Luiz Fernando Nunes; Santos, Adelair Helena; Silva, Heloisa Helena Garcia; Luz, Christian

    2010-10-01

    The pathogenicity of 19 hypocrealean entomopathogenic fungi from seven different genera in adult Aedes aegypti was tested. All fungi proved to be pathogenic, and Isaria fumosorosea, Lecanicillium muscarium, Lecanicillium psalliotae, Metarhizium anisopliae, Metarhizium lepidiotae, Metarhizium majus, Metarhizium frigidum, Paecilomyces carneus, and Paecilomyces lilacinus caused total mortality within 15 days of exposure of mosquitoes to the fungal culture. All fungi developed on dead individuals. The high susceptibility of adults to most tested strains underlines the interest of entomopathogenic fungi-especially those of the genera Metarhizium, Isaria, Paecilomyces and Lecanicillium--for biological control of A. aegypti. PMID:20680340

  20. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    PubMed

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-01-01

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide. PMID:26247928

  1. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 ?g/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  2. Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    PubMed Central

    Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke

    2015-01-01

    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ?C31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ?C31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287

  3. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. PMID:26335482

  4. In silico models for predicting vector control chemicals targeting Aedes aegypti

    PubMed Central

    Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.

    2014-01-01

    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884

  5. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    PubMed Central

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ?25-50 fold in whole adults by four hours after heat-shock, with significant activity (?20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ?2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  6. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

    2014-01-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

  7. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  8. Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions

    PubMed Central

    2013-01-01

    Background Entomopathogenic fungi could be useful tools for reducing populations of the dengue mosquito Aedes aegypti. Here the efficiency of fungus (Metarhizium anisopliae) impregnated cloths (with and without imidacloprid [IMI]) was evaluated against adult A. aegypti in simulated human dwellings. Behaviour of mosquitoes in the presence of black cloths was also investigated. Findings When mosquitoes were released into the test rooms, the lowest survival rates (38%) were seen when five black cloths impregnated with conidia of ESALQ 818?+?10 ppm IMI were fixed under tables and chairs. This result was significantly lower than the survival rate recorded when cloths were impregnated with ESALQ 818 alone (44%) or ESALQ 818?+?0.1 ppm IMI (43%). Blood fed A. aegypti had lower landing frequencies on black cloths than sucrose fed insects during the first 24 h following feeding, which may have been due to reduced flight activity. Few mosquitoes (4-5%) were observed to land on the cloths during the hours of darkness. The landing pattern of sucrose-fed mosquitoes on non-treated and fungus-treated cloths was similar. Conclusion The synergism between M. anisopliae and IMI significantly reduced Aedes survival in simulated field conditions. The use of fungus impregnated cloths is a promising point source application method for the control of adult A. aegypti. PMID:24010874

  9. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics

    PubMed Central

    Albeny-Simoes, Daniel; Murrell, Ebony G.; Elliot, Simon L.; Andrade, Mateus R.; Lima, Eraldo; Juliano, Steven A.; Vilela, Evaldo F.

    2014-01-01

    Oviposition habitat choices of species with aquatic larvae is expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposit in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. Aedes aegypti preferentially oviposited in sites with T. theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic Tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding. PMID:24590205

  10. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-12-01

    Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands. PMID:26344869

  11. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    PubMed

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. PMID:23077986

  12. Body Size and Wing Shape Measurements as Quality Indicators of Aedes aegypti Mosquitoes Destined for Field Release

    PubMed Central

    Yeap, Heng Lin; Endersby, Nancy M.; Johnson, Petrina H.; Ritchie, Scott A.; Hoffmann, Ary A.

    2013-01-01

    There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly Wolbachia-infected Aedes aegypti for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape. We tested to determine if size, wing/thorax ratio, and wing shape are associated with field fitness of Wolbachia-infected Ae. aegypti. Compared with field-collected mosquitoes, released mosquitoes were larger in size, with lower size variance and different wing shape but similar in wing-thorax ratio and its associated variance. These differences were largely attributed to nutrition and to a minor extent to wMel Wolbachia infection. Survival potential of released female mosquitoes was similar to those from the field. Females at oviposition sites tended to be larger than those randomly collected from BG-Sentinel traps. Rearing conditions should thus aim for large size without affecting wing/thorax ratios. PMID:23716403

  13. Behavioral responses of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus against various synthetic and natural repellent compounds.

    PubMed

    Sathantriphop, Sunaiyana; White, Sabrina A; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2014-12-01

    The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito-repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65-98% escape for contact, 21.4-94.4% escape for non-contact) compared to Ae. aegypti (3.7-72.2% escape (contact), 0-31.7% (non-contact)) and Ae. albopictus (3.5-94.4% escape (contact), 11.2-63.7% (non-contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65-97.8% escape) than non-contact repellents (0-50.8% escape for non-contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes. PMID:25424262

  14. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250??g/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000??g/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  15. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  16. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences. PMID:26334807

  17. Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Dong, Shengzhang; Lin, Jingyi; Held, Nicole L.; Clem, Rollie J.; Passarelli, A. Lorena; Franz, Alexander W. E.

    2015-01-01

    In vivo targeted gene disruption is a powerful tool to study gene function. Thus far, two tools for genome editing in Aedes aegypti have been applied, zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). As a promising alternative to ZFN and TALEN, which are difficult to produce and validate using standard molecular biological techniques, the clustered regularly interspaced short palindromic repeats/CRISPR-associated sequence 9 (CRISPR/Cas9) system has recently been discovered as a "do-it-yourself" genome editing tool. Here, we describe the use of CRISPR/Cas9 in the mosquito vector, Aedes aegypti. In a transgenic mosquito line expressing both Dsred and enhanced cyan fluorescent protein (ECFP) from the eye tissue-specific 3xP3 promoter in separated but tightly linked expression cassettes, we targeted the ECFP nucleotide sequence for disruption. When supplying the Cas9 enzyme and two sgRNAs targeting different regions of the ECFP gene as in vitro transcribed mRNAs for germline transformation, we recovered four different G1 pools (5.5% knockout efficiency) where individuals still expressed DsRed but no longer ECFP. PCR amplification, cloning, and sequencing of PCR amplicons revealed indels in the ECFP target gene ranging from 2-27 nucleotides. These results show for the first time that CRISPR/Cas9 mediated gene editing is achievable in Ae. aegypti, paving the way for further functional genomics related studies in this mosquito species. PMID:25815482

  18. Spatial Clustering of Aedes aegypti Related to Breeding Container Characteristics in Coastal Ecuador: Implications for Dengue Control

    PubMed Central

    Schafrick, Nathaniel H.; Milbrath, Meghan O.; Berrocal, Veronica J.; Wilson, Mark L.; Eisenberg, Joseph N. S.

    2013-01-01

    Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ? 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts. PMID:24002483

  19. Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Lara, Flavio A.; Dias, Felipe A.; Gandara, Ana Caroline P.; Menna-Barreto, Rubem F. S.; Edwards, Meredith C.; Laurindo, Francisco R. M.; Silva-Neto, Mário A. C.; Sorgine, Marcos H. F.; Oliveira, Pedro L.

    2011-01-01

    The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme. PMID:21445237

  20. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago

    PubMed Central

    Fonzi, Eugenio; Higa, Yukiko; Bertuso, Arlene G.; Futami, Kyoko; Minakawa, Noboru

    2015-01-01

    Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. PMID:26039311

  1. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting. PMID:23469302

  2. Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

    2014-01-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  3. Stormwater drains and catch basins as sources for production of Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Arana-Guardia, Roger; Baak-Baak, Carlos M; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J; Eisen, Lars; García-Rejón, Julián E

    2014-06-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1761 stormwater drains - located in 45 different neighborhoods spread across the city - over dry and wet seasons from March 2012 to March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  4. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval. PMID:26047194

  5. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico.

    PubMed

    Martinez-Ibarra, J A; Rodriguez, M H; Arredondo-Jimenez, J I; Yuval, B

    1997-11-01

    The availability of flowering plants affected the sugar feeding rates of female Aedes aegypti (L.) in 4 areas of a small city in southern Mexico. The proportion of mosquitoes containing sugar varied from 8 to 21% in 4 areas in direct relation to blooming plant abundance. Human density was similar in the 4 areas (range, 3.9-5.4 per house), whereas the number of flowering plants per house increased on the outskirts (range, 3.1-5.4 plants per house). Equal proportions of sugar positive females were nulliparous or parous, indicating similar sugar feeding at any age. In addition, nearly 60% of positive females were at the Christophers stage II, indicating a greater need for flight fuel during the early stages of egg development. We conclude that Ae. aegypti feeds frequently on nectar and that this activity is modulated by nectar availability. PMID:9439110

  6. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  7. Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC.

    PubMed

    Lima, Andrew; Lovin, Diane D; Hickner, Paul V; Severson, David W

    2016-01-01

    Aedes aegypti is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of Ae. aegypti collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial cytochrome oxidase I gene sequence identified the same two haplotype sequences during 2011-2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011-2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival. PMID:26526922

  8. Indoor volatiles of primary school classrooms in Tapachula, Chiapas, Mexico, are attractants to Aedes aegypti females.

    PubMed

    Torres Estrada, José Luis; Ríos Delgado, Silvany Mayoly; Takken, Willem

    2013-09-01

    We determined the behavioral response of Aedes aegypti females to volatile compounds collected in indoor primary school classrooms. Volatiles were collected from classrooms from 0800 through 1030 h and 1130 through 1400 h in urban and rural schools in Tapachula, Chiapas, Mexico. Female responses to volatiles were assessed in a Y-tube olfactometer. Chemical compounds were identified using gas chromatography-mass spectrometer analysis. Volatiles from both schools were attractive when compared against their control. When such volatiles were compared, those from the rural school were more attractive than the ones from the urban school. Chromatographic profiles were similar between schools; however, the rural school showed more compounds. Attraction of Ae. aegypti females toward volatiles of primary school classrooms might increase dengue transmission probabilities in those sites. PMID:24199507

  9. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gleiser, Raquel M; Bonino, Maria A; Zygadlo, Julio A

    2011-01-01

    Mosquitoes are vectors of pathogens to humans and domestic animals and may also have economical impacts. One approach to prevent mosquito-borne diseases is bite deterrence through the application of repellents. Currently, there is an interest to search for alternative bioactive products to the synthetic active ingredients most widely used in insect repellents. Repellence against Aedes aegypti of essential oils extracted from Acantholippia salsoloides, Aloysia catamarcensis, Aloysia polystachya, Lippia integrifolia, Lippia junelliana (Verbenaceae), Baccharis salicifolia, Euphatorium buniifolium, and Tagetes filifolia (Asteraceae) were assessed. Tests were conducted by alternatively exposing untreated and treated forehand to the mosquitoes and counting probing attempts. All essential oils tested were significantly repellent against A. aegypti when compared to untreated controls; L. junelliana was the most repellent and T. filifolia was the least based on the response of the mosquitoes to different concentrations of the essential oils (EO). Repellence may be attributed to the respective main components of each EO. PMID:20838809

  10. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  11. Dual African Origins of Global Aedes aegypti s.l. Populations Revealed by Mitochondrial DNA

    PubMed Central

    Moore, Michelle; Sylla, Massamba; Goss, Laura; Burugu, Marion Warigia; Sang, Rosemary; Kamau, Luna W.; Kenya, Eucharia Unoma; Bosio, Chris; Munoz, Maria de Lourdes; Sharakova, Maria; Black, William Cormack

    2013-01-01

    Background Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated. Methods and Findings ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades. Conclusions Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa PMID:23638196

  12. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

    PubMed

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. PMID:26310269

  13. Risk Factors for the Presence of Aedes aegypti and Aedes albopictus in Domestic Water-Holding Containers in Areas Impacted by the Nam Theun 2 Hydroelectric Project, Laos

    PubMed Central

    Hiscox, Alexandra; Kaye, Angela; Vongphayloth, Khamsing; Banks, Ian; Piffer, Michele; Khammanithong, Phasouk; Sananikhom, Pany; Kaul, Surinder; Hill, Nigel; Lindsay, Steven W.; Brey, Paul T.

    2013-01-01

    We assessed risk factors for vectors of dengue and chikungunya viruses near a new hydroelectric project, Nam Theun 2, in Laos. Immature stages of Aedes aegypti were found only in sites within 40 km of the urban provincial capital, but Aedes albopictus was found throughout. Aedes aegypti pupae were most common in water storage jars (odds ratio [OR] = 4.72) and tires (OR = 2.99), and Ae. albopictus pupae were associated with tires in 2009 (OR = 10.87) and drums, tires, and jars in 2010 (drums OR = 3.05; tires OR = 3.45, jars OR = 6.59). Compared with water storage vessels, containers used for hygiene, cooking, and drinking were 80% less likely to harbor Ae. albopictus pupae in 2010 (OR = 0.20), and discarded waste was associated with a 3.64 increased odds of infestation. Vector control efforts should focus on source reduction of water storage containers, particularly concrete jars and tires. PMID:23458958

  14. Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

    PubMed Central

    Oliferenko, Polina V.; Oliferenko, Alexander A.; Poda, Gennadiy I.; Osolodkin, Dmitry I.; Pillai, Girinath G.; Bernier, Ulrich R.; Tsikolia, Maia; Agramonte, Natasha M.; Clark, Gary G.; Linthicum, Kenneth J.; Katritzky, Alan R.

    2013-01-01

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort. PMID:24039693

  15. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short exposure times. PMID:21266078

  16. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti

    PubMed Central

    Anholeti, Maria C; Duprat, Rodrigo C; Figueiredo, Maria R; Kaplan, Maria AC; Santos, Marcelo Guerra; Gonzalez, Marcelo S; Ratcliffe, Norman A; Feder, Denise; Paiva, Selma R; Mello, Cicero B

    2015-01-01

    Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis. PMID:26200711

  17. The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Hammond, John I.; Hansen, Immo A.

    2015-01-01

    Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for “natural” DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject’s hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases. PMID:26443777

  18. The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Hammond, John I; Hansen, Immo A

    2015-10-01

    Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for "natural" DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject's hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases. PMID:26443777

  19. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. PMID:24820563

  20. The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Boudko, Dmitri Y.; Marinotti, Osvaldo; Carpenter, Victoria K.; Dawe, Angus L.; Hansen, Immo A.

    2010-01-01

    Background The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Methodology/Principal Findings Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Conclusions/Significance Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies. PMID:21249121

  1. The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre-and Post-Blood Meal

    E-print Network

    Houde, Peter

    The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal States of America Abstract Background: The fat body is the main organ of intermediary metabolism mosquito fat body physiology and to identify novel targets for insect control, we have conducted

  2. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  3. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other ...

  4. Complete Genome Sequence of Chikungunya Virus Isolated from an Aedes aegypti Mosquito during an Outbreak in Yemen, 2011.

    PubMed

    Fahmy, Nermeen T; Klena, John D; Mohamed, Amr S; Zayed, Alia; Villinski, Jeffrey T

    2015-01-01

    Chikungunya virus is recognized as a serious public health problem. The complete genome was sequenced for a chikungunya virus isolated from the mosquito Aedes aegypti during a 2011 outbreak in Al Hodayda, Yemen, which resulted in significant human fatalities. Phylogenetic analysis demonstrated that this Yemeni isolate is most closely related to Indian Ocean strains of the east/central/south African genotype. PMID:26184944

  5. Laboratory studies of selected ketones, sulfides, and chloroalkanes on the host-seeking behavior of Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic attractant blends formulated from L-lactic acid and several synergists elicit significant attraction of Aedes aegypti (L.) and An. albimanus (Weidemann) in olfactometer bioassays using a triple-cage dual-port olfactometer. The synergists in these blends are commonly acetone and/or dimeth...

  6. Sub-lethal metal stress response of larvae of Aedes aegypti

    PubMed Central

    Perez, Mario H.; Noriega, Fernando G.

    2014-01-01

    Aedes aegypti (Diptera: Culicidae) has adapted to urban environments; the urbanisation process provides suitable habitats for this disease vector subsequently increasing the probability of the transmission of pathogens in high-density environments. Urban environments provide metal stressed larval habitats. However, little is known about the physiological cost of metal stress or how this might affect the performance of this mosquito species. This study aims to characterise the sub-lethal physiological consequences of metal stress in Aedes aegypti. Various parameters of mosquito physiology under larval metal stress are assessed including larval metallothionein expression and the effects of larval metal stress on adult performance and their progeny. Results show that environmentally relevant larval metal stress compromises larval and adult development and performance, and results in larval metal tolerance along with an increase in lipid consumption. These performance costs are coupled to a dramatic increase in metallothionein expression in the midgut. Metal stress results in lowered adult body mass and neutral storage lipids at emergence, starvation tolerance, fecundity and starvation tolerance of offspring compared to non-metal stressed individuals. Ironically, larval metal stress results in increased adult longevity. Together, these findings indicate that even low levels of environmentally relevant larval metal stress have considerable physiological consequences for this important disease vector. PMID:24926118

  7. Bacillus thuringiensis var. israelensis (Bti) Provides Residual Control of Aedes aegypti in Small Containers

    PubMed Central

    Ritchie, Scott A.; Rapley, Luke P.; Benjamin, Seleena

    2010-01-01

    We examined the use of megadoses of VectoBac WG for residual control of Aedes aegypti in 2-L plastic buckets. Doses of 10×, 20×, and 50× the recommended rate of 8 mg/L provided ? 90% control for 8, 8, and 23 weeks, respectively. There was no significant difference in mortality between dry (neat) or aqueous mixture of VectoBac WG. Pretreatment of dry containers up to 8 weeks before flooding did not significantly decrease efficacy through 11 success weeks. Thus, megadoses of dry formulations of Bti can be used for residual control of Ae. aegypti in small containers. Furthermore, these doses use small amounts of product (0.08–0.4 g/L) that is more practical to measure than the minute amounts (0.008 g/L) required by the recommended rate, and cost US$2.18 to treat 50 Cairns yards containing an average total of 80 containers. This method could also be used to control Aedes albopictus. PMID:20519600

  8. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Balkew, Meshesha; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  9. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  10. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World." PMID:26518229

  11. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  12. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  13. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; Quattrochi, D.; MorenoMadrinan, M. J.

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  14. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches

    PubMed Central

    2013-01-01

    Background An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Methods Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00–12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00–18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Results Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Conclusion Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the pyrethroid compounds transfluthrin and metofluthrin and no change in recapture densities using DDT as compared to matched controls. These findings suggest a combined SR and BGS approach to vector control could function as a push-pull strategy to reduce Ae. aegypti adults in and around homes. PMID:23688176

  15. Larvicidal and Cytotoxic Potential of Squamocin on the Midgut of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Costa, Marilza S.; Cossolin, Jamile F. S.; Pereira, Mônica J. B.; Sant’Ana, Antônio E. G.; Lima, Milena D.; Zanuncio, José C.; Serrão, José Eduardo

    2014-01-01

    Acetogenins are secondary metabolites exclusively produced by Annonaceae, which have antitumor, cytotoxic, and pesticide activities. In this study, we evaluated the larvicidal and cytotoxic effect of squamocin from Annona squamosa on Aedes aegypti (Diptera: Culicidae) midgut. The compound was solubilized in 2% Tween 20 at 10, 20, 50, 80 and 100 ppm. The assay was conducted in a completely randomized design with four replications, each with 20 third-instar larvae. Larval mortality was assessed every hour until total mortality, and the data were subjected to Probit analysis. Cellular damage was evaluated every 30 min in groups comprising five larvae subjected to squamocin at 50 and 100 ppm for 240 min. The total larval mortality occurred after 360 min following application of 50, 80, and 100 ppm squamocin, and 600 min after applying other concentrations with LC50 at 6.4 ppm. Both 50 and 100 ppm of squamocin showed cytotoxic activity in the midgut epithelium of A. aegypti after 240 min with 50 ppm resulting in midgut cells with light cytoplasm containing small vacuoles, whereas at 100 ppm were found cells with cytoplasm highly vacuolated, damaged apical surface and cell protrusion toward the gut lumen. In conclusion, squamocin has the potential to control A. aegypti. PMID:24674934

  16. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

  17. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  18. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae.

    PubMed

    de Oliveira, Lucilene O; Fernandes, Kátia V S; Pádua, Dayanni de Souza; Carvalho, André de O; Lemos, Francisco J A; Gomes, Valdirene M; Oliveira, Antônia E A; Ferreira, André T da Silva; Perales, Jonas

    2015-01-01

    Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.93 % the activity of digestive enzymes of fourth instar A. aegypti larva. A partial amino acid sequence showed strong similarity with sequences from several trypsin inhibitors already reported in the literature. The 13,000 Da isolated inhibitor was seen to be active solely against trypsin-like enzymes, neither acting on papain, ?-amylase nor on other serine proteases, such as elastase, chymotrypsin or subtilisin. At least six from seven active digestive proteases from A. aegypti larvae, visualized by zymography, were severely affected soon after exposed to the inhibitor. The strong and specific action of the isolated inhibitor against trypsin digestive enzymes of this insect vector led us to believe that this protein may be a good candidate for a prospective alternative biocontrol method. PMID:26156641

  19. Identification and Characterisation of Aedes aegypti Aldehyde Dehydrogenases Involved in Pyrethroid Metabolism

    PubMed Central

    Lumjuan, Nongkran; Wicheer, Jureeporn; Leelapat, Posri; Choochote, Wej; Somboon, Pradya

    2014-01-01

    Background Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism. Methodology/Principal Findings Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid). Conclusions/Significance ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies. PMID:25047125

  20. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Costa, Marilza S; Cossolin, Jamile F S; Pereira, Mônica J B; Sant'Ana, Antônio E G; Lima, Milena D; Zanuncio, José C; Serrão, José Eduardo

    2014-04-01

    Acetogenins are secondary metabolites exclusively produced by Annonaceae, which have antitumor, cytotoxic, and pesticide activities. In this study, we evaluated the larvicidal and cytotoxic effect of squamocin from Annona squamosa on Aedes aegypti (Diptera: Culicidae) midgut. The compound was solubilized in 2% Tween 20 at 10, 20, 50, 80 and 100 ppm. The assay was conducted in a completely randomized design with four replications, each with 20 third-instar larvae. Larval mortality was assessed every hour until total mortality, and the data were subjected to Probit analysis. Cellular damage was evaluated every 30 min in groups comprising five larvae subjected to squamocin at 50 and 100 ppm for 240 min. The total larval mortality occurred after 360 min following application of 50, 80, and 100 ppm squamocin, and 600 min after applying other concentrations with LC50 at 6.4 ppm. Both 50 and 100 ppm of squamocin showed cytotoxic activity in the midgut epithelium of A. aegypti after 240 min with 50 ppm resulting in midgut cells with light cytoplasm containing small vacuoles, whereas at 100 ppm were found cells with cytoplasm highly vacuolated, damaged apical surface and cell protrusion toward the gut lumen. In conclusion, squamocin has the potential to control A. aegypti. PMID:24674934

  1. Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil.

    PubMed

    Mendonça, Barbara Alessandra Alves; de Sousa, Adna Cristina Barbosa; de Souza, Anete Pereira; Scarpassa, Vera Margarete

    2014-06-01

    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. PMID:24631342

  2. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2015-12-01

    Aedes aegypti (L.) mosquitoes preferentially oviposit in natural and artificial receptacles where their eggs are able to withstand drying as water levels fluctuate. Desiccation-resistant eggs also increase the potential for establishment in non-native habitats while providing logistical impediments to control programs. Viability and mean survival times of eggs stored under three dryness conditions for up to 367 days were investigated among three field-derived colonies of Australian Ae. aegypti to understand variation in desiccation survival. Further investigations compared egg survival between an established colony and its wild counterpart. Our results confirmed that Ae. aegypti eggs can withstand desiccation for extended periods of time with approximately 2-15% egg viability recorded after one year and viability remaining above 88% under all conditions through 56 days. Intraspecific variations in egg survival times were recorded, suggesting local adaptation while each of the colonies demonstrated a consistent preference for higher humidity. Egg volume varied between the populations, suggesting a relationship between egg volume and survival time, with the marginally larger eggs (Charters Towers and Innisfail) having greater desiccation resistance over the range of conditions. The strong survivorship of Charters Towers eggs in dry, warm conditions demonstrates the adaptive significance of a desiccation-resistant egg. PMID:26611964

  3. Aedes aegypti pharate 1st instar quiescence: A case for anticipatory reproductive plasticity

    PubMed Central

    Perez, Mario H.; Noriega, Fernando G.

    2013-01-01

    Aedes aegypti mosquitoes use pharate 1st instar quiescence to cope with fluctuations in water availability hosting a fully developed 1st instar larvae within the chorion. The duration of this quiescence has been shown to affect larval fitness. This study s ought to determine if an extended egg quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Our findings indicate that extended pharate 1st quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner. This study demonstrates that phenotypic plasticity results as a consequence of the duration of pharate 1st instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. These findings have implications for A. aegypti’s success as a vector, geographic distribution, vector capacity and control. PMID:23298690

  4. Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores, Adriana E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2014-01-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from México, and one from Perú. The response to selection was tracked in terms of lethal concentrations (LC50). Uniform upregulation was seen in the epsilon class glutathione-S-transferase genes (eGSTs) in strains from México prior to laboratory selection, while eGSTs in the Iquitos Perú strain became upregulated following five generations of temephos selection. While expression of many esterase genes (CCE) increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 genes (CYP) and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using GST, CCE and CYP inhibitors suggest that various CCE instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  5. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  6. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes.

    PubMed

    Arbaoui, A A; Chua, T H

    2014-03-01

    Since a safe and effective mass vaccination program against dengue fever is not presently available, a good way to prevent and control dengue outbreaks depends mainly on controlling the mosquito vectors. Aedes aegypti mosquito populations can be monitored and reduced by using ovitraps baited with organic infusions. A series of laboratory experiments were conducted which demonstrated that the bacteria in bamboo leaf infusion produce volatile attractants and contact chemical stimulants attractive to the female mosquitoes. The results showed that the female mosquitoes laid most of their eggs (59.9 ± 8.1 vs 2.9 ± 2.8 eggs, P<0.001) in bamboo leaf infusions when compared to distilled water. When the fresh infusion was filtered with a 0.45 ?m filter membrane, the female mosquitoes laid significantly more eggs (64.1 ± 6.6 vs 4.9 ± 2.6 eggs, P<0.001) in unfiltered infusion. However when a 0.8 ?m filter membrane was used, the female laid significantly more eggs (62.0 ± 4.3 vs 10.1 ± 7.8 eggs, P<0.001) in filtrate compared to a solution containing the residue. We also found that a mixture of bacteria isolated from bamboo leaf infusion serve as potent oviposition stimulants for gravid Aedes mosquitoes. Aedes aegypti laid significantly more eggs (63.3 ± 6.5 vs 3.1 ± 2.4 eggs, P<0.001) in bacteria suspension compared to sterile R2A medium. Our results suggest microbial activity has a role in the production of odorants that mediate the oviposition response of gravid mosquitoes. PMID:24862053

  7. The influence of diet on the use of near-infrared spectroscopy to determine the age of female Aedes aegypti mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (>/='7 days) are of greatest epidemiological significan...

  8. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  9. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    E-print Network

    Juneja, Punita; Ariani, Cristina V.; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2015-03-27

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model...

  10. Cloning, Immunolocalization and Functional Analyses of Calcitonin Receptor 1 (AedaeGPRCAL1; Diuretic Hormone 31 Receptor) in Females of Mosquito Aedes aegypti (Diptera: Culicidae) 

    E-print Network

    Kwon, Hyeog Sun

    2013-04-26

    , and hormones. The calcitonin-like diuretic hormone 31 (DH31) is known to elicit natriuresis from the Malpighian tubules (MTs) of mosquitoes Anopheles gambiae and Aedes aegypti upon blood feeding. However, the contribution of DH31 cognate receptor, calcitonin...

  11. Inheritance of Resistance to Deltamethrin in Aedes aegypti (Diptera: Culicidae) From Cuba.

    PubMed

    Rodríguez, María Magdalena; Hurtado, Daymi; Severson, David W; Bisset, Juan A

    2014-11-01

    The development of pyrethroid resistance in Aedes aegypti (L) (Diptera: Culicidae) is a serious concern because major A. aegypti control programs are predominantly based on pyrethroid use during epidemic disease outbreaks. Research about the genetic basis for pyrethroid resistance and how it is transmitted among mosquito populations is needed. The objective of this study was to determine how deltamethrin resistance is inherited in the Cuban A. aegypti-resistant reference strain. Here, a field population of A. aegypti from Santiago de Cuba (SAN-F14), subjected to 14 generations of selection for high deltamethrin resistance level (91.25×), was used to prepare reciprocal F1 and backcross progeny with the insecticide-susceptible Rockefeller strain. Bioassays with larvae were performed according to World Health Organization guidelines. The activities of metabolic enzymes were assayed through synergist and biochemical tests. The null hypothesis of the parallelism test between the two probit regression lines of the reciprocal F1 (susceptible females × resistant males and vice versa) was not rejected at the 5% significance level (P = 0.42), indicating autosomal inheritance. The LC50 response of both F1 progenies to deltamethrin was elevated but less than the highly resistant SAN-F14 strain. DLC values for the F1 progenies were 0.91 and 0.87, respectively, suggesting that deltamethrin resistance in the SAN-F14 strain is inherited as an autosomal incompletely dominant trait, involving at least two factors, which implies a faster development of deltamethrin resistance in larvae and lost product effectiveness. Metabolic enzymes including esterases and cytochrome P-450 monooxygenases but not glutathione-S-transferases were involved in deltamethrin resistance in larvae. PMID:26309309

  12. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating “egg sinks,” treated sites that exploit conspecific attraction of ovipositing females, but reduce emergence of adult mosquitoes via density-dependent larval competition and late acting insecticide. PMID:21532736

  13. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    PubMed

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise Dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality?98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), ?-esterase (19%) and ?-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major insecticides used for vector control, deltamethrin and temephos. To our knowledge, this is the first report of temephos resistance in an African A. aegypti population. The low level of temephos resistance was maintained from 2012-2014, which suggested the imposition of selective pressure, although it was not possible to identify the resistance mechanisms involved. These data show that the potential failures in the local mosquito control program are not associated with insecticide resistance. PMID:26307496

  14. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae

    PubMed Central

    Gama, Zulfaidah Penata; Nakagoshi, Nobukazu; Suharjono; Setyowati, Faridah

    2013-01-01

    Objective To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Methods Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Results Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Conclusions Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×108 cells/mL). PMID:23593589

  15. Discovery and Characterization of a Potent and Selective Inhibitor of Aedes aegypti Inward Rectifier Potassium Channels

    PubMed Central

    Raphemot, Rene; Rouhier, Matthew F.; Swale, Daniel R.; Days, Emily; Weaver, C. David; Lovell, Kimberly M.; Konkel, Leah C.; Engers, Darren W.; Bollinger, Sean F.; Hopkins, Corey; Piermarini, Peter M.; Denton, Jerod S.

    2014-01-01

    Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening ‘hits’, the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides. PMID:25375326

  16. Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

  17. Immunotoxicity activity from various essential oils of Angelica genus from South Korea against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Kim, Eun-Hye; Lee, Jai-Heon; Lee, Young-Choon; Moon, Hyung-In

    2012-02-01

    The leaves of Angelica anomala Lallemant, Angelica cartilagino-marginata var. distans (Nakai) Kitag, Angelica czernevia (Fisch. et Meyer) Kitagawa, Angelica dahurica Benth. et Hooker, Angelica decursiva (Miq.) Franch. & Sav, Angelica fallax Boissieu, Angelica gigas Nakai, Angelica japonica A. gray were essential oil extracted and immunotoxicity effects were studied. The Angelica anomala, A. cartilagino-marginata var. distans, A. czernevia, A. dahurica, A. decursiva, A. fallax, A. gigas, A. japonica essential oil yield were 4.13, 4.83, 4.45, 3.25, 4.11, 4.73, 4.34 and 4.21%. The A. dahurica essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with a lethal concentration 50 (LC??) value of 43.12?ppm and an LC?? value of 65.23?ppm. The above indicates that essential oil contents may play a more important role in the toxicity of essential oil. PMID:21506693

  18. Proteomic analysis of the mosquito Aedes aegypti midgut brush border membrane vesicles

    PubMed Central

    Popova-Butler, Alexandra; Dean, Donald H.

    2009-01-01

    We analyzed brush border membrane vesicle proteins from isolated midguts of the mosquito Aedes aegypti, by two proteomic methods: two-dimensional gel electrophoresis (isoelectric focusing and SDS-PAGE) and a shotgun two-dimensional liquid chromatographic (LS/LS) approach based on multidimensional protein identification technology (MudPIT). We were interested in the most abundant proteins of the apical brush border midgut membrane. About 400 spots were detected on 2D gels and 39 spots were cored and identified by mass spectrometry. 86 proteins were identified by MudPIT. Three proteins, arginine kinase, putative allergen and actin are shown to be the most predominant proteins in the sample. The total number of 36 proteins detected by both methods represents the most abundant proteins in the BBMV. PMID:19133270

  19. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. PMID:26336228

  20. Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L. against Aedes aegypti L.

    PubMed

    Chung, Iii-Min; Kim, Sun-Jin; Yeo, Min-A; Park, Se-Won; Moon, Hyung-In

    2011-09-01

    Ficus carica L., its fruits are delicious and can be eaten by human. Its leaves are commonly used to cure hemorrhoid and clear away heart ache. The milky sap of F. carica have a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an lethal concentration (LC(50)) value of 10.2??g/ml and an LC(90) value of 42.3??g/ml. Two natural furocoumarins, 5-methoxypsoralen and 8-methoxypsoralen were isolated from the milky sap of F. carica. The LC(50) value of 5-methoxypsoralen and 8-methoxypsoralen were 9.4 and 56.3??g/ml, respectively. The above indicates that major compounds may play a more important role in the toxicity of the milky sap of F. carica. PMID:21214422

  1. Selection of oviposition sites by female Aedes aegypti exposed to two larvicides.

    PubMed

    Quiroz-Martínez, Humberto; Garza-Rodríguez, Mara Ivonne; Trujillo-González, Martha Irma; Zepeda-Cavazos, Irma Guadalupe; Siller-Aguillon, Ilse; Martínez-Perales, Juan Francisco; Rodríguez-Castro, Violeta Ariadna

    2012-03-01

    The selection of oviposition sites by female mosquitoes involves the ability to choose less dangerous larval habitats. The aim of the present study was to evaluate the ovipositional behavior of female Aedes aegypti in selecting sites treated with 2 different larvicides. The study was conducted in metal cages with plastic cups containing paper strips and either spinosad or temephos, or dechlorinated water (control). After exposing all treated and control cups to ovipositing female mosquitoes for 3 days, the paper strips were removed and examined for egg laying. Based on the number of eggs laid per treatment, the oviposition index was found positive for spinosad (0.66) but negative for temephos (-0.49), indicating that the natural product spinosad acted as an attractant and temephos as a repellent. PMID:22533085

  2. Larvicidal activity of isoflavonoids from Muellera frutescens extracts against Aedes aegypti.

    PubMed

    Nirma, Charlotte; Rodrigues, Alice M S; Basset, Charlie; Chevolot, Lionel; Girod, Romain; Moretti, Christian; Stien, Didier; Dusfour, Isabelle; Eparvier, Véronique

    2012-10-01

    The biological activity of extracts from the leaves, bark and roots of Muellera frutescens, an Amazonian ichtyotoxic plant, were evaluated to find new environmentally safe insecticides. The n-hexane extracts of bark, leaf, and root showed a strong toxic activity against Aedes aegypti mosquito larvae. Bioguided fractionation of the bark extract led to the isolation of seven isoflavonoids (12a-hydroxyelliptone, elliptone, (-)-variabilin, rotenone, rotenolone, tephrosin and deguelin). Rotenone and deguelin are responsible for the larvicidal activity of the plant. M frutescens leaves contain up to 0.6%, w/w, deguelin. These results justify the traditional ichtyotoxic use of M frutescens. The leaves contain a relatively high proportion of deguelin and, therefore, can be considered as a renewable source of this environmentally friendly insecticidal isoflavonoid. PMID:23156998

  3. Evaluation of Three Commercial Backpack Sprayers with Aqualuer® 20-20 Against Caged Adult Aedes Aegypti.

    PubMed

    Conover, Derrick; Fulcher, Ali; Smith, Michael L; Farooq, Muhammad; Gaines, Marcia K; Xue, Rui-De

    2015-06-01

    Three commercially available backpack sprayers were evaluated with Aqualuer® 20-20 (20.6% permethrin, active ingredient; 20.6% piperonyl butoxide, technical) against caged adult Aedes aegypti in semifield trials in northeastern Florida. Two battery-powered sprayers, Birchmeier and Hudson, were compared with the standard hand-pump SOLO 425 sprayer, which is currently used in pest management operations. Physical characteristics, droplet analysis, and overall ease of use were documented. Multiple dilutions of the insecticide were also evaluated. The results indicated that the Birchmeier sprayer was the preferable machine in terms of its physical characteristics and operator use. There was no significant difference in percent mortality of the test mosquitoes between the sprayers. Multiple dilutions ranging from 1:9 to 1:1050 of the insecticide resulted in greater than 80% mean mortality. PMID:26181698

  4. Breeding habitats and larval indices of Aedes aegypti and Ae. albopictus in the residential areas of Calcutta City.

    PubMed

    Tandon, N; Ray, S

    2000-09-01

    Aedes aegypti and Ae. albopictus larvae were found breeding in almost all indoor and outdoor, temporary and/or permanent collections of water, either alone or in association with each other in residential areas of the city, the former throughout the year (June'97-May'98) and the latter during monsoons and post-monsoons only. Ae. aegypti showed preference for breeding in chowbachhas, indoors and Ae. albopictus for collections of water in flower pots and discarded containers and outdoors. The larval indices of both the species were highest during monsoons and post-monsoons. PMID:11407003

  5. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    PubMed Central

    Dusfour, Isabelle; Zorrilla, Pilar; Guidez, Amandine; Issaly, Jean; Girod, Romain; Guillaumot, Laurent; Robello, Carlos; Strode, Clare

    2015-01-01

    Background Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. Methodology/Principal Findings We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. Conclusion /significance This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence. PMID:26588076

  6. Integration of botanical and bacterial insecticide against Aedes aegypti and Anopheles stephensi.

    PubMed

    Mahesh Kumar, Palanisamy; Kovendan, Kalimuthu; Murugan, Kadarkarai

    2013-02-01

    The present study evaluated the Orthosiphon thymiflorus leaf extract and the bacterial insecticide spinosad, testing the first to fourth instars larvae and pupae of two important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi. The fresh leaves of O. thymiflorus were washed thoroughly in tap water and shade-dried at room temperature (28 ± 2 °C) for 5 to 8 days. The air-dried materials were powdered separately using a commercial electrical blender. From the plants, 500 g powder was macerated with 1.5 L organic solvents of petroleum ether sequentially for a period of 72 h each and then filtered. The larval and pupal mortality was observed after 24 h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC(50) = 309.16, 337.58, 390.42, 429.68, and 513.34 ppm, and A. aegypti had values of LC(50) = 334.78, 366.45, 422.97, 467.94, and 54.02 ppm, respectively. Spinosad against the A. stephensi had values of LC(50) = 384.19, 433.39, 479.17, 519.79, and 572.63 ppm, and A. aegypti had values of LC(50) = 210.68, 241.20, 264.93, 283.27, and 305.85 ppm, respectively. Moreover, in combined treatment, the A. stephensi had values of LC(50) = 202.36, 224.76, 250.84, 288.05, and 324.05 ppm, and A. aegypti had values of LC(50) = 217.70, 246.04, 275.36, 315.29, and 353.80 ppm, respectively. Results showed that the leaf extract of O. thymiflorus and bacterial insecticide spinosad are promising as a good larvicidal and pupicidal against dengue vector, A. aegypti and malarial vector, A. stephensi. This is an ideal eco-friendly approach for the control of target species of vector control programs. PMID:23242266

  7. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 ?l/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 ?l/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required. PMID:26063530

  8. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

    2014-07-01

    Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50?=?17.1 ppm); C. sinensis (LC50?=?20.6 ppm); the mixture of L. alba and L. origanoides (LC50?=?40.1 ppm); L. alba (LC50?=?42.2 ppm); C. odorata (LC50?=?52.9 ppm); L. origanoides (LC50?=?53.3 ppm); S. glutinosa (LC50?=?65.7 ppm); T. lucida (LC50?=?66.2 ppm); E. citriodora (LC50?=?71.2 ppm); and C. citratus (LC50?=?123.3 ppm). The EO from C. flexuosus, with citral (geranial?+?neral) as main component, showed the highest larvicidal activity. PMID:24781026

  9. Development of organophosphorus resistance in Indian strains of Aedes aegypti (L.)*

    PubMed Central

    Madhukar, B. V. R.; Pillai, M. K. K.

    1970-01-01

    Populations of the yellow-fever mosquito, Aedes aegypti, have developed resistance to cholorinated hydrocarbons in many parts of the world, but not to organophosphorus insecticides. Seven Indian strains of Ae. aegypti were found to be tolerant to DDT and highly susceptible to certain organophosphorus compounds such as Abate, Dursban, fenthion and fenitrothion. Hence selection studies were started with these organophosphorus compounds. Laboratory selections on these strains for 20 generations with Abate, Dursban, malathion, fenthion and fenitrothion increased the tolerance of the F20 larvae to these insecticides by 2.4 times, 3.7 times, 3 times, 5.6 times and 2 times, respectively. The dosage—mortality lines of the successive generations were steep and parallel, suggesting these were instances of tolerance and not of resistance. In contrast, DDT selection showed rapid changes in dosage—mortality lines, indicating the development of resistance. The organophosphorus selected strains generally showed only a 2-3-fold increase in cross-tolerance to other organophosphorus compounds. PMID:5313264

  10. Natural habitats of Aedes Aegypti in the Caribbean--a review.

    PubMed

    Chadee, D D; Ward, R A; Novak, R J

    1998-03-01

    Natural breeding habitats of Aedes aegypti in the Caribbean region were reviewed by conducting larval surveys in Trinidad. Puerto Rico, and the U.S. Virgin Islands and referring to records from the Mosquitoes of Middle America project. Twelve types of natural habitats were recorded: rock holes (9.7%), calabashes (2.4%), tree holes (19.5%), leaf axils (4.8%), bamboo joints (14.9%), papaya stumps (7.3%), coconut shells (4.8%), bromeliads (7.3%), ground pools (14.9%), coral rock holes (9.7%), crab holes (2.4%), and conch shells (7.3%), of which the coconut shell and calabash habitats were new to the Caribbean. The countries having the highest prevalence of natural habitats were Trinidad. Puerto Rico, and Jamaica, with 9 types (22.0%), 7 types (17.0%), and 6 types (14.6%), respectively. The distribution of natural habitats of Ae. aegypti in the Caribbean region is discussed in relation to vector control measures. PMID:9599318

  11. Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera:Culicidae).

    PubMed

    Gusmão, Desiely Silva; Páscoa, Valéria; Mathias, Leda; Curcino Vieira, Ivo José; Braz-Filho, Raimundo; Alves Lemos, Francisco José

    2002-04-01

    Aqueous suspension of ethanol extracts of Derris (Lonchocarpus) urucu (Leguminosae), collected in the state of Amazonas, Brazil, were tested for larvicidal activity against the mosquito Aedes aegypti (Diptera:Culicidae). The aim of this study was to observe the alterations of peritrophic matrix in Ae. aegypti larvae treated with an aqueous suspension of D. urucu extract. Different concentrations of D. urucu root extract were tested against fourth instar larvae. One hundred percent mortality was observed at 150 microg/ml (LC(50) 17.6 microg/ml) 24 h following treatment. In response to D. urucu feeding, larvae excreted a large amount of amorphous feces, while control larvae did not produce feces during the assay period. Ultrastructural studies showed tha larvae fed with 150 microg/ml of D. urucu extract for 4 h have an imperfect peritrophic matrix and extensive damage of the midgut epithelium. Data indicate a protective role for the peritrophic matrix. The structural modification of the peritrophic matrix is intrinsically associated with larval mortality. PMID:12051197

  12. Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Siju, KP; Reifenrath, Anna; Scheiblich, Hannah; Neupert, Susanne; Predel, Reinhard; Hansson, Bill S; Schachtner, Joachim; Ignell, Rickard

    2014-01-01

    For many insects, including mosquitoes, olfaction is the dominant modality regulating their behavioral repertoire. Many neurochemicals modulate olfactory information in the central nervous system, including the primary olfactory center of insects, the antennal lobe. The most diverse and versatile neurochemicals in the insect nervous system are found in the neuropeptides. In the present study, we analyzed neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti, a major vector of arboviral diseases. Direct tissue profiling of the antennal lobe by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated the presence of 28 mature products from 10 different neuropeptide genes. In addition, immunocytochemical techniques were used to describe the cellular location of the products of up to seven of these genes within the antennal lobe. Allatostatin A, allatotropin, SIFamide, FMRFamide-related peptides, short neuropeptide F, myoinhibitory peptide, and tachykinin-related peptides were found to be expressed in local interneurons and extrinsic neurons of the antennal lobe. Building on these results, we discuss the possible role of neuropeptide signaling in the antennal lobe of Ae. aegypti. J. Comp. Neurol. 522:592–608, 2014. PMID:23897410

  13. Susceptibility to chlorpyrifos in pyrethroid-resistant populations of Aedes aegypti (Diptera: Culicidae) from Mexico.

    PubMed

    Lopez, Beatriz; Ponce, Gustavo; Gonzalez, Jessica A; Gutierrez, Selene M; Villanueva, Olga K; Gonzalez, Gabriela; Bobadilla, Cristina; Rodriguez, Iram P; Black, William C; Flores, Adriana E

    2014-05-01

    Resistance to the organophosphate insecticide chlorpyrifos was evaluated in females from six strains of Aedes aegypti (L.) that expressed high levels of cross-resistance to eight pyrethroid insecticides. Relative to LC50 and LC90 at 24 h of a susceptible New Orleans (NO) strain, three strains were highly resistant to chlorpyrifos (Coatzacoalcos, resistance ratio [RRLC90 = 11.97; Pozarica, RRLC90 = 12.98; and Cosoleacaque, RRLC50 = 13.94 and RRLC90 = 17.57), one strain was moderately resistant (Veracruz, RRLC90 = 5.92), and two strains were susceptible (Tantoyuca and Martinez de la Torre, RRLC50 and RRLC90 < 5) in bottle bioassays according to Centers for Disease Control and Prevention. Furthermore, high levels of alpha- or beta-esterase activity in the sample populations were correlated with resistance, suggesting that esterase activity may be a mechanism causing the development of organophosphate resistance in these populations. Overall, the populations in this study were less resistant to chlorpyrifos than to pyrethroids. Rotation of insecticides used in control activities is recommended to delay or minimize the occurrence of high levels of resistance to chlorpyrifos among local populations of Ae. aegypti. The diagnostic dose and diagnostic time for chlorpyrifos resistance monitoring was determined to be 85 microg per bottle and 30 min, respectively, using the susceptible NO strain. PMID:24897857

  14. Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam

    PubMed Central

    Nam, Vu Sinh; Yen, Nguyen Thi; Duc, Hoang Minh; Tu, Tran Cong; Thang, Vu Trong; Le, Nguyen Hoang; San, Le Hoang; Loan, Luu Le; Huong, Vu Thi Que; Khanh, Ly Huynh Kim; Trang, Huynh Thi Thuy; Lam, Leonie Z. Y.; Kutcher, Simon C.; Aaskov, John G.; Jeffery, Jason A. L.; Ryan, Peter A.; Kay, Brian H.

    2012-01-01

    We previously reported a new community-based mosquito control strategy that resulted in elimination of Aedes aegypti (Linn.) in 40 of 46 communes in northern and central Vietnam, and with annual recurrent total costs (direct and indirect) of only $0.28–$0.89 international dollars per person. This control strategy was extended to four provinces in southern Vietnam in Long An and Hau Giang (2004–2007) and to Long An, Ben Tre, and Vinh Long (2005–2010). In a total of 14 communes with 124,743 residents, the mean ± SD of adult female Ae. aegypti was reduced from 0.93 ± 0.62 to 0.06 ± 0.09, and the reduction of immature Ae. aegypti averaged 98.8%. By the final survey, no adults could be collected in 6 of 14 communes, and one commune, Binh Thanh, also had no immature forms. Although the community-based programs also involved community education and clean-up campaigns, the prevalence of Mesocyclops in large water storage containers > 50 liters increased from 12.77 ± 8.39 to 75.69 ± 9.17% over periods of 15–45 months. At the conclusion of the study, no confirmed dengue cases were detected in four of the five communes for which diagnostic serologic analysis was performed. The rate of progress was faster in communes that were added in stages to the program but the reason for this finding was unclear. At the completion of the formal project, sustainability funds were set up to provide each commune with the financial means to ensure that community-based dengue control activities continued. PMID:22556087

  15. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Bandyopadhyay, Prabal; Iqbal, S Thanvir; Sathe, Manisha; Sharma, Pratibha; Parashar, B D; Kaushik, M P

    2012-09-01

    Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of -0.46, -0.35 and -0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27-30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps. PMID:22552771

  16. Effect of Chloroxylon swietenia Dc bark extracts against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi larvae.

    PubMed

    Balasubramanian, Jayaprasad; Subramanian, Sharavanan; Kaliyan, Veerakumar

    2015-11-01

    Mosquitoes are the vector of more diseases and cause major health problems like malaria, dengue, chikungunya, and lymphatic filariasis. This article deals with the mosquito larvicidal activity of Chloroxylon swietenia Dc bark extracts against late third instar larvae of Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Methanolic crude extract of Ch. swietenia bark was obtained by soxhlet apparatus and aqueous crude extract by cold percolation method. The range of concentrations of the crude extracts used was 50, 100, 150, 200, and 250 ppm. The mortality and lethal concentration (LC50 and LC90) was calculated after a 24-h exposure period. Both the extracts showed trustworthy larvicidal activity. The larvicidal activity of the methanol extract of Ch. swietenia bark was higher than the aqueous extract, and the LC50 and the LC90 values of the methanol extract were found to be 124.70 and 226.26 ?g/ml (Ae. aegypti), 130.57 and 234.67 ppm (Cu. quinquefasciatus), and 137.55 and 246.09 ppm (An. stephensi). The LC50 and the LC90 values of the aqueous extract were found to be 133.10 and 238.93 ppm (Ae. aegypti), 136.45 and 242.47 ppm (Cu. quinquefasciatus), and 139.43 and 248.64 ppm (An. stephensi). No mortality was observed in the control. Methanolic crude extract Ch. swietenia bark shows higher activity against An. stephensi than the other two tested larvae and aqueous extract. The results of the present study propose a possible way for further investigations to find out the active molecule responsible for the larvicidal activity of Ch. swietenia bark extracts. PMID:26246308

  17. Behavioral Response of Aedes aegypti (Diptera: Culicidae) Larvae to Synthetic and Natural Attractants and Repellents.

    PubMed

    Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M

    2015-11-01

    Aedes aegypti (L.) (Diptera: Culicidae) is the key vector of three important arboviral diseases: dengue, yellow fever, and chikungunya. Immature stages of this species inhabit human-made containers placed in residential landscapes. In this study, we evaluated a few compounds in a sensitive behavioral assay with Ae. aegypti larvae. The orientation of larvae to different compounds was surveyed using a performance index (PI). The PI represents the response to each odorant, where a value of +1 is indicative of full attraction and -1 represents complete repulsion. The widely used insect repellent N, N-diethyl-m-toluamide elicited a significantly negative PI, as did acetophenone and indole. A yeast extract, a known food source, elicited a significantly positive PI, as did 2-methylphenol, 1-octen-3-ol, 3-methylphenol, and fish food. On the other hand, no response was observed for the essential oil of Eucalyptus grandis x Eucalyptus camaldulensis at the concentration evaluated. Pretreatment of larvae with N-ethylmaleimide and ablation of the antennae resulted in a suppression of behavioral responses. The overall mobility of ablated larvae was indistinguishable from unablated controls, and absence of any visible locomotor dysfunction was observed. This work is a contribution to the study of the chemical ecology of disease vectors with the aim of developing more efficient tools for surveillance and control.Natural and synthetic compounds attractive to Ae. aegypti larvae should be incorporated into integrated pest management programs through the use of baited traps or by improving the efficacy of larvicides commonly used in control campaigns. PMID:26352935

  18. Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis.

    PubMed

    Singh, Gavendra; Prakash, Soam

    2015-08-01

    Aedes aegypti is the vector for transmitting dengue, chikungunya, and yellow fever. These diseases' transmission has increased predominantly in urban and semi-urban areas as a major public health concern. In present investigation, Trichoderma atroviride culture filtrates were used for the synthesis of silver nanoparticle. Moreover, T. atroviride is a free-living and rapidly growing fungi common in soil and root ecosystem. This fungi is an exceptionally good model for biocontrol and more significant as a bioagent. T. atroviride was grown in malt extract. T. atroviride culture filtrates were exposed to silver nitrates solution for 24 h at 25 °C for the synthesis of silver nanoparticles (AgNPs). These AgNPs were characterized to find their unique properties with UV-visible spectrophotometer and transmission electron microscope (TEM) analysis. The T. atroviride culture filtrates have formed hexagonal (diamond shape) AgNPs with the range of size of 14.01-21.02 nm. These AgNPs have shown significant efficacies against first, second, third, and fourth instar larvae of A. aegypti. The LC90 and LC99 values for the first instar were 1 and 3 ppm, second instar 2 and 3.18 ppm, third instar 3.12 and 4.12 ppm, and fourth instar 6.30 and 6.59 ppm, respectively, after an exposure of 7 h. The confocal laser scanning microscopy (CLSM) studies were verdict that these AgNPs embedded in the cuticle of larvae and cause instant lethality in 7 h. Present investigations have demonstrated that the AgNPs of T. atroviride culture filtrates synthesized can be used for larvae control of A. aegypti. T. atroviride is synthesized to silver nanoparticles to be a promising new candidate for application in mosquito control. We therefore suggested that the ability of T. atroviride culture filtrates in synthesis can also be explored for synthesizing silver nanoparticles for commercial exploitation. PMID:25907629

  19. Diffusion of community empowerment strategies for Aedes aegypti control in Cuba: a muddling through experience.

    PubMed

    Pérez, Dennis; Lefèvre, Pierre; Castro, Marta; Toledo, María Eugenia; Zamora, Gilberto; Bonet, Mariano; Van der Stuyft, Patrick

    2013-05-01

    Effective participatory strategies in dengue control have been developed and assessed as small-scale efforts. The challenge is to scale-up and institutionalize these strategies within dengue control programs. We describe and critically analyze the diffusion process of an effective empowerment strategy within the Cuban Aedes aegypti control program, focusing on decision-making at the national level, to identify ways forward to institutionalize such strategies in Cuba and elsewhere. From 2005 to 2009, we carried out a process-oriented case study. We used participant observation, in-depth interviews with key informants involved in the diffusion process and document analysis. In a first phase, the data analysis was inductive. In a second phase, to enhance robustness of the analysis, emerging categories were contrasted with Rogers' five-stage conceptual model of the innovation-decision process, which was eventually used as the analytical framework. The diffusion of the empowerment strategy was a continuous and dynamic process. Adoption was a result of the perceived potential match between the innovative empowerment strategy and the performance gap of the Ae. aegypti control program. During implementation, the strategy was partially modified by top level Ae. aegypti control program decision-makers to accommodate program characteristics. However, structure, practices and organizational culture of the control program did not change significantly. Thus rejection occurred. It was mainly due to insufficient dissemination of know-how and underlying principles of the strategy by innovation developers, but also to resistance to change. The innovation-diffusion process has produced mitigated results to date, and the control program is still struggling to find ways to move forward. Improving the innovation strategy by providing the necessary knowledge about the innovation and addressing control program organizational changes is crucial for successful diffusion of empowerment strategies. Issues highlighted in this particular experience might be relevant in the innovation-diffusion process of other complex innovations within health systems. PMID:23517703

  20. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes. PMID:24069492

  1. Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru

    PubMed Central

    Liebman, Kelly A.; Stoddard, Steven T.; Reiner, Robert C.; Perkins, T. Alex; Astete, Helvio; Sihuincha, Moises; Halsey, Eric S.; Kochel, Tadeusz J.; Morrison, Amy C.; Scott, Thomas W.

    2014-01-01

    Background Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus. Methodology/Principal Findings Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual's likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05). A linear function fit the relationship equally well (?AIC<1). Conclusions/Significance Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people's contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread. PMID:24551262

  2. Comparative field efficacy of newly developed formulations of larvicides against Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Thavara, Usavadee; Tawatsin, Apiwat; Chompoosri, Jakkrawarn; Bhakdeenuan, Payu; Khamsawads, Chayada; Sangkitporn, Somchai; Siriyasatien, Padet; Asavadachanukorn, Preecha; Boonmuen, Saibua; Mulla, Mir S

    2013-09-01

    Aedes aegypti (L.) is known as vector of dengue and chikungunya fever. Larvicides are used to control this vector. We evaluated the efficacy of newly developed formulations of larvicides to control Ae. aegypti under field conditions for 24 weeks post single application. Mosdop P and Mosdop TB containing diflubenzuron (2% and 40 mg/tablet, respectively) as the active ingredient, were applied at a dosage of 0.1 mg a.i./1 and Mosquit TB10, Mosquit TB100 and Temecal containing temephos (1%, 10% and 1%, respectively) as the active ingredient were applied at a dosage of 1 mg active ingredent (a.i.) to 200 liter water storage jars. Two water regimens were used in the jars: in one regimen the jar was kept full of water all the time and in the other regimen a full jar had half the volume removed and refilled weekly. The larvicidal efficacy was reported as the level of inhibition of emergence (IE%) calculated based on the pupal skins in the jars versus the original number of larvae added. Mosdop P, Mosdop TB, Mosquit TB10, Mosquit TB100 and Temecal showed complete larvicidal efficacy (100% IE) in the constantly full jars for 16, 17, 14, 20 and 13 weeks posttreatment, respectively; in the jars where half the volum of water was replaced weekly, the larvicides had complete larvicidal efficacy (100% IE) for 19, 20, 17, 24 and 15 weeks post-treatment, respectively. The five larvicide regimens evaluated in this study are effective for controlling Ae. aegypti larvae. PMID:24437310

  3. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus.

    PubMed

    Manoharan, Malini; Ng Fuk Chong, Matthieu; Vaïtinadapoulé, Aurore; Frumence, Etienne; Sowdhamini, Ramanathan; Offmann, Bernard

    2013-01-01

    About 1 million people in the world die each year from diseases spread by mosquitoes, and understanding the mechanism of host identification by the mosquitoes through olfaction is at stake. The role of odorant binding proteins (OBPs) in the primary molecular events of olfaction in mosquitoes is becoming an important focus of biological research in this area. Here, we present a comprehensive comparative genomics study of OBPs in the three disease-transmitting mosquito species Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus starting with the identification of 110 new OBPs in these three genomes. We have characterized their genomic distribution and orthologous and phylogenetic relationships. The diversity and expansion observed with respect to the Aedes and Culex genomes suggests that the OBP gene family acquired functional diversity concurrently with functional constraints posed on these two species. Sequences with unique features have been characterized such as the "two-domain OBPs" (previously known as Atypical OBPs) and "MinusC OBPs" in mosquito genomes. The extensive comparative genomics featured in this work hence provides useful primary insights into the role of OBPs in the molecular adaptations of mosquito olfactory system and could provide more clues for the identification of potential targets for insect repellants and attractants. PMID:23292137

  4. [Insecticide resistance mechanisms of Aedes aegypti (Diptera: Culicidae) from two Peruvian provinces].

    PubMed

    Bisset, Juan A; Rodríguez, María; Fernández, Ditter; Palomino, Miriam

    2007-01-01

    Insecticide resistance of Aedes aegypti larvae and adults from two Peruvian provinces, that is, Trujillo and Tumbes provinces, was conducted. High infestation indexes and extensive use of insecticides based on the Vector Surveillance and Control Strategy of the Ministry of Public Health prevailed in these places. Larval bioassays revealed susceptibility to organophosphorate insecticide called malathion in TRUJILLO strain, it being moderate to fention and fenitrotion and high to chlorpyriphos and temephos;however, TUMBES strain was susceptible to the evaluated organophosphorate compounds, except for fention, with moderate resistance. In the adult state, at the recommended dose, TRUJILLO strain showed resistence to DDT organochlorate insecticide and to pyrethoids called lambdacyalotrine and cyflutrine whereas TUMBES was resistant to DDT and to all assessed pyrethoids. None of them was resistant to chlorpiriphos in adult stage. By using synergists, the results showed that esterases and monooxigenases played an important role in the detected resistence to organophosphorate in Aedes larvae from TRUJILLO province. Biochemical assays yielded that increased activity of esterases was very frequent in TRUJILLO strain as was the case of glutathion transferase(GST) and modified acetylcholinesterase (AchR). On the other hand, the polyacrylamide gel electrophoresis allowed observing the prevalence of amplified activity of esterases A4 in TRUJILLO strain but not in TUMBES strain. PMID:23427457

  5. Absence of impact of aerial malathion treatment on Aedes aegypti during a dengue outbreak in Kingston, Jamaica.

    PubMed

    Castle, T; Amador, M; Rawlins, S; Figueroa, J P; Reiter, P

    1999-02-01

    During an outbreak of dengue fever in Jamaica from October to December 1995, a study was carried out to determine the impact of aerial ultra-low volume malathion treatment on adult Aedes aegypti. This was done by monitoring oviposition rates of the vector in three urban communities in Kingston and by exposing caged mosquitoes both directly and indirectly to the aerial malathion treatment. The insecticide was delivered at a rate of 219 mL/ha between 7:10 a.m. and 8:45 a.m. The results of the study clearly showed that the insecticide application was ineffective in interfering with Aedes aegypti oviposition, and adult mosquitoes held in cages inside dwellings were largely unaffected. Consequently, this type of intervention seemed to have little significant impact in arresting or abating dengue transmission. PMID:10079743

  6. Bioassay and biochemical studies of the status of pirimiphos-methyl and cypermethrin resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Singapore.

    PubMed

    Lee, R M L; Choong, C T H; Goh, B P L; Ng, L C; Lam-Phua, S G

    2014-12-01

    Aedes (Stegomyia) aegypti (Linnaeus) and Ae. (Stegomyia) albopictus (Skuse) were sampled from five regions of Singapore (Central, North East, North West, South East and South West) and tested with diagnostic concentrations of the technical grade insecticides, pirimiphos-methyl and cypermethrin. Biochemical assays were performed on the same populations of Ae. aegypti and Ae. albopictus to determine activities of detoxifying enzymes, including non-specific esterase (EST), monooxygenase (MFO) and acetylcholinesterase (AChE). The diagnostic test showed that all Ae. aegypti populations were susceptible to pirimiphos-methyl (mortality = 99 to 100%), but resistant to cypermethrin (mortality = 11 to 76%). Resistance to pirimiphos-methyl was observed in all Ae. albopictus populations (mortality = 49 to 74%) while cypermethrin resistance was detected in most Ae. albopictus populations (mortality = 40 to 75%), except those from Central (mortality = 86%) and South East (mortality = 94%) showing incipient resistance. The biochemical assays showed that there was significant enhancement (P < 0.001) of MFO activity in pyrethroid-resistant Ae. albopictus populations and most Ae. aegypti populations. The biochemical assay results suggested that AChE could play a role in pirimiphos-methyl resistance of Ae. albopictus in South West, South East and North East regions. The small but significant increase in EST activities in Ae. aegypti from all regions suggest that it may play a role in the observed cypermethrin resistance. PMID:25776592

  7. Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia

    PubMed Central

    Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194

  8. Modeling dengue vector dynamics under imperfect detection: three years of site-occupancy by Aedes aegypti and Aedes albopictus in urban Amazonia.

    PubMed

    Padilla-Torres, Samael D; Ferraz, Gonçalo; Luz, Sergio L B; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79-0.97) were much higher than reported by routine surveillance based on 'rapid larval surveys' (0.03; 0.02-0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50-0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from 'rapid larval surveys' suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194

  9. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti

    PubMed Central

    dos Santos, Edilson Alves; de Carvalho, Cenira M.; Costa, Ana L. S.; Conceição, Adilva S.; Moura, Flávia de B. Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC50 83.426?mg/L and LC50 138.896?mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC50 0.94?mg/L, LC50 13.51?mg/L, and LC50 20.22?mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  10. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.

    PubMed

    Engdahl, Cecilia; Knutsson, Sofie; Fredriksson, Sten-Åke; Linusson, Anna; Bucht, Göran; Ekström, Fredrik

    2015-01-01

    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE. PMID:26447952

  11. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues

    PubMed Central

    Engdahl, Cecilia; Knutsson, Sofie; Fredriksson, Sten-Åke; Linusson, Anna; Bucht, Göran; Ekström, Fredrik

    2015-01-01

    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE. PMID:26447952

  12. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  13. Assessment of the Impact of Potential Tetracycline Exposure on the Phenotype of Aedes aegypti OX513A: Implications for Field Use

    PubMed Central

    Curtis, Zoe; Matzen, Kelly; Neira Oviedo, Marco; Nimmo, Derric; Gray, Pamela; Winskill, Peter; Locatelli, Marco A. F.; Jardim, Wilson F.; Warner, Simon; Alphey, Luke; Beech, Camilla

    2015-01-01

    Background Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a tetracycline repressible self-limiting strain of Ae. aegypti OX513A which has achieved >90% suppression of wild populations. Methodology/Principal Findings We investigated the impact of tetracycline and its analogues on the phenotype of OX513A from the perspective of possible routes and levels of environmental exposure. We determined the minimum concentration of tetracycline and its analogues that will allow an increased survivorship and found these to be greater than the maximum concentration of tetracyclines found in known Ae. aegypti breeding sites and their surrounding areas. Furthermore, we determined that OX513A parents fed tetracycline are unable to pre-load their progeny with sufficient antidote to increase their survivorship. Finally, we studied the changes in concentration of tetracycline in the mass production rearing water of OX513A and the developing insect. Conclusion/Significance Together, these studies demonstrate that potential routes of exposure of OX513A individuals to tetracycline and its analogues in the environment are not expected to increase the survivorship of OX513A. PMID:26270533

  14. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  15. Selective oviposition by Aedes aegypti (Diptera: culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions.

    PubMed

    Torres-Estrada, J L; Rodríguez, M H; Cruz-López, L; Arredondo-Jimenez, J I

    2001-03-01

    The influence of predacious Mesocyclops longisetus Thiebaud on the selection of oviposition sites by prey Aedes aegypti (L.) was studied under laboratory and field conditions. In both cases, gravid Ae. aegypti females were significantly more attracted to ovitraps containing copepods or to ovitraps with water in which copepods were held previously than to distilled water. Monoterpene and sesquiterpene compounds including 3-carene, alpha-terpinene, alpha-copaene, alpha-longipinene, alpha-cedrene, and delta-cadinene were found in hexane extracts of copepods by gas chromatography and mass spectrometry analyses. These compounds may be responsible for attracting gravid Ae. aegypti females and may increase the number of potential prey for the copepod. PMID:11296821

  16. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

    PubMed Central

    Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN) cases are annually recorded. Indeed, DEN virus and CHIK virus (CHIKV) share the same vectors. Due to a recent CHIK outbreak affecting Caribbean islands, the need for a Pan-American evaluation of vector competence was compelling as a key parameter in assessing the epidemic risk. We demonstrated for the first time that A. aegypti and A. albopictus populations throughout the continent are highly competent to transmit CHIK irrespective of the viral genotypes tested. The risk of CHIK spreading throughout the tropical, subtropical, and even temperate regions of the Americas is more than ever a reality. In light of our results, local authorities should immediately pursue and reinforce epidemiological and entomological surveillance to avoid a severe epidemic. PMID:24672026

  17. Human antibody response to Aedes aegypti saliva in an urban population in Bolivia: a new biomarker of exposure to Dengue vector bites.

    PubMed

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-09-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  18. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated, and having the size of 25-80 nm. Energy-dispersive x-ray spectroscopy showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNPs leaf extracts against the fourth instar larvae of A. aegypti (LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l) and (LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l), respectively. These results suggest that the synthesized AgNPs leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24553980

  19. Alkalinization in the Isolated and Perfused Anterior Midgut of the Larval Mosquito, Aedes aegypti

    PubMed Central

    Onken, Horst; Moffett, Stacia B.; Moffett, David F.

    2008-01-01

    In the present study, isolated midguts of larval Aedes aegypti L. (Diptera: Culicidae) were mounted on perfusion pipettes and bathed in high buffer mosquito saline. With low buffer perfusion saline, containing m-cresol purple, transepithelial voltage was monitored and luminal alkalinization became visible through color changes of m-cresol purple after perfusion stop. Lumen negative voltage and alkalinization depended on metabolic energy and were stimulated in the presence of serotonin (0.2 µmol l-1). In some experiments a pH microelectrode in the lumen recorded pH values up to 10 within minutes after perfusion stop. The V-ATPase inhibitor concanamycin (50 µmol l-1) on the hemolymph side almost abolished Vte and inhibited luminal alkalinization. The carbonic anhydrase inhibitor, methazolamide (50 µmol l-1), on either the luminal or hemolymph-side, or the inhibitor of anion transport, DIDS (1 mmol l-1) on the luminal side, had no effect on Vte or alkalinization. Cl- substitution in the lumen or on both sides of the tissue affected Vte, but the color change of m-cresol purple was unchanged from control conditions. Hemolymph-side Na+ substitution or addition of the Na+/H+ exchange inhibitor, amiloride (200 µmol l-1), reduced Vte and luminal alkalinization. Luminal amiloride (200 µmol l-1) was without effects on Vte or alkalinization. High K+ (60 mmol l-1) in the lumen reduced Vte without affecting alkalinization. These results indicate that strong luminal alkalinization in isolated and perfused anterior midgut of larval A. aegypti depends on basolateral V-ATPase, but is apparently independent of carbonic anhydrase, apical Cl-/HCO3- exchange or apical K+/2H+ antiport. PMID:20307229

  20. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries.

    PubMed

    Rodríguez, María M; Bisset, Juan A; Fernández, Ditter

    2007-12-01

    Eight Latin American strains of Aedes aegypti were evaluated for resistance to 6 organophosphates (temephos, malathion, fenthion, pirimiphos-methyl, fenitrothion, and chlorpirifos) and 4 pyrethroids (deltamethrin, lambdacyhalothrin, betacypermethrin, and cyfluthrin) under laboratory conditions. In larval bioassays, temephos resistance was high (resistance ratio [RR50], > or =10X) in the majority of the strains, except for the Nicaragua and Venezuela strains, which showed moderate resistance (RR50, between 5 and 10X). The majority of the strains were susceptible to malathion, fenthion, and fenitrothion. However, resistance to pirimiphos-methyl ranged from moderate to high in most of the strains. Larvae from Havana City were resistant to 3 of the pyrethroids tested and moderately resistant to cyfluthrin. The Santiago de Cuba strain showed high resistance to deltamethrin and moderate resistance to the other pyrethroids (lambdacyhalothrin, betacypermethrin, and cyfluthrin). The rest of the strains were susceptible to pyrethroids, except for the Jamaica and Costa Rica strains, which showed moderate resistance to cyfluthrin, and Peru and Venezuela, which showed resistance to deltamethrin. Adult bioassays showed that all the strains were resistant to dichlorodiphenyl-trichloroethane and to the majority of pyrethroids evaluated. The use of the synergists S,S,S,-tributyl phosphorotrithioate and piperonil butoxide showed that esterase and monooxygenases played an important role in the temephos, pirimiphos-methyl, and chlorpirifos resistance in some strains. Biochemical tests showed high frequencies of esterase and glutathione-S-transferase activity; however, the frequency of altered acetylcholinesterase mechanism was low. The polyacrylamide electrophoresis gel detected the presence of a strong band called Est-A4. Insecticide resistance in Ae. aegypti is a serious problem facing control operations, and integrated control strategies are recommended to help prevent or delay the temephos resistance in larvae and pyrethroids resistance in adults. PMID:18240518

  1. Olfactory learning and memory in the disease vector mosquito Aedes aegypti

    PubMed Central

    Vinauger, Clément; Lutz, Eleanor K.; Riffell, Jeffrey A.

    2014-01-01

    Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS – some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (?-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses. PMID:24737761

  2. Surveillance of Aedes aegypti: Comparison of House Index with Four Alternative Traps

    PubMed Central

    Codeço, Claudia T.; Lima, Arthur W. S.; Araújo, Simone C.; Lima, José Bento P.; Maciel-de-Freitas, Rafael; Honório, Nildimar A.; Galardo, Allan K. R.; Braga, Ima A.; Coelho, Giovanini E.; Valle, Denise

    2015-01-01

    Introduction The mosquito Aedes aegypti, vector of dengue, chikungunya and yellow fever viruses, is an important target of vector control programs in tropical countries. Most mosquito surveillance programs are still based on the traditional household larval surveys, despite the availability of new trapping devices. We report the results of a multicentric entomological survey using four types of traps, besides the larval survey, to compare the entomological indices generated by these different surveillance tools in terms of their sensitivity to detect mosquito density variation. Methods The study was conducted in five mid-sized cities, representing variations of tropical climate regimens. Surveillance schemes using traps for adults (BG-Sentinel, Adultrap and MosquiTRAP) or eggs (ovitraps) were applied monthly to three 1 km2 areas per city. Simultaneously, larval surveys were performed. Trap positivity and density indices in each area were calculated and regressed against meteorological variables to characterize the seasonal pattern of mosquito infestation in all cities, as measured by each of the four traps. Results The House Index was consistently low in most cities, with median always 0. Traps rarely produced null indices, pointing to their greater sensitivity in detecting the presence of Ae. aegypti in comparison to the larval survey. Trap positivity indices tend to plateau at high mosquito densities. Despite this, both indices, positivity and density, agreed on the seasonality of mosquito abundance in all cities. Mosquito seasonality associated preferentially with temperature than with precipitation even in areas where temperature variation is small. Conclusions All investigated traps performed better than the House Index in measuring the seasonal variation in mosquito abundance and should be considered as complements or alternatives to larval surveys. Choice between traps should further consider differences of cost and ease-of-use. PMID:25668559

  3. Larvicidal persistence of formulations of Bacillus thuringiensis var. israelensis to control larval Aedes aegypti.

    PubMed

    Vilarinhos, Paulo T R; Monnerat, Rose

    2004-09-01

    After detection of resistance to the organophosphate temephos in populations of Aedes aegypti in Brazil, corncob granule (CG) and water-dispersible granule (WDG) formulations of Bacillus thuringiensis var. israelensis (Bti) were introduced in routine focal treatments. Larvicidal persistence and the influence of exposure to sunlight on VectoBac formulations of Bti were compared in 250-liter fiberglass water containers. Production of pupal Ae. aegypti in containers was used to indicate control. In untreated containers, survival of larvae was always above 95%. A temephos sand granule formulation used as reference treatment maintained 100% control throughout the 12-wk period in all situations. Under sunlight exposure, control dropped below the 90% level in the 2nd week after treatment at both dosages of VectoBac CG (1 and 2 g/50 liters) and VectoBac tablet (T) formulation at 1 tablet/100 liters. VectoBac T at 1 tablet/50 liters provided 2 wk of 100% control. VectoBac WDG at dosages of 1 and 2 g/500 liters provided 100% control for 3 wk. Without sunlight exposure (covered containers), VectoBac CG provided 9 wk of continuous 100% control and 5 wk of continuous 100% control, respectively, at 1 and 2 g/50 liters. The VectoBac T formulation at both dosages initially provided 2 wk of 100% control. After this period, the control level fluctuated between 96 and 100%. VectoBac WDG provided continuous 100% control for 7 wk for the lower dosage and for 6 wk for the higher dosage. At both dosages of WDG, 100% control was achieved in 11 wk out of the 12-wk period. PMID:15532933

  4. Evaluation of Household Bleach as an Ovicide for the Control of Aedes aegypti.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

    2015-03-01

    Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1?3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ? 99% in shaded and sun-exposed plastic containers. Similarly, 4?1 dilution of household bleach (with or without smectite clay) eliminated ? 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats. PMID:25843179

  5. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ?25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control. PMID:25102306

  6. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti.

    PubMed

    Lee, Su-Bum; Aimanova, Karlygash G; Gill, Sarjeet S

    2014-11-01

    Bacillus thuringiensis subsp. israelensis (Bti) is widely used for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (? 40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID:25242559

  7. (E)-Caryophyllene and ?-Humulene: Aedes aegypti Oviposition Deterrents Elucidated by Gas Chromatography-Electrophysiological Assay of Commiphora leptophloeos Leaf Oil

    PubMed Central

    da Silva, Rayane Cristine Santos; Milet-Pinheiro, Paulo; Bezerra da Silva, Patrícia Cristina; da Silva, Alexandre Gomes; da Silva, Marcia Vanusa; Navarro, Daniela Maria do Amaral Ferraz; da Silva, Nicácio Henrique

    2015-01-01

    Aedes aegypti is responsible for the transmission of dengue, a disease that infects millions of people each year. Although essential oils are well recognized as sources of compounds with repellent and larvicidal activities against the dengue mosquito, much less is known about their oviposition deterrent effects. Commiphora leptophloeos, a tree native to South America, has important pharmacological properties, but the chemical profile and applicability of its essential oil in controlling the spread of the dengue mosquito have not been investigated. The aim of this study was to determine the composition of C. leptophloeos leaf oil and to evaluate its larvicidal and oviposition deterrent effects against A. aegypti. Fifty-five components of the essential oil were detected by gas chromatography (GC)—mass spectrometry, with ?-phellandrene (26.3%), (E)-caryophyllene (18.0%) and ?-phellandrene (12.9%) identified as the major constituents. Bioassays showed that the oil exhibited strong oviposition deterrent effects against A. aegypti at concentrations between 25 and 100 ppm, and possessed good larvicidal activity (LC50 = 99.4 ppm). Analysis of the oil by GC coupled with electroantennographic detection established that seven constituents could trigger antennal depolarization in A. aegypti gravid females. Two of these components, namely (E)-caryophyllene and ?-humulene, were present in substantial proportions in the oil, and oviposition deterrence assays confirmed that both were significantly active at concentrations equivalent to those present in the oil. It is concluded that these sesquiterpenes are responsible, at least in part, for the deterrent effect of the oil. The oviposition deterrent activity of the leaf oil of C. leptophloeos is one of the most potent reported so far, suggesting that it could represent an interesting alternative to synthetic insecticides. The results of this study highlight the importance of integrating chemical and electrophysiological methods for screening natural compounds for their potential in combating vectors of insect-borne diseases. PMID:26650757

  8. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance.

    PubMed

    Rawlins, S C

    1998-10-01

    To monitor resistance to insecticides, bioassays were performed on 102 strains of the dengue vector Aedes aegypti (L.) from 16 countries ranging from Suriname in South America and through the chain of Caribbean Islands to the Bahamas, where the larvicide temephos and the adulticide malathion have been in use for 15 to 30 years. There was wide variation in the sensitivity to the larvicide in mosquito populations within and among countries. Mosquito strains in some countries such as Antigua, St. Lucia, and Tortola had consistently high resistance ratios (RR) to temephos, ranging from 5.3 to 17.7. In another group of countries--e.g., Anguilla and Curaçao--mosquitoes had mixed levels of resistance to temephos (RR = 2.5-10.6), and in a third group of countries, including St. Kitts, Barbados, Jamaica, and Suriname, mosquitoes had consistently low levels of resistance to temephos (RR = 1-4.6) (P < 0.05). On occasion significantly different levels of resistance were recorded from neighboring A. aegypti communities, which suggests there is little genetic exchange among populations. The impact of larval resistance expressed itself as reduced efficacy of temephos to kill mosquitoes when strains were treated in the laboratory or in the field in large container environments with recommended dosages. Although a sensitive strain continued to be completely controlled for up to 7 weeks, the most resistant strains had 24% survival after the first week. By week 6, 60% to 75% of all resistant strains of larvae were surviving the larval period. Responses to malathion in adult A. aegypti varied from a sensitive population in Suriname (RR = 1.3) to resistant strains in St. Vincent (RR = 4.4), Dominica (RR = 4.2), and Trinidad (RR = 4.0); however, resistance was generally not on the scale of that observed to temephos in the larval stages and had increased only slightly when compared to the levels that existed 3 to 4 years ago. Suggestions are made for a pesticide usage policy for the Caribbean region, with modifications for individual countries. This would be formulated based on each country's insecticide-resistance profile. Use of physical and biological control strategies would play a more critical role than the use of insecticides. PMID:9924507

  9. Toxicity of thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Nakano, Hiroshi; Ali, Abbas; Ur Rehman, Junaid; Mamonov, Leonid K; Cantrell, Charles L; Khan, Ikhlas A

    2014-07-01

    Structure?activity relationships of nine thiophenes, 2,2':?5',2?-terthiophene (1), 2-chloro-4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yn-1-yl acetate (2), 4-(2,2'-bithiophen-5-yl)but-3-yne-1,2-diyl diacetate (3), 4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yne-1,2-diyl diacetate (4), 4-(2,2'-bithiophen-5-yl)-2-hydroxybut-3-yn-1-yl acetate (5), 2-hydroxy-4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yn-1-yl acetate (6), 1-hydroxy-4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yn-2-yl acetate (7), 4-(2,2'-bithiophen-5-yl)but-3-yne-1,2-diol (8), and 4-[5-(penta-1,3-diyn-1-yl)thiophen-2-yl]but-3-yne-1,2-diol (9), isolated from the roots of Echinops transiliensis, were studied as larvicides against Aedes aegypti. Structural differences among compounds 3, 5, and 8 consisted in differing AcO and OH groups attached to C(3?) and C(4?), and resulted in variations in efficacy. Terthiophene 1 showed the highest activity (LC50 , 0.16??g/ml) among compounds 1-9, followed by bithiophene compounds 3 (LC50 , 4.22??g/ml), 5 (LC50 , 7.45??g/ml), and 8 (LC50 , 9.89??g/ml), and monothiophene compounds 9 (LC50 , 12.45??g/ml), 2 (LC50 , 14.71??g/ml), 4 (LC50 , 17.95??g/ml), 6 (LC50 , 18.55??g/ml), and 7 (LC50 , 19.97??g/ml). These data indicated that A. aegypti larvicidal activities of thiophenes increase with increasing number of thiophene rings, and the most important active site in the structure of thiophenes could be the tetrahydro-thiophene moiety. In bithiophenes, 3, 5, and 8, A. aegypti larvicidal activity increased with increasing number of AcO groups attached to C(3?) or C(4?), indicating that AcO groups may play an important role in the larvicidal activity. PMID:25044586

  10. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding effects of socioeconomic factors or biological competitors for establishment and proliferation of Ae. aegypti. The results of such studies therefore should not be assumed to apply in areas with different socioeconomic conditions or composition of container-inhabiting mosquito species. For example, results from field-based studies at the high altitude cool margins for Ae. aegypti in Mexico's central highlands or the Andes in South America cannot be assumed to be directly applicable to geographic areas in the United States with comparable climate conditions. Unfortunately, we have a very poor understanding of how climatic drivers interact with the human landscape and biological competitors to impact establishment and proliferation of Ae. aegypti at the cool margin of its range in the continental United States. A first step toward assessing the future threat this mosquito poses to human health in the continental United States is to design and conduct studies across strategic climatic and socioeconomic gradients in the United States (including the U.S.-Mexico border area) to determine the permissiveness of the coupled natural and human environment for Ae. aegypti at the present time. This approach will require experimental studies and field surveys that focus specifically on climate conditions relevant to the continental United States. These studies also must include assessments of how the human landscape, particularly the impact of availability of larval developmental sites and the permissiveness of homes for mosquito intrusion, and the presence of other container-inhabiting mosquitoes that may compete with Ae. aegypti for larval habitat affects the ability of Ae. aegypti to establish and proliferate. Until we are armed with such knowledge, it is not possible to meaningfully assess the potential for climate warming to impact the proliferation potential for Ae. aegypti in the United States outside of the geographic areas where the mosquito already is firmly established, and even less so for dengue virus transmission and dengue disease in humans. PMID:23802440

  11. Mosquito (Aedes aegypti) flight tones: Frequency, harmonicity, spherical spreading, and phase relationships

    PubMed Central

    Arthur, Benjamin J.; Emr, Kevin S.; Wyttenbach, Robert A.; Hoy, Ronald R.

    2014-01-01

    Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1?Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed. PMID:25234901

  12. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2014-01-01

    A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus. PMID:25494470

  13. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti

    PubMed Central

    Boudko, Dmitri Y.; Tsujimoto, Hitoshi; Rodriguez, Stacy D.; Meleshkevitch, Ella A.; Price, David P.; Drake, Lisa L.; Hansen, Immo A.

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na+ dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  14. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology.

    PubMed

    Talyuli, Octávio A C; Bottino-Rojas, Vanessa; Taracena, Mabel L; Soares, Ana Luiza Macedo; Oliveira, José Henrique M; Oliveira, Pedro L

    2015-12-01

    Aedes aegypti mosquitoes obtain from vertebrate blood nutrients that are essential to oogenesis, such as proteins and lipids. As with all insects, mosquitoes do not synthesize cholesterol but take it from the diet. Here, we used a chemically defined artificial diet, hereafter referred to as Substitute Blood Meal (SBM), that was supplemented with cholesterol to test the nutritional role of cholesterol. SBM-fed and blood-fed mosquitoes were compared regarding several aspects of the insect physiology that are influenced by a blood meal, including egg laying, peritrophic matrix formation, gut microbiota proliferation, generation of reactive oxygen species (ROS) and expression of antioxidant genes, such as catalase and ferritin. Our results show that SBM induced a physiological response that was very similar to a regular blood meal. Depending on the nutritional life history of the mosquito since the larval stage, the presence of cholesterol in the diet increased egg development, suggesting that the teneral reserves of cholesterol in the newly hatched female are determinant of reproductive performance. We propose here the use of SBM as a tool to study other aspects of the physiology of mosquitoes, including their interaction with microbiota and pathogens. PMID:26578294

  15. Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti.

    PubMed

    Oktarianti, Rike; Senjarini, Kartika; Hayano, Toshiya; Fatchiyah, Fatchiyah; Aulanni'am

    2015-01-01

    Humans develop anti-salivary proteins after arthropod bites or exposure to insect salivary proteins. This reaction indicates that vector bites have a positive effect on the host immune response, which can be used as epidemiological markers of exposure to the vector. Our previous study identified two immunogenic proteins with molecular weights of 31kDa and 56kDa from salivary gland extract (SGE) of Aedes aegypti that cross-reacted with serum samples from Dengue Hemorrhagic Fever (DHF) patients and healthy people in an endemic area (Indonesia). Serum samples from individuals living in non-endemic area (sub-tropical country) and infants did not show the immunogenic reactions. The objective of this research was to identify two immunogenic proteins, i.e., 31 and 56kDa by using proteomic analysis. In this study, proteomic analysis resulted in identification of 13 proteins and 7 proteins from the 31kDa- and 56kDa-immunogenic protein bands, respectively. Among those proteins, the D7 protein (Arthropode Odorant-Binding Protein, AOBP) was the most abundant in 31-kDa band, and apyrase was the major protein of the 56-kDa band. PMID:26054892

  16. Costly Inheritance and the Persistence of Insecticide Resistance in Aedes aegypti Populations

    PubMed Central

    Schechtman, Helio; Souza, Max O.

    2015-01-01

    Global emergence of arboviruses is a growing public health concern, since most of these diseases have no vaccine or prevention treatment available. In this scenario, vector control through the use of chemical insecticides is one of the most important prevention tools. Nevertheless, their effectiveness has been increasingly compromised by the development of strong resistance observed in field populations, even in spite of fitness costs usually associated to resistance. Using a stage-structured deterministic model parametrised for the Aedes aegypti—the main vector for dengue—we investigated the persistence of resistance by studying the time for a population which displays resistance to insecticide to revert to a susceptible population. By means of a comprehensive series of in-silico experiments, we studied this reversal time as a function of fitness costs and the initial presence of the resistance allele in the population. The resulting map provides both a guiding and a surveillance tool for public health officers to address the resistance situation of field populations. Application to field data from Brazil indicates that reversal can take, in some cases, decades even if fitness costs are not small. As by-products of this investigation, we were able to fit very simple formulas to the reversal times as a function of either cost or initial presence of the resistance allele. In addition, the in-silico experiments also showed that density dependent regulation plays an important role in the dynamics, slowing down the reversal process. PMID:25933383

  17. Characterisation of novel Bacillus thuringiensis isolates against Aedes aegypti (Diptera: Culicidae) and Ceratitis capitata (Diptera: Tephridae).

    PubMed

    Elleuch, Jihen; Tounsi, Slim; Ben Hassen, Najeh Belguith; Lacoix, Marie Noël; Chandre, Fabrice; Jaoua, Samir; Zghal, Raida Zribi

    2015-01-01

    Bacillus thuringiensis is successfully used in pest management strategies as an eco-friendly bioinsecticide. Isolation and identification of new strains with a wide variety of target pests is an ever growing field. In this paper, new B. thuringiensis isolates were investigated to search for original strains active against diptera and able to produce novel toxins that could be used as an alternative for the commercial H14 strain. Biochemical and molecular characterization revealed a remarkable diversity among the studied strains. Using the PCR method, cry4C/Da1, cry30Ea, cry39A, cry40 and cry54 genes were detected in four isolates. Three strains, BLB355, BLB196 and BUPM109, showed feeble activities against Aedes aegypti larvae. Interestingly, spore-crystal mixtures of BLB361, BLB30 and BLB237 were found to be active against Ceratitis capitata with an LC50 value of about 65.375, 51.735 and 42.972 ?g cm(-2), respectively. All the studied strains exhibited important mortality levels using culture supernatants against C. capitata larvae. This suggests that these strains produce a wide range of soluble factors active against C. capitata larvae. PMID:25433312

  18. Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    PubMed Central

    Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

    2009-01-01

    Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

  19. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut

    PubMed Central

    Shahabuddin, Mohammed; Pimenta, Paulo F. P.

    1998-01-01

    Penetration of the mosquito midgut epithelium is obligatory for the further development of Plasmodium parasites. Therefore, blocking the parasite from invading the midgut wall disrupts the transmission of malaria. Despite such a pivotal role in malaria transmission, the cellular and molecular interactions that occur during the invasion are not understood. Here, we demonstrate that the ookinetes of Plasmodium gallinaceum, which is related closely to the human malaria parasite Plasmodium falciparum, selectively invade a cell type in the Aedes aegypti midgut. These cells, unlike the majority of the cells in the midgut, do not stain with a basophilic dye (toluidine blue) and are less osmiophilic. In addition, they contain minimal endoplasmic reticulum, lack secretory granules, and have few microvilli. Instead, these cells are highly vacuolated and express large amounts of vesicular ATPase. The enzyme is associated with the apical plasma membrane, cytoplasmic vesicles, and tubular extensions of the basal membrane of the invaded cells. The high cost of insecticide use in endemic areas and the emergence of drug resistant malaria parasites call for alternative approaches such as modifying the mosquito to block the transmission of malaria. One of the targets for such modification is the parasite receptor on midgut cells. A step toward the identification of this receptor is the realization that malaria parasites invade a special cell type in the mosquito midgut. PMID:9520375

  20. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial. PMID:25204067

  1. Aqueous 2% geraniol as a mosquito repellent failed against Aedes aegypti on ponies.

    PubMed

    Reeves, Will K; Miller, Myrna M

    2010-09-01

    Organic insect repellents are of interest to many agricultural producers and animal owners. Geraniol, a plant-derived alcohol, is naturally produced by a wide range of plants and is a US Environmental Protection Agency minimum risk pesticide. Previous studies have shown various concentrations of geraniol repel or kill mosquitoes; however, geraniol might cause allergic contact dermatitis in humans or animals. We tested a commercially available 2% aqueous solution of geraniol on ponies as a mosquito repellent. Five trials were conducted on ponies treated with a 60-ml aerosol mist (30 ml per side) of 2% geraniol or as untreated controls. Animals were observed 3 h postapplication to check for skin irritation. Aedes aegypti, in feeding tubes, were held on the ponies for 7 min. The average percent of biting on control animals was 56%, with a range of 16-90%, and the average for the treatments was 13%, with a range of 0-86%. Based on statistical models, there was no significant difference (P = 0.081) in the percent bites between treated and untreated animals after 3 h. Based on our data, 2% geraniol was not an adequate mosquito repellent for horses. We did not observe any skin irritation on the animals treated with 2% geraniol. PMID:21033064

  2. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence. PMID:24797405

  3. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10?×?LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors. PMID:25669140

  4. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  5. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  6. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C?O group. The band 1,383 developed for C?C and C?N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-80 nm. Energy-dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNP from leaf extracts against the fourth instar larvae of A. aegypti with LC?? values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l and LC?? values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l respectively. These results suggest that the synthesized AgNP from leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti. PMID:24337613

  7. [The factors associated with the occurrence of immature forms of Aedes aegypti in Ilha do Governador, Rio de Janeiro, Brazil].

    PubMed

    Souza-Santos, R

    1999-01-01

    Aedes aegypti is the vector of dengue, a disease that can result in epidemics. Ecological studies are important because different geographical populations of the vector may differ in their bioecological characteristics, which can be helpful in guiding control actions. The objective of this study was to identify and to analyze some factors associated with the occurrence of immature forms of A. aegypti on Ilha do Governador, Rio de Janeiro, using data from the National Health Foundation (FNS). The results showed that 58.04% of all the containers examined were supports for plant pots, and plastic or glass cans discarded in the yard. The highest percentages of positive breeding sites were observed in tires (1.41%), wells and cisterns (0.93%), and barrels and large metal cans (0.64%). In the summer, the proportion of positivity was higher for big containers used for water storage and for containers discarded in the yard. In the winter the proportion was higher for small containers used for water storage. The highest rates of positive containers were observed after three months without FNS activities. Our results show the necessity to continue the control, and suggest that less attention was paid to small containers during the winter by FNS. Factorial analysis showed that the determinant factor for the occurrence of immature forms of A. aegypti is represented by environmental factors, while elimination and treatment of breeding sites by FNS play a less important role, a fact possibly causing the maintenance of immature forms of A. aegypti. PMID:10495666

  8. Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison).

    PubMed

    Auysawasdi, Nutthanun; Chuntranuluck, Sawitri; Phasomkusolsil, Siriporn; Keeratinijakal, Vichien

    2016-01-01

    Repellency of essential oil extracted from Curcuma longa, Eucalyptus globulus, and Citrus aurantium at various concentrations (5, 10, 15, 20, and 25 %) with and without 5 % vanillin was evaluated against female mosquitoes: Aedes aegypti and Anopheles dirus. The comparisons were made with a commercial chemical repellent (N,N-diethyl-3-methylbenzamide (DEET) 25 % w/w; KOR YOR 15) by arm in cage method. It was found that the essential oils with 5 % vanillin gave the longest lasting period against two mosquitoes as follows: Curcuma longa gave 150 min for Ae. aegypti, 480 min for An. dirus; Eucalyptus globulus gave 144 min for Ae. aegypti, 390 min for An. dirus; and Citrus aurantium gave 120 min for Ae. aegypti, 360 min for An. dirus. The 25 % Curcuma longa essential oil exhibited the best efficiency as equal as a commercial repellent (480 min against An. dirus). Vanillin can extend the period of time in protection against the two mosquitoes. This study indicates the potential uses of the essential oils (Curcuma longa, Eucalyptus globulus, and Citrus aurantium) with vanillin as natural mosquito repellents. PMID:26358103

  9. Phylogeography and Spatio-Temporal Genetic Variation of Aedes aegypti (Diptera: Culicidae) Populations in the Florida Keys

    PubMed Central

    Brown, Julia E.; Obas, Vanessa; Morley, Valerie; Powell, Jeffrey R.

    2013-01-01

    Aedes aegypti (L.) is the principal mosquito vector of dengue fever, the second-most deadly vector-borne disease in the world. In Ae. aegypti and other arthropod disease vectors, genetic markers can be used to inform us about processes relevant to disease spread, such as movement of the vectors across space and the temporal stability of vector populations. In late 2009, 27 locally acquired cases of dengue fever were reported in Key West, FL. The last dengue outbreak in the region occurred in 1934. In this study, we used 12 microsatellite loci to examine the genetic structure of 10 Ae. aegypti populations from throughout the Florida Keys and Miami to assess gene flow along the region’s main roadway, the Overseas Highway. We also assessed temporal genetic stability of populations in Key West to determine whether the recent outbreak could have been the result of a new introduction of mosquitoes. Though a small amount of geographic genetic structure was detected, our results showed high overall genetic similarity among Ae. aegypti populations sampled in southeastern Florida. No temporal genetic signal was detected in Key West populations collected before and after the outbreak. Consequently, there is potential for dengue transmission across southeastern Florida; renewed mosquito control and surveillance measures should be taken. PMID:23540116

  10. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Dias, Clarice Noleto; Alves, Luciana Patrícia Lima; Rodrigues, Klinger Antonio da Franca; Brito, Maria Cristiane Aranha; Rosa, Carliane Dos Santos; do Amaral, Flavia Maria Mendonça; Monteiro, Odair Dos Santos; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Moraes, Denise Fernandes Coutinho

    2015-01-01

    The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292?mg/L after 24?h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors. PMID:25949264

  11. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    PubMed

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. PMID:26611967

  12. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Dias, Clarice Noleto; Alves, Luciana Patrícia Lima; Rodrigues, Klinger Antonio da Franca; Brito, Maria Cristiane Aranha; Rosa, Carliane dos Santos; do Amaral, Flavia Maria Mendonça; Monteiro, Odair dos Santos; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Moraes, Denise Fernandes Coutinho

    2015-01-01

    The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292?mg/L after 24?h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors. PMID:25949264

  13. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases

    PubMed Central

    Brown, Julia E.; McBride, Carolyn S.; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Hervé; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J.; Black, William C.; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O.; Walker, Christopher; Powell, Jeffrey R.

    2011-01-01

    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti. PMID:21227970

  14. Effects of ?,?-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti.

    PubMed

    Barros, Maria Ester S B; Freitas, Juliano C R; Santos, Geanne K N; da Silva, Rayane Cristine Santos; Pontual, Emmanuel V; Paiva, Patrícia M G; Napoleão, Thiago H; Navarro, Daniela M A F; Menezes, Paulo H

    2015-09-01

    Lactones are organic cyclic esters that have been described as larvicides against Aedes aegypti and as components of oviposition pheromone of Culex quinquefasciatus. This work describes the effect of six ?,?-unsaturated lactones (5a-5f) on survival of A.?aegypti fourth instar larvae (L4). It is also reported the effects of the lactones on L4 gut trypsin activity and oviposition behavior of A.?aegypti females. Five lactones were able to kill L4 being the lactones 5a (LC50 of 39.05?ppm), 5e (LC50 of 36.30?ppm) and 5f (LC50 of 40.46?ppm) the most promising larvicides. Only the lactone 5a inhibited L4 gut trypsin activity, with an IC50 of 115.15?µg/mL. Lactones 5a, 5c, 5d and 5e did not exert deterrent or stimulatory effects on oviposition, whereas lactone 5b exhibited a strong deterrent oviposition activity. In conclusion, this work introduces new ?,?-unsaturated lactones as promising alternatives to control A.?aegypti dissemination. The larvicidal mechanism of the lactone 5a can involve the disruption of proteolysis at larval gut. PMID:26044355

  15. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti.

    PubMed

    Fawaz, Emadeldin Y; Allan, Sandra A; Bernier, Ulrich R; Obenauer, Peter J; Diclaro, Joseph W

    2014-12-01

    Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6-trimethylcyclohex-2-ene-1,4-dione (ketoisophorone) (CAS# 1125-21-9, t(R) = 18.75), 2,2,6-trimethylcyclohexane-1,4-dione (the saturated analog of ketoisophorone) (CAS# 20547-99-3, t(R) = 20.05), and 1-(4-ethylphenyl) ethanone (CAS# 937-30-4, t(R) = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti. PMID:25424264

  16. Development of a Semi-Field System for Contained Field Trials with Aedes aegypti in Southern Mexico

    PubMed Central

    Facchinelli, Luca; Valerio, Laura; Bond, J. Guillermo; Wise de Valdez, Megan R.; Harrington, Laura C.; Ramsey, Janine M.; Casas-Martinez, M.; Scott, Thomas W.

    2011-01-01

    Development of new genetic approaches to either interfere with the ability of mosquitoes to transmit dengue virus or to reduce vector population density requires progressive evaluation from the laboratory to contained field trials, before open field release. Trials in contained outdoor facilities are an important part of this process because they can be used to evaluate the effectiveness and reliability of modified strains in settings that include natural environmental variations without releasing mosquitoes into the open field. We describe a simple and cost-effective semi-field system designed to study Aedes aegypti carrying a dominant lethal gene (fsRIDL) in semi-field conditions. We provide a protocol for establishing, maintaining, and monitoring stable Ae. aegypti population densities inside field cages. PMID:21813843

  17. Effects of immunotoxic activity of the major essential oil of Angelica purpuraefolia Chung against Aedes aegypti L.

    PubMed

    Park, Yool-Jin; Chung, Ill-Min; Moon, Hyung-In

    2010-12-01

    The rhizomes parts of Angelica purpuraefolia were extracted and the major essential oils composition and immunotoxic effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) revealed that the essential oils of A. purpuraefolia. The A. purpuraefolia essential oil (APEO) yield was 0.37%, and GC/MS analysis revealed that its major constituents were ?-Phellandrene (32.11%), Nerolidol (10.11%), Pyrimidine derivative (27.33%), Heptadecane (4.33%), and Celorbicol (6.33%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 31.21 ppm and an LC(90) value of 87.22 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxic agents against A. aegypti. PMID:20163192

  18. Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison).

    PubMed

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2011-09-01

    The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes. PMID:22299433

  19. Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes

    PubMed Central

    Moreno-García, Miguel; Vargas, Valeria; Ramírez-Bello, Inci; Hernández-Martínez, Guadalupe; Lanz-Mendoza, Humberto

    2015-01-01

    Gender differences in the immune response of insects are driven by natural selection for females and sexual selection for males. These natural forces entail a multitude of extrinsic and intrinsic factors involved in a genotype-environment interaction that results in sex-biased expression of the genes shared by males and females. However, little is known about how an infection at a particular ontogenetic stage may influence later stages, or how it may impact sexual immune dimorphism. Using Aedes aegypti mosquitoes, the aim of the present study was to analyze the effect of a bacterial exposure at the larval stage on adult immunity in males and females. The parameters measured were phenoloxidase activity, nitric oxide production, antimicrobial activity, and the antimicrobial peptide transcript response. As a measure of the immune response success, the persistence of injected bacteria was also evaluated. The results show that males, as well as females, were able to enhance survival in the adult stage as a result of being exposed at the larval stage, which indicates a priming effect. Moreover, there was a differential gender immune response, evidenced by higher PO activity in males as well as higher NO production and greater antimicrobial activity in females. The greater bacterial persistence in females suggests a gender-specific strategy for protection after a previous experience with an elicitor. Hence, this study provides a primary characterization of the complex and gender-specific immune response of male and female adults against a bacterial challenge in mosquitoes primed at an early ontogenetic stage. PMID:26181517

  20. Establishment and characterization of a new Aedes aegypti (L.) (Diptera: Culicidae) cell line with special emphasis on virus susceptibility.

    PubMed

    Sudeep, A B; Parashar, Deepti; Jadi, Ramesh S; Basu, Atanu; Mokashi, Chetan; Arankalle, Vidya A; Mishra, Akhilesh C

    2009-10-01

    A new cell line from the neonate larvae of Aedes aegypti (L) mosquito was established and characterized. The cell line at the 50th passage (P) level consisted of three prominent cell types, i.e., epithelial-like cells (92%), fibroblast-like cells (7%), and giant cells ( approximately 1%). Karyological analysis showed diploid (2n = 6) number of chromosomes in >75% cells at P-50. The growth kinetics studied at 52nd passage level showed approximately tenfold increase in cell number over a 10-d study period. The species specificity studies using DNA amplification fingerprinting profile analysis using RAPD primers demonstrated 100% homology with the host profile showing the integrity of the cell line. Electron microscopy revealed the absence of mycoplasma or other adventitious agents. The cell line supported the multiplication of seven arboviruses, i.e., Chikungunya (CHIK), Japanese encephalitis, West Nile, dengue 2 (DEN-2), Chandipura, vesicular stomatitis, and Chittoor viruses. The cell line did not replicate Ganjam and Kaisodi viruses. CHIK virus yield in the new cell line was approximately 3log and 0.5log 50% tissue culture infective dose (TCID(50))/mL higher than Vero E6 and C6/36 cell lines, respectively. In the case of DEN-2 virus, it yielded 1log TCID(50)/mL higher than Vero E6, but lesser than C6/36 cell line. Due to its high susceptibility to a broad spectrum of viruses, the new cell line may find application in virus isolation during epidemics and in antigen production. PMID:19533252

  1. Use of mycelial suspension and metabolites of Paecilomyces lilacinus (Fungi: Hyphomycetes) in control of Aedes aegypti larvae.

    PubMed

    Agarwala, S P; Sagar, S K; Sehgal, S S

    1999-09-01

    Mycelial suspension of possible was assessed to examine its Paecilomyces lilanicus, a fungus, detrimental effects on fourth instar larvae of Aedes aegypti. The immature stages suffered 64-68% mortality with 0.5-1% mycelial suspension. There was 12-16% adult emergence which was statistically significant (P < 001). Czapeckdox and PYG media metabolites were used against the third instar larvae in various concentrations. The effects were evaluated on several parameters like mortality, mean survival time and time taken for adult emergence. The results indicate that the fungus does not producae any toxic metabolites. PMID:10916617

  2. Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of Aedes aegypti from Guerrero, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Martínez, Norma E; Cruz-Nolasco, Maximina; Gutiérrez-Castro, Cipriano; López-Damián, Leonardo; Ibarra-López, Jesús; Martini, Andres; Torres-Leyva, Joel; Bibiano-Marín, Wilbert; Tornez-Benitez, Citlalli; Ayora-Talavera, Guadalupe; Manrique-Saide, Pablo

    2015-09-01

    We carried out dengue (DENV) and chikungunya virus (CHIKV) surveillance in wild populations of Aedes aegypti from Guerrero, Mexico, from 2012 to 2014 following a standard national protocol of the Mexican Dengue Control Program. A total of 284 pools (15-30 specimens/pool) of female mosquitoes were tested with real-time reverse transcriptase-polymerase chain reaction to detect DENV and CHIKV. We report for the 1st time the detection of CHIKV from field-collected mosquitoes at Acapulco and Juchitán in 2014. Results from DENV are also reported. PMID:26375910

  3. Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal

    PubMed Central

    Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to protect the health of local people and tourists travelling in the central Himalayas. PMID:25774518

  4. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be correlated with the assessments of pupal abundance. The methodology for pupal/demographic surveys appears to be practical and to give consistent results, although it remains to be seen if monitoring of pupal productivity can adequately reflect the impact of vector-control interventions. PMID:16630388

  5. Infection of Aedes albopictus with Chikungunya Virus Rectally Administered by Enema

    PubMed Central

    Ziegler, Sarah A.; Huang, Yan-Jang Scott; McAuley, Alex J.; Vanlandingham, Dana L.; Klowden, Marc J.; Spratt, Heidi; Davey, Robert A.; Higgs, Stephen

    2013-01-01

    Abstract Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes albopictus and Aedes aegypti mosquitoes in tropical areas of Africa, Asia, and the islands of the Indian Ocean. In 2007 and 2009, CHIKV was transmitted outside these tropical areas and caused geographically localized infections in people in Italy and France. To temporally and spatially characterize CHIKV infection of Ae. albopictus midguts, a comparison of viral distribution in mosquitoes infected per os or by enema was conducted. Ae. albopictus infected with CHIKV LR 5? green fluorescent protein (GFP) at a titer 106.95 tissue culture infective dose50 (TCID50)/mL, were collected and analyzed for virus dissemination by visualizing GFP expression and titration up to 14 days post inoculation (dpi). Additionally, midguts were dissected from the mosquitoes and imaged by fluorescence microscopy for comparison of midgut infection patterns between orally- and enema-infected mosquitoes. When virus was delivered via enema, the anterior midgut appeared more readily infected by 3?dpi, with increased GFP presentation observed in this same location of the midgut at 7 and 14?dpi when compared to orally-infected mosquitoes. This work demonstrates that enema delivery of virus is a viable technique for use of mosquito infection. Enema injection of mosquitoes may be an alternative to intrathoracic inoculation because the enema delivery more closely models natural infection and neither compromises midgut integrity nor involves a wound that can induce immune responses. Furthermore, unlike intrathoracic delivery, the enema does not bypass midgut barriers to infect tissues artificially in the hemocoel of the mosquito. PMID:23249139

  6. A Secure Semi-Field System for the Study of Aedes aegypti

    PubMed Central

    Ritchie, Scott A.; Johnson, Petrina H.; Freeman, Anthony J.; Odell, Robin G.; Graham, Neal; DeJong, Paul A.; Standfield, Graeme W.; Sale, Richard W.; O'Neill, Scott L.

    2011-01-01

    Background New contained semi-field cages are being developed and used to test novel vector control strategies of dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages (James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia. Methodology/Principal Findings The MRF consists of a single QIC-2 laboratory/insectary that connects through a central corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match ambient conditions. Data loggers set in the cages and outside found a <2°C temperature difference. Additional security features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled every 3–4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively. Conclusions/Significance The MRF SFS allows us to test novel control strategies within a secure, contained environment. The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures on quarantine level insects. PMID:21445333

  7. Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses

    PubMed Central

    Diancourt, Laure; Caro, Valérie; Thaisomboonsuk, Butsaya; Richardson, Jason H.; Jarman, Richard G.; Ponlawat, Alongkot; Lambrechts, Louis

    2013-01-01

    Specific interactions between host genotypes and pathogen genotypes (G×G interactions) are commonly observed in invertebrate systems. Such specificity challenges our current understanding of invertebrate defenses against pathogens because it contrasts the limited discriminatory power of known invertebrate immune responses. Lack of a mechanistic explanation, however, has questioned the nature of host factors underlying G×G interactions. In this study, we aimed to determine whether G×G interactions observed between dengue viruses and their Aedes aegypti vectors in nature can be mapped to discrete loci in the mosquito genome and to document their genetic architecture. We developed an innovative genetic mapping strategy to survey G×G interactions using outbred mosquito families that were experimentally exposed to genetically distinct isolates of two dengue virus serotypes derived from human patients. Genetic loci associated with vector competence indices were detected in multiple regions of the mosquito genome. Importantly, correlation between genotype and phenotype was virus isolate-specific at several of these loci, indicating G×G interactions. The relatively high percentage of phenotypic variation explained by the markers associated with G×G interactions (ranging from 7.8% to 16.5%) is consistent with large-effect host genetic factors. Our data demonstrate that G×G interactions between dengue viruses and mosquito vectors can be assigned to physical regions of the mosquito genome, some of which have a large effect on the phenotype. This finding establishes the existence of tangible host genetic factors underlying specific interactions between invertebrates and their pathogens in a natural system. Fine mapping of the uncovered genetic loci will elucidate the molecular mechanisms of mosquito-virus specificity. PMID:23935524

  8. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region.

    PubMed

    Maestre-Serrano, Ronald; Gomez-Camargo, Doris; Ponce-Garcia, Gustavo; Flores, Adriana E

    2014-11-01

    We determined the susceptibility to insecticides and the biochemical and molecular mechanisms involved in resistance in nine populations of Aedes aegypti (L.) of the Colombian Caribbean region. Bioassays were performed on larvae for susceptibility to temephos and on adults to the insecticides malathion, fenitrothion, pirimiphos-methyl, permethrin, deltamethrin, ?-cyhalothrin and cyfluthrin. The resistance ratio (RR) for each insecticide in the populations was determined, using the susceptible Rockefeller strain as a susceptible control. Additionally, we evaluated the response of the populations to the diagnostic dose (DD) of the organochlorine pesticide DDT. The following biochemical mechanisms associated with resistance were studied: ?-esterases, ?-esterases, mixed-function oxidases (MFO), glutathione s-transferases (GST) and insensitive acetylcholinesterase (iAChE) as well as the presence of kdr I1,016 mutation and its frequency. All populations studied showed susceptibility to the organophosphates evaluated (RR?

  9. Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia

    PubMed Central

    Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbé, Geneviève; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz

    2012-01-01

    Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains. PMID:22970102

  10. Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production

    PubMed Central

    Soares, Juliana B. R. Correa; Gaviraghi, Alessandro; Oliveira, Marcus F.

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step towards the understanding of fundamental mitochondrial processes in A. aegypti, with potential implications for its physiology and vectorial capacity. PMID:25803027

  11. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti

    PubMed Central

    Subramaniam, Jayapal; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Murugan, Kadarkarai; Walton, William

    2012-01-01

    The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti. PMID:23961212

  12. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  13. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  14. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control

    PubMed Central

    Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

    2013-01-01

    Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

  15. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  16. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  17. Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti

    PubMed Central

    Strode, Clare; de Melo-Santos, Maria; Magalhães, Tereza; Araújo, Ana; Ayres, Contancia

    2012-01-01

    Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control. PMID:22870187

  18. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti.

    PubMed

    Subramaniam, Jayapal; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Murugan, Kadarkarai; Walton, William

    2012-10-01

    The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti. PMID:23961212

  19. Mating competitiveness and life-table comparisons between transgenic and Indian wild-type Aedes aegypti L.

    PubMed Central

    Patil, Prabhakargouda B; Niranjan Reddy, BP; Gorman, Kevin; Seshu Reddy, KV; Barwale, Shirish R; Zehr, Usha B; Nimmo, Derric; Naish, Neil; Alphey, Luke

    2015-01-01

    BACKGROUND OX513A is a genetically engineered strain of Aedes aegypti carrying a repressible, dominantly inherited transgene that confers lethality in immature heterozygous progeny. Released male OX513A adults have proven to be effective for the localised suppression of wild Ae. aegypti, highlighting its potential in vector control. Mating and life-table assessments were used to compare OX513A with reared Ae. aegypti strains collected from New Delhi and Aurangabad regions in India. RESULTS Mating proportions of New Delhi females versus males of OX513A or New Delhi strains were 0.52 and 0.48 respectively, indicating no discrimination by females against either strain, and males of both strains were equally competitive. Developmental time from first instar to adult emergence was significantly longer for OX513A (10.7 ± 0.04 days) than for New Delhi (9.4 ± 0.04 days) and Aurangabad strains (9.1 ± 0.04 days). Differences in mean longevities, female reproductive parameters and population growth parameters between the strains were non-significant. CONCLUSIONS The laboratory study demonstrates that only minor life-table variations of limited biological relevance exist between OX513A and Indian Ae. aegypti populations, and males had equal potential for mating competitiveness. Thus, results support the OX513A strain as a suitable candidate for continued evaluation towards sustainable management of Ae. aegypti populations in India. © 2014 Gangabishan Bhikulal Investment and Trading Limited. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25078081

  20. Low efficacy of delthamethrin-treated net against Singapore Aedes aegypti is associated with kdr-type resistance.

    PubMed

    Pang, S C; Chiang, L P; Tan, C H; Vythilingam, I; Lam-Phua, S G; Ng, L C

    2015-03-01

    There has been a worldwide surge in the number and severity of dengue in the past decades. In Singapore, relentless vector control efforts have been put in to control the disease since the 1960's. Space spraying, fogging, chemical treatment and source reduction are some commonly used methodologies for controlling its vectors, particularly Aedes aegypti. Here, as we explored the use of a commercially available delthamethrin-treated net as an alternative strategy and the efficacy of the treated net was found to be limited. Through bioassays and molecular studies, the failure of the treated net to render high mortality rate was found to be associated with the knockdown resistance (kdr) mutation. This is the first report of kdr- mutations in Singapore's Ae. aegypti. At least one point mutation, either homozygous or heterozygous, at amino acid residue V1016G of DIIS6 or F1269C of DIIIS6 was detected in 93% of field strains of Ae. aegypti. Various permutations of wild type and mutant amino acids of the four alleles were found to result in varying degree of survival rate among local field Ae. aegypti when exposed to the deltamethrin treated net. Together with the association of higher survival rate with the presence of both V1016G and F1269C, the data suggest the role of these mutations in the resistance to the deltamethrin. The high prevalence of these mutations were confirmed in a country wide survey where 70% and 72% of the 201 Ae. aegypti analysed possessed the mutations at residues 1016 and 1269 respectively. The highest mutated frequency combination was found to be heterozygous alleles (VG/FC) at both residues 1016 and 1269 (37.8%), followed by homozygous mutation at allele 1269 (24.4%) and homozygous mutation at allele 1016 (22.9%). The kdr- type of resistance among the vector is likely to undermine the effectiveness of pyrethroids treated materials against these mosquitoes. PMID:25801264

  1. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

    2013-01-01

    Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

  2. ECDYSTEROID TITERS AND DEVELOPMENTAL EXPRESSION OF ECDYSONE-REGULATED GENES DURING METAMORPHOSIS OF THE YELLOW FEVER MOSQUITO, AEDES AEGYPTI (DIPTERA: CULICIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroid titers and expression profiles of ecdysone-regulated genes were determined during the last instar larval and during the pupal stages of Aedes aegypti (Diptera: Culicidae). Three peaks of ecdysteroids occurring at approximately 24, 30-33 and 45-48 hrs after ecdysis to the fourth instar l...

  3. Laboratory studies of Aedes aegypti (L.) attraction to ketones, sulfides and primary chloroalkanes tested alone and in combination with l-lactic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attraction of female Aedes aegypti to single compounds and binary compositions comprised of L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because o...

  4. Synthesis and structure-activity relationships of 1-undec-10-enoyl-piperidines as adulticides against the yellow fever mosquito Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow fever mosquito, Aedes aegypti (L.), is considered the primary vector for both dengue and yellow fever. Using insecticide is one of the major ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control. As part of our collabo...

  5. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit pathogens that cause millions of human deaths each year. Dengue virus is transmitted to humans in tropical and subtropical areas by Aedes aegypti (Diptera: Culicidae). The use of synthetic insecticides to control this mosquito is accompanied by high operational costs and adverse...

  6. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  7. High affinity 3H-Phe uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBMVw)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to s...

  8. The kinin receptor is expressed in the Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): a new model needed to explain ion transport?

    PubMed Central

    Lu, Hsiao-Ling; Kersch, Cymon; Pietrantonio, Patricia V.

    2011-01-01

    It is known that insect kinins increase diuresis and fluid secretion in the Aedes aegypti Malpighian tubule, causing a rapid drop of the transepithelial resistance and increasing chloride conductance from the hemolymph towards the tubule lumen. The tubule is composed of both principal and stellate cells. The main route for increased chloride influx upon kinin treatment is proposed to be paracellular, with septate junctions acquiring increased chloride selectivity and conductance. Therefore, kinin treatment renders the Aedes aegypti tubule a “leaky epithelium”, and under this model the kinin receptor is postulated to be expressed in principal cells. However, in another dipteran, the fruit fly Drosophila melanogaster, the main route for chloride transport is transcellular through stellate cells. In both the fruit fly and the mosquito Anopheles stephensi the kinin receptor has been immunolocalized in stellate cells, where it regulates transepithelial chloride permeability. Here we show that in Aedes aegypti, similarly, the stellate cells express the kinin receptor. This was confirmed through immunohistochemistry with two specific anti-kinin receptor antibodies and confocal analysis. The receptor is detected as a 75kDa band in western blot. These results indicate that the currently accepted model for chloride transport must be re-evaluated in Aedes aegypti and suggest the kinin regulatory signals controlling intercellular junctions originate in the stellate cells. PMID:21056665

  9. In-silico homology modeling of three isoforms of insect defensins from the dengue vector mosquito, Aedes aegypti (Linn., 1762).

    PubMed

    Dhananjeyan, K J; Sivaperumal, R; Paramasivan, R; Thenmozhi, V; Tyagi, B K

    2009-05-01

    Dengue is a serious public health problem in tropical and subtropical countries. It is caused by any of the four serologically distinct dengue viruses, namely DENV1-4. The viruses are transmitted by Aedes mosquitoes. Understanding various defence mechanisms of insects has become a prime area of research worldwide. In insects, the first line of defence against invading pathogens includes cellular mechanisms and a battery of antimicrobial peptides such as defensins, cecropins etc. Defensins--cationic, cysteine-rich peptides consisting of approximately 40 amino acids with broad-spectrum activity against Gram-positive bacteria--have been reported from a wide range of organisms. In the dengue vector mosquito, Aedes aegypti, three isoforms of defensins are reported to be expressed in a spatial and temporal fashion. This report presents the three-dimensional structures of the three isoforms of Ae. aegypti defensins predicted by comparative modeling. Prediction was done with Modeller 9v1 and the structures validated through a series of tests. The best results of the prediction study are presented, and may help lead to the discovery of new synthetic peptides or derivatives of defensins that could be useful in the control of vector-borne diseases. PMID:19085024

  10. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects adapt to them. PMID:25796215

  11. Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti

    PubMed Central

    LACEY, EMERSON S.; RAY, ANANDASANKAR; CARDÉ, RING T.

    2014-01-01

    In a wind-tunnel study, the upwind flight and source location of female Aedes aegypti to plumes of carbon dioxide (CO2) gas and odour from human feet is tested. Both odour sources are presented singly and in combination. Flight upwind along the plumes is evident for both CO2 and odour from human feet when the odours are presented alone. Likewise, both odour sources are located by more than 70% of mosquitoes in less than 3 min. When both CO2 and odour from human feet are presented simultaneously in two different choice tests (with plumes superimposed or with plumes separated), there is no evidence that females orientate along the plume of CO2 and only a few mosquitoes locate its source. Rather, the foot odour plume is navigated and the source of foot odour is located by over 80% of female Ae. aegypti. When a female is presented a plume of CO2 within a broad plume of human foot odour of relatively low concentration, the source of CO2 is not located; instead, flight is upwind in the diffuse plume of foot odour. Although upwind flight by Ae. aegypti at long range is presumably induced by CO2 and the threshold of response to skin odours is lowered, our findings suggest that once females have arrived near a prospective human host, upwind orientation and landing are largely governed by the suite of odours from a human foot, while orientation is no longer influenced by CO2. PMID:24839345

  12. Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti.

    PubMed

    Lacey, Emerson S; Ray, Anandasankar; Cardé, Ring T

    2014-03-01

    In a wind-tunnel study, the upwind flight and source location of female Aedes aegypti to plumes of carbon dioxide (CO2) gas and odour from human feet is tested. Both odour sources are presented singly and in combination. Flight upwind along the plumes is evident for both CO2 and odour from human feet when the odours are presented alone. Likewise, both odour sources are located by more than 70% of mosquitoes in less than 3 min. When both CO2 and odour from human feet are presented simultaneously in two different choice tests (with plumes superimposed or with plumes separated), there is no evidence that females orientate along the plume of CO2 and only a few mosquitoes locate its source. Rather, the foot odour plume is navigated and the source of foot odour is located by over 80% of female Ae. aegypti. When a female is presented a plume of CO2 within a broad plume of human foot odour of relatively low concentration, the source of CO2 is not located; instead, flight is upwind in the diffuse plume of foot odour. Although upwind flight by Ae. aegypti at long range is presumably induced by CO2 and the threshold of response to skin odours is lowered, our findings suggest that once females have arrived near a prospective human host, upwind orientation and landing are largely governed by the suite of odours from a human foot, while orientation is no longer influenced by CO2. PMID:24839345

  13. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti.

    PubMed

    Vogel, Kevin J; Brown, Mark R; Strand, Michael R

    2015-04-21

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  14. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti

    PubMed Central

    Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2015-01-01

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  15. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area.

    PubMed

    Mangudo, C; Aparicio, J P; Gleiser, R M

    2015-12-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework. PMID:26193903

  16. Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae)

    PubMed Central

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Ignacimuthu, Savarimuthu

    2014-01-01

    Objectives To evaluate the ovicidal and oviposition deterrent activities of five medicinal plant extracts namely Aegle marmelos (Linn.), Limonia acidissima (Linn.), Sphaeranthus indicus (Linn.), Sphaeranthus amaranthoides (burm.f), and Chromolaena odorata (Linn.) against Culex quinquefasciatus and Aedes aegypti mosquitoes. Three solvents, namely hexane, ethyl acetate, and methanol, were used for the preparation of extracts from each plant. Methods Four different concentrations—62.5 parts per million (ppm), 125 ppm, 250 ppm, and 500 ppm—were prepared using acetone and tested for ovicidal and oviposition deterrent activities. One-way analysis of variance (ANOVA) was used to determine the significance of the treatments and means were separated by Tukey's test of comparison. Results Among the different extracts of the five plants screened, the hexane extract of L. acidissima recorded the highest ovicidal activity of 79.2% and 60% at 500 ppm concentration against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. Similarly, the same hexane extract of L. acidissima showed 100% oviposition deterrent activity at all the tested concentrations against Cx. quinquefasciatus and Ae. aegypti adult females. Conclusion It is concluded that the hexane extract of L. acidissima could be used in an integrated mosquito management program. PMID:25737834

  17. Sublethal effect of pyriproxyfen released from a fumigant formulation on fecundity, fertility, and ovicidal action in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Harburguer, Laura; Zerba, Eduardo; Licastro, Susana

    2014-03-01

    Dengue and dengue hemorrhagic fever are mosquito-borne viral diseases that coincide with the distribution of Aedes aegypti (L.), the primary vector in the tropical and semitropical world. With no available vaccine, controlling the dengue vector is essential to prevent epidemics. The effects of the insect growth regulator pyriproxyfen on Ae. aegypti adults that survived a treatment with a sublethal dose were investigated in the laboratory, including effects on their reproductive potential. Pyriproxyfen was released from a fumigant formulation at a dose causing 20 or 40% emergence inhibition (%EI). Females were dissected before and after blood feeding and the basal follicle number was counted. There were no differences between the control and treated group on the basal follicle number for both doses used. Fertility and fecundity were reduced at a concentration of EI40 but no at EI20. There was no ovicidal effect of pyriproxyfen by immersion of eggs in treated water neither when the females laid their eggs on a pyriproxyfen-treated surface. This work shows that sublethal doses of pyriproxyfen can have effects on fertility and fecundity ofAe. aegypti females, which together with its larvicidal activity could contribute to an overall decrease in a given population. PMID:24724294

  18. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kalaivani, Kandaswamy; Senthil-Nathan, Sengottayan; Murugesan, Arunachalam Ganesan

    2012-03-01

    The larvicidal activity of hydrodistillate extracts from Mentha piperita L. Ocimum basilicum L. Curcuma longa L. and Zingiber officinale L. were investigated against the dengue vector Aedes aegypti L. (Diptera: Culicidae).The results indicated that the mortality rates at 80, 100, 200 and 400 ppm of M. piperita, Z. officinale, C. longa and O. basilicum concentrations were highest amongst all concentrations of the crude extracts tested against all the larval instars and pupae of A. aegypti. Result of log probit analysis (at 95% confidence level) revealed that lethal concentration LC?? and LC?? values were 47.54 and 86.54 ppm for M. piperita, 40.5 and 85.53 ppm for Z. officinale, 115.6 and 193.3 ppm for C. longa and 148.5 and 325.7 ppm for O. basilicum, respectively. All of the tested oils proved to have strong larvicidal activity (doses from 5 to 350 ppm) against A. aegypti fourth instars, with the most potent oil being M. piperita extract, followed by Z. officinale, C. longa and O. basilicum. In general, early instars were more susceptible than the late instars and pupae. The results achieved suggest that, in addition to their medicinal activities, Lamiaceae and Zingiberaceae plant extracts may also serve as a natural larvicidal agent. PMID:21881945

  19. From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes aegypti Mosquitoes

    PubMed Central

    Caragata, Eric Pearce; Silva, Jéssica Barreto Lopes; Villela, Daniel Antunes Maciel; Maciel-de-Freitas, Rafael; Moreira, Luciano Andrade

    2015-01-01

    Background The symbiotic bacterium Wolbachia is currently being trialled as a biocontrol agent in several countries to reduce dengue transmission. Wolbachia can invade and spread to infect all individuals within wild mosquito populations, but requires a high rate of maternal transmission, strong cytoplasmic incompatibility and low fitness costs in the host in order to do so. Additionally, extensive differences in climate, field-release protocols, urbanization level and human density amongst the sites where this bacterium has been deployed have limited comparison and analysis of Wolbachia’s invasive potential. Methodology/Principal Findings We examined key phenotypic effects of the wMel Wolbachia strain in laboratory Aedes aegypti mosquitoes with a Brazilian genetic background to characterize its invasive potential. We show that the wMel strain causes strong cytoplasmic incompatibility, a high rate of maternal transmission and has no evident detrimental effect on host fecundity or fertility. Next, to understand the effects of different urban landscapes on the likelihood of mosquito survival, we performed mark-release-recapture experiments using Wolbachia-uninfected Brazilian mosquitoes in two areas of Rio de Janeiro where Wolbachia will be deployed in the future. We characterized the mosquito populations in relation to the socio-demographic conditions at these sites, and at three other future release areas. We then constructed mathematical models using both the laboratory and field data, and used these to describe the influence of urban environmental conditions on the likelihood that the Wolbachia infection frequency could reach 100% following mosquito release. We predict successful invasion at all five field sites, however the conditions by which this occurs vary greatly between sites, and are strongly influenced by the size of the local mosquito population. Conclusions/Significance Through analysis of laboratory, field and mathematical data, we show that the wMel strain of Wolbachia possesses the characteristics required to spread effectively in different urban socio-demographic environments in Rio de Janeiro, including those where mosquito releases from the Eliminate Dengue Program will take place. PMID:25905888

  20. The Insecticide Susceptibility Status of Aedes aegypti (Diptera: Culicidae) in Farm and Nonfarm Sites of Lagos State, Nigeria.

    PubMed

    Ayorinde, A; Oboh, B; Oduola, A; Otubanjo, O

    2015-01-01

    Nigeria is one of the malaria-endemic countries. In Lagos State, Nigeria, various malaria vector control programs including the use of chemical insecticides are currently being implemented. This study was designed to provide information on the susceptibility status of some nontargeted vectors such as Aedes aegypti. Adult Ae. aegypti mosquitoes from two farm sites and a nonfarm site were exposed to World Health Organization test papers impregnated with Deltamethrin (0.05%), Permethrin (0.75%), and DDT (4%) insecticides. The Knockdown time (KdT50 and KdT95) and percentage mortality after 24 h post exposure were determined. In all the exposed mosquito populations to permethrin, mortality rate?> 98% (susceptibility) was recorded, whereas mortality rates ?98% (susceptibility) to deltamethrin were observed in the nonfarm site and farm sites mosquito populations, respectively. All the mosquito populations were resistant to DDT in 2 yr. The KdT50 of the populations to DDT increased (60.2-69.6) in one of the farm sites and the nonfarm site (68.9-199.96), while a decrease (243-63.4) in another farm site in 2 yr. Significant difference (P?aegypti mosquitoes in the second year after exposure to deltamethrin and DDT. An increase in KdT95 after exposure to deltamethrin in the first year was recorded. Higher KdT values and lower mortality rates in Ae. aegypti populations in the nonfarm sites are indications there are existing factors selecting for insecticide resistance outside agricultural use of insecticides. PMID:26106087

  1. The Insecticide Susceptibility Status of Aedes aegypti (Diptera: Culicidae) in Farm and Nonfarm Sites of Lagos State, Nigeria

    PubMed Central

    Ayorinde, A.; Oboh, B.; Oduola, A.; Otubanjo, O.

    2015-01-01

    Nigeria is one of the malaria-endemic countries. In Lagos State, Nigeria, various malaria vector control programs including the use of chemical insecticides are currently being implemented. This study was designed to provide information on the susceptibility status of some nontargeted vectors such as Aedes aegypti. Adult Ae. aegypti mosquitoes from two farm sites and a nonfarm site were exposed to World Health Organization test papers impregnated with Deltamethrin (0.05%), Permethrin (0.75%), and DDT (4%) insecticides. The Knockdown time (KdT50 and KdT95) and percentage mortality after 24 h post exposure were determined. In all the exposed mosquito populations to permethrin, mortality rate?> 98% (susceptibility) was recorded, whereas mortality rates ?98% (susceptibility) to deltamethrin were observed in the nonfarm site and farm sites mosquito populations, respectively. All the mosquito populations were resistant to DDT in 2 yr. The KdT50 of the populations to DDT increased (60.2–69.6) in one of the farm sites and the nonfarm site (68.9–199.96), while a decrease (243–63.4) in another farm site in 2 yr. Significant difference (P?aegypti mosquitoes in the second year after exposure to deltamethrin and DDT. An increase in KdT95 after exposure to deltamethrin in the first year was recorded. Higher KdT values and lower mortality rates in Ae. aegypti populations in the nonfarm sites are indications there are existing factors selecting for insecticide resistance outside agricultural use of insecticides. PMID:26106087

  2. The effects of temperature and humidity on the eggs of Aedes aegypti (L.) and Aedes albopictus (Skuse) in Texas 

    E-print Network

    Dickerson, Catherine Zindler

    2009-05-15

    . The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected to 25 different temperature and relative humidity conditions for up to three months. In most treatments...

  3. Effects of marking methods and fluorescent dusts on Aedes aegypti survival

    PubMed Central

    2014-01-01

    Background Tracking the movement of mosquitoes and understanding dispersal dynamics is essential for the control and prevention of vector-borne diseases. A variety of marking techniques have been used, including dusts and dyes. Methods In this study, Aedes aegypti were marked using fluorescent dusts (‘DayGlo’: A-19 Horizon Blue & A-13-N Rocket Red; ‘Brian Clegg’: pink, blue & red), fluorescent paints (‘Brian Clegg’: blue, red & yellow) and metallic gold dust (‘Brian Clegg’). Dusting methods were those previously used in mark-release-recapture experiments, including application with a bulb duster, creation of a dust storm or shaking in a bag. Results Results showed marking mosquitoes using a dust storm allowed relatively high survival, compared to unmarked controls (Males: ?2?=?3.24, df?=?4, p?=?0.07; Females: ?2?=?3.24, df?=?4, p?=?0.04), and high marking efficiency. Using a bulb duster showed high survival in male mosquitoes (?2?=?12.59, df?=?4, p?

  4. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti.

    PubMed

    Piermarini, Peter M; Rouhier, Matthew F; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W

    2013-01-01

    Inward-rectifying K(+) (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K(+) currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na(+). Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl(+) > K(+) > Rb(+) > NH(4)(+)) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K(+). PMID:23085358

  5. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of São Sebastião, São Paulo State, Brazil

    PubMed Central

    2013-01-01

    Background This study focused on the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus. Methods Eighty ovitraps were exposed for four days of each month in peri- and intradomiciliary environments of 40 urban residences on 20 street blocks that were drawn monthly in Sebastião, SP, between February 2011 and February 2012. The monthly distribution of positive ovitrap indices (POI) and mean egg counts per trap (MET) of Ae. aegypti and Ae. albopictus were analyzed using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner (DSCF) test. Spearman's rank correlation coefficient and simple linear regression were used to determine the association between the meteorological variables of temperature and rainfall and the number of ovitraps with eggs and the egg count. Results The POI and MET of Ae. aegypti were higher in peridomiciliary premises. A positive correlation was found between the temperature and the number of ovitraps with eggs and the egg count of this species in domestic environments. There was no difference in the POI and MET of Ae. albopictus between the environments. A positive correlation was found between temperature and positive ovitraps of Ae. albopictus in peridomiciliary premises. The POI and MET of Ae. aegypti were higher than those of Ae. albopictus. Conclusions Peridomiciliary premises were the preferred environments for oviposition of Ae. aegypti. The use of ovitraps for surveillance and vector control is reiterated. PMID:24499530

  6. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics

    PubMed Central

    Araújo, Helena R. C.; Carvalho, Danilo O.; Ioshino, Rafaella S.; Costa-da-Silva, André L.; Capurro, Margareth L.

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program. PMID:26463204

  7. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics.

    PubMed

    Araújo, Helena R C; Carvalho, Danilo O; Ioshino, Rafaella S; Costa-da-Silva, André L; Capurro, Margareth L

    2015-01-01

    Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil's National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil's mosquito control program. PMID:26463204

  8. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    PubMed Central

    Juneja, Punita; Ariani, Cristina V.; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2015-01-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  9. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    PubMed

    Juneja, Punita; Ariani, Cristina V; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J; Pain, Arnab; Jiggins, Francis M

    2015-03-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  10. A Bayesian Hierarchical Model for Estimation of Abundance and Spatial Density of Aedes aegypti

    PubMed Central

    Villela, Daniel A. M.; Codeço, Claudia T.; Figueiredo, Felipe; Garcia, Gabriela A.; Maciel-de-Freitas, Rafael; Struchiner, Claudio J.

    2015-01-01

    Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals’ refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical model also performed better than the commonly used Fisher-Ford’s method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling framework and its knowledge deemed crucial to predict the fate of transmission control strategies based on the replacement of vector populations. PMID:25906323

  11. Immunotoxicity activity of 1,2,4-trimethoxybenzene from the Paulownia coreana Uyeki. against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Moon, Hyung-In

    2011-03-01

    The flower parts of Paulownia coreana were extracted and the major essential oils composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS) revealed that the essential oils of P. coreana. The P. coreana essential oil (PCEO) yield was 0.175%, and GC/MS analysis revealed that its major constituents were benzyl alcohol (13.72%), phenol, 3,4-dimethoxy-methyl ester (3.64%), phenol, 2-methoxy-3-(2-popenyl)-methyl ester (6.24%), 1,2,4-Trimethoxybenzene (8.32%), tricosane (3.28%), and pentacosane (3.26%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 31.64?ppm and an LC(90) value of 56.43?ppm. 1,2,4-Trimethoxybenzene was the most toxic among the major components with an LC(50) value near 23.1?ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20476845

  12. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama

    PubMed Central

    Neira, Marco; Lacroix, Renaud; Cáceres, Lorenzo; Kaiser, Paul E; Young, Josue; Pineda, Lleysa; Black, Isaac; Sosa, Nestor; Nimmo, Derric; Alphey, Luke; McKemey, Andrew

    2014-01-01

    Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed. PMID:25410991

  13. Male Mating History and Body Size Influence Female Fecundity and Longevity of the Dengue Vector Aedes aegypti

    PubMed Central

    Helinski, Michelle E.H.; Harrington, Laura C.

    2014-01-01

    Male reproductive success is dependent on insemination success and reproductive output. During mating, male mosquitoes transfer not just sperm, but also seminal fluid proteins that may have profound effects on mated female biology and behavior. In this study, we investigated the role of male body size and mating history on semen depletion, female longevity and reproductive success in Aedes aegypti L. Small and large males were mated in rapid succession with up to five females. Our results indicate that large males had greater mating capacity than small males. A reduction in fecundity by more than 50% was observed in females that were fourth to mate with small males in comparison to females that mated earlier in sequence. For females mated to large males, this reduction became evident for females that mated fifth in sequence. No loss of fertility (measured as hatch rate) was observed in females that were 3rd-5th in mating sequence compared to females mated to virgin males. When females were maintained on a low-quality (5% sucrose) diet, those mated to virgin males had a greater longevity compared to females mated third in sequence. We conclude that small males experience more rapid seminal depletion than large males, and discuss the role of semen depletion in the mated female. Our results contribute towards a better understanding of the complexity of Ae. aegypti mating biology and provide refined estimates of mating capacity for genetic control efforts. PMID:21485355

  14. Phylogeography of Aedes aegypti (Yellow Fever Mosquito) in South Florida: mtDNA Evidence for Human-Aided Dispersal

    PubMed Central

    Damal, Kavitha; Murrell, Ebony G.; Juliano, Steven A.; Conn, Jan E.; Loew, Sabine S.

    2013-01-01

    The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida’s landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida’s East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection. PMID:23918216

  15. Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti.

    PubMed

    Torres, Rosalinda C; Garbo, Alicia G; Walde, Rikkamae Zinca Marie L

    2015-10-01

    Recent studies regarding the harmful effects of synthetic larvicides initiated the need to investigate for unconventional measures that are environmentally safe and target-specific against Aedes aegypti larvae. Thus, the main objectives of the study are to evaluate the larvicidal toxicity of the solvent fractions of Anacardium occidentale shell wastes against the third and fourth instar larvae of A. aegypti and to compare the results with the commercial larvicide product. The shell wastes were extracted with 95% EtOH followed by polarity-based fractionation. The fractions were tested for larvicidal activity according to the World Health Organization bioassay method. These were then characterized by quantitative thin-layer chromatographic (TLC) fingerprinting. The hexane fraction gave the strongest activity among the fractions with an LC50 of 4.01 mg/L and LC90 of 11.29 mg/L highly comparable to the commercial larvicide, which exhibited an LC50 of 1.71 mg/L and LC90 of 8.41 mg/L. The dichloromethane fraction exhibited 9.70 mg/L LC50 and 18.44 mg/L LC90. The remarkable toxicity effects exhibited by these fractions indicate their potential to provide core structures from which sustainable and environmentally safe plant-based larvicidal agents can be synthesized. PMID:26099240

  16. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India.

    PubMed

    Muthusamy, R; Shivakumar, M S

    2015-08-01

    Pesticide resistance poses a serious problem for worldwide mosquito control programs. Resistance to insecticides can be caused by an increased metabolic detoxification of the insecticide and/or by target site insensitivity. In the present study, we estimated the tolerance of Indian Aedes aegypti populations using adult bioassays that revealed high resistance levels of the field populations to permethrin (RR-6, 5.8 and 5.1 folds) compared to our susceptible population. Enzymatic assays revealed increased activities of glutathione S-transferase and carboxylesterase enzymes in the field populations comparatively to the susceptible population. PBO synergist assays did not confirm that cytochrome P450 monooxygenase metabolic detoxification acted as a major cause of resistance. Hence the role of target site resistance was therefore investigated. A single substitution Phe1534Cys in the voltage gated sodium channel was found in domain III, segment 6 (III-S6) of the resistance populations (allele frequency=0.59, 0.51 and 0.47) suggesting its potential role in permethrin resistance in A. aegypti. PMID:25944353

  17. Role of semaphorin-1a in the developing visual system of the disease vector mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Flannery, Ellen; Leming, Matthew T.; Tomchaney, Michael; Shi, Lucy; Sun, Longhua; O’Tousa, Joseph E.; Severson, David W.; Duman-Scheel, Molly

    2014-01-01

    Background Despite the devastating impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology, including development of the mosquito visual system. Mosquitoes possess functional adult compound eyes as larvae, a trait that makes them an interesting model in which to study comparative developmental genetics. Here, we functionally characterize visual system development in the dengue and yellow fever vector mosquito Aedes aegypti, in which we use chitosan/siRNA nanoparticles to target the axon guidance gene semaphorin-1a (sema1a). Results Immunohistochemical analyses revealed the progression of visual sensory neuron targeting that results in generation of the retinotopic map in the mosquito optic lobe. Loss of sema1a function led to optic lobe phenotypes, including defective targeting of visual sensory and higher order neurons and failed formation of the retinotopic map. These sema1a knockdown phenotypes correlated with larval photoavoidance behavioral defects. Conclusions The results of this investigation indicate that Sema1a is required for optic lobe development in A. aegypti and highlight the behavioral importance of a functioning visual system in pre-adult mosquitoes. PMID:25045063

  18. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Avonto, Cristina; Wang, Mei; Parcher, Jon F; Ali, Abbas; Demirci, Betul; Raman, Vijayasankar; Khan, Ikhlas A

    2013-12-18

    Umbellularia californica (California bay laurel) and Laurus nobilis (Mediterranean bay laurel) leaves may be mistaken or used as a substitute on the market due to their morphological similarity. In this study, a comparison of anatomical and chemical features and biological activity of both plants is presented. L. nobilis essential oil biting deterrent and larvicidal activity were negligible. On the other hand, U. californica leaf oil showed biting deterrent activity against Aedes aegypti . The identified active repellents was thymol, along with (-)-umbellulone, 1,8-cineole, and (-)-?-terpineol. U. californica essential oil also demonstrated good larvicidal activity against 1-day-old Ae. aegypti larvae with a LD50 value of 52.6 ppm. Thymol (LD50 = 17.6 ppm), p-cymene, (-)-umbellulone, and methyleugenol were the primary larvicidal in this oil. Umbellulone was found as the principal compound (37%) of U. californica essential oil, but was not present in L. nobilis essential oil. Umbellulone mosquito activity is here reported for the first time. PMID:24266426

  19. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh. PMID:25111689

  20. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    SciTech Connect

    Severson, D.W.; Thathy, V.; Mori, A.

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  1. Insecticidal activity of Leptodactylus knudseni and Phyllomedusa vaillantii crude skin secretions against the mosquitoes Anopheles darlingi and Aedes aegypti

    PubMed Central

    2014-01-01

    Background Mosquitoes are important vectors of several diseases, including malaria and dengue, and control measures are mostly performed using chemical insecticides. Unfortunately, mosquito resistance to commonly applied insecticides is widespread. Therefore, a prospection for new molecules with insecticidal activity based on Amazon biodiversity using the anurans Leptodactylus knudseni and Phyllomedusa vaillantii was performed against the mosquito species Anopheles darlingi and Aedes aegypti. Methods The granular secretion from anuran skin was obtained by manual stimulation, and lethal concentrations (LCs) for larvicidal and adulticidal tests were calculated using concentrations from 1-100 ppm. The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. Results The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. The calculated LC50 of L. knudseni skin secretions against An. darlingi was 0.15 and 0.2 ppm for adults and larvae, respectively, but much higher for Ae. aegypti, i.e., 19 and 38 ppm, respectively. Interestingly, the calculated LCs50 of P. vaillantii against both mosquito species in adults were similar, 1.8 and 2.1 ppm, respectively, but the LC50 for An. darlingi larvae was much lower (0.4 ppm) than for Ae aegypti (2.1 ppm). Conclusions The present experiments indicate that skin secretions from L. knudseni and P. vaillantii contain bioactive molecules with potent insecticide activity. The isolation and characterization of skin secretions components will provide new insights for potential insecticidal molecules. PMID:25165469

  2. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

    PubMed Central

    Manda, Hortance; Arce, Luana M.; Foggie, Tarra; Shah, Pankhil; Grieco, John P.; Achee, Nicole L.

    2011-01-01

    Background Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated “safe sites” contribute to overall impact. Methods Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated against two material types (cotton and polyester) at various dark:light surface area coverage (SAC) ratio and contrast configuration (horizontal and vertical) under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. Results Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or “safe sites”) in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ?5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. Conclusions/Significance When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas) following contact with the treated material. Instead, they become agitated, using increased flight as a proxy indicator. It is this contact irritant response that may elicit escape behavior from a treated space and is a focus of exploitation for reducing man-vector contact inside homes. PMID:21814587

  3. Permethrin-Treated Clothing as Protection against the Dengue Vector, Aedes aegypti: Extent and Duration of Protection

    PubMed Central

    DeRaedt Banks, Sarah; Orsborne, James; Gezan, Salvador A.; Kaur, Harparkash; Wilder-Smith, Annelies; Lindsey, Steve W.; Logan, James G.

    2015-01-01

    Introduction Dengue transmission by the mosquito vector, Aedes aegypti, occurs indoors and outdoors during the day. Personal protection of individuals, particularly when outside, is challenging. Here we assess the efficacy and durability of different types of insecticide-treated clothing on laboratory-reared Ae. aegypti. Methods Standardised World Health Organisation Pesticide Evaluation Scheme (WHOPES) cone tests and arm-in-cage assays were used to assess knockdown (KD) and mortality of Ae. aegypti tested against factory-treated fabric, home-dipped fabric and microencapsulated fabric. Based on the testing of these three different treatment types, the most protective was selected for further analysis using arm-in cage assays with the effect of washing, ultra-violet light, and ironing investigated using high pressure liquid chromatography. Results Efficacy varied between the microencapsulated and factory dipped fabrics in cone testing. Factory-dipped clothing showed the greatest effect on KD (3 min 38.1%; 1 hour 96.5%) and mortality (97.1%) with no significant difference between this and the factory dipped school uniforms. Factory-dipped clothing was therefore selected for further testing. Factory dipped clothing provided 59% (95% CI = 49.2%– 66.9%) reduction in landing and a 100% reduction in biting in arm-in-cage tests. Washing duration and technique had a significant effect, with insecticidal longevity shown to be greater with machine washing (LW50 = 33.4) compared to simulated hand washing (LW50 = 17.6). Ironing significantly reduced permethrin content after 1 week of simulated use, with a 96.7% decrease after 3 months although UV exposure did not reduce permethrin content within clothing significantly after 3 months simulated use. Conclusion Permethrin-treated clothing may be a promising intervention in reducing dengue transmission. However, our findings also suggest that clothing may provide only short-term protection due to the effect of washing and ironing, highlighting the need for improved fabric treatment techniques. PMID:26440967

  4. Insensitivity to the Spatial Repellent Action of Transfluthrin in Aedes aegypti: A Heritable Trait Associated with Decreased Insecticide Susceptibility

    PubMed Central

    Wagman, Joseph M.; Achee, Nicole L.; Grieco, John P.

    2015-01-01

    Background New vector control paradigms expanding the use of spatial repellents are promising, but there are many gaps in our knowledge about how repellents work and how their long-term use might affect vector populations over time. Reported here are findings from a series of in vitro studies that investigated the plasticity and heritability of spatial repellent (SR) behaviors in Aedes aegypti exposed to airborne transfluthrin, including results that indicate a possible link between repellent insensitivity and insecticide resistance. Methodology/principal findings A dual-choice chamber system was used to observe directional flight behaviors in Aedes aegypti mosquitoes exposed to passively emanating transfluthrin vapors (1.35 mg/m3). Individual SR responder and SR non-responder mosquitoes were identified, collected and maintained separately according to their observed phenotype. Subsequent testing included re-evaluation of behavioral responses in some mosquito cohorts as well as testing the progeny of selectively bred responder and non-responder mosquito strains through nine generations. At baseline (F0 generation), transfluthrin actively repelled mosquitoes in the assay system. F0 mosquitoes repelled upon initial exposure to transfluthrin vapors were no more likely to be repelled again by subsequent exposure 24h later, but repelled mosquitoes allowed to rest for 48h were subsequently repelled at a higher proportion than was observed at baseline. Selective breeding of SR responders for nine generations did not change the proportion of mosquitoes repelled in any generation. However, selective breeding of SR non-responders did produce, after four generations, a strain of mosquitoes that was insensitive to the SR activity of transfluthrin. Compared to the SR responder strain, the SR insensitive strain also demonstrated decreased susceptibility to transfluthrin toxicity in CDC bottle bioassays and a higher frequency of the V1016Ikdr mutation. Conclusions/significance SR responses to volatile transfluthrin are complex behaviors with multiple determinants in Ae. aegypti. Results indicate a role for neurotoxic irritation of mosquitoes by sub-lethal doses of airborne chemical as a mechanism by which transfluthrin can produce SR behaviors in mosquitoes. Accordingly, how prolonged exposure to sub-lethal doses of volatile pyrethroids might impact insecticide resistance in natural vector populations, and how already resistant populations might respond to a given repellent in the field, are important considerations that warrant further monitoring and study. Results also highlight the critical need to develop new repellent active ingredients with novel mechanisms of action. PMID:25879206

  5. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    PubMed Central

    Tham, Hong-Wai; Balasubramaniam, Vinod R. M. T.; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-01-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  6. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka.

    PubMed

    Karunaratne, S H P P; Weeraratne, T C; Perera, M D B; Surendran, S N

    2013-09-01

    Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested. Insecticide bioassay results revealed that, in general, both mosquito species were highly resistant to DDT but susceptible to propoxur and malathion except Jaffna Ae. aegypti population. Moderate resistance to malathion shown by Jaffna Ae. aegypti population correlated with esterase and malathion carboxylesterase activities of the population. High levels of acetylcholinesterase (AChE) insensitivity in the absence of malathion and propoxur resistance may be due to non-synaptic forms of AChE proteins. Moderate pyrethroid resistance in the absence of high monooxygenase levels indicated the possible involvement of 'kdr' type resistance mechanism in Sri Lankan dengue vectors. Results of the space spraying experiments revealed that 100% mortality at a 10 m distance and >50% mortality at a 50 m distance can be achieved with malathion, pesguard and deltacide even in a ground with dense vegetation. Pesguard and deltacide spraying gave 100% mortality up to 50 m distance in open area and areas with little vegetation. Both species gave >50% mortalities for deltacide at a distance of 75 m in a dense vegetation area. Larval bioassays conducted in the laboratory showed that a 1 ppm temephos solution can maintain a larval mortality rate of 100% for ten months, and the mortality rate declined to 0% in the eleventh month. In the field, where 1 ppm concentration is gradually decreased with water usage, 100% mortality was observed only for the first four months, <50% mortality for the next two months, and 0% mortality was observed eight months after the application of temephos. Deltacide can be effectively used for space spraying programmes in Sri Lanka. Larval control can be successfully achieved through temephos with public participation. PMID:25149242

  7. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. Conclusions These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development. PMID:25729562

  8. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.

    PubMed

    Vargas, Helena Carolina Martins; Farnesi, Luana Cristina; Martins, Ademir Jesus; Valle, Denise; Rezende, Gustavo Lazzaro

    2014-03-01

    Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800's. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25°C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5hours, respectively. Our data suggest that serosa development is at least partially uncoupled from embryo development and that, depending upon the mosquito species, EDR bestows distinct levels of egg viability. PMID:24534672

  9. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    PubMed Central

    2011-01-01

    Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster. PMID:22171608

  10. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2013-12-01

    Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 ?g/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 ?g/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective against A. stephensi (LC50, 109.94 ?g/mL and LC90, 202.42 ?g/mL) followed by A. aegypti LC50 (119.32 ?g/mL and LC90, 213.84 ?g/mL) and C. quinquefasciatus (LC50, 130.30 ?g/mL and LC90, 228.20 ?g/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 21.92, and 41.07 ?g/mL; A. aegypti had LC50 and LC90 values of 23.96, and 44.05 ?g/mL; C. quinquefasciatus had LC50 and LC90 values of 26.13 and 47.52 ?g/mL. These results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes. This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized nanoparticles. PMID:24005479

  11. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of Novaluron for non-container breeding and container breeding mosquitoes are 0.166 mg/L and 0.55 mg/L, respectively. Overall, the residual effect was more sustained than that of temephos. The lowest dosage of Novaluron had less of an impact on non-target organisms than did temephos. Small-scale field trials in natural breeding sites treated with Novaluron at 0.6 L/ha eliminated adult emergence of An. albimanus and Cx. coronator for 8 weeks. For phase III studies, Novaluron was tested at the local and village levels, applying the optimum field rate to all natural breeding habitats within 1 km of a pair of neighbouring villages. Village-scale trials of Novaluron at 0.6 L/ha reduced An. albimanus larval populations for at least 8 weeks and, more importantly, sharply reduced the densities of adult host-seeking mosquitoes approaching houses. We conclude that Novaluron is effective and environmentally safer than temephos. PMID:17199749

  12. Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia.

    PubMed

    Lima, V S; Pinto, A C; Rafael, M S

    2015-01-01

    The yellow fever mosquito Aedes (Stegomyia) aegypti is the main vector of dengue arbovirus and other arboviruses. Dengue prevention measures for the control of A. aegypti involve mainly the use of synthetic insecticides. The constant use of insecticides has caused resistance in this mosquito. Alternative studies on plant extracts and their products have been conducted with the aim of controlling the spread of the mosquito. Dillapiole is a compound found in essential oils of the plant Piper aduncum (Piperaceae) which has been effective as a biopesticide against A. aegypti. Isodillapiole is a semisynthetic substance obtained by the isomerization of dillapiole. In the present study, isodillapiole was evaluated for its potential to induce differential expression of insecticide resistance genes (GSTE7 and CYP6N12) in 3rd instar larvae of A. aegypti. These larvae were exposed to this compound at two concentrations (20 and 40 ?g/mL) for 4 h during four generations (G1, G2, G3, and G4). Quantitative RT-PCR was used to assess the expression of GSTE7 and CYP6N12 genes. GSTE7 and CYP6N12 relative expression levels were higher at 20 than at 40 ?g/mL and varied among generations. The decrease in GSTE7 and CYP6N12 expression levels at the highest isodillapiole concentration suggests that larvae may have suffered from metabolic stress, revealing a potential alternative product in the control of A. aegypti. PMID:26681019

  13. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia

    PubMed Central

    Aziz, Al Thabiany; Dieng, Hamady; Ahmad, Abu Hassan; Mahyoub, Jazem A; Turkistani, Abdulhafis M; Mesed, Hatabbi; Koshike, Salah; Satho, Tomomitsu; Salmah, MR Che; Ahmad, Hamdan; Zuharah, Wan Fatma; Ramli, Ahmad Saad; Miake, Fumio

    2012-01-01

    Objective To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence. Methods Monthly visits were performed between April 2008 and March 2009 to randomly selected houses. During each visit, mosquito larvae were collected from indoors and outdoors containers by either dipping or pipetting. Mosquitoes were morphologically identified. Data on temperature, relative humidity, rain/precipitations during the survey period was retrieved from governmental sources and analyzed. Results The city was warmer in dry season (DS) than wet season (WS). No rain occurred at all during DS and even precipitations did fall, wetting events were much greater during WS. Larval survey revealed the co-breeding of Aedes, Culex and Anopheles in a variety of artificial containers in and around homes. 32?109 larvae representing 1st , 2nd, 3rd, and 4th stages were collected from 22?618 container habitats. Culicines was far the commonest and Aedes genus was as numerous as the Culex population. Ae. aegypti larval abundance exhibited marked temporal variations, overall, being usually more abundant during WS. Ten types of artificial containers were found with developing larvae. 70% of these habitats were located indoors. 71.42% of indoor containers were permanent and 28.58% was semi-permanent during WS. Cement tanks was the only container type permanent during DS. Ae. aegypti larval indices (CI, HI, BI) recorded were greater during WS. Conclusions Taken together, these results indicate a high risk of dengue transmission in the holy city. PMID:23569860

  14. Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities

    PubMed Central

    Wen, Zhimou; Gulia, Monika; Clark, Kevin D.; Dhara, Animesh; Crim, Joe W.; Strand, Michael R.; Brown, Mark R.

    2010-01-01

    Insects encode multiple ILPs but only one homolog of the vertebrate IR that activates the insulin signaling pathway. However, it remains unclear whether all insect ILPs are high affinity ligands for the IR or have similar biological functions. The yellow fever mosquito, Aedes aegypti, encodes eight ILPs with prior studies strongly implicating ILPs from the brain in regulating metabolism and the maturation of eggs following blood feeding. Here we addressed whether two ILP family members expressed in the brain, ILP4 and ILP3, have overlapping functional and receptor binding activities. Our results indicated that ILP3 exhibits strong insulin-like activity by elevating carbohydrate and lipid storage in sugar-fed adult females, whereas ILP4 does not. In contrast, both ILPs exhibited dose-dependent gonadotropic activity in blood-fed females as measured by the stimulation of ovaries to produce ecdysteroids and the uptake of yolk by primary oocytes. Binding studies using ovary membranes indicated that ILP4 and ILP3 do not cross compete; a finding further corroborated by cross-linking and immunoblotting experiments showing that ILP3 binds the MIR while ILP4 binds an unknown 55 kDa membrane protein. In contrast, each ILP activated the insulin signaling pathway in ovaries as measured by enhanced phosphorylation of Akt. RNAi and inhibitor studies further indicated that the gonadotropic activity of ILP4 and ILP3 requires the MIR and a functional insulin signaling pathway. Taken together, our results indicate that two members of the Ae. aegypti ILP family exhibit partially overlapping biological activity and different binding interactions with the MIR. PMID:20643184

  15. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Chitra, Govindaraj; Balasubramani, Govindasamy; Ramkumar, Rajendiran; Sowmiya, Rajamani; Perumal, Pachiappan

    2015-04-01

    Mosquitoes and mosquito-borne diseases are prone to raise health and economic impacts. Synthetic insecticide-based interventions are indeed in situations of epidemic outbreak and sudden increases of adult mosquitoes. Nanoparticles are being used in many commercial applications and were found that aqueous silver ions can be reduced by an aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Based on this, silver nanoparticles (SNPs) were synthesized using leaf aqueous extract (LAE) of Mukia maderaspatana. Further, the synthesized SNPs were characterized by UV-visible spectrum, which indicated a strong plasmon resonance at 427 nm. X-ray diffraction (XRD) analysis revealed the average crystalline size of the synthesized SNPs was approximately 64 nm by Debye-Scherrer formulae. Fourier transform infrared (FTIR) spectroscopy analysis revealed the presence of different functional groups like amines, halides, alkanes, alkynes, amides, and esters with respective stretches, which are responsible for the bio-reduction of silver ions. Field emission scanning electron microscopy (FESEM) depicted the spherical morphology of SNPs with size range of 13-34 nm. The larvicidal activity of LAE and SNPs exhibited an effective mortality to Aedes aegypti and Culex quinquefasciatus. The lethal concentration (LC50; LC90) of LAE and SNPs were found to be 0.506; 1.082, 0.392; 0.870 ppm and 0.211; 0.703, 0.094; 0.482 ppm, respectively on A. aegypti and C. quinquefasciatus. Thus, the synthesized SNPs have shown preponderant larvicidal activity, but further studies are needed to formulate the potential larvicidal agents. PMID:25601441

  16. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4?-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  17. Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti

    PubMed Central

    2014-01-01

    Background The increasing global threat of Dengue demands new and easily applicable vector control methods. Ovitraps provide a low-tech and inexpensive means to combat Dengue vectors. Here we describe the development and optimization process of a novel contamination device that targets multiple life-stages of the Aedes aegypti mosquito. Special focus is directed to the diverse array of control agents deployed in this trap, covering adulticidal, larvicidal and autodissemination impacts. Methods Different trap prototypes and their parts are described, including a floater to contaminate alighting gravid mosquitoes. The attractiveness of the trap, different odor lures and floater design were studied using fluorescent powder adhering to mosquito legs and via choice tests. We demonstrate the mosquitocidal impacts of the control agents: a combination of the larvicide pyriproxyfen and the adulticidal fungus Beauveria bassiana. The impact of pyriproxyfen was determined in free-flight dissemination experiments. The effect on larval development inside the trap and in surrounding breeding sites was measured, as well as survival impacts on recaptured adults. Results The developmental process resulted in a design that consists of a black 3 Liter water-filled container with a ring-shaped floater supporting vertically placed gauze dusted with the control agents. On average, 90% of the mosquitoes in the fluorescence experiments made contact with the gauze on the floater. Studies on attractants indicated that a yeast-containing tablet was the most attractive odor lure. Furthermore, the fungus Beauveria bassiana was able to significantly increase mortality of the free-flying adults compared to controls. Dissemination of pyriproxyfen led to >90% larval mortality in alternative breeding sites and 100% larval mortality in the trap itself, against a control mortality of around 5%. Conclusion This ovitrap is a promising new tool in the battle against Dengue. It has proven to be attractive to Aedes aegypti mosquitoes and effective in contaminating these with Beauveria bassiana. Furthermore, we show that the larvicide pyriproxyfen is successfully disseminated to breeding sites close to the trap. Its low production and operating costs enable large scale deployment in Dengue-affected locations. PMID:24766772

  18. La Crosse Encephalitis Virus Infection in Field-Collected Aedes albopictus, Aedes japonicus, and Aedes triseriatus in Tennessee.

    PubMed

    Westby, Katie M; Fritzen, Charissa; Paulsen, Dave; Poindexter, Stephanie; Moncayo, Abelardo C

    2015-09-01

    La Crosse virus (LACV) is a mosquito-borne virus and a major cause of pediatric encephalitis in the USA. La Crosse virus emerged in Tennessee and other states in the Appalachian region in 1997. We investigated LACV infection rates and seasonal abundances of the native mosquito vector, Aedes triseriatus, and 2 recently introduced mosquito species, Ae. albopictus and Ae. japonicus, in an emerging disease focus in Tennessee. Mosquitoes were collected using multiple trapping methods specific for Aedes mosquitoes at recent human case sites. Mosquito pools were tested via reverse transcriptase-polymerase chain reaction (RT-PCR) of the S segment to detect multiple Bunyamwera and California serogroup viruses, including LACV, as well as real-time RT-PCR of the M segment. A total of 54 mosquito pools were positive, including wild-caught adult females and laboratory-reared adults, demonstrating transovarial transmission in all 3 species. Maximum likelihood estimates (per 1,000 mosquitoes) were 2.72 for Ae. triseriatus, 3.01 for Ae. albopictus, and 0.63 for Ae. japonicus. We conclude that Ae. triseriatus and Ae. albopictus are important LACV vectors and that Ae. japonicus also may be involved in virus maintenance and transmission. PMID:26375904

  19. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti.

    PubMed

    Panneerselvam, Chellasamy; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy

    2012-12-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. The aim of the present study, to evaluate the larvicidal, pupicidal, repellent, and adulticidal activities of methanol crude extract of Artemisia nilagirica were assayed for their toxicity against two important vector mosquitoes, viz., Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The fresh leaves of A. nilagirica were washed thoroughly in tap water and shade dried at room temperature (28 ± 2 °C) for 5-8 days. The air-dried materials were powdered separately using commercial electrical blender. From the plants, 500 g powdered was macerated with 1.5 L organic solvents of methanol sequentially for a period of 72 h each and filtered. The larval and pupal mortality was observed after 24 h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC(50) = 272.50, 311.40, 361.51, 442.51, and 477.23 ppm, and the LC(90) = 590.07, 688.81, 789.34, 901.59, and 959.30 ppm; the A. aegypti had values of LC(50) = 300.84, 338.79, 394.69, 470.74, and 542.11 ppm, and the LC(90) = 646.67, 726.07, 805.49, 892.01, and 991.29 ppm, respectively. The results of the repellent activity of plant extract of A. nilagirica plants at five different concentrations of 50, 150, 250, 350, and 450 ppm were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, the plant crude extract gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. The adult mortality was found in methanol extract of A. nilagirica, with the LC(50) and LC(90) values of 205.78 and 459.51 ppm for A. stephensi, and 242.52 and 523.73 ppm for A. aegypti, respectively. This result suggests that the leaf extract have the potential to be used as an ideal eco-friendly approach for the control of vector mosquito as target species. PMID:22903417

  20. Geometric Morphometrics of Nine Field Isolates of Aedes aegypti with Different Resistance Levels to Lambda-Cyhalothrin and Relative Fitness of One Artificially Selected for Resistance

    PubMed Central

    Jaramillo-O., Nicolás; Fonseca-González, Idalyd; Chaverra-Rodríguez, Duverney

    2014-01-01

    Aedes aegypti, a mosquito closely associated with humans, is the principal vector of dengue virus which currently infects about 400 million people worldwide. Because there is no way to prevent infection, public health policies focus on vector control; but insecticide-resistance threatens them. However, most insecticide-resistant mosquito populations exhibit fitness costs in absence of insecticides, although these costs vary. Research on components of fitness that vary with insecticide-resistance can help to develop policies for effective integrated management and control. We investigated the relationships in wing size, wing shape, and natural resistance levels to lambda-cyhalothrin of nine field isolates. Also we chose one of these isolates to select in lab for resistance to the insecticide. The main life-traits parameters were assessed to investigate the possible fitness cost and its association with wing size and shape. We found that wing shape, more than wing size, was strongly correlated with resistance levels to lambda-cyhalothrin in field isolates, but founder effects of culture in the laboratory seem to change wing shape (and also wing size) more easily than artificial selection for resistance to that insecticide. Moreover, significant fitness costs were observed in response to insecticide-resistance as proved by the diminished fecundity and survival of females in the selected line and the reversion to susceptibility in 20 generations of the non-selected line. As a practical consequence, we think, mosquito control programs could benefit from this knowledge in implementing efficient strategies to prevent the evolution of resistance. In particular, the knowledge of reversion to susceptibility is important because it can help in planning better strategies of insecticide use to keep useful the few insecticide-molecules currently available. PMID:24801598

  1. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Rodriguez, Stacy D.; Hansen, Immo A.

    2015-01-01

    After taking vertebrate blood, female mosquitoes quickly shed excess water and ions while retaining and concentrating the mostly proteinaceous nutrients. Aquaporins (AQPs) are an evolutionary conserved family of membrane transporter proteins that regulate the flow of water and in some cases glycerol and other small molecules across cellular membranes. In a previous study, we found six putative AQP genes in the genome of the yellow fever mosquito, Ae. aegypti, and demonstrated the involvement of three of them in the blood meal-induced diuresis. Here we characterized AQP expression in different tissues before and after a blood meal, explored the substrate specificity of AQPs expressed in the Malpighian tubules and performed RNAi-mediated knockdown and tested for changes in mosquito desiccation resistance. We found that AQPs are generally down-regulated 24?hrs after a blood meal. Ae. aegypti AQP 1 strictly transports water, AQP 2 and 5 demonstrate limited solute transport, but primarily function as water transporters. AQP 4 is an aquaglyceroporin with multiple substrates. Knockdown of AQPs expressed in the MTs increased survival of Ae. aegypti under dry conditions. We conclude that Malpighian tubules of adult female yellow fever mosquitoes utilize three distinct AQPs and one aquaglyceroporin in their osmoregulatory functions. PMID:25589229

  2. Inheritance Pattern of Temephos Resistance, an Organophosphate Insecticide, in Aedes aegypti (L.)

    PubMed Central

    Shetty, N. J.

    2015-01-01

    The present paper reports the mode of inheritance of resistance in laboratory induced temephos resistant and susceptible strains of Ae. aegypti. Homozygous resistant and susceptible strains of Ae. aegypti were generated by selective inbreeding at a diagnostic dose of 0.02?mg/L of temephos. Genetic crosses were carried out between these strains to determine the inheritance pattern of temephos resistance. The log-dosage probit mortality relationships and degree of dominance (D) were calculated. The dosage-mortality (d-m) line of the F1 generation was nearer to the resistant parent than the susceptible one. The “D” value was calculated as 0.15 indicating that the temephos resistant gene is incompletely dominant. The d-m lines of the F2 generation and progeny from the backcross exhibited clear plateaus of mortality across a range of doses indicating that temephos resistance is controlled by a single gene. Comparison of the mortality data with the theoretical expectations using the ?2 test revealed no significant difference, confirming a monogenic pattern of inheritance. In conclusion, the study provides evidence that the temephos resistance in Ae. aegypti follows an incompletely dominant and monogenic mode of inheritance. PMID:25861478

  3. Comparison of Field and Laboratory-Based Tests for Behavioral Response of Aedes aegypti (Diptera: Culicidae) to Repellents.

    PubMed

    Sathantriphop, Sunaiyana; Kongmee, Monthathip; Tainchum, Krajana; Suwansirisilp, Kornwika; Sanguanpong, Unchalee; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2015-12-01

    The repellent and irritant effects of three essential oils-clove, hairy basil, and sweet basil-were compared using an excito-repellency test system against an insecticide-resistant strain of Aedes aegypti (L.) females from Pu Teuy, Kanchanaburi Province. DEET was used as the comparison standard compound. Tests were conducted under field and controlled laboratory conditions. The most marked repellent effect (spatial noncontact assay) among the three test essential oils was exhibited by sweet basil, Ocimum basilicum L. (53.8% escaped mosquitoes in 30-min exposure period) under laboratory conditions while hairy basil, Ocimum americanum L. and clove, Syzygium aromaticum (L.) Merill et. L.M. Perry from laboratory tests and sweet basil from field tests were the least effective as repellents (0-14%). In contrast, the contact assays measuring combined irritancy (excitation) and repellency effects found the best contact irritant response to hairy basil and DEET in field tests, whereas all others in laboratory and field were relatively ineffective in stimulating mosquitoes to move out the test chambers (0-5.5%). All three essential oils demonstrated significant differences in behavioral responses between field and laboratory conditions, whereas there was no significant difference in contact and noncontact assays for DEET between the two test conditions (P?>?0.05). PMID:26470388

  4. Proteome analysis of Cry4Ba toxin-interacting Aedes aegypti lipid rafts using geLC-MS/MS.

    PubMed

    Bayyareddy, Krishnareddy; Zhu, Xiang; Orlando, Ron; Adang, Michael J

    2012-12-01

    Lipid rafts are microdomains in the plasma membrane of eukaryotic cells. Among their many functions, lipid rafts are involved in cell toxicity caused by pore forming bacterial toxins including Bacillus thuringiensis (Bt) Cry toxins. We isolated lipid rafts from brush border membrane vesicles (BBMV) of Aedes aegypti larvae as a detergent resistant membrane (DRM) fraction on density gradients. Cholesterol, aminopeptidase (APN), alkaline phosphatase (ALP) and the raft marker flotillin were preferentially partitioned into the lipid raft fraction. When mosquitocidal Cry4Ba toxin was preincubated with BBMV, Cry4Ba localized to lipid rafts. A proteomic approach based on one-dimensional gel electrophoresis, in-gel trypsin digestion, followed by liquid chromatography-mass spectrometry (geLC-MS/MS) identified a total of 386 proteins. Of which many are typical lipid raft marker proteins including flotillins and glycosylphosphatidylinositol (GPI)-anchored proteins. Identified raft proteins were annotated in silico for functional and physicochemical characteristics. Parameters such as distribution of isoelectric point, molecular mass, and predicted post-translational modifications relevant to lipid raft proteins (GPI anchorage and myristoylation or palmitoylation) were analyzed for identified proteins in the DRM fraction. From a functional point of view, this study identified proteins implicated in Cry toxin interactions as well as membrane-associated proteins expressed in the mosquito midgut that have potential relevance to mosquito biology and vector management. PMID:23153095

  5. A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control.

    PubMed

    Dias, Weverton O; Wanner, Elizabeth F; Cardoso, Rodrigo T N

    2015-11-01

    Dengue epidemics, one of the most important viral disease worldwide, can be prevented by combating the transmission vector Aedes aegypti. In support of this aim, this article proposes to analyze the Dengue vector control problem in a multiobjective optimization approach, in which the intention is to minimize both social and economic costs, using a dynamic mathematical model representing the mosquitoes' population. It consists in finding optimal alternated step-size control policies combining chemical (via application of insecticides) and biological control (via insertion of sterile males produced by irradiation). All the optimal policies consists in apply insecticides just at the beginning of the season and, then, keep the mosquitoes in an acceptable level spreading into environment a few amount of sterile males. The optimization model analysis is driven by the use of genetic algorithms. Finally, it performs a statistic test showing that the multiobjective approach is effective in achieving the same effect of variations in the cost parameters. Then, using the proposed methodology, it is possible to find, in a single run, given a decision maker, the optimal number of days and the respective amounts in which each control strategy must be applied, according to the tradeoff between using more insecticide with less transmission mosquitoes or more sterile males with more transmission mosquitoes. PMID:26362231

  6. Effects of grapefruit (Citrus paradisi MACF) (Rutaceae) peel oil against developmental stages of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ivoke, Njoku; Ogbonna, Priscilla C; Ekeh, Felicia N; Ezenwaji, Ngozi E; Atama, Chinedu I; Ejere, Vincent C; Onoja, Uwakwe S; Eyo, Joseph E

    2013-11-01

    Laboratory bioassay of the essential oil extracted from the grapefruit (Citrus paradisi) peel by steam distillation was carried out against the developmental stages of the yellow fever vector Aedes aegypti to evaluate its toxicity, and ovicidal and larvicidal potency. Volatile oil components isolated and characterized by coupled gas chromatography/mass spectrometry included varying levels of monoterpene aldehydes, alcohols, and esters. Test results of the essential oil showed that egg hatching was completely inhibited at 400 ppm, while further development of 1st to 2nd larval stage was inhibited at 100 ppm. Regression analysis results also indicated that the peel essential oil significantly (p<0.01) reduced the viability of the test eggs and inhibited the development of 1st larval stage to 2nd larval instar. The LC50 and LC90 values obtained for 2nd instars (180.460, 334.629 ppm, respectively); and for 4th instars (210.937, 349.489 ppm, respectively) after 24-hour exposure were time but not dose dependent, as each LC value was a product of an inverse relationship between the oil concentration and exposure time. The results indicated that the peel oil could be a potent persistent larvicide. PMID:24450234

  7. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy.

    PubMed

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Eisen, Lars; Shah, Pankhil; Chareonviriyaphap, Theeraphap

    2012-06-01

    We determined the feasibility of using the BG-Sentinel™ mosquito trap (BGS) as the pull component in a push-pull strategy to reduce indoor biting by Aedes aegypti. This included evaluating varying numbers of traps (1-4) and mosquito release numbers (10, 25, 50, 100, 150, 200, and 250) on recapture rates under screen house conditions. Based on these variations in trap and mosquito numbers, release intervals were rotated through a completely randomized design with environmental factors (temperature, relative humidity, and light intensity) and monitored throughout each experiment. Data from four sampling time points (05:30, 09:30, 13:30, and 17:30) indicate a recapture range among treatments of 66-98%. Furthermore, 2-3 traps were as effective in recapturing mosquitoes as 4 traps for all mosquito release numbers. Time trends indicate Day 1 (the day the mosquitoes were released) as the "impact period" for recapture with peak numbers of marked mosquitoes collected at 09:30 or 4 h post-release. Information from this study will be used to guide the configuration of the BGS trap component of a push-pull vector control strategy currently in the proof-of-concept stage of development in Thailand and Peru. PMID:22548532

  8. Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever.

    PubMed

    Carreño Otero, Aurora L; Vargas Méndez, Leonor Y; Duque L, Jonny E; Kouznetsov, Vladimir V

    2014-05-01

    Girgensohnine alkaloid was used as a natural model in the design and generation of new alkaloid-like ?-aminonitrile series that was completed by the use of SSA-catalyzed Strecker reaction between commercial and inexpensive substituted benzaldehydes, piperidine (pyrrolidine, morpholine and N-methylpiperazine) and acetone cyanohydrin. Calculated ADMETox parameters of the designed analogs revealed their good pharmacokinetic profiles indicating lipophilic characteristics. In vitro AChE enzyme test showed that obtained ?-aminonitriles could be considered as AChEIs with micromolar IC50 values ranging from 42.0 to 478.0 ?M (10.3-124.0 ?g/mL). Among this series, the best AChE inhibitor was the pyrrolidine ?-aminonitrile 3 (IC50 = 42 ?M), followed by the piperidine ?-aminonitriles 2 and 6 (IC50 = 45 ?M and IC50 = 51 ?M, respectively), and the compound 7 (IC50 = 51 ?M). In vivo insecticidal activity of more active AChEIs against Aedes aegypti larvae was also performed showing a good larvicidal activity at concentrations less than 140 ppm, highlighting products 2 and 7 that could serve as lead compounds to develop new potent and selective insecticides. PMID:24704612

  9. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    PubMed

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. PMID:24929226

  10. Initial Assessment of the Acceptability of a Push-Pull Aedes aegypti Control Strategy in Iquitos, Peru and Kanchanaburi, Thailand

    PubMed Central

    Paz-Soldan, Valerie A.; Plasai, Valaikanya; Morrison, Amy C.; Rios-Lopez, Esther J.; Guedez-Gonzales, Shirly; Grieco, John P.; Mundal, Kirk; Chareonviriyaphap, Theeraphap; Achee, Nicole L.

    2011-01-01

    As part of a larger research program evaluating chemical threshold levels for a Push-Pull intervention to reduce man-vector (Aedes aegypti) contact, this qualitative study explored local perceptions and strategies associated with mosquito control within dengue-endemic communities in Peru and Thailand. Focus groups were used to provide preliminary information that would identify possible public acceptance issues to the Push-Pull strategy in each site. Nine focus group discussions (total of 102 individuals) conducted between September 2008 and March 2009 examined several themes: 1) current mosquito control practices; 2) perceptions of spatial repellency and contact irritancy versus killing mosquitoes; and 3) initial perceptions toward mosquito host-seeking traps. Results indicate participants use household-level strategies for insect control that reveal familiarity with the concept of spatial repellent and contact irritant actions of chemicals and that placing traps in the peridomestic environment to remove repelled mosquitoes was acceptable. Preliminary evidence suggests a Push-Pull strategy should be well accepted in these locations. These results will be beneficial for developing future large scale push-pull interventions and are currently being used to guide insecticide application strategies in (entomological) proof-of-concept studies using experimental huts. PMID:21292886

  11. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico

    PubMed Central

    Vera-Maloof, Farah Z.; Saavedra-Rodriguez, Karla; Elizondo-Quiroga, Armando E.; Lozano-Fuentes, Saul; Black IV, William C.

    2015-01-01

    Background Worldwide the mosquito Aedes aegypti (L.) is the principal urban vector of dengue viruses. Currently 2.5 billion people are at risk for infection and reduction of Ae. aegypti populations is the most effective means to reduce the risk of transmission. Pyrethroids are used extensively for adult mosquito control, especially during dengue outbreaks. Pyrethroids promote activation and prolong the activation of the voltage gated sodium channel protein (VGSC) by interacting with two distinct pyrethroid receptor sites [1], formed by the interfaces of the transmembrane helix subunit 6 (S6) of domains II and III. Mutations of S6 in domains II and III synergize so that double mutants have higher pyrethroid resistance than mutants in either domain alone. Computer models predict an allosteric interaction between mutations in the two domains. In Ae. aegypti, a Ile1,016 mutation in the S6 of domain II was discovered in 2006 and found to be associated with pyrethroid resistance in field populations in Mexico. In 2010 a second mutation, Cys1,534 in the S6 of domain III was discovered and also found to be associated with pyrethroid resistance and correlated with the frequency of Ile1,016. Methodology/Principal Findings A linkage disequilibrium analysis was performed on Ile1,016 and Cys1,534 in Ae. aegypti collected in Mexico from 2000–2012 to test for statistical associations between S6 in domains II and III in natural populations. We estimated the frequency of the four dilocus haplotypes in 1,016 and 1,534: Val1,016/Phe1,534 (susceptible), Val1,016/Cys1,534, Ile1,016/Phe1,534, and Ile1,016/Cys1,534 (resistant). The susceptible Val1,016/Phe1,534 haplotype went from near fixation to extinction and the resistant Ile1,016/Cys1,534 haplotype increased in all collections from a frequency close to zero to frequencies ranging from 0.5–0.9. The Val1,016/Cys1,534 haplotype increased in all collections until 2008 after which it began to decline as Ile1,016/Cys1,534 increased. However, the Ile1,016/Phe1,534 haplotype was rarely detected; it reached a frequency of only 0.09 in one collection and subsequently declined. Conclusion/Significance Pyrethroid resistance in the vgsc gene requires the sequential evolution of two mutations. The Ile1,016/Phe1,534 haplotype appears to have low fitness suggesting that Ile1,016 was unlikely to have evolved independently. Instead the Cys1,534 mutation evolved first but conferred only a low level of resistance. Ile1,016 in S6 of domain II then arose from the Val1,016/Cys1,534 haplotype and was rapidly selected because double mutants confer higher pyrethroid resistance. This pattern suggests that knowledge of the frequencies of mutations in both S6 in domains II and III are important to predict the potential of a population to evolve kdr. Susceptible populations with high Val1,016/Cys1,534 frequencies are at high risk for kdr evolution, whereas susceptible populations without either mutation are less likely to evolve high levels of kdr, at least over a 10 year period. PMID:26658798

  12. Comparison of Aedes aegypti (Diptera: Culicidae) resting behavior on two fabric types under consideration for insecticide treatment in a push-pull strategy.

    PubMed

    Tainchum, Krajana; Polsomboon, Suppaluck; Grieco, John P; Suwonkerd, Wannapa; Prabaripai, Atchariya; Sungvornyothin, Sungsit; Chareonviriyaphap, Theeraphap; Achee, Nicole L

    2013-01-01

    Aedes aegypti (L.), the primary vector of dengue and dengue hemorrhagic fever, breeds and rests predominately inside human dwellings. With no current vaccine available, vector control remains the mainstay for dengue management and novel approaches continue to be needed to reduce virus transmission. This requires a full understanding of Ae. aegypti ecology to design effective strategies. One novel approach is the use of contact irritants at target resting sites inside homes to make the surface unacceptable and cause vectors to escape before biting. The objective of the current study was to observe indoor resting behavior patterns of female Ae. aegypti within experimental huts in response to two fabrics under consideration for insecticide treatment: cotton and polyester. Results indicate that fabric type, coverage ratio of dark to light fabric and placement configuration (vertical vs. horizontal) all influenced the resting pattern of mosquito cohorts. Findings from this study will guide evaluations of a push-pull strategy designed to exploit contact irritant behaviors and drive Ae. aegypti out of homes prefeeding. PMID:23427653

  13. Essential oils from Zanthoxylum fagara Wild Lime, Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae.

    PubMed

    Pérez López, Luis Alejandro; de la Torre, Yael C; Cirio, Anabel Torres; de Torres, Noemí Waksman; Flores Suárez, Adriana Elizabeth; Aranda, Ricardo Salazar

    2015-09-01

    The dengue virus is transmitted by Aedes aegypti. Several plants are used to control this mosquito. In the present study the chemical composition of the essential oils of Ruta chalepensis, Zanthoxylum fagara and Thymus vulgaris were analyzed, and their activities against larvae of two A. aegypti populations were evaluated. The major compounds found in T. vulgaris were thymol and ?-cymene at 39.8% and 30.5%, respectively, with the major components being oxygenated monoterpenes and monoterpene hydrocarbons at 55.5% and 40.4%, respectively. For Z. fagara, the major compounds were sylvestrene and E-caryophyllene at 25.3% and 23.6%, respectively, with the major components being sesquiterpene and monoterpene hydrocarbons at 51.1% and 37.5%, respectively. Ketones were the predominant group of compounds found in R. chalepensis, with the major components being 2-undecanone and 2-nonanona at 43.7% and 35.4%, respectively. Essential oils from T. vulgaris, Z. fagara and R. chalepensis showed activity against larvae of the A. aegypti New Orleans strain, producing median lethal concentrations (LC??) of 2.14, 27.57 and 2.69 g/mL, respectively, at 24 h. LC?? values produced against larvae of a local A. aegypti population in Nuevo Leon, México, were 25.37, 60.42 and 20.13 g/mL, respectively, at 24 h. PMID:26525020

  14. Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos.

    PubMed

    Dada, Nsa; Vannavong, Nanthasane; Seidu, Razak; Lenhart, Audrey; Stenström, Thor Axel; Chareonviriyaphap, Theeraphap; Overgaard, Hans J

    2013-06-01

    In a cross-sectional survey in one rural and one suburban village each in Thailand and Laos the relationship between Aedes aegypti production and Escherichia coli contamination in household water storage containers was investigated. Entomological and microbiological surveys were conducted in 250 and 239 houses in Thailand and Laos, respectively. Entomological indices across all four villages were high, indicating a high risk for dengue transmission. Significantly more Ae. aegypti pupae were produced in containers contaminated with E. coli as compared to those that were not, with the odds of Ae. aegypti infested containers being contaminated with E. coli ranging from two to five. The level of E. coli contamination varied across container classes but contamination levels were not significantly associated with the number of pupae produced. We conclude that the observed relationship between Ae. aegypti production and presence of E. coli in household water storage containers suggests a causal relationship between dengue and diarrheal disease at these sites. How this relationship can be exploited for the combined and cost-effective control of dengue and diarrheal diseases requires further research. PMID:23499713

  15. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate.

    PubMed

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2010-07-01

    This study investigated insect bite protection and length of the protection with 30 repellents which were divided into 3 categories: plant oil, essential oil and essential oil with ethyl alcohol, tested against three mosquito species, Aedes aegypti, Anopheles minimus and Culex quinquefasciatus, under laboratory conditions. The plant oil group was comprised of Phlai (Zingiber cassumunar) and Sweet basil (Ocimum basilicum). Both substances were effective as repellents and feeding deterrents against An. minimus (205 minutes protection time and a biting rate of 0.9%), Cx. quinquefasciatus (165 minutes protection time and 0.9% biting rate) and Ae. aegypti (90 minutes protection time and 0.8% biting rate). Essential oil from citronella grass (Cymbopogon nardus) exhibited protection against biting from all 3 mosquito species: for An. minimus, Cx. quinquefasciatus and Ae. aegypti, the results were 130 minutes and 0.9%, 140 minutes and 0.8%, and 115 minutes and 0.8%, respectively. The period of protection time against Ae. aegypti for all repellent candidates tested was lower than the Thai Industrial Standards Institute (TISI) determined time of greater than 2 hours. PMID:21073057

  16. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (? EST and ? EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs. PMID:25843136

  17. The effects of herbal essential oils on the oviposition-deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say).

    PubMed

    Siriporn, P; Mayura, S

    2012-03-01

    The effect of oviposition-deterrent and ovicidal of seven essential oils were evaluated towards three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oviposition activity index (OAI) values of six essential oils namely Cananga odorata, Cymbopogon citratus, Cymbopogon nardus, Eucalyptus citriodora, Ocimum basilicum and Syzygium aromaticum indicated that there were more deterrent than the control whereas Citrus sinensis oil acted as oviposition attractant. At higher concentration (10%) of Ca. odorata (ylang ylang flowers) showed high percent effective repellency (ER) against oviposition at 99.4% to Ae. aegypti, 97.1% to An. dirus and 100% to Cx. quinquefasciatus, respectively. The results showed that mean numbers of eggs were lower in treated than in untreated water. In addition, there was an inverse relationship between essential oil concentrations and ovicidal activity. As the concentration of essential oil increased from 1%, 5% and up to 10% conc., the hatching rate decreased. The essential oil of Ca. odorata at 10% conc. gave minimum egg hatch of 10.4% (for Ae. aegypti), 0.8% (for An. dirus) and 1.1% (for Cx. quinquefasciatus) respectively. These results clearly revealed that the essential oil of Ca. odorata served as a potential oviposition-deterrent and ovicidal activity against Ae. aegypti, An. dirus and Cx. quinquefasciatus. PMID:22543614

  18. Cloning and expression analysis of a 5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems.

    PubMed

    Pietrantonio, P V; Jagge, C; McDowell, C

    2001-08-01

    In the mosquito Aedes aegypti, 5-HT changes the endogenous rhythm of contractions in the female hindgut and increases fluid secretion in the larval Malpighian tubule. The role of 5-HT as a diuretic hormone in adults has been questioned. We cloned a cDNA encoding a serotonin receptor from a female A. aegypti Malpighian tubule library that is similar to the 5-HT7 receptor from Drosophila melanogaster. The transcript was localized in the tracheolar cells associated with the female Malpighian tubules but no signal was detectable in the tubule epithelium. Immunohistochemistry with specific antibodies confirmed the receptor expression in tracheolar cells and hindgut, and western blots of these tissues showed the expected 50 kDa band. The results suggest a role for serotonin in respiration and that this receptor may coordinate the tubule-hindgut response to serotonin during diuresis. PMID:11520359

  19. Space treatments of insecticide for control of dengue virus vector Aedes aegypti in southern Mexico. I. Baseline penetration trials in open field and houses.

    PubMed

    Arrendondo-Jimenez, Juan I; Rivero, Norma E

    2006-06-01

    We studied the efficacy of space ultra-low volume treatments of 3 insecticides for the control of the dengue virus vector Aedes aegypti in southern Mexico. Insecticides tested were permethrin (Aqua-Reslin Super), d-phenothrin (Anvil), and cyfluthrin (Solfac), applied at rates of 10.87, 7.68, and 2 g/ha, respectively, by using London Fog, HP910-PHXL, or Micro-Gen pumps mounted on vehicles. Studies included 1) open field penetration tests and 2) house penetration tests. Open field tests indicated that Anvil and Solfac were more effective than Aqua-Reslin Super. In house tests, Anvil yielded the highest mosquito mortalities (>/=88%) of the three insecticides in the front porch, living room, bedroom, and backyard. Therefore, Anvil proved to be better than other insecticides evaluated to control Ae. aegypti in Chiapas, Mexico. PMID:17019777

  20. Evaluation of slow-release formulations of temephos (Abate) and Bacillus thuringiensis var. israelensis for the control of Aedes aegypti in Puerto Rico.

    PubMed

    Novak, R J; Gubler, D J; Underwood, D

    1985-12-01

    Formulations of temephos (Abate) and Bacillus thuringiensis var. israelensis (B.t.i.) on corncob and dried coconut husk carriers were tested for slow-release insecticide properties against Aedes aegypti larvae in Puerto Rico. Granular formulations of 5% and 10% temephos gave continuous larval control in used automobile tires for 27 to 124 days and 34 to 162 days, respectively. Temephos on radial sections of corncob and coconut husk chips gave good larval control in tires for 27 to 63 and 61 to 134 days, respectively, depending on the size of the carrier. Small (2-3 g) and large (3-5 g) coconut husk chips tested in 167 liter drums provided continuous control for 55 to 105 days, respectively. Granular formulations of B.t.i. controlled Ae. aegypti in tires for 19 to 33 days, and B.t.i. briquets exhibited larvicidal activity in large containers for 26 to 78 days. PMID:2466106

  1. Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses.

    PubMed

    Chandler, James Angus; Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Wilcox, Bruce A; Schroth, Gary P; Kapan, Durrell D; Bennett, Shannon N

    2014-09-01

    Arthropod-borne viruses significantly impact human health. They span multiple families, all of which include viruses not known to cause disease. Characterizing these representatives could provide insights into the origins of their disease-causing counterparts. Field-caught Aedes aegypti mosquitoes from Nakhon Nayok, Thailand, underwent metagenomic shotgun sequencing to reveal a Bunyavirus closely related to Phasi Charoen (PhaV) virus, isolated in 2009 from Ae. aegypti near Bangkok. Phylogenetic analysis of this virus suggests it is basal to the Phlebovirus genus thus making it ideally positioned phylogenetically for understanding the evolution of these clinically important viruses. Genomic analysis finds that a gene necessary for virulence in vertebrates, but not essential for viral replication in arthropods, is missing. The sequencing of this phylogenetically-notable and genomically-unique Phlebovirus from wild mosquitoes exemplifies the utility and efficacy of metagenomic shotgun sequencing for virus characterization in arthropod vectors of human diseases. PMID:25108381

  2. Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses

    PubMed Central

    Chandler, James Angus; Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Wilcox, Bruce A.; Schroth, Gary P.; Kapan, Durrell D.; Bennett, Shannon N.

    2014-01-01

    Arthropod-borne viruses significantly impact human health. They span multiple families, all of which include viruses not known to cause disease. Characterizing these representatives could provide insights into the origins of their disease-causing counterparts. Field-caught Aedes aegypti mosquitoes from Nakhon Nayok, Thailand, underwent metagenomic shotgun sequencing to reveal a Bunyavirus closely related to Phasi Charoen (PhaV) virus, isolated in 2009 from Ae. aegypti near Bangkok. Phylogenetic analysis of this virus suggests it is basal to the Phlebovirus genus thus making it ideally positioned phylogenetically for understanding the evolution of these clinically important viruses. Genomic analysis finds that a gene necessary for virulence in vertebrates, but not essential for viral replication in arthropods, is missing. The sequencing of this phylogenetically-notable and genomically-unique Phlebovirus from wild mosquitoes exemplifies the utility and efficacy of metagenomic shotgun sequencing for virus characterization in arthropod vectors of human diseases. PMID:25108381

  3. Mosquito-Producing Containers, Spatial Distribution, and Relationship between Aedes aegypti Population Indices on the Southern Boundary of its Distribution in South America (Salto, Uruguay)

    PubMed Central

    Basso, César; Caffera, Ruben M.; García da Rosa, Elsa; Lairihoy, Rosario; González, Cristina; Norbis, Walter; Roche, Ingrid

    2012-01-01

    A study was conducted in the city of Salto, Uruguay, to identify mosquito-producing containers, the spatial distribution of mosquitoes and the relationship between the different population indices of Aedes aegypti. On each of 312 premises visited, water-filled containers and immature Ae. aegypti mosquitoes were identified. The containers were counted and classified into six categories. Pupae per person and Stegomyia indices were calculated. Pupae per person were represented spatially. The number of each type of container and number of mosquitoes in each were analyzed and compared, and their spatial distribution was analyzed. No significant differences in the number of the different types of containers with mosquitoes or in the number of mosquitoes in each were found. The distribution of the containers with mosquito was random and the distribution of mosquitoes by type of container was aggregated or highly aggregated. PMID:23128295

  4. Structure of an Odorant-Vinding Protein form the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive

    SciTech Connect

    N Leite; R Krogh; W Xu; Y Ishida; J Iulek; W Leal; G Oliva

    2011-12-31

    The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 {angstrom} resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six {alpha}-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this 'lid' may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

  5. Structured and unstructured continuous models for Wolbachia infections

    E-print Network

    Hinow, Peter

    Potential use as biological control (McMeniman et al. 2009): infection with Wolbachia shortens the lifespan of the mosquito Aedes aegypti, a vector for the Dengue fever virus (only older mosquitoes are carriers). Peter

  6. A web-based multimedia spatial information system to document Aedes aegypti breeding sites and dengue fever risk along the US-Mexico border.

    PubMed

    Moreno-Sanchez, Rafael; Hayden, Mary; Janes, Craig; Anderson, Geoffrey

    2006-12-01

    This paper describes a web-based multimedia spatial information system used to support a study of the re-invasion of Aedes aegypti, the mosquito vector for dengue fever, in the deserts of the southwest United States/northwest Mexico. The system was developed applying Open Geospatial Consortium and World Wide Web Consortium Open Specifications and using Open Source Software. The system creates a sensory-rich environment, one which allows users to interact with the system to explore connections among data (maps, remotely sensed images, text, graphs, 360 degree panoramas and photos), visualize information, formulate their own interpretations, generate hypotheses and reach their own conclusions. PMID:16290210

  7. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in methanol extract against Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus with the LD50 and LD90 values were 120.44, 135.60, and 157.71 ppm and 214.65, 248.35, and 290.95 ppm, respectively. No mortality was recorded in the control. The finding of the present investigation revealed that the root extract of Asparagus racemosus possess remarkable ovicidal, larvicidal and adulticidal activity against medically important vector mosquitoes and this is the low cost and ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito ovicidal, larvicidal and adulticidal activities of the reported Asparagus racemosus root. PMID:24488078

  8. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti.

    PubMed

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2014-11-01

    The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 ?M). The best result in the series was obtained with the addition of verapamil (40 ?M), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated. PMID:25411004

  9. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate.

    PubMed

    Agra-Neto, Afonso Cordeiro; Napoleão, Thiago Henrique; Pontual, Emmanuel Viana; Santos, Nataly Diniz de Lima; Luz, Luciana de Andrade; de Oliveira, Cláudia Maria Fontes; de Melo-Santos, Maria Alice Varjal; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2014-01-01

    The indiscriminate use of synthetic insecticides to control Aedes aegypti has led to emergence of resistant populations. Moringa oleifera seeds contain the lectins WSMoL and cMoL. WSMoL has larvicidal activity on fourth-stage of A. aegypti organophosphate-susceptible larvae (Rockefeller L4). This study reports on the effects of cMoL on the survival of Rockefeller L4 as well as of WSMoL and cMoL on L4 from an organophosphate-resistant population (Rec-R). The effects of lectins on digestive (amylase, trypsin, and protease) and detoxifying (superoxide dismutase (SOD), ?- and ?-esterases) enzymes from larvae were also determined. cMoL (0.1-0.8 mg/ml) did not kill Rockefeller L4 as well as WSMoL and cMoL (0.1-0.8 mg/ml) were not larvicidal for Rec-R L4. WSMoL stimulated protease, trypsin-like, and ?-amylase from Rockefeller L4 while cMoL inhibited these enzymes. WSMoL had no effect on trypsin-like activity from Rec-R L4 but inhibited protease and ?-amylase. Among digestive enzymes of Rec-R L4, cMoL inhibited only trypsin-like activity. cMoL inhibited SOD activities from Rockefeller and Rec-R L4 in a higher level than WSMoL while ?-esterase from Rockefeller L4 was more inhibited by WSMoL. The lectins promoted low stimulation or inhibition of ?-esterase activities from both populations. In conclusion, Rockefeller and Rec-R larvae were distinctly affected by M. oleifera lectins, and larvicidal mechanism of WSMoL on Rockefeller L4 may involve deregulation of digestive enzymes. cMoL interfered mainly on SOD activity and thus it can be investigated as a synergistic agent for controlling populations whose resistance is linked to an increased detoxifying process mediated by this enzyme. PMID:24142287

  10. Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L.

    PubMed

    Warikoo, Radhika; Wahab, Naim; Kumar, Sarita

    2011-10-01

    The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%, 1%, 0.1%) of the oils and 199 mL of water were used for oviposition. The number of eggs laid and the larvae hatched in each cup were scored to evaluate the oviposition deterrent and ovicidal potentials of the oils. Our investigations revealed that the addition of 100% oil (pure oil) caused complete oviposition deterrence except in A. graveolens which resulted in 75% effective repellency. The use of 10% oil resulted in the maximum deterrence of 97.5% as shown by the M. piperita oil while other oils caused 36-97% oviposition deterrence as against the control. The oviposition medium with 1% oil showed decreased deterrent potential with 30-64% effective repellency, the M. piperita oil being exceptional. However, as the concentrations of the oil were reduced further to 0.1%, the least effective oil observed was A. graveolens (25% ER). Also, the M. piperita oil showed much reduced activity (40%) as compared to the control, while the other oils exhibited 51-58% repellency to oviposition. The studies on the ovicidal effects of these oils revealed that the eggs laid in the water with 100% essential oils did not hatch at all, whereas when 10% oils were used, only the R. officinalis oil resulted in 28% egg hatch. At lower concentrations (1%), the oils of M. piperita, O. basilicum, and C. nardus showed complete egg mortality while those of A. graveolens and R. officinalis resulted in 71% and 34% egg hatches, respectively. When used at 0.1%, the O. basilicum oil was found to be the only effective oil with 100% egg mortality, whereas other oils resulted in 16-76% egg mortality, the least mortality caused by the A. graveolens oil. These results suggest that these essential oils can be employed in a resistance-management program against A. aegypti. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management program. PMID:21445613

  11. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus

    PubMed Central

    Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature. PMID:26244643

  12. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent. PMID:25974067

  13. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Calkins, Travis L.; Piermarini, Peter M.

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides. PMID:26325403

  14. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Calkins, Travis L; Piermarini, Peter M

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides. PMID:26325403

  15. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia.

    PubMed

    Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-01-01

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations. PMID:26463408

  16. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia

    PubMed Central

    Rochmijati Wuliandari, Juli; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-01-01

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations. PMID:26463408

  17. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  18. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50 % of the exposed larvae (LC50) and lethal concentration that kills 90 % of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50?=?97.410, 102.551, 29.802, and 8.907; LC90?=?767.957, 552.546, 535.474, and 195.677 ?g/ml), Cx. quinquefasciatus (LC50?=?89.584, 74.689, 68.265, and 67.40; LC90?=?449.091, 337.355, 518.793, and 237.347 ?g/ml), and Ae. aegypti (LC50?=?83.541, 84.418, 80.407, and 95.926; LC90?=?515.464, 443.167, 387.910, and 473.998 ?g/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50?=?25.228, LC90?=?140.487), Cx. quinquefasciatus (LC50?=?54.525, LC90?=?145.366), and Ae. aegypti (LC50?=?10.536, LC90?=?63.762 ?g/ml). At higher concentration (500 ?g/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of the C-H group. The band at 1023.59 cm(-1) developed for C-O and C=N, respectively, and was commonly found in carboxylic acid and amine groups. GC-MS analysis of ethyl acetate extracts showed the presence of six compounds, of which the major compounds were identified as n-hexadecanoic acid (15.31 %) and methyl 12,15-octadecadienoate (31.989 %), based on their peak molecular weight. The HPLC analysis result highlights that the A. terreus ethyl acetate extract was compared with pure n-hexadecanoic acid which resulted in similar retention time of 19.52 and 19.38, respectively. Thus, the active compound produced by this species would be more useful against vectors responsible for diseases of public health importance. This is the first report on mosquito larvicidal and pupicidal activity of ethyl acetate extract produced by A. terreus species. PMID:26139412

  19. Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India

    PubMed Central

    Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max

    2012-01-01

    Background Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. Methods A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. Results At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women’s self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0.004 pupae per person from 1.075 (P?=?0.020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4.2%, the container index to 1.05%, and the Breteau index to 4.3 from the baseline values of 19.6, 8.91, and 30.8 in the intervention arm. Conclusion A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density. PMID:23318241

  20. Performance of the plant-based repellent TT-4302 against mosquitoes in the laboratory and field and comparative efficacy to 16 mosquito repellents against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Bissinger, B W; Schmidt, J P; Owens, J J; Mitchell, S M; Kennedy, M K

    2014-03-01

    Repellent efficacy of the plant-based repellent, TT-4302 (5% geraniol), was compared with 16 other products in laboratory arm-in-cage trials against Aedes aegypti (L). Eight repellents (Badger, BioUD, Burt's bees, California Baby, Cutter Natural, EcoSMART, Herbal Armor, and SkinSmart) exhibited a mean repellency below 90% to Ae. aegypti at 0.5 h after application. Three repellents (Buzz Away Extreme, Cutter Advanced, and OFF! Botanicals lotion) fell below 90% repellency 1.5 h after application. TT-4302 exhibited 94.7% repellency 5 h posttreatment, which was a longer duration than any of the other repellents tested. The positive control, 15% DEET (OFF! Active), was repellent for 3 h before activity dropped below 90%. Additional arm-in-cage trials comparing TT-4302 with 15% DEET were carried out against Anopheles quadrimaculatus Say. At 6 h after treatment, TT-4302 provided 95.2% repellency while DEET exhibited 72.2%. In North Carolina field trials, TT-4302 provided 100% repellency 5 h after application against Aedes albopictus Skuse while DEET provided 77.6% repellency. These results demonstrate that TT-4302 is an efficacious plant-based repellent that provides an extended duration of protection compared with many other commercially available products. PMID:24724289

  1. Toxicity of benzo(a)pyrene and pyrene in the mosquito Aedes aegypti, in the dark and in the presence of ultraviolet light

    SciTech Connect

    Kagan, J.; Kagan, E.D.

    1986-03-01

    The phototoxicity of benzo(a)pyrene constitutes a much greater risk to immature forms of the mosquito Aedes aegypti than its mutagenicity of carcinogenicity. First instar larvae, fourth instar larvae, and pupae of the mosquito Aedes aegypti were treated with benzo(a)pyrene at concentrations up to 6.7 ppm, either in the dark or in the presence of long wavelength ultraviolet light (for only 30 min). The irradiations had a profound effect on the fate of first instar larvae. Their LC/sub 50/ value for 24 h survival was about 0.002 ppm. When the adult emergence was determined, the LC/sub 50/ value was about 0.0015 ppm. The development of fourth instar larvae was also modified by the photochemical treatments, with an LC/sub 50/ value for adult emergence of 0.12 ppm. The LC/sub 50/ values for the highly carcinogenic BAP are very similar to those determined for pyrene, its non-carcinogenic parent molecule. This provides one additional proof that the carcinogenicity and the phototoxicity of polycyclic aromatic hydrocarbons are not necessarily related.

  2. The Orthologue of the Fruitfly Sex Behaviour Gene Fruitless in the Mosquito Aedes aegypti: Evolution of Genomic Organisation and Alternative Splicing

    PubMed Central

    Salvemini, Marco; D'Amato, Rocco; Petrella, Valeria; Aceto, Serena; Nimmo, Derric; Neira, Marco; Alphey, Luke; Polito, Lino C.; Saccone, Giuseppe

    2013-01-01

    In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control. PMID:23418412

  3. Cold Season Mortality Under Natural Conditions and Subsequent Hatching Response of Aedes (Stegomyia) aegypti (Diptera: Culicidae) Eggs in a Subtropical City of Argentina.

    PubMed

    Giménez, Javier Orlando; Fischer, Sylvia; Zalazar, Laura; Stein, Marina

    2015-09-01

    In temperate and subtropical regions, populations of Aedes (Stegomyia) aegypti (L.) survive unfavorable winter conditions in the egg stage. Knowing their survival rates can be of great interest for the health authorities in charge of control activities. In this study, we analyzed the mortality of Ae. aegypti eggs exposed to the cold season as well as their hatching patterns under laboratory conditions in the city of Resistencia, Chaco, Argentina. The mortality rate was 48.6%. No statistically significant differences were observed in the mortality of eggs exposed at different sites. Hatching response differed significantly among the successive postexposure immersions, with the highest proportion of hatched eggs during the first immersion. These results show that the mortality rate of Ae. aegypti eggs exposed to the cold season in a subtropical city of Argentina was higher than those from temperate climate region. The additional mortality of eggs in our study might be related to fungal development (an unexpected event), which was not observed in research in temperate climate. The hatching pattern observed in this study ensures a rapid increase of the population at the beginning of the favorable breeding season, but it also maintains a batch with delayed hatching eggs, posing a risk for the community. PMID:26336247

  4. The Influence of Diet on the Use of Near-Infrared Spectroscopy to Determine the Age of Female Aedes aegypti Mosquitoes.

    PubMed

    Liebman, Kelly; Swamidoss, Isabel; Vizcaino, Lucrecia; Lenhart, Audrey; Dowell, Floyd; Wirtz, Robert

    2015-05-01

    Interventions targeting adult mosquitoes are used to combat transmission of vector-borne diseases, including dengue. Without available vaccines, targeting the primary vector, Aedes aegypti, is essential to prevent transmission. Older mosquitoes (? 7 days) are of greatest epidemiological significance due to the 7-day extrinsic incubation period of the virus. Age-grading of female mosquitoes is necessary to identify post-intervention changes in mosquito population age structure. We developed models using near-infrared spectroscopy (NIRS) to age-grade adult female Ae. aegypti. To determine if diet affects the ability of NIRS models to predict age, two identical larval groups were fed either fish food or infant cereal. Adult females were separated and fed sugar water ± blood, resulting in four experimental groups. Females were killed 1, 4, 7, 10, 13, or 16 days postemergence. The head/thorax of each mosquito was scanned using a near-infrared spectrometer. Scans from each group were analyzed, and multiple models were developed using partial least squares regression. The best model included all experimental groups, and positively predicted the age group (< or ? 7 days) of 90.2% mosquitoes. These results suggest both larval and adult diets can affect the ability of NIRS models to accurately assign age categories to female Ae. aegypti. PMID:25802436

  5. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    PubMed

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  6. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source

    PubMed Central

    Zhang, Xinyang; Crippen, Tawni L.; Coates, Craig J.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ? 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes “eavesdrop” on the chemical discussions occurring between host-associated microbes to determine suitability for blood feeding. We believe these data suggest that manipulating quorum sensing by bacteria could serve as a novel approach for reducing mosquito attraction to hosts, or possibly enhancing the trapping of adults at favored oviposition sites. PMID:26674802

  7. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing?>?50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. Conclusions The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides. PMID:24593293

  8. Field evaluation of the efficacy of proprietary repellent formulations with IR3535 and picaridin against Aedes aegypti.

    PubMed

    Naucke, T J; Kröpke, R; Benner, G; Schulz, J; Wittern, K P; Rose, A; Kröckel, U; Grünewald, H W

    2007-06-01

    Seven proprietary repellent formulations (3 hydro-alcoholic spray solutions and 4 skin lotions) with active ingredient IR3,535 (ethyl butylacetylaminopropionate, EBAAP) or Picaridin (hydroxyethyl isobutyl piperidine carboxylate, KBR 3,023, Bayrepel) were tested in a field study on 10 test persons over a period of 10 h for their efficacy at preventing bites. The tests were conducted in Belo Horizonte, Brazil on field populations of the yellow fever mosquito Aedes aegypti. The concentration of the active substances ranged from 10% to 20%. All the tested samples provided lasting protection (time to first bite) over several hours: ranging from 5 h 20 min to 6 h 50 min with a mean of approximately 6 h. The longest protection until the second bite (=first confirmation bite) was approximately 7 h 40 min, whereas the shortest protection was 6 h 50 min. The longest protection until the third bite (=second confirmation bite) was 8 h 35 min, whereas the shortest protection was 7 h 40 min. In the control tests in which none of the samples were applied, the mean times until the first, second and third bites were 26, 46 and 59 min, respectively. The basis for this field study was provided by two American guidelines, which have the greatest international acceptance. The first is a draft guideline from the Environmental Protection Agency (EPA (United States Environmental Protection Agency), Product performance test guidelines. OPPTS 810.3700. Insect repellents for human skin and outdoor premises. Public Draft, 1999) and the second is a standard from the American Society for Testing and Materials (ASTM (American Society for Testing and Materials International), E 939-94 (reapproved 2,000): standard test method of field testing topical applications of compounds as repellents for medically important and pest arthropods (including insects, ticks, and mites): I. Mosquitoes, 2,000). Both guidelines recommend measuring the duration of protection until the first and second bites and also determining the relative protection efficacy in terms of a 95% protection level. The ASTM standard permits different repellents to be applied, whereas the EPA guidelines only permit the use of a single repellent (in different concentrations) on the extremities (forearms or lower leg). In the study presented here, to exclude any possibility of different repellents or concentrations of a single repellent having a reciprocal effect on each other, each test person had repellent samples applied to only one of their forearms. The other forearm was used as a control for making comparative checks every hour and for determining the biting pressure. There was no significant difference in protection times between the two active substances. PMID:17252270

  9. Distribution and dynamics of Wolbachia infection in Malaysian Aedes albopictus.

    PubMed

    Joanne, Sylvia; Vythilingam, Indra; Yugavathy, Nava; Leong, Cherng-Shii; Wong, Meng-Li; AbuBakar, Sazaly

    2015-08-01

    Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system. PMID:25899523

  10. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia. PMID:25893246

  11. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina.

    PubMed

    Grech, Marta G; Sartor, Paolo D; Almirón, Walter R; Ludueña-Almeida, Francisco F

    2015-06-01

    We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of mosquito management models. PMID:25733491

  12. Immunolocalization and in vivo Functional Analysis by RNAi of the Aedes Kinin Receptor in Female Mosquitoes of Aedes aegypti (L.) (Diptera, Culicidae) 

    E-print Network

    Kersch, Cymon

    2012-02-14

    , followed by measurement of in vivo urine excretion post blood feeding in a precision humidity chamber. Transcript and protein knockdown were confirmed by qPCR and immunohistochemistry, respectively. Results indicate widespread expression of the Aedes kinin...

  13. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control. PMID:26091763

  14. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specifi...

  15. Disposable containers as larval habitats for Aedes aegypti in a city with regular refuse collection: a study in Marília, São Paulo State, Brazil.

    PubMed

    Mazine, C A; Macoris, M L; Andrighetti, M T; Yasumaro, S; Silva, M E; Nelson, M J; Winch, P J

    1996-09-01

    In Marília, Brazil, refuse is collected at least every other day, yet non-useful, non-returnable containers such as cans, plastic bottles and tires account for almost half of the container habitats found positive for the Aedes aegypti mosquito. A study was therefore conducted to investigate why these containers exist despite regular refuse collection and a high level of awareness of dengue prevention, and how the control program could most effectively respond. Differing community perceptions as to what constitutes refuse were found to lead people to store a variety of containers in their yard. Other dimensions of the problem include the presence of informal refuse collectors in search of saleable materials, and dumping of refuse in vacant lots and along roads. An intervention based on these data will involve the informal refuse collectors in implementation of a community-based recycling project. PMID:8971274

  16. Cyt1Aa from Bacillus thuringiensis subsp. israelensis enhances mosquitocidal activity of B. thuringiensis subsp. kurstaki HD-1 against Aedes aegypti but not Culex quinquefasciatus.

    PubMed

    Park, Hyun-Woo; Pino, Brent C; Kozervanich-Chong, Switzerlyna; Hafkenscheid, Erika A; Oliverio, Ryan M; Federici, Brian A; Bideshi, Dennis K

    2013-01-01

    The Cyt1Aa protein of Bacillus thuringiensis subsp. israelensis is known to synergize mosquitocidal proteins of B. thuringiensis and Bacillus sphaericus strains. Cyt1Aa is highly lipophilic, and after binding in vivo to the midgut microvillar membrane serves as a "receptor" for mosquitocidal Cry proteins, which subsequently form cation channels that kill mosquito larvae. Here we report that Cyt1Aa can serve a similar function for lepidopteran-specific Cry proteins of B. thuringiensis in certain mosquito larvae. Engineering Cyt1Aa into the HD-1 isolate of B. thuringiensis subsp. kurstaki enhanced toxicity against 4th instars of Aedes aegypti, but not against 4th instars of Culex quinquefasciatus. PMID:23314373

  17. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol

    PubMed Central

    2014-01-01

    Background p-cresol (4-methylphenol) and its isomer m-cresol (3-methylphenol) have been shown to activate the same sensilla in Aedes aegypti (Linnaeus) mosquitoes. Whereas p-cresol has been suggested to play a role in oviposition site choice, the behavioral significance of m-cresol is unknown. Methods Here, we assayed the oviposition behavior of Aedes aegypti towards p-cresol and m-cresol using cage assay. Specifically we tested different concentrations of p-cresol (10-12-103 ppm) and m-cresol (10-1-103 ppm), the 1:1 mixture of the two compounds at 102 ppm, and the two individual compounds at 102 ppm together in the same cage. Results We show that (1) p-cresol is a stimulant at a low concentration and deterrent over a broad range of higher concentrations (10-8-103 ppm), while m-cresol was behaviorally ineffective, except for a deterrent effect at the highest concentration (103 ppm) (2) in concentration choice tests (different concentrations tested against each other), both compounds were deterrent only at the highest concentration (3) a 1:1 mixture of both compounds exhibited a deterrent effect on oviposition (4) when presented in separate cups but together in the same cage, p-cresol and m-cresol (102 ppm) both received significantly less eggs than water alone. Conclusions Our results suggest that p-cresol is a strong oviposition deterrent with a stimulant effect at only a very low concentration, while m-cresol is not a deterrent per se. However, in the presence of p-cresol in the vicinity, m-cresol acts as a deterrent. This finding adds a new twist to the possible interactions of different odors in oviposition site choice: not only the source itself, but nearby odors also influence a mosquito’s choice. PMID:25008201

  18. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti

    PubMed Central

    Roy, Saurabh G.; Raikhel, Alexander S.

    2012-01-01

    Mosquitoes require blood for egg development, and, as a consequence, they transmit pathogens of devastating diseases. Target of rapamycin (TOR) signaling is a key pathway linking blood feeding and egg development in the mosquito Aedes aegypti. We show that the regulation of the TOR effector translational repressor 4E-BP is finely tuned to the nutritional requirements of the female mosquito, and it occurs at transcriptional and post-translational levels. Immediately after blood feeding, 4E-BP became hyperphosphorylated, suggesting rapid inhibition of its translational repression function. 4E-BP was highly phosphorylated after in vitro incubation of the fat body in the presence of amino acids; this phosphorylation was rapamycin insensitive, in contrast to another TOR target, S6K, phosphorylation of which was rapamycin sensitive. A high level of 4E-BP phosphorylation was also elicited by insulin. Rapamycin and the PI3K inhibitor LY294002 blocked insulin-mediated 4E-BP phosphorylation. RNA-interference depletion of the insulin receptor or Akt resulted in severe reduction of 4E-BP phosphorylation. Phosphorylation and stability of 4E-BP was dependent on its partner eIF4E translation initiation factor. Silencing of 4E-BP resulted in reduction of the life span of adult female mosquitoes. This study demonstrates a dual nutritional and hormonal control of 4E-BP and its role in mosquito egg development.—Roy, S. G., Raikhel, A. S. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti. PMID:22159149

  19. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08?ppm, respectively, after an exposure to 24?h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48?h; revealing an LC50 value of 13.22?ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165?min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180?min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4?s resulting in an average of 63.66 flights during 15?min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the environment would help in devising mosquito-management strategies. PMID:25279371

  20. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  1. Further evidences for the mode of action of the larvicidal m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds against Aedes aegypti.

    PubMed

    Souza, Terezinha M; Menezes, Erika S Bezerra; Oliveira, Rodrigo V; Almeida Filho, Luiz Carlos P; Martins, Jorge M; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Moura, Arlindo A Araripe; Carvalho, Ana F Urano

    2015-12-01

    Nowadays, dengue fever is considered the most important arbovirosis worldwide and its control is still based upon combating the vector Aedes aegypti. Besides monitoring of mosquito populations resistant to conventional insecticides, the search for new environmentally safe insecticides and conduction of molecular studies focusing on the elucidation of mode of action and possible resistance mechanisms are considered the key for a sustainable management of the mosquito vector. Thus, the present work aimed to assess changes in protein expression of 3rd-instar larvae of Ae. aegypti after exposure to the natural insecticide m-pentadecadienyl-phenol. Bidimensional electrophoresis followed by mass spectrometry resulted in identification of 12 proteins differentially expressed between control and treated groups. Larvae exposed to the toxic compound for 24h showed elevated detoxification response (glutathione-S-transferase), increased levels of stress-related proteins (HSP70) as well as evidence of lysosome stabilization to enable survival. Furthermore, expression of proteins involved in protection of peritrophic membrane and metabolism of lipids indicated systemic effect of toxic effects in treated larvae. PMID:26299195

  2. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50?=?193, 102, and 48?ng/ml, after 24, 48, and 72?h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72?h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72?h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito. PMID:25987220

  3. Evaluation of Moringa oleifera seed lectin in traps for the capture of Aedes aegypti eggs and adults under semi-field conditions.

    PubMed

    Santos, Nataly Diniz de Lima; Paixão, Kelly da Silva; Napoleão, Thiago Henrique; Trindade, Priscila Barbi; Pinto, Mariele Ribeiro; Coelho, Luana Cassandra Breitenbach Barroso; Eiras, Álvaro Eduardo; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2014-05-01

    The water-soluble lectin isolated from Moringa oleifera seeds (WSMoL) is a larvicidal, ovicidal, and oviposition-stimulating agent against Aedes aegypti under laboratory conditions. This study investigated the effect of WSMoL in traps for the capture of A. aegypti eggs and adult females under semi-field conditions and determined whether gravid females could detect WSMoL by an olfactory response. WSMoL was isolated according to a previously described procedure using chitin chromatography. The bioassays were performed in large cages (12.5 m(3)). Two traps for collection of eggs (ovitrap) or adult mosquitoes (MosquiTRAP(TM)) were placed in a cage. One was filled with WSMoL (0.1 mg/mL) and the other with tap water (negative control). An infusion of Panicum maximum leaves was used as a positive control. Forty gravid females were then released in each cage. After 2 (for oviposition) or 3 h (for female capture), the traps were removed, and the number of eggs or females was counted. An olfactometry assay was performed to investigate whether the effect of WSMoL on gravid females was linked to an olfactory response. WSMoL showed an oviposition-stimulating effect (65?±?14%) that was similar (p?aegypti control. PMID:24604386

  4. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species.

    PubMed

    Tabanca, Nurhayat; Gao, Zengping; Demirci, Betul; Techen, Natascha; Wedge, David E; Ali, Abbas; Sampson, Blair J; Werle, Chris; Bernier, Ulrich R; Khan, Ikhlas A; Baser, Kemal Husnu Can

    2014-09-01

    In this study, Angelica dahurica and Angelica pubescentis root essential oils were investigated as pest management perspectives, and root samples were also analyzed genetically using the nuclear ribosomal internal transcribed spacer (ITS) region as a DNA barcode marker. A. pubescentis root essential oil demonstrated weak antifungal activity against Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. dahurica root essential oil did not show antifungal activity. Conversely, A. dahurica root essential oil demonstrated better biting deterrent and insecticidal activity against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A. dahurica oil were found as ?-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). ?-Pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) were the major compounds found in the A. pubescentis oil. In mosquito bioassays, 1-dodecanol and 1-tridecanol showed antibiting deterrent activity similar to the positive control DEET (N,N-diethyl-3-methylbenzamide) at 25 nmol/cm(2) against Ae. aegypti, whereas only 1-tridecanol showed repellent activity in human-based cloth patch bioassay with minimum effective dosages (MED) of 0.086 ± 0.089 mg/cm(2) (DEET = 0.007 ± 0.003 mg/cm(2)). In larval bioassays, 1-tridecanol was more toxic with an LC50 value of 2.1 ppm than 1-dodecanol having an LC50 value of 5.2 ppm against 1-day-old Ae. aegypti larvae. 1-Dodecanol and 1-tridecanol could be useful for the natural mosquito control agents. PMID:25133520

  5. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti.

    PubMed

    Zhao, Bo; Kokoza, Vladimir A; Saha, Tusar T; Wang, Stephanie; Roy, Sourav; Raikhel, Alexander S

    2014-11-01

    Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5(') upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4 > UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4 > UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin (TOR) kinase. RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4 > UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes. PMID:25152428

  6. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma longa, Ar-turmerone, and Curcuminoids Against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera).

    PubMed

    Ali, Abbas; Wang, Yan-Hong; Khan, Ikhlas A

    2015-09-01

    Essential oils and extract of Curcuma longa, ar-turmerone, and curcuminoids were evaluated for their larvicidal and deterrent activity against mosquitoes. Ar-turmerone and curcuminoids constituted 36.9, 24.9 and 50.6% of rhizome oil, leaf oil, and rhizome extract, respectively. Ar-turmerone was the major compound of the rhizome oil (36.9%) and leaf oil (24.9%). The ethanolic extract had 15.4% ar-turmerone with 6.6% bisdesmethoxycurcumin, 6.1% desmethoxycurcumin, and 22.6% curcumin. In in vitro studies, essential oils of the leaf (biting deterrence index [BDI]?=?0.98), rhizome (BDI?=?0.98), and rhizome ethanolic extract (BDI?=?0.96) at 10?µg/cm(2) showed biting deterrent activity similar to DEET at 25?nmol/cm(2) against Aedes aegypti L. Among the pure compounds, ar-turmerone (BDI?=?1.15) showed the biting deterrent activity higher than DEET at 25?nmol/cm(2) whereas the activity of other compounds was lower than DEET. In Anopheles quadrimaculatus Say, only ar-turmerone showed deterrent activity similar to DEET. In dose-response bioassay, ar-turmerone showed significantly higher biting deterrence than DEET at all the dosages. Ar-turmerone, at 15?nmol/cm(2), showed activity similar to DEET at 25?nmol/cm(2) and activity at 5?nmol/cm(2) was similar to DEET at 20 and 15?nmol/cm(2). Leaf essential oil with LC(50) values of 1.8 and 8.9?ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, showed highest toxicity followed by rhizome oil and ethanolic extract. Among the pure compounds, ar-turmerone with LC(50) values of 2.8 and 2.5?ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, was most toxic followed by bisdesmethoxycurcumin, curcumin, and desmethoxycurcumin. PMID:26336212

  7. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella.

    PubMed

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Nicoletti, Marcello; Madhiyazhagan, Pari; Dinesh, Devakumar; Suresh, Udaiyan; Khater, Hanem F; Wei, Hui; Canale, Angelo; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Benelli, Giovanni

    2015-11-01

    Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools. PMID:26184431

  8. De Novo Assembly and Annotation of the Asian Tiger Mosquito (Aedes albopictus) Repeatome with dnaPipeTE from Raw Genomic Reads and Comparative Analysis with the Yellow Fever Mosquito (Aedes aegypti)

    PubMed Central

    Goubert, Clément; Modolo, Laurent; Vieira, Cristina; ValienteMoro, Claire; Mavingui, Patrick; Boulesteix, Matthieu

    2015-01-01

    Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the “repeatome” during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE—a new bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage sequencing in different genomes, losing accuracy only with old TE families. We applied this pipeline to the genome of the Asian tiger mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp. Using dnaPipeTE, we showed that this species harbors a large (50% of the genome) and potentially active repeatome with an overall TE class and order composition similar to that of Aedes aegypti, the yellow fever mosquito. However, intraorder dynamics show clear distinctions between the two species, with differences at the TE family level. Our pipeline’s ability to manage the repeatome annotation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A. albopictus. PMID:25767248

  9. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata.

    PubMed

    Patil, Chandrashekhar D; Borase, Hemant P; Patil, Satish V; Salunkhe, Rahul B; Salunke, Bipinchandra K

    2012-08-01

    In present study, the bioactivity of latex-producing plant Pergularia daemia as well as synthesized silver nanoparticles (AgNPs) against the larval instars of Aedes aegypti and Anopheles stephensi mosquito larvae was determined. The range of concentrations of plant latex (1,000, 500, 250, 125, 62.25, and 31.25 ppm) and AgNPs (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) were prepared. The LC(50) and LC(90) values for first, second, third, and fourth instars of synthesized AgNPs-treated first, second, third, and fourth instars of A. aegypti (LC(50)?=?4.39, 5.12, 5.66, 6.18; LC(90)?=?9.90, 11.13, 12.40, 12.95 ppm) and A. stephensi (LC(50)?=?4.41, 5.35, 5.91, 6.47; LC(90)?=?10.10, 12.04, 13.05, 14.08 ppm) were found many fold lower than crude latex-treated A. aegypti (LC(50)?=?55.13, 58.81, 75.66, 94.31; LC(90)?=?113.00, 118.25, 156.95, 175.71 ppm) and A. stephensi (LC(50)?=?81.47, 92.09, 96.07, 101.31; LC(90)?=?159.51, 175.97, 180.67, 190.42 ppm). The AgNPs did not exhibit any noticeable effects on Poecillia reticulata after either 24 or 48 h of exposure at their LC(50) and LC(90) values against fourth-instar larvae of A. aegypti and A. stephensi. The UV-visible analysis shows absorbance for AgNPs at 520 nm. TEM reveals spherical shape of synthesized AgNPs. Particle size analysis revealed that the size of particles ranges from 44 to 255 nm with average size of 123.50 nm. AgNPs were clearly negatively charged (zeta potential -27.4 mV). This is the first report on mosquito larvicidal activity P. daemia-synthesized AgNPs. PMID:22371271

  10. Effect of high temperature on Aedes albopictus cells infected with Mayaro virus.

    PubMed

    Carvalho, M G; Rebello, M A; Mezencio, J M

    1987-01-01

    The multiplication of Mayaro virus in Aedes albopictus cells was drastically inhibited after incubation at 37 degrees C. The effect of short-term exposure of infected cells to high temperatures (heat shock) produced a preferential translation of the heat shock messengers when compared to the viral mRNAs. When cells were shifted back to 28 degrees C (the optimum growth temperature for Aedes albopictus cells), preferential translation of viral mRNA occurred. Although the infected cells were programmed for preferential translation of viral messengers, the thermal treatment was able to shift the translational machinery towards synthesis of heat shock proteins. PMID:2843253

  11. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65ppm (24h) and 546.7, 516.2, and 618.4ppm (48h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. PMID:26410042

  12. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.

    PubMed

    Basu, Sanjay; Aryan, Azadeh; Overcash, Justin M; Samuel, Glady Hazitha; Anderson, Michelle A E; Dahlem, Timothy J; Myles, Kevin M; Adelman, Zach N

    2015-03-31

    Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24-90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2-3%, similar to traditional transposon- or ?C31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems. PMID:25775608

  13. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation.

    PubMed

    Farnesi, Luana Cristina; Menna-Barreto, Rubem Figueiredo Sadok; Martins, Ademir Jesus; Valle, Denise; Rezende, Gustavo Lazzaro

    2015-12-01

    Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus. PMID:26514070

  14. Evaluation of 15 Local Plant Species as Larvicidal Agents Against an Indian Strain of Dengue Fever Mosquito, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Mishra, Monika; Warikoo, Radhika

    2012-01-01

    The adverse effects of chemical insecticides-based intervention measures for the control of mosquito vectors have received wide public apprehension because of several problems like insecticide resistance, resurgence of pest species, environmental pollution, toxic hazards to humans, and non-target organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly, environmentally safe, bio-degradable plant products which are non-toxic to non-target organisms too. In view of this, 15 plant species were collected from local areas in New Delhi, India. Different parts of these plants were separated, dried, mechanically grinded, and sieved to get fine powder. The 200?g of each part was soaked in 1000?mL of different solvents separately and the crude extracts, thus formed, were concentrated using a vacuum evaporator at 45°C under low pressure. Each extract was screened to explore its potential as a mosquito larvicidal agent against early fourth instars of dengue vector, Aedes aegypti using WHO protocol. The preliminary screening showed that only 10 plants possessed larvicidal potential as they could result in 100% mortality at 1000?ppm. Further evaluation of the potential larvicidal extracts established the hexane leaf extract of Lantana camara to be most effective extract exhibiting a significant LC50 value of 30.71?ppm while the Phyllanthus emblica fruit extract was found to be least effective with an LC50 value of 298.93?ppm. The extracts made from different parts of other five plants; Achyranthes aspera, Zingiber officinalis, Ricinus communis, Trachyspermum ammi, and Cassia occidentalis also possessed significant larvicidal potential with LC50 values ranging from 55.0 to 74.67?ppm. Other three extracts showed moderate toxicity against A. aegypti larvae. Further investigations would be needed to isolate and identify the primary component responsible for the larvicidal efficiency of the effective plants. PMID:22536188

  15. Modeling the Dynamics of a Non-Limited and a Self-Limited Gene Drive System in Structured Aedes aegypti

    E-print Network

    Lloyd, Alun

    Modeling the Dynamics of a Non-Limited and a Self- Limited Gene Drive System in Structured Aedes not transmit disease, there could be public concern over such releases, making the less efficient male, Lloyd AL, et al. (2013) Modeling the Dynamics of a Non-Limited and a Self-Limited Gene Drive System

  16. Chapter 3. Integration of botanicals and microbial pesticides for the control of dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes are the single most important group of insects in terms of public health significance and causing diseases such as malaria, filariasis, dengue fever, Japanese encephalitis and other fevers. There has been an outbreak of Chikungunya and dengue all over the India from 2006 – 2009. Aedes ae...

  17. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50)?=?I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50)?=?I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50)?=?I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs. PMID:21750871

  18. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  19. Unique biochemical and molecular biological mechanism of synergistic actions of formamidine compounds on selected pyrethroid and neonicotinoid insecticides on the fourth instar larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed