Sample records for aegypti larval midgut

  1. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [ 3 H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl - secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Strong alkalinization in the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): involvement of luminal Na+/K+-ATPase.

    PubMed

    Onken, Horst; Patel, Malay; Javoroncov, Margarita; Izeirovski, Sejmir; Moffett, Stacia B; Moffett, David F

    2009-03-01

    Recently, Na(+)/K(+)-ATPase has been detected in the luminal membrane of the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti) with immunohistochemical techniques. In this study, the possible involvement of this ATPase in strong alkalinization was investigated on the level of whole larvae, isolated and perfused midgut preparations and on the molecular level of the Na(+)/K(+)-ATPase protein. Ouabain (5 mM) did not inhibit the capability of intact larval mosquitoes to alkalinize their anterior midgut. Also in isolated and perfused midgut preparations the perfusion of the lumen with ouabain (5 mM) did not result in a significant change of the transepithelial voltage or the capacity of luminal alkalinization. Na(+)/K(+)-ATPase activity was completely abolished when KCl was substituted with choline chloride, suggesting that the enzyme cannot act as an ATP-driven Na(+)/H(+)-exchanger. Altogether the results of the present investigation indicate that apical Na(+)/K(+)-ATPase is not of direct importance for strong luminal alkalinization in the anterior midgut of larval yellow fever mosquitoes.

  3. Proteomic analysis of Aedes aegypti midgut during post-embryonic development and of the female mosquitoes fed different diets.

    PubMed

    Fernandes, Kenner Morais; de Magalhães-Júnior, Marcos Jorge; Baracat-Pereira, Maria Cristina; Martins, Gustavo Ferreira

    2016-12-01

    In this work we analyzed protein expression in the Aedes aegypti midgut during the larval (fourth instar, L4), pupal, and adult stages [including newly emerged (NE), sugar-fed (SF) and blood-fed (BF) females]. Two-dimensional electrophoresis showed 13 spots in the midgut of larvae, 95 in the midgut of pupae, 90 in the midgut of NE, and 76 in the midgut of SF or BF females. In the larval midguts, high serpin expression was noted, while in the pupae, protein abundance was lower than in the NE, SF, and BF females. The spots related to proteins linked to energy production, protein metabolism, signaling, and transport were highly expressed in the NE stage, while spots related proteins involved in translation were abundant in SF and BF females. The differential abundance of proteins in the midgut of A. aegypti at different developmental stages supports the necessity for midgut development during immature stage followed by the necessity of proteins related to digestion in adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. © 2015 The Royal Entomological Society.

  5. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes.

    PubMed

    Soares, Tatiane S; Watanabe, Renata M O; Lemos, Francisco J A; Tanaka, Aparecida S

    2011-12-10

    Trypsin-like enzymes play an important role in the Aedes aegypti digestive process. The trypsin-like enzymes present in adults were characterized previously, but little is known about trypsins in larvae. In the present work, we identified one of the trypsin enzymes from Ae. aegypti larval midgut using a library of trypsin gene fragments, which was the sequence known as AAEL005607 from the Ae. aegypti genome. Quantitative PCR analysis showed that AAEL005607 was transcribed in all larval instars, but it was not present in adult midgut. In order to confirm transcription data, the trypsin-like enzymes from 4th instar larvae of Ae. aegypti midgut were purified and sequenced. Purified trypsin showed identity with the amino-terminal sequence of AAEL005607, AAEL005609 and AAEL005614. These three trypsins have high amino acids identity, and could all be used as a template for the design of inhibitors. In conclusion, for the first time, digestive enzymes of 4th larval instar of Ae. aegypti were purified and characterized. The knowledge of digestive enzymes present in Ae. aegypti larvae may be helpful in the development of a larvicide. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.

    PubMed

    Dong, Shengzhang; Behura, Susanta K; Franz, Alexander W E

    2017-05-15

    The mosquito Aedes aegypti is the primary vector for medically important arthropod-borne viruses, including chikungunya virus (CHIKV). Following oral acquisition, an arbovirus has to persistently infect several organs in the mosquito before becoming transmissible to another vertebrate host. A major obstacle an arbovirus has to overcome during its infection cycle inside the mosquito is the midgut escape barrier, representing the exit mechanism arboviruses utilize when disseminating from the midgut. To understand the transcriptomic basis of midgut escape and to reveal genes involved in the process, we conducted a comparative transcriptomic analysis of midgut samples from mosquitoes which had received a saline meal (SM) or a protein meal (PM) (not) containing CHIKV. CHIKV which was orally acquired by a mosquito along with a SM or PM productively infected the midgut epithelium and disseminated to secondary tissues. A total of 27 RNA-Seq libraries from midguts of mosquitoes that had received PM or SM (not) containing CHIKV at 1 and 2 days post-feeding were generated and sequenced. Fewer than 80 genes responded differentially to the presence of CHIKV in midguts of mosquitoes that had acquired the virus along with SM or PM. SM feeding induced differential expression (DE) of 479 genes at day 1 and 314 genes at day 2 when compared to midguts of sugarfed mosquitoes. By comparison, PM feeding induced 6029 DE genes at day 1 and 7368 genes at day 2. Twenty-three DE genes encoding trypsins, metalloproteinases, and serine-type endopeptidases were significantly upregulated in midguts of mosquitoes at day 1 following SM or PM ingestion. Two of these genes were Ae. aegypti late trypsin (AeLT) and serine collagenase 1 precursor (AeSP1). In vitro, recombinant AeLT showed strong matrix metalloproteinase activity whereas recombinant AeSP1 did not. By substituting a bloodmeal for SM, we identified midgut-expressed genes not involved in blood or protein digestion. These included genes

  7. The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium.

    PubMed

    Franzetti, Eleonora; Romanelli, Davide; Caccia, Silvia; Cappellozza, Silvia; Congiu, Terenzio; Rajagopalan, Muthukumaran; Grimaldi, Annalisa; de Eguileor, Magda; Casartelli, Morena; Tettamanti, Gianluca

    2015-08-01

    The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.

  8. Identification of the septate junction protein gliotactin in the mosquito Aedes aegypti: evidence for a role in increased paracellular permeability in larvae.

    PubMed

    Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-07-01

    Septate junctions (SJs) regulate paracellular permeability across invertebrate epithelia. However, little is known about the function of SJ proteins in aquatic invertebrates. In this study, a role for the transmembrane SJ protein gliotactin (Gli) in the osmoregulatory strategies of larval mosquito ( Aedes aegypti ) was examined. Differences in gli transcript abundance were observed between the midgut, Malpighian tubules, hindgut and anal papillae of A. aegypti , which are epithelia that participate in larval mosquito osmoregulation. Western blotting of Gli revealed its presence in monomer, putative dimer and alternatively processed protein forms in different larval mosquito organs. Gli localized to the entire SJ domain between midgut epithelial cells and showed a discontinuous localization along the plasma membranes of epithelial cells of the rectum as well as the syncytial anal papillae epithelium. In the Malpighian tubules, Gli immunolocalization was confined to SJs between the stellate and principal cells. Rearing larvae in 30% seawater caused an increase in Gli protein abundance in the anterior midgut, Malpighian tubules and hindgut. Transcriptional knockdown of gli using dsRNA reduced Gli protein abundance in the midgut and increased the flux rate of the paracellular permeability marker, polyethylene glycol (molecular weight 400 Da; PEG-400). Data suggest that in larval A. aegypti , Gli participates in the maintenance of salt and water balance and that one role for Gli is to participate in the regulation of paracellular permeability across the midgut of A. aegypti in response to changes in environmental salinity. © 2017. Published by The Company of Biologists Ltd.

  9. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion

    PubMed Central

    Dong, Shengzhang; Balaraman, Velmurugan; Kantor, Asher M.; Lin, Jingyi; Grant, DeAna G.; Held, Nicole L.

    2017-01-01

    In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24–32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro

  10. Differential ammonia metabolism in Aedes aegypti fat body and midgut tissues

    PubMed Central

    Scaraffia, Patricia Y.; Zhang, Quigfen; Thorson, Kelsey; Wysocki, Vicki H.; Miesfeld, Roger L.

    2010-01-01

    In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of 15N from 15NH4Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and 15NH4Cl for 10–40 minutes. The media was then mixed with deuterium-labeled amino acids, dried and derivatized. The 15N-labeled and unlabeled amino acids in each sample were quantified by mass spectrometry techniques. The results demonstrate that both tissues efficiently incorporate ammonia into amino acids, however, the specific metabolic pathways are distinct. In the fat body, the 15N from 15NH4Cl is first incorporated into the amide side chain of Gln and then into the amino group of Gln, Glu, Ala and Pro. This process mainly occurs via the glutamine synthetase (GS) and glutamate synthase (GltS) pathway. In contrast, 15N in midgut is first incorporated into the amino group of Glu and Ala, and then into the amide side chain of Gln. Interestingly, our data show that the GS/GltS pathway is not functional in the midgut. Instead, midgut cells detoxify ammonia by glutamate dehydrogenase, alanine aminotransferase and GS. These data provide new insights into ammonia metabolism in A. aegypti mosquitoes. PMID:20206632

  11. Passage of ingested Mansonella ozzardi (Spirurida: Onchocercidae) microfilariae through the midgut of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vaughan, Jefferson A; Bell, Jeffrey A; Turell, Michael J; Chadee, Dave D

    2007-01-01

    When virus and microfilariae are ingested concurrently by a mosquito, microfilariae (mf) may penetrate the mosquito midgut and introduce virus directly into the mosquito hemocoel, allowing mosquitoes to become infectious much sooner than normal and enhancing transmission of viruses by mosquitoes. Mansonella ozzardi (Manson) is a benign filarial nematode parasite of humans in Latin America and is transmitted by black flies (Diptera: Simuliidae) and biting midges (Diptera: Ceratopogonidae). Because M. ozzardi and dengue are sympatric, we wanted to know whether M. ozzardi mf had the ability to penetrate the midgut of Aedes aegypti (L.) (Diptera: Culicidae) and thus play a potential role in the enhancement of dengue transmission. To test this, the F1 progeny from locally collected Ae. aegypti were fed on M. ozzardi-infected human males in an endemic village in northern Trinidad. Mosquitoes were dissected at various times after feeding and examined for mf in the midguts and thoraces. Microfilariae penetrated the midguts of 43% of 63 mosquitoes that ingested mf. Overall, 11% of mf penetrated the midgut by 17 h after being ingested. The intensity of midgut penetration was positively correlated to the numbers of mf ingested. Because midgut penetration is a key requirement for mf enhancement to occur, the potential exists that M. ozzardi could be involved in the enhancement of dengue virus transmission.

  12. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  13. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae.

    PubMed

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3-1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  14. Isolation of midgut escape mutants of two American genotype dengue 2 viruses from Aedes aegypti

    PubMed Central

    2013-01-01

    Background Several studies have shown that American genotype dengue 2 viruses (DENV2) have reduced viral fitness in the mosquito vector, Aedes aegypti, compared to other DENV2 genotypes. Diminished replication efficiency or inability to efficiently traverse membrane barriers encompassing organs such as the midgut or salivary glands are considered major factors negatively impacting viral fitness in the mosquito. Results We analyzed the vector competence of Ae. aegypti for two American DENV2 strains, QR94 and PR159 originating from Mexico and Puerto-Rico, respectively. Both strains infected mosquito midguts following acquisition of infectious bloodmeals. However, DENV2-QR94 and DENV2-PR159 poorly disseminated from the midgut at 7 or 14 days post-bloodmeal (pbm). We detected one virus isolate, EM33, among 31 DENV2-QR94 infected mosquitoes, and one isolate, EM41, among 121 DENV2-PR159 infected mosquitoes, generating high virus titers in mosquito carcasses at 7 days pbm. In oral challenge experiments, EM33 and EM41 showed midgut dissemination rates of 40-50%. Replication efficiency of EM41 in secondary mosquito tissue was similar to that of a dissemination-competent control strain, whereas the replication efficiency of EM33 was significantly lower than that of the control virus. The genome sequence of DENV2-QR94 encoded seven unique amino acids (aa), which were not found in 100 of the most closely related DENV2 strains. EM33 had one additional aa change, E202K, in the E protein. DENV2-PR159 encoded four unique aa residues, one of them E202K, whereas EM41 had two additional aa substitutions, Q77E in the E protein and E93D in NS3. Conclusions Our results indicate that the midgut of Ae. aegypti acts as a selective sieve for DENV2 in which genetically distinct, dissemination-competent virus variants are rapidly selected from the viral quasispecies to be transmitted to vertebrates. PMID:23937713

  15. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    PubMed

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  16. Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage.

    PubMed

    Yang, Bing; Huang, Wuren; Zhang, Jie; Xu, Qiuyun; Zhu, Shoulin; Zhang, Qiaoli; Beerntsen, Brenda T; Song, Hongsheng; Ling, Erjun

    2016-11-03

    Insects can be models for understanding human intestinal infection and pathology. Molting, a special period during which the old insect cuticle is shed and a new one is produced, is crucial for insect development. Holometabolous insects may experience several larva-to-larva moltings to become larger, a pupal molt and adult eclosion to become adults. During the larval molts, they stop feeding and become quiescent. Although the molting larvae become quiescent, it is not known if changes in microbiome, physiology, development and immunity of midguts occur. Transcriptome analysis indicated that functions such as metabolism, digestion, and transport may become reduced due to the downregulated expression of many associated genes. During the molting stage, midguts harbor less microflora and DNA synthesis decreases. Both ecdysone and juvenile hormone in the larval midgut likely degrade after entering the larva-to-larva molting stage. However, at 12 h after ecdysis, the feeding larvae of 5th instars that were injected with 20-hydroxyecdysone entered a molting-like stage, during which changes in midgut morphology, DNA synthesis, gene expression, and microflora exhibited the same patterns as observed in the actual molting state. This study is important for understanding insect midgut physiology, development and immunity during a special development stage when no food is ingested. Although the molting larva becomes immobile and quiescent, we demonstrate that numerous changes occur in midgut morphology, physiology, metabolism and microbiome during this period.

  17. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus.

    PubMed

    Taracena, Mabel L; Bottino-Rojas, Vanessa; Talyuli, Octavio A C; Walter-Nuno, Ana Beatriz; Oliveira, José Henrique M; Angleró-Rodriguez, Yesseinia I; Wells, Michael B; Dimopoulos, George; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2018-05-01

    Aedes aegypti is the vector of some of the most important vector-borne diseases like dengue, chikungunya, zika and yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in reactive oxygen species (ROS) production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.

  18. Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes

    PubMed Central

    Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.

    2009-01-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  19. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  20. Larval Mid-Gut Responses to Sub-Lethal Dose of Cry Toxin in Lepidopteran Pest Achaea janata.

    PubMed

    Chauhan, Vinod K; Dhania, Narender K; Chaitanya, R K; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna

    2017-01-01

    The lack of homogeneity in field application of Bacillus thuringiensis formulation often results in ingestion of sub-lethal doses of the biopesticide by a fraction of pest population and there by promotes the toxin tolerance and resistance in long term. Gut regeneration seems to be one of the possible mechanism by which this is accomplished. However, the existing information is primarily derived from in vitro studies using mid-gut cell cultures. Present study illustrates cellular and molecular changes in mid-gut epithelium of a Bt -susceptible polyphagous insect pest castor semilooper, Achaea janata in response to a Cry toxin formulation. The present report showed that prolonged exposure to sub-lethal doses of Cry toxin formulation has deleterious effect on larval growth and development. Histological analysis of mid-gut tissue exhibits epithelial cell degeneration, which is due to necrotic form of cell death followed by regeneration through enhanced proliferation of mid-gut stem cells. Cell death is demonstrated by confocal microscopy, flow-cytometry, and DNA fragmentation analysis. Cell proliferation in control vs. toxin-exposed larvae is evaluated by bromodeoxyuridine (BrdU) labeling and toluidine blue staining. Intriguingly, in situ mRNA analysis detected the presence of arylphorin transcripts in larval mid-gut epithelial cells. Quantitative PCR analysis further demonstrates altered expression of arylphorin gene in toxin-exposed larvae when compared with the control. The coincidence of enhanced mid-gut cell proliferation coincides with the elevated arylphorin expression upon Cry intoxication suggests that it might play a role in the regeneration of mid-gut epithelial cells.

  1. The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti.

    PubMed

    Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2016-07-01

    Septate junctions (SJs) occlude the paracellular pathway and function as paracellular diffusion barriers within invertebrate epithelia. However, integral components of SJs and their contribution to barrier properties have received considerably less attention than those of vertebrate occluding junctions. In arthropods, SJ proteins have only been identified in Drosophila and among these are three integral claudin-like proteins, Megatrachea (Mega), Sinuous (Sinu) and Kune-kune (Kune), as well as a receptor-like transmembrane SJ protein known as Neurexin IV (Nrx IV). In this study, mega, sinu, kune and nrx IV are identified and characterized in aquatic larvae of the mosquito Aedes aegypti and a role for these proteins in ionoregulatory homeostasis is considered. Transcripts encoding Mega, Sinu, Kune and Nrx IV were found in iono/osmoregulatory tissues such as the midgut, Malpighian tubules, hindgut and anal papillae, but abundance was greater in the hindgut and anal papillae. Using immunohistochemical and western blot analysis it was found that Kune localized to the regions of intercellular contact between epithelial cells of the rectum and posterior midgut and in the apical membrane domain of the syncytial epithelium of anal papillae. To investigate a potential role for integral SJ proteins in larval A. aegypti iono/osmoregulation, abundance was examined in animals reared in freshwater or brackish water (30 % seawater). In iono/osmoregulatory epithelia, larvae exhibited tissue-specific alterations in mega mRNA and Kune protein abundance, but not sinu or nrx IV mRNA. These studies provide a first look at the potential contribution of integral SJ components to iono/osmoregulatory homeostasis in an aquatic invertebrate.

  2. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    PubMed Central

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  3. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    PubMed

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  4. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika.

    PubMed

    Oliveira, José Henrique M; Talyuli, Octávio A C; Goncalves, Renata L S; Paiva-Silva, Gabriela Oliveira; Sorgine, Marcos Henrique F; Alvarenga, Patricia Hessab; Oliveira, Pedro L

    2017-04-01

    Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.

  5. The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats.

    PubMed

    De Azevedo, Thiago S; Bourke, Brian Patrick; Piovezan, Rafael; Sallum, Maria Anice M

    2018-05-08

    We addressed the potential associations among the temporal and spatial distribution of larval habitats of Aedes (Stegomyia) aegypti, the presence of urban heat islands and socioeconomic factors. Data on larval habitats were collected in Santa Bárbara d'Oeste, São Paulo, Brazil, from 2004 to 2006, and spatial and temporal variations were analysed using a wavelet-based approach. We quantified urban heat islands by calculating surface temperatures using the results of wavelet analyses and grey level transformation from Thematic Mapper images (Landsat 5). Ae. aegypti larval habitats were geo-referenced corresponding to the wavelet analyses to test the potential association between geographical distribution of habitats and surface temperature. In an inhomogeneous spatial point process, we estimated the frequency of occurrence of larval habitats in relation to temperature. The São Paulo State Social Vulnerability Index in the municipality of Santa Barbára d'Oeste was used to test the potential association between presence of larval habitats and social vulnerability. We found abundant Ae. aegypti larval habitats in areas of higher surface temperature and social vulnerability and fewer larval habitats in areas with lower surface temperature and social vulnerability.

  6. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)

    PubMed Central

    2011-01-01

    Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies. PMID:21672186

  7. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika

    PubMed Central

    Goncalves, Renata L. S.; Paiva-Silva, Gabriela Oliveira; Sorgine, Marcos Henrique F.; Alvarenga, Patricia Hessab; Oliveira, Pedro L.

    2017-01-01

    Background Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. Methodology/Principal findings We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). Conclusion/Significance Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections. PMID:28379952

  8. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W

    2017-11-23

    Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P < 0.05) among the larvae treated with different concentrations were found using General Linear Modeling in all the stages namely: total body length and the thoracic length of larvae; cephalothoracic length and width of pupae; thoracic length, thoracic width, abdominal length and the wing length of adults; along with pupation rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.

  9. Gender-related family head schooling and Aedes aegypti larval breeding risk in southern Mexico.

    PubMed

    Danis-Lozano, Rogelio; Rodríguez, Mario H; Hernández-Avila, Mauricio

    2002-01-01

    To investigate if family head genre-associated education is related to the risk of domiciliary Aedes aegypti larval breeding in a dengue-endemic village of Southern Mexico. A family head was considered to have a low education level if he/she had not completed elementary school. To estimate larval breeding risk within each household, a three-category Maya index was constructed using a weighted estimation of controllable and disposable domestic water containers. A socio-economic index was constructed based on household construction characteristics. Low-level education of either family head was associated to higher larval breeding risk. Households with low-educated mothers had more larval breeding containers. These associations persisted after adjusting for household socio-economic level. These results indicate that households with female family heads with low education levels accumulate more containers that favor Ae. aegypti breeding, and that education campaigns for dengue control should be addressed to this part of the population. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  10. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  11. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut.

    PubMed

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura , but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.

  12. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    PubMed

    Chotiwan, Nunya; Andre, Barbara G; Sanchez-Vargas, Irma; Islam, M Nurul; Grabowski, Jeffrey M; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D; Belisle, John T; Hill, Catherine A; Kuhn, Richard J; Perera, Rushika

    2018-02-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted

  13. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes

    PubMed Central

    Chotiwan, Nunya; Andre, Barbara G.; Sanchez-Vargas, Irma; Islam, M. Nurul; Grabowski, Jeffrey M.; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D.; Hill, Catherine A.; Kuhn, Richard J.

    2018-01-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted

  14. An inexpensive intervention for the control of larval Aedes aegypti assessed by an improved method of surveillance and analysis.

    PubMed

    Romero-Vivas, Claudia M E; Wheeler, Jeremy G; Falconar, Andrew K I

    2002-03-01

    A sampling method coupled with statistical calibration factors was developed to accurately assess the numbers of larvae and pupae of Aedes aegypti in large water-storage containers of variable capacities and water levels. Aedes aegypti productivity in different types of breeding sites found in an urban study area in central Colombia was assessed and compared. In this study, water-storage tanks and drums were found to comprise 79% of the containers positive for larval Ae. aegypti, which contributed to 93 and 92% of the total production of populations of 4th-stage larvae and pupae, respectively. These main breeding sites of Ae. aegypti were found at an indoor to outdoor ratio of 2.4:1 and no correlation was found between temporal fluctuation of populations of larval Ae. aegypti and monthly rainfall. Netted lids that used inexpensive local materials were designed to prevent oviposition by Ae. aegypti. During a 6-month trial period, 56% of inspected containers had netted lids correctly in place. Of these, 78% had no mosquito larvae. Because only 37% of uncovered containers were free of mosquito larvae, a significant difference was demonstrated when these inexpensive mechanical barriers were used (chi2 = 138.7; P < 0.001). These netted lids and the improved methods described to assess the productivity of larval and pupal Ae. aegypti in this study are now being used in combination with other strategies to assess and control these populations of dengue virus vectors in the main port city on the Atlantic Coast of Colombia.

  15. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut

    PubMed Central

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura, but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae. PMID:29535638

  16. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. © 2012 Wiley Periodicals, Inc.

  17. Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis.

    PubMed

    Scudeler, Elton Luiz; Padovani, Carlos Roberto; Santos, Daniela Carvalho Dos

    2014-06-01

    Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti

    PubMed Central

    Bond, J. G.; Ramírez-Osorio, A.; Marina, C. F.; Fernández-Salas, I.; Liedo, P.; Dor, A.

    2017-01-01

    Aedes aegypti is a major vector of arboviruses that may be controlled on an area-wide basis using the sterile insect technique (SIT). Larval diet is a major factor in mass-rearing for SIT programs. We compared dietary effects on immature development and adult fitness-related characteristics for an International Atomic Energy Agency (IAEA) diet, developed for rearing Ae. albopictus, and a standardized laboratory rodent diet (LRD), under a 14:10 h (light:dark) photoperiod ("light" treatment) or continuous darkness during larval rearing. Larval development was generally fastest in the IAEA diet, likely reflecting the high protein and lipid content of this diet. The proportion of larvae that survived to pupation or to adult emergence did not differ significantly between diets or light treatments. Insects from the LRD-dark treatment produced the highest proportion of male pupae (93% at 24 h after the beginning of pupation) whereas adult sex ratio from the IAEA diet tended to be more male-biased than that of the LRD diet. Adult longevity did not differ significantly with larval diet or light conditions, irrespective of sex. In other aspects the LRD diet generally performed best. Adult males from the LRD diet were significantly larger than those from the IAEA diet, irrespective of light treatment. Females from the LRD diet had ~25% higher fecundity and ~8% higher egg fertility compared to those from the IAEA diet. Adult flight ability did not differ between larval diets, and males had a similar number of copulations with wild females, irrespective of larval diet. The LRD diet had lower protein and fat content but a higher carbohydrate and energetic content than the IAEA diet. We conclude that the LRD diet is a low-cost standardized diet that is likely to be suitable for mass-rearing of Ae. aegypti for area-wide SIT-based vector control. PMID:29095933

  19. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

    PubMed

    Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H

    2010-02-01

    The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.

  20. Robustness of the bacterial community in the cabbage white butterfly larval midgut.

    PubMed

    Robinson, Courtney J; Schloss, Patrick; Ramos, Yolied; Raffa, Kenneth; Handelsman, Jo

    2010-02-01

    Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.

  1. pH control in the midgut of Aedesaegypti under different nutritional conditions.

    PubMed

    Nepomuceno, Denise Barguil; Santos, Vânia Cristina; Araújo, Ricardo Nascimento; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Moreira, Luciano Andrade; Gontijo, Nelder Figueiredo

    2017-09-15

    Aedes aegypti is one of the most important disease vectors in the world. Because their gut is the first site of interaction with pathogens, it is important to understand A. aegypti gut physiology. In this study, we investigated the mechanisms of pH control in the midgut of A. aegypti females under different nutritional conditions. We found that unfed females have an acidic midgut (pH ∼6). The midgut of unfed insects is actively maintained at pH 6 regardless of the ingestion of either alkaline or acidic buffered solutions. V-ATPases are responsible for acidification after ingestion of alkaline solutions. In blood-fed females, the abdominal midgut becomes alkaline (pH 7.54), and the luminal pH decreases slightly throughout blood digestion. Only ingested proteins were able to trigger this abrupt increase in abdominal pH. The ingestion of amino acids, even at high concentrations, did not induce alkalinisation. During blood digestion, the thoracic midgut remains acidic, becoming a suitable compartment for carbohydrate digestion, which is in accordance with the higher alpha-glucolytic activity detected in this compartment. Ingestion of blood releases alkalising hormones in the haemolymph, which induce alkalinisation in ex vivo preparations. This study shows that adult A. aegypti females have a very similar gut physiology to that previously described for Lutzomyia longipalpis It is likely that all haematophagous Nematocera exhibit the same type of physiological behaviour. © 2017. Published by The Company of Biologists Ltd.

  2. Aedes aegypti Rhesus glycoproteins contribute to ammonia excretion by larval anal papillae.

    PubMed

    Durant, Andrea C; Chasiotis, Helen; Misyura, Lidiya; Donini, Andrew

    2017-02-15

    In larval Aedes aegypti , transcripts of the Rhesus-like glycoproteins AeRh50-1 and AeRh50-2 have been detected in the anal papillae, sites of ammonia (NH 3 /NH 4 + ) excretion; however, these putative ammonia transporters have not been previously localized or functionally characterized. In this study, we show that the AeRh50s co-immunolocalize with apical V-type H + -ATPase as well as with basal Na + /K + -ATPase in the epithelium of anal papillae. The double-stranded RNA-mediated knockdown of AeRh50-1 and AeRh50-2 resulted in a significant reduction in AeRh50 protein abundance in the anal papillae, and this was coupled to decreased ammonia excretion. The knockdown of AeRh50-1 resulted in decreased hemolymph [NH 4 + ] and pH whereas knockdown of AeRh50-2 had no effect on these parameters. We conclude that the AeRh50s are important contributors to ammonia excretion at the anal papillae of larval A. aegypti , which may be the basis for their ability to inhabit areas with high ammonia levels. © 2017. Published by The Company of Biologists Ltd.

  3. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    PubMed

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, Aedes aegypti, Infected with Dengue-2 Virus

    PubMed Central

    Barón, Olga L.; Ursic-Bedoya, Raul J.; Lowenberger, Carl A.; Ocampo, Clara B.

    2010-01-01

    Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever. PMID:20572793

  5. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline.

    PubMed

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-06-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and

  6. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    PubMed Central

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  7. Recognition and Binding of the PF2 Lectin to α-Amylase From Zabrotes subfasciatus (Coleoptera:Bruchidae) Larval Midgut

    PubMed Central

    Lagarda-Diaz, I.; Geiser, D.; Guzman-Partida, A.M.; Winzerling, J.; Vazquez-Moreno, L.

    2014-01-01

    Abstract Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 ( Olneya tesota ) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography−tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. PMID:25528751

  8. Wing Shape as an Indicator of Larval Rearing Conditions for Aedes albopictus and Ae. aegypti (Diptera: Culicidae)

    PubMed Central

    Stephens, C. R.; Juliano, S. A.

    2012-01-01

    Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054

  9. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  10. Effects of Larval Nutrition on Wolbachia-Based Dengue Virus Interference in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kho, Elise A; Hugo, Leon E; Lu, Guangjin; Smith, David D; Kay, Brian H

    2016-07-01

    In order to assess the broad-scale applicability of field releases of Wolbachia for the biological control of insect-transmitted diseases, we determined the relationship between the larval diet of Aedes aegypti L. mosquitoes infected with Wolbachia strains and their susceptibility to dengue virus (DENV) infection via intrathoracic injection and oral inoculation. Larvae were reared on diets that varied in the quantity of food which had the effect of modifying development time and adult body size. Wolbachia wMel infection was associated with highly significant reductions in dengue serotype 2 (DENV-2) infection rates of between 80 and 97.5% following intrathoracic injection of adults emerging from three diet levels. Reductions were 100% in two diet level treatments following oral inoculation. Similarly, wMelPop infection was associated with highly significant reductions in DENV-2 infection rates of between 95 and 100% for intrathoracic injection and 97.5 and 100% for oral inoculation across diet level treatments. Larval diet level had no significant effect on DENV-2 infection rates in the presence of Wolbachia infection in mosquitoes that were intrathoracically injected with the virus. This indicates that the effectiveness of Wolbachia on vector competence disruption within Ae. aegypti is unlikely to be compromised by variable larval nutrition in field settings. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Linking Oviposition Site Choice to Offspring Fitness in Aedes aegypti: Consequences for Targeted Larval Control of Dengue Vectors

    PubMed Central

    Wong, Jacklyn; Morrison, Amy C.; Stoddard, Steven T.; Astete, Helvio; Chu, Yui Yin; Baseer, Imaan; Scott, Thomas W.

    2012-01-01

    Background Current Aedes aegypti larval control methods are often insufficient for preventing dengue epidemics. To improve control efficiency and cost-effectiveness, some advocate eliminating or treating only highly productive containers. The population-level outcome of this strategy, however, will depend on details of Ae. aegypti oviposition behavior. Methodology/Principal Findings We simultaneously monitored female oviposition and juvenile development in 80 experimental containers located across 20 houses in Iquitos, Peru, to test the hypothesis that Ae. aegypti oviposit preferentially in sites with the greatest potential for maximizing offspring fitness. Females consistently laid more eggs in large vs. small containers (β = 9.18, p<0.001), and in unmanaged vs. manually filled containers (β = 5.33, p<0.001). Using microsatellites to track the development of immature Ae. aegypti, we found a negative correlation between oviposition preference and pupation probability (β = −3.37, p<0.001). Body size of emerging adults was also negatively associated with the preferred oviposition site characteristics of large size (females: β = −0.19, p<0.001; males: β = −0.11, p = 0.002) and non-management (females: β = −0.17, p<0.001; males: β = −0.11, p<0.001). Inside a semi-field enclosure, we simulated a container elimination campaign targeting the most productive oviposition sites. Compared to the two post-intervention trials, egg batches were more clumped during the first pre-intervention trial (β = −0.17, P<0.001), but not the second (β = 0.01, p = 0.900). Overall, when preferred containers were unavailable, the probability that any given container received eggs increased (β = 1.36, p<0.001). Conclusions/Significance Ae. aegypti oviposition site choice can contribute to population regulation by limiting the production and size of adults. Targeted larval control strategies may unintentionally lead to

  12. Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes.

    PubMed

    McElroy, Kate L; Girard, Yvette A; McGee, Charles E; Tsetsarkin, Konstantin A; Vanlandingham, Dana L; Higgs, Stephen

    2008-10-01

    Arbovirus dissemination from the midgut of a vector mosquito is a critical step in facilitating virus transmission to a susceptible host. We previously characterized the genetic determinants of yellow fever virus (YFV) dissemination from the Aedes aegypti mosquito midgut using 2 genetically and phenotypically distinct strains of YFV: the wild-type, disseminating YFV Asibi strain and the attenuated, midgut-restricted YFV 17D vaccine strain. We examined the process of viral dissemination in YFV-infected Ae. aegypti by characterizing the tissue tropisms of 3 YF viruses in Ae. aegypti: Asibi, 17D, and a chimeric virus (17D/Asibi M-E) containing the Asibi membrane (M) and envelope (E) structural protein genes and 17D nonstructural genes. Ae. aegypti were infected orally, and whole, sectioned mosquitoes were evaluated for antigen distribution at 3, 7, 10, 14, and 21 days postinfection by immunohistochemical staining. Virus antigen was consistently observed in the posterior and anterior midgut, cardial epithelium, salivary glands, fat body, and nervous tissues in Asibi- and 17D/Asibi M-E-infected Ae. aegypti following 10 or 14-day extrinsic incubation, respectively. Amplification of virus in the abdominal and thoracic fat body is hypothesized to facilitate YFV infection of the Ae. aegypti salivary glands. As expected, 17D infection was generally limited to the midgut following oral infection. However, there did not appear to be a direct correlation between distribution of infection in the midgut and dissemination to the secondary tissues.

  13. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut.

    PubMed

    Lagarda-Diaz, I; Geiser, D; Guzman-Partida, A M; Winzerling, J; Vazquez-Moreno, L

    2014-01-01

    Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil.

    PubMed

    Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Mugabe, Vánio André; Kikuti, Mariana; Tavares, Aline S; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2016-07-27

    Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), as well as yellow fever (YFV) viruses are transmitted to humans by Aedes spp. females. In Salvador, the largest urban center in north-eastern Brazil, the four DENV types have been circulating, and more recently, CHIKV and ZIKV have also become common. We studied the role of storm drains as Aedes larval development and adult resting sites in four neighbourhoods of Salvador, representing different socioeconomic, infrastructure and topographic conditions. A sample of 122 storm drains in the four study sites were surveyed twice during a 4-month period in 2015; in 49.0 % of the visits, the storm drains contained water. Adults and immatures of Aedes aegypti were captured in two of the four sites, and adults and immatures of Aedes albopictus were captured in one of these two sites. A total of 468 specimens were collected: 148 Ae. aegypti (38 adults and 110 immatures), 79 Ae. albopictus (48 adults and 31 immatures), and 241 non-Aedes (mainly Culex spp.) mosquitoes (42 adults and 199 immatures). The presence of adults or immatures of Ae. aegypti in storm drains was independently associated with the presence of non-Aedes mosquitoes and with rainfall of ≤ 50 mm during the preceding week. We found that in Salvador, one of the epicentres of the 2015 ZIKV outbreak, storm drains often accumulate water and serve as larval development sites and adult resting areas for both Ae. aegypti and Ae. albopictus. Vector control campaigns usually overlook storm drains, as most of the effort to prevent Ae. agypti reproduction is directed towards containers in the domicile environment. While further studies are needed to determine the added contribution of storm drains for the maintenance of Aedes spp. populations, we advocate that vector control programs incorporate actions directed at storm drains, including regular inspections and use of larvicides, and that human and capital resources are mobilized to modify storm drains, so that

  15. Midgut Protease Activity During Larval Development of Anastrepha obliqua (Diptera: Tephritidae) Fed With Natural and Artificial Diet

    PubMed Central

    Rivera-Ciprian, José Pedro; Aceituno-Medina, Marysol; Guillen, Karina

    2017-01-01

    Abstract In this study, we examined the activity of two serine proteases (chymotrypsin and trypsin) and two metalloproteases (carboxypeptidases A and B) during larval development in Anastrepha obliqua fed natural (mango fruit) and artificial (formulation used in mass-rearing) diets. Proteolytic activity of chymotrypsin, trypsin, carboxypeptidase A, and carboxypeptidase B was detected in the midgut of different instars of A. obliqua and was strongly affected by the pH and diet type. The protein content of the natural and artificial diets was similar. Enzymatic activity was higher in the midgut of the larvae fed the natural diet than in larvae fed the artificial diet. The activity of the endopeptidases (chymotrypsin and trypsin) was lower than those of the exopeptidases (carboxypeptidases A and B). The pH of the midgut varied from acidic to neutral. The results indicate that in the midgut of the larvae reared on both types of diet, the level of carboxypeptidase activity was approximately 100-fold greater than the level of chymotrypsin activity and 10,000-fold greater than the level of trypsin. In conclusion, carboxypeptidase A and B are the main proteases involved in the digestion of proteins in the larvae of A. obliqua. The natural diet showed a high bioaccessibility. A clear tendency to express high activities of chymotrypsin and trypsin was observed by the third instar. Our research contributes to the planning and development of novel bioaccessibility assays to understand the nutrition processing of A. obliqua larvae under mass-rearing conditions for sterile insect technique.

  16. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area.

    PubMed

    Mangudo, C; Aparicio, J P; Gleiser, R M

    2015-12-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework.

  17. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. © 2015 The Society for Vector Ecology.

  18. Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control

    PubMed Central

    Troyo, Adriana; Calderón-Arguedas, Olger; Fuller, Douglas O.; Solano, Mayra E.; Avendaño, Adrian; Arheart, Kristopher L.; Chadee, Dave D.; Beier, John C.

    2008-01-01

    Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the “other” category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p<0.001), setting (p=0.043), and disposability (p=0.022) in the wet season and habitat capacity in the dry season (p=0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities. PMID:18697310

  19. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy

    PubMed Central

    Darbro, Jonathan M.; Jansen, Cassie C.; Schellhorn, Nancy A.; Zalucki, Myron P.; Hurst, Tim P.; Devine, Gregor J.

    2017-01-01

    Aedes aegypti (L.) (Diptera: Culicidae) is a highly invasive mosquito whose global distribution has fluctuated dramatically over the last 100 years. In Australia the distribution of Ae. aegypti once spanned the eastern seaboard, for 3,000 km north to south. However, during the 1900s this distribution markedly reduced and the mosquito disappeared from its southern range. Numerous hypotheses have been proffered for this retraction, however quantitative evidence of the mechanisms driving the disappearance are lacking. We examine historical records during the period when Ae. aegypti disappeared from Brisbane, the largest population centre in Queensland, Australia. In particular, we focus on the targeted management of Ae. aegypti by government authorities, that led to local elimination, something rarely observed in large cities. Numerous factors are likely to be responsible including the removal of larval habitat, especially domestic rainwater tanks, in combination with increased mosquito surveillance and regulatory enforcement. This account of historical events as they pertain to the elimination of Ae. aegypti from Brisbane, will inform assessments of the risks posed by recent human responses to climate change and the reintroduction of 300,000 rainwater tanks into the State over the past decade. PMID:28846682

  20. Aedes aegypti uses RNA interference in defense against Sindbis virus infection.

    PubMed

    Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D

    2008-03-17

    RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.

  1. Vector competence in West African Aedes aegypti Is Flavivirus species and genotype dependent.

    PubMed

    Dickson, Laura B; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C

    2014-10-01

    Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Eight collections of 20-30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV.

  2. Midgut morphological changes and autophagy during metamorphosis in sand flies.

    PubMed

    Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo

    2017-06-01

    During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.

  3. How does competition among wild type mosquitoes influence the performance of Aedes aegypti and dissemination of Wolbachia pipientis?

    PubMed Central

    de Oliveira, Suellen; Villela, Daniel Antunes Maciel; Dias, Fernando Braga Stehling; Moreira, Luciano Andrade

    2017-01-01

    Background Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size. Methodology/principal findings Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae. Conclusions/significance In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion. PMID:28991902

  4. Variant vicilins from a resistant Vigna unguiculata lineage (IT81D-1053) accumulate inside Callosobruchus maculatus larval midgut epithelium.

    PubMed

    Oliveira, Gabriel B; Kunz, Daniele; Peres, Tanara V; Leal, Rodrigo B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Carlini, Célia R; Ribeiro, Alberto F; Grangeiro, Thalles B; Terra, Walter R; Xavier-Filho, José; Silva, Carlos P

    2014-02-01

    It has been demonstrated that variant vicilins are the main resistance factor of cowpea seeds (Vigna unguiculata) against attack by the cowpea beetle Callosobruchus maculatus. There is evidence that the toxic properties of these storage proteins may be related to their interaction with glycoproteins and other microvillar membrane constituents along the digestive tract of the larvae. New findings have shown that following interaction with the microvilli, the vicilins are absorbed across the intestinal epithelium and thus reach the internal environment of the larvae. In the present paper we studied the insecticidal activity of the variant vicilins purified from a resistant cowpea variety (IT81D-1053). Bioassays showed that the seeds of this genotype affected larval growth, causing developmental retardation and 100% mortality. By feeding C. maculatus larvae on susceptible and IT81D-1053 derived vicilins (FITC labelled or unlabelled), followed by fluorescence and immunogold cytolocalization, we were able to demonstrate that both susceptible and variant forms are internalized in the midgut cells and migrate inside vesicular structures from the apex to the basal portion of the enterocytes. However, when larvae were fed with the labelled vicilins for 24h and then returned to a control diet, the concentration of the variant form remained relatively high, suggesting that variant vicilins are not removed from the cells at the same rate as the non-variant vicilins. We suggest that the toxic effects of variant vicilins on midgut cells involve the binding of these proteins to the cell surface followed by internalization and interference with the normal physiology of the enterocytes, thereby affecting larval development in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent

    PubMed Central

    Dickson, Laura B.; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C.

    2014-01-01

    Background Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Methodology/Principal Findings Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Conclusions/Significance Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV. PMID:25275366

  6. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods.

    PubMed

    Broderick, Nichole A; Raffa, Kenneth F; Goodman, Robert M; Handelsman, Jo

    2004-01-01

    Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the gamma-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the alpha-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.

  7. Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Kantor, A M; Dong, S; Held, N L; Ishimwe, E; Passarelli, A L; Clem, R J; Franz, A W E

    2017-02-01

    Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1-9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut. © 2016 The Royal Entomological Society.

  8. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  9. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela.

    PubMed

    Alvarez, Leslie C; Ponce, Gustavo; Oviedo, Milagros; Lopez, Beatriz; Flores, Adriana E

    2014-08-01

    Temephos is an insecticide widely used in Venezuela to control the proliferation of the larvae of Aedes aegypti (L.), the principal vector of dengue virus. The aim of this study was to identify the susceptibility to temephos of Ae. aegypti in four locations in western Venezuela: Lara, Tres Esquinas, Ureña and Pampanito. Larval bioassays were conducted on samples collected in 2008 and 2010, and the levels of α- and β-esterases, mixed-function oxidases, glutathione-S-transferase and insensitive acethyl cholinesterase were determined. Larval populations from western Venezuela obtained during 2008 and 2010 were found to be susceptible to temephos, with low resistance ratios and without overexpression of enzymes. The low RR values reveal the effectiveness of temephos in controlling the larval populations of Ae. aegypti. Control strategies must be vigorously monitored to maintain the susceptibility to temephos of these populations of Ae. aegypti. © 2013 Society of Chemical Industry.

  10. DNA duplication is essential for the repair of gastrointestinal perforation in the insect midgut

    PubMed Central

    Huang, Wuren; Zhang, Jie; Yang, Bing; Beerntsen, Brenda T.; Song, Hongsheng; Ling, Erjun

    2016-01-01

    Invertebrate animals have the capacity of repairing wounds in the skin and gut via different mechanisms. Gastrointestinal perforation, a hole in the human gastrointestinal system, is a serious condition, and surgery is necessary to repair the perforation to prevent an abdominal abscess or sepsis. Here we report the repair of gastrointestinal perforation made by a needle-puncture wound in the silkworm larval midgut. Following insect gut perforation, only a weak immune response was observed because the growth of Escherichia coli alone was partially inhibited by plasma collected at 6 h after needle puncture of the larval midgut. However, circulating hemocytes did aggregate over the needle-puncture wound to form a scab. While, cell division and apoptosis were not observed at the wound site, the needle puncture significantly enhanced DNA duplication in cells surrounding the wound, which was essential to repair the midgut perforation. Due to the repair capacity and limited immune response caused by needle puncture to the midgut, this approach was successfully used for the injection of small compounds (ethanol in this study) into the insect midgut. Consequently, this needle-puncture wounding of the insect gut can be developed for screening compounds for use as gut chemotherapeutics in the future. PMID:26754166

  11. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.

    PubMed

    Kuri-Morales, P; Correa-Morales, F; González-Acosta, C; Sánchez-Tejeda, G; Dávalos-Becerril, E; Fernanda Juárez-Franco, M; Díaz-Quiñonez, A; Huerta-Jimenéz, H; Mejía-Guevara, M D; Moreno-García, M; González-Roldán, J F

    2017-06-01

    Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is a species of mosquito that is currently widespread in Mexico. Historically, the mosquito has been distributed across most tropical and subtropical areas lower than 1700 m a.s.l. Currently, populations that are found at higher altitudes in regions with cold and dry climates suggest that these conditions do not limit the colonization and population growth of S. aegypti. During a survey of mosquitoes in September 2015, larvae of S. aegypti mosquitoes were found in two different localities in Mexico City, which is located at about 2250 m a.s.l. Mexico City is the most populous city in Mexico and has inefficient drainage and water supply systems. These factors may result in the provision of numerous larval breeding sites. Mosquito monitoring and surveillance are now priorities for the city. © 2017 The Royal Entomological Society.

  12. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    PubMed

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti , the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  13. Morphometry of the midgut of Melipona quadrifasciata anthidioides (Lepeletier) (Hymenoptera: Apidae) during metamorphosis.

    PubMed

    Cruz, L C; Araújo, V A; Dolder, H; Araújo, A P A; Serrão, J E; Neves, C A

    2011-01-01

    In Hymenoptera, midgut changes begin in the last instar. At this stage, the larval epithelial digestive cells degenerate, leaving only the basal membrane and the regenerative cells which will develop into a new epithelium during the pupal stage and in the adult. Epithelium renewal is followed by changes in volume and shape of the midgut. Morphometric analysis of digestive cells and total midgut volume of Melipona quadrifasciata anthidioides (Lepeletier) were conducted to verify whether cell volume increase are sufficient to account for the total midgut volume increase that occurs during metamorphosis. An increase in midgut volume was verified in spite of the scarcity of cell proliferation found during metamorphosis. At the end of metamorphosis, the increase in cell volume was not sufficient to explain the increase in volume of the midgut, indicating that an increase in the number of digestive cells is apparently necessary. Nevertheless, the mechanism by which regenerative cells reconstitute the epithelium during metamorphosis remains unknown.

  14. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti.

    PubMed

    Bedhomme, S; Agnew, P; Sidobre, C; Michalakis, Y

    2003-07-01

    As the relationship between a given life-history trait and fitness is not necessarily the same for the two sexes, an 'intersexual ontogenetic conflict' may arise. We analysed the phenotypic reaction to intraspecific larval competition of the mosquito, Aedes aegypti, asking: (i) Do both sexes pay the cost of competition with the same life-history traits and are they equal competitors? (ii) Is there a specific cost of competition beyond sharing food resources? We found that competition incurs a specific cost that was expressed differently by the two sexes. Indeed, each sex maintained the more important life-history trait(s) for their fitness (developmental time for males and body weight and size for females) at the expense of other traits, thus minimizing the effects of competition on their fitness. The competition exerted by females was estimated as being more intense, probably linked with the greater importance of body size for their fitness.

  15. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  16. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function

    PubMed Central

    Li, Yiyi; Piermarini, Peter M.; Esquivel, Carlos J.; Drumm, Hannah E.; Schilkey, Faye D.; Hansen, Immo A.

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage. PMID:28536536

  17. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  18. Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii.

    PubMed

    Li, Wenhong; Jin, Daochao; Shi, Caihua; Li, Fengliang

    2017-05-16

    Gut bacteria play a significant role in host insect. This study evaluated detail difference of midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible and field-caught populations of diamondback moth, and studied phenomics of the predominant midgut bacterium Enterococcus mundtii. Cultivable bacteria revealed that E. mundtii and Carnobacterium maltaromaticum dominated the bacterial populations from deltamethrin-resistant and deltamethrin-susceptible larval midguts, whereas E. mundtii was predominant in field-caught population. Illumina sequencing analysis indicated that 97% of the midgut bacteria were from the phyla Firmicutes, Proteobacteria and Cyanobacteria. Both resistant and susceptible populations had more Enterococcus and Carnobacterium. Enterococcus, Carnobacterium, Bacillus, and Pseudomonas were predominant in the field-caught population. A phenomics analysis revealed that E. mundtii was able to metabolize 25.26% of the tested carbon sources, 100% of the nitrogen sources, 100% of the phosphorus sources and 97.14% of the sulfur sources, had a wide range of osmolytes and pH conditions, and showed active deaminase activity but no decarboxylase activity. This is the first report regarding different populations of DBM midgut bacteria analyzed using both high-throughput DNA sequencing and cultivation methods, and also first report concerning the phenomics of E. mundtii. The phenomics of E. mundtii provide a basis for the future study of gut bacteria functions.

  19. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    USDA-ARS?s Scientific Manuscript database

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  20. Spatial distribution of the larval indices of Aedes aegypti in Guadalupe, Nuevo León, Mexico, with circular distribution analysis.

    PubMed

    Mercado-Hernandez, Roberto; Fernández-Salas, Ildefonso; Villarreal-Martinez, Homero

    2003-03-01

    A census of all outdoor larval breeding sites (951) present in 361 dwellings in a neighborhood of Guadalupe in northeastern Mexico was conducted in October 1997 to determine larval indices of Aedes aegypti, and their relationship to human population density and vegetation type. Here we present a method that allows finding the direction and extrapolar flight range of vectors, as parameters in the dynamics of dengue transmission. By using circular statistics applied to each block of data, ranges (quartiles) were computed for larval index type, adult-child (a/c) relationship, and vegetation. Eight angles between 37 and 300 degrees were used. Circular distribution was determined by using mean angle (a) and argument (r) from the sum of ranges for each variable. Arguments corresponding to the mean angle of house (260 degrees), recipient (265 degrees), and Breteau (247 degrees) indices were 0.2321, 0.2331, and 0.2225, respectively. In addition, arguments for the mean angle of herbaceous (277 degrees), shrub (318 degrees), and arboreal (333 degrees) vegetation were 0.2589, 0.1984, and 0.2367, respectively, and the 3 were located in the 4th quadrant. The a/c relationship was in 282 degrees, with an argument of 0.2466, which indicates that in this neighborhood in southern Guadalupe, both the human population density and the larval indices were higher than in other areas.

  1. A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins

    PubMed Central

    Odman-Naresh, Jothini; Duevel, Margret; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2013-01-01

    Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing

  2. Bacillus thuringiensis toxins trigger receptor shedding from gypsy moth midgut cells

    Treesearch

    Algimantas P. Valaitis

    2007-01-01

    The mechanism of action of the Cry1 insecticidal proteins produced by Bacillus thuringiensis (Bt) begins with the processing of these proteins in the larval gut. After proteolytic activation, the Bt toxins bind to specific midgut receptors and insert into the membrane of the gut epithelial cells, causing insect death.

  3. Effects of scarcity and excess of larval food on life history traits of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Romeo Aznar, Victoria; Alem, Iris; De Majo, María Sol; Byttebier, Barbara; Solari, Hernán G; Fischer, Sylvia

    2018-06-01

    Few studies have assessed the effects of food scarcity or excess on the life history traits of Aedes aegypti (L.) (Diptera: Culicidae) independently from larval density. We assessed immature survival, development time, and adult size in relation to food availability. We reared cohorts of 30 Ae. aegypti larvae from newly hatched to adult emergence with different food availability. Food conditions were kept constant by transferring larvae each day to a new food solution. Immature development was completed by some individuals in all treatments. The shortest development time, the largest adults, and the highest survival were observed at intermediate food levels. The most important effects of food scarcity were an extension in development time, a decrease in the size of adults, and a slight decrease in survival, while the most important effects of food excess were an important decrease in survival and a slight decrease in the size of adults. The variability in development time and adult size within sex and treatment increased at decreasing food availability. The results suggest that although the studied population has adapted to a wide range of food availabilities, both scarcity and excess of food have important negative impacts on fitness. © 2018 The Society for Vector Ecology.

  4. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats

    PubMed Central

    Devine, Gregor J.; Perea, Elvira Zamora; Killeen, Gerry F.; Stancil, Jeffrey D.; Clark, Suzanne J.; Morrison, Amy C.

    2009-01-01

    Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3–5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95–100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42–98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique. PMID:19561295

  5. [Aedes aegypti larval infestation index and identification of awareness, attitudes and practices related to Dengue in tire shops in Atlántico, Colombia].

    PubMed

    Maestre-Serrano, Ronald; Pacheco-Lugo, Lisandro; Salcedo-Mendoza, Soraya

    2015-10-01

    Objective To identify the awareness, attitudes and practices related to dengue in owners and workers of tire ships, as well as the levels of mosquito infestation in tire shops in Atlántico department - Colombia. Methods We conducted a descriptive study. The variables were described as percentages and measures of central tendency and dispersion. Index of larval infestation and containers were calculated in each of the municipalities studied. We visited and inspected 111 tire shops. 26.1 % (29/111) of these were found positive for Ae. aegypti larvae. The municipalities of Piojó, Santo Tomás, Santa Lucia, Sabanagrande and Luruaco were characterized by a higher larval infestation index. Results Regarding dengue, 90.9 % of respondents considered it a problem for them and their families. 94.6 % know that is transmitted by mosquitoes. 91.1 % know the vector larvae under the name "sarapico", 3.6 % as "gusarapo". 98.2 % felt that there is a relationship between the larva and Ae. aegypti mosquito. 100 % of participantes recognized tires to be a breeding for mosquitoes. 85.7% believed fever to be the most common symptom. 83 % reported accessing the health post to cure the disease. 90.8 % throw out unusable tires as if they were garbage. Conclusion In the population studied, there is good awareness of dengue and its vector. Nevertheless, there are problems related to attitudes and prevention practices.

  6. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  7. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers.

    PubMed

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J

    2014-08-24

    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  8. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes

    PubMed Central

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée

    2017-01-01

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti. The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells. PMID:28777313

  9. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    PubMed

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  10. Encapsidated Host Factors in Alphavirus Particles Influence Midgut Infection of Aedes aegypti.

    PubMed

    Mackenzie-Liu, David; Sokoloski, Kevin J; Purdy, Sarah; Hardy, Richard W

    2018-05-16

    Transmission of mosquito-borne viruses requires the efficient infection of both a permissive vertebrate host and a competent mosquito vector. The infectivity of Sindbis virus (SINV), the type species of the Alphavirus genus, is influenced by both the original and new host cell. We have shown that infection of vertebrate cells by SINV, chikungunya virus (CHIKV), and Ross River virus (RRV) produces two subpopulations of virus particles separable based on density. In contrast, a single population of viral particles is produced by mosquito cells. Previous studies demonstrated that the denser vertebrate-derived particles and the mosquito-derived particles contain components of the small subunit of the host cell ribosome, whereas the less dense vertebrate-derived particles do not. Infection of mice with RRV showed that both particle subpopulations are produced in an infected vertebrate, but in a tissue specific manner with serum containing only the less dense version of the virus particles. Previous infectivity studies using SINV particles have shown that the denser particles (SINV Heavy ) and mosquito derived particles SINV C6/36 are significantly more infectious in vertebrate cells than the less dense vertebrate derived particles (SINV Light ). The current study shows that SINV Light particles, initiate the infection of the mosquito midgut more efficiently than SINV Heavy particles and that this enhanced infectivity is associated with an exacerbated immune response to SINV Light infection in midgut tissues. The enhanced infection of SINV Light is specific to the midgut as intrathoracically injected virus do not exhibit the same fitness advantage. Together, our data indicate a biologically significant role for the SINV Light subpopulation in the efficient transmission from infected vertebrates to the mosquito vector.

  11. Transcriptomic Survey of the Midgut of Anthonomus grandis (Coleoptera: Curculionidae)

    PubMed Central

    Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban

    2014-01-01

    Abstract Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase , and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. PMID:25473064

  12. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.

    PubMed

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Ponsankar, Athirstam; Thanigaivel, Annamalai; Edwin, Edward-Sam; Selin-Rani, Selvaraj; Chellappandian, Muthiah; Pradeepa, Venkatraman; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2017-05-01

    Resistance to treatments with Temephos or plant derived oil, Pb-CVO, between a field collected Wild Strain (WS) and a susceptible Laboratory Strain (LS) of Ae. aegypti were measured. The Temephos (0.1mg/L) showed the greatest percentage of mosquito mortality compared to Pb-CVO (1.5mg/L) in LS Ae. aegypti. However, WS Ae. aegypti was not significantly affected by Temephos (0.1mg/L) treatment compare to the Pb-CVO (1.5mg/L). However, both strains (LS and WS) when treated with Pb-CVO (1.5mg/L) displayed steady larval mortality rate across all instars. The LC 50 of Temephos was 0.027mg in LS, but increased in WS to 0.081mg/L. The LC 50 of Pb-CVO treatment was observed at concentrations of 0.72 and 0.64mg/L for LS and WS strains respectively. The enzyme level of α- and β-carboxylesterase was reduced significantly in both mosquito strains treated with Pb-CVO. Whereas, there was a prominent deviation in the enzyme ratio observed between LS and WS treated with Temephos. The GST and CYP450 levels were upregulated in the LS, but decreased in WS, after treatment with Temephos. However, treatment with Pb-CVO caused both enzyme levels to increase significantly in both the strains. Visual observations of the midgut revealed cytotoxicity from sub-lethal concentrations of Temephos (0.04mg/L) and Pb-CVO (1.0mg/L) in both strains of Ae. aegypti compared to the control. The damage caused by Temephos was slightly less in WS compared to LS mosquito strains. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Water Use Practices Limit the Effectiveness of a Temephos-Based Aedes aegypti Larval Control Program in Northern Argentina

    PubMed Central

    Garelli, Fernando M.; Espinosa, Manuel O.; Weinberg, Diego; Trinelli, María A.; Gürtler, Ricardo E.

    2011-01-01

    Background A five-year citywide control program based on regular application of temephos significantly reduced Aedes aegypti larval indices but failed to maintain them below target levels in Clorinda, northern Argentina. Incomplete surveillance coverage and reduced residuality of temephos were held as the main putative causes limiting effectiveness of control actions. Methodology The duration of temephos residual effects in household-owned water-holding tanks (the most productive container type and main target for control) was estimated prospectively in two trials. Temephos was applied using spoons or inside perforated small zip-lock bags. Water samples from the study tanks (including positive and negative controls) were collected weekly and subjected to larval mortality bioassays. Water turnover was estimated quantitatively by adding sodium chloride to the study tanks and measuring its dilution 48 hs later. Principal Findings The median duration of residual effects of temephos applied using spoons (2.4 weeks) was significantly lower than with zip-lock bags (3.4 weeks), and widely heterogeneous between tanks. Generalized estimating equations models showed that bioassay larval mortality was strongly affected by water type and type of temephos application depending on water type. Water type and water turnover were highly significantly associated. Tanks filled with piped water had high turnover rates and short-lasting residual effects, whereas tanks filled with rain water showed the opposite pattern. On average, larval infestations reappeared nine weeks post-treatment and seven weeks after estimated loss of residuality. Conclusions Temephos residuality in the field was much shorter and more variable than expected. The main factor limiting temephos residuality was fast water turnover, caused by householders' practice of refilling tanks overnight to counteract the intermittence of the local water supply. Limited field residuality of temephos accounts in part for the

  14. A Video-Tracking Analysis-Based Behavioral Assay for Larvae of Anopheles pseudopunctipennis and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gonzalez, Paula V; Alvarez Costa, Agustín; Masuh, Héctor M

    2017-05-01

    Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika, and chikungunya viruses, whereas Anopheles pseudopunctipennis (Theobald) is the principal vector for malaria in Latin America. The larval stage of these mosquitoes occurs in very different development habitats, and the study of their respective behaviors could give us valuable information to improve larval control. The aim of this study was to set up a bioassay to study basic larval behaviors using a video-tracking software. Larvae of An. pseudopunctipennis came from two localities in Salta Province, Argentina, while Ae. aegypti larvae were of the Rockefeller laboratory strain. Behaviors of individual fourth-instar larvae were documented in an experimental petri dish arena using EthoVision XT10.1 video-tracking software. The overall level of movement of larval An. pseudopunctipennis was lower than that for Ae. aegypti, and, while moving, larval An. pseudopunctipennis spent significantly more time swimming near the wall of the arena (thigmotaxis). This is the first study that analyzes the behavior of An. pseudopunctipennis larvae. The experimental system described here may be useful for future studies on the effect of physiological, toxicological, and chemosensory stimuli on larval behaviors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    PubMed Central

    Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.

    2011-01-01

    Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as

  16. The discovery of a novel antagonist - Manduca sexta allatotropin analogue - as an insect midgut active ion transport inhibitor.

    PubMed

    Deng, Xi-le; Kai, Zhen-Peng; Chamberlin, Mary E; Horodyski, Frank M; Yang, Xin-Ling

    2016-11-01

    The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium. The full characteristic of the AIT inhibition capacity of Manse-AT is essential to assay. In this study, AIT inhibition across the M. sexta midgut by Manse-AT and its analogues in a range of concentrations was assayed. The structure-activity relationship of Manse-AT was also studied by truncated and alanine-replacement strategies. Our results identified three residues, Thr4, Arg6 and Phe8, as the most important components for activity on the midgut. Replacement of Glu1, Met2 and Met3 reduced the potency of the analogues. The conservative substitution of Gly7 with alanine had little effect on the potency of the analogues. We demonstrated for the first time that Manse-AT (10-13) behaves as a potent antagonist in vitro on active ion transport across the epithelium of the posterior midgut in M. sexta. Structure-activity studies of Manse-AT are useful in developing lead compounds for the design and testing of synthetic antagonists, ultimately to develop potent and specific pest control strategies. Manse-AT (10-13) has been discovered as the first Manse-AT antagonist, with a significant effect and a short sequence compared with other insect neuropeptides. It may be a new potential pest control agent in the future. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. The Effect of Larval Diet on Adult Survival, Swarming Activity and Copulation Success in Male Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Lang, Bethan J; Idugboe, Stefano; McManus, Kirelle; Drury, Florence; Qureshi, Alima

    2018-01-01

    Abstract Control of Aedes aegypti (L.) (Diptera: Culicidae) populations is vital for reducing the transmission of several pervasive human diseases. The success of new vector control technologies will be influenced by the fitness of laboratory-reared transgenic males. However, there has been relatively little published data on how rearing practices influence male fitness in Aedes mosquitoes. In the laboratory, the effect of larval food availability on adult male fitness was tested, using a range of different fitness measures. Larval food availability was demonstrated to be positively correlated with adult body size. Larger males survived longer and exhibited greater swarming activity. As a consequence, larger males may have more mating opportunities in the wild. However, we also found that within a swarm larger males did not have an increased likelihood of copulating with a female. The outcome of the mating competition experiments depended on the methodology used to mark the males. These results show that fitness assessment can vary depending on the measure analyzed, and the methodology used to determine it. Continued investigation into these fitness measures and methodologies, and critically, their utility for predicting male performance in the field, will increase the efficiency of vector control programs. PMID:29029298

  18. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae.

    PubMed

    Soonwera, Mayura; Phasomkusolsil, Siriporn

    2016-04-01

    Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils were evaluated to determine mortality rates, morphological aberrations, and persistence when used against third and fourth larval instars of Aedes aegypti and Anopheles dirus. The oils were evaluated at 1, 5, and 10 % concentrations in mixtures with soybean oil. Persistence of higher concentrations was measured over a period of 10 days. For Ae. aegypti, both plant oils caused various morphological aberrations to include deformed larvae, incomplete eclosion, white pupae, deformed pupae, dead normal pupae, and incomplete pupal eclosion. All of these aberrations led to larval mortality. In Ae. aegypti larvae, there were no significant differences in mortality at days 1, 5, and 10 or between third and fourth larval instar exposure. In An. dirus, morphological aberrations were rare and S. aromaticum oil was more effective in causing mortality among all larval stages. Both oils were equally effective at producing mortality on days 1, 5, and 10. Both oils had slightly increased LT50 rates from day 1 to day 10. In conclusion, both lemongrass and clove oils have significant effects on the immature stages of Ae. aegypti and An. dirus and could potentially be developed for use as larvicides.

  19. Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori.

    PubMed

    Xu, Qiuyun; Lu, Anrui; Xiao, Guohua; Yang, Bing; Zhang, Jie; Li, Xuquan; Guan, Jingmin; Shao, Qimiao; Beerntsen, Brenda T; Zhang, Peng; Wang, Chengshu; Ling, Erjun

    2012-01-01

    Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides) in the midgut during the wandering stage. Different genes of the immune deficiency (Imd) pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae), the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis induces irreversible degeneration of the midgut. The Imd pathway

  20. Breeding of Aedes aegypti (L.) and Aedes albopictus (Skuse) in urban housing of Sibu town, Sarawak.

    PubMed

    Seng, C M; Jute, N

    1994-09-01

    An Aedes survey using various larval survey methods was conducted in 12 urban housing areas and 29 vacant lands in Sibu town proper. Aedes albopictus larvae were found in all areas surveyed while Aedes aegypti larvae were present in 10 localities and 4 vacant lands. There were no significant difference in the house index, breteau and larval density index of these two Aedes (Stegomyia) species from the survey areas. The proportion of containers positive with Ae. aegypti and Ae. albopictus in area outside the house compound and near the house fencing were 3.2 times higher than outdoor compound. The indoor/outdoor breeding ratio for Ae. aegypti alone is 1.6:1. The most preferred breeding habitats outdoor were plastic cups and used tires while indoor habitats were ant traps and flower vases. In the vacant lands, the average number of larvae per containers was significantly higher than in houses and over 51% of the containers inspected were positive. Shared breeding between Ae. aegypti and Ae. albopictus larvae accounted for 9% in house surveys and 4.5% in vacant land survey. The use of various methods in Aedes larval survey may provide essential information in the study of vector epidemiology in dengue and dengue hemorrhagic fever transmission.

  1. Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae).

    PubMed

    Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban

    2014-01-01

    Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus.

    PubMed

    da Moura, Aires Januário Fernandes; de Melo Santos, Maria Alice Varjal; Oliveira, Claudia Maria Fontes; Guedes, Duschinka Ribeiro Duarte; de Carvalho-Leandro, Danilo; da Cruz Brito, Maria Lidia; Rocha, Hélio Daniel Ribeiro; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira

    2015-02-19

    Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector

  3. The effect of diet on the expression of lipase genes in the midgut of the lightbrown apple moth (Epiphyas postvittana Walker; Tortricidae).

    PubMed

    Christeller, J T; Poulton, J; Markwick, N M; Simpson, R M

    2010-02-01

    We have identified lipase-like genes from an Epiphyas postvittana larval midgut EST library. Of the 10 pancreatic lipase family genes, six appear to encode active lipases and four encode inactive lipases, based on the presence/absence of essential catalytic residues. The four gastric lipase family genes appear to encode active proteins. Phylogenetic analysis of 54 lepidopteran pancreatic lipase proteins resolved the clade into five groups of midgut origin and a sixth of non-midgut lipases. The inactive proteins formed two separate groups with highly conserved mutations. The lepidopteran midgut lipases formed a ninth subfamily of pancreatic lipases. Eighteen insect and human gastric lipases were analysed phylogenetically with only very weak support for any groupings. Gene expression was measured in the larval midgut following feeding on five artificial diets and on apple leaves. The artificial diets contained different levels of triacylglycerol, linoleic acid and cholesterol. Significant changes in gene expression (more than 100-fold for active pancreatic lipases) were observed. All the inactive lipases were also highly expressed. The gastric lipase genes were expressed at lower levels and suppressed in larvae feeding on leaves. Together, protein motif analysis and the gene expression data suggest that, in phytophagous lepidopteran larvae, the pancreatic lipases may function in vivo as galactolipases and phospholipases whereas the gastric lipases may function as triacylglycerol hydrolases.

  4. Effects of rearing salinity on expression and function of ion-motive ATPases and ion transport across the gastric caecum of Aedes aegypti larvae.

    PubMed

    D'Silva, Natalie M; Patrick, Marjorie L; O'Donnell, Michael J

    2017-09-01

    Larvae of Aedes aegypti , the yellow fever vector, inhabit a variety of aquatic habitats ranging from freshwater to brackish water. This study focuses on the gastric caecum of the larvae, an organ that has not been widely studied. We provide the first measurements of H + , K + and Na + fluxes at the distal and proximal gastric caecum, and have shown that they differ in the two regions, consistent with previously reported regionalization of ion transporters. Moreover, we have shown that the regionalization of vacuolar H + -ATPase and Na + /K + -ATPase is altered when larvae are reared in brackish water (30% seawater) relative to freshwater. Measurements of luminal Na + and K + concentrations also show a 5-fold increase in Na + /K + ratio in the caecal lumen in larvae reared in brackish water relative to freshwater, whereas transepithelial potential and luminal pH were unchanged. Calculated electrochemical potentials reveal changes in the active accumulation of Na + and K + in the lumen of the gastric caecum of freshwater versus brackish water larvae. Together with the results of previous studies of the larval midgut, our results show that the caecum is functionally distinct from the adjacent anterior midgut, and may play an important role in osmoregulation as well as uptake of nutrients. © 2017. Published by The Company of Biologists Ltd.

  5. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  6. Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri.

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Pinheiro, Patricia Fernanda Felipe; dos Santos, Daniela Carvalho

    2016-01-01

    Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the

  7. Receptor mediated endocytosis of vicilin in Callosobruchus maculatus (Coleoptera: Chrysomelidae) larval midgut epithelial cells.

    PubMed

    Kunz, Daniele; Oliveira, Gabriel B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Silva, Carlos P

    2017-08-01

    The transport of proteins across the intestinal epithelium of insects is still not well understood. There is evidence that vicilin, a major storage protein of cowpea seeds (Vigna unguiculata), is internalized in larvae of the seed-beetle Callosobruchus maculatus. It has been reported that this vicilin interacts with proteins present in the microvillar membranes of columnar cells along the digestive tract of the larvae. In the present work, we studied the cellular pathway involved in endocytosis of vicilin in larval C. maculatus by employing ex vivo experiments. In the ex vivo approach, we incubated FITC-labelled vicilin with isolated midgut wholemounts in the absence or in the presence of endocytosis inhibitors. The fate of labelled or non-labelled globulins was monitored by confocal microscopy and fluorescence measurement. Our results suggest that the internalization of vicilins is due to receptor-mediated endocytosis. Here we report the identity of a microvillar vicilin-binding protein that was purified using affinity chromatography on a vicilin-sepharose column. The putative vicilin receptor showed high homology to proteins with the CRAL-TRIO domain, specifically the Sec14 superfamily member α-tocopherol transfer protein. The precise mechanism involved in vicilin internalization was defined through the use of specific inhibitors of the endocytosis pathway. The inhibitors filipin III and nystatin significantly inhibited the endocytosis of vicilin, while chlorpromazine and phenylarsine oxide had a much lower effect on endocytosis, suggesting that the endocytic pathway is predominantly mediated by caveolin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Effect of Larval Diet on Adult Survival, Swarming Activity and Copulation Success in Male Aedes aegypti (Diptera: Culicidae).

    PubMed

    Lang, Bethan J; Idugboe, Stefano; McManus, Kirelle; Drury, Florence; Qureshi, Alima; Cator, Lauren J

    2018-01-10

    Control of Aedes aegypti (L.) (Diptera: Culicidae) populations is vital for reducing the transmission of several pervasive human diseases. The success of new vector control technologies will be influenced by the fitness of laboratory-reared transgenic males. However, there has been relatively little published data on how rearing practices influence male fitness in Aedes mosquitoes. In the laboratory, the effect of larval food availability on adult male fitness was tested, using a range of different fitness measures. Larval food availability was demonstrated to be positively correlated with adult body size. Larger males survived longer and exhibited greater swarming activity. As a consequence, larger males may have more mating opportunities in the wild. However, we also found that within a swarm larger males did not have an increased likelihood of copulating with a female. The outcome of the mating competition experiments depended on the methodology used to mark the males. These results show that fitness assessment can vary depending on the measure analyzed, and the methodology used to determine it. Continued investigation into these fitness measures and methodologies, and critically, their utility for predicting male performance in the field, will increase the efficiency of vector control programs. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Transcriptional Profiling of Midgut Immunity Response and Degeneration in the Wandering Silkworm, Bombyx mori

    PubMed Central

    Xiao, Guohua; Yang, Bing; Zhang, Jie; Li, Xuquan; Guan, Jingmin; Shao, Qimiao; Beerntsen, Brenda T.; Zhang, Peng; Wang, Chengshu; Ling, Erjun

    2012-01-01

    Background Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. Principal Findings We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides) in the midgut during the wandering stage. Different genes of the immune deficiency (Imd) pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae), the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. Conclusions This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis induces irreversible

  10. Baculoviral mid-gut gland necrosis (BMN) of kuruma shrimp (Penaeus japonicus) larvae in Japanese intensive culture systems

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishimura, T.; Fukuda, H.; Hayashida, T.; Momoyama, K.

    1984-03-01

    In many shrimp farms in the Kyushu and Chugoku areas of Japan, the so-called mid-gut gland cloudy disease of kuruma shrimp larvae (Penaeus japonicus) has occurred since 1971. The pathological changes associated with this baculoviral mid-gut gland necrosis (BMN) are extensive cellular necrosis, collapse of mid-gut gland cells, nuclear hypertrophy and finally karyorrhexis. Electron microscopic examination revealed the presence of virions and virogenic stages in the affected nuclei. Average length and diameter of the virions detected was 310 and 72 nm, respectively; nucleocapsids were 250 nm in size. Virions enclosing 2 nucleocapsids within a single envelope were rarely found. The spirally arranged capsomeres were at an angle of 37 to 38° to a horizontal line meeting at right angles with the long axis of the virion. Infectivity trials resulted in high mortality of healthy mysis and juveniles (2nd post-larval stage). Juveniles at the 9th post-larval stage showed no mortality, although they could be infected easily by the agent. Hypertrophied nuclei in squashed and stained preparations of the affected gland cells can be considered to be of reliable presumptive diagnostic character, and fluorescent antibody staining can be employed to confirm the diagnosis of BMN.

  11. Alterations in the Helicoverpa armigera Midgut Digestive Physiology after Ingestion of Pigeon Pea Inducible Leucine Aminopeptidase

    PubMed Central

    Lomate, Purushottam R.; Jadhav, Bhakti R.; Giri, Ashok P.; Hivrale, Vandana K.

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory. PMID:24098675

  12. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  13. Environmental Conditions in Water Storage Drums and Influences on Aedes aegypti inTrinidad, West Indies

    PubMed Central

    Hemme, Ryan R.; Tank, Jennifer L.; Chadee, Dave D.; Severson, David W.

    2014-01-01

    Water storage drums are often a primary breeding site for Aedes aegypti in developing countries. Habitat characteristics can impact both adult and larval fitness and survival, which may potentially influence arbovirus transmission. Our objective was to compare fundamental environmental differences in water drums based on the presence or absence of larvae in Trinidad. Drums were categorized according to the larval status, and if the drum was constructed of steel or plastic. Water samples were analyzed for ammonium, nitrate, and soluble reactive phosphorus (SRP). Continuous surface water temperatures were also recorded. Nutrient concentrations were considerably lower than those reported for other container breeding mosquitoes. No nutrient measured differed in concentration between drums positive compared to those that were negative for the presence of Aedes aegypti larvae. Levels of SRP and ammonium in steel drums were significantly lower than in plastic water drums. Both maximum and minimum surface temperatures were significantly lower in drums positive for the presence of larvae than in drums without larvae. Water temperatures in March and May were warmer than during October sampling periods. Larval presence is likely dependent upon the interaction among multiple biotic and abiotic factors. Despite appearance, not all water storage drums are equally suitable for Aedes aegypti development. Exposing water storage drums to direct sunlight or increased heat may be used in conjunction with sealing containers to reduce production of Aedes aegypti when draining and chemical treatment are impractical. PMID:19539592

  14. Environmental conditions in water storage drums and influences on Aedes aegypti in Trinidad, West Indies.

    PubMed

    Hemme, Ryan R; Tank, Jennifer L; Chadee, Dave D; Severson, David W

    2009-10-01

    Water storage drums are often a primary breeding site for Aedes aegypti in developing countries. Habitat characteristics can impact both adult and larval fitness and survival, which may potentially influence arbovirus transmission. Our objective was to compare fundamental environmental differences in water drums based on the presence or absence of larvae in Trinidad. Drums were categorized according to the larval status, and if the drum was constructed of steel or plastic. Water samples were analyzed for ammonium, nitrate, and soluble reactive phosphorus (SRP). Continuous surface water temperatures were also recorded. Nutrient concentrations were considerably lower than those reported for other container breeding mosquitoes. No nutrient measured differed in concentration between drums positive compared to those that were negative for the presence of A. aegypti larvae. Levels of SRP and ammonium in steel drums were significantly lower than in plastic water drums. Both maximum and minimum surface temperatures were significantly lower in drums positive for the presence of larvae than in drums without larvae. Water temperatures in March and May were warmer than during October sampling periods. Larval presence is likely dependent upon the interaction among multiple biotic and abiotic factors. Despite appearance, not all water storage drums are equally suitable for A. aegypti development. Exposing water storage drums to direct sunlight or increased heat may be used in conjunction with sealing containers to reduce production of A. aegypti when draining and chemical treatment are impractical.

  15. Role of specific activators of intestinal amino acid transport in Bombyx mori larval growth and nutrition.

    PubMed

    Leonardi, M G; Casartelli, M; Fiandra, L; Parenti, P; Giordana, B

    2001-12-01

    Nutrient absorption and its modulation are critical for animal growth. In this paper, we demonstrate that leucine methyl ester (Leu-OMe) can greatly increase the activity of the transport system responsible for the absorption of most essential amino acids in the larval midgut of the silkworm Bombyx mori. We investigated leucine uptake activation by Leu-OMe in brush border membrane vesicles and in the apical membrane of epithelial cells in the midgut incubated in vitro. Moreover, the addition of this strong activator of amino acid absorption to diet significantly affected larval growth. Silkworms fed on artificial diet supplemented with Leu-OMe reached maximum body weight 12-18 h before control larvae, and produced cocoon shells up to 20% heavier than those of controls. The activation of amino acid absorption plays an essential role in larval development so that larval growth and cocoon production similar to controls reared on an artificial diet with 25% of dry mulberry leaf powder were observed in silkworms fed on an artificial diet with only 5% of mulberry powder. Arch. Copyright 2001 Wiley-Liss, Inc.

  16. The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and Zika virus susceptibility in the mosquito Aedes aegypti.

    PubMed

    Bottino-Rojas, Vanessa; Talyuli, Octavio A C; Carrara, Luana; Martins, Ademir J; James, Anthony A; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2018-06-08

    Production and degradation of reactive oxygen species (ROS) are extensively regulated to ensure proper cellular responses to various environmental stimuli and stresses. Moreover, physiologically generated ROS function as secondary messengers that can influence tissue homeostasis. The cap'n'collar transcription factor known as nuclear factor erythroid-derived factor 2 (Nrf2) coordinates an evolutionarily conserved transcriptional activation pathway that mediates antioxidant and detoxification responses in many animal species, including insects and mammals. Here, we show that Nrf2-mediated signaling affects embryo survival, midgut homeostasis, and redox biology in Aedes aegypti , a mosquito species vector of dengue, Zika, and other disease-causing viruses. We observed that AeNrf2 silencing increases ROS levels and stimulates intestinal stem cell proliferation. Because ROS production is a major aspect of innate immunity in mosquito gut, we found that a decrease in Nrf2 signaling results in reduced microbiota growth and Zika virus infection. Moreover, we provide evidence that AeNrf2 signaling also controls transcriptional adaptation of A. aegypti to insecticide challenge. Therefore, we conclude that Nrf2-mediated response regulates assorted gene clusters in A. aegypti that determine cellular and midgut redox balance, affecting overall xenobiotic resistance and vectorial adaptation of the mosquito. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating

  18. Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival.

    PubMed

    Franzetti, Eleonora; Casartelli, Morena; D'Antona, Paola; Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Caccia, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2016-07-01

    The midgut of insects has attracted great attention as a system for studying intestinal stem cells (ISCs) as well as cell death-related processes, such as apoptosis and autophagy. Among insects, Lepidoptera represent a good model to analyze these cells and processes. In particular, larva-larva molting is an interesting developmental phase since the larva must deal with nutrient starvation and its organs are subjected to rearrangements due to proliferation and differentiation events. Several studies have analyzed ISCs in vitro and characterized key factors involved in their division and differentiation during molt. However, in vivo studies performed during larva-larva transition on these cells, and on the whole midgut epithelium, are fragmentary. In the present study, we analyzed the larval midgut epithelium of the silkworm, Bombyx mori, during larva-larva molting, focusing our attention on ISCs. Moreover, we investigated the metabolic changes that occur in the epithelium and evaluated the intervention of autophagy. Our data on ISCs proliferation and differentiation, autophagy activation, and metabolic and functional activities of the midgut cells shed light on the complexity of this organ during the molting phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    PubMed Central

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  20. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus

    PubMed Central

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  1. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  2. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  3. Seasonal changes in the larvel populations of Aedes aegypti in two biotopes in Dar es Salaam, Tanzania

    PubMed Central

    Trpis, Milan

    1972-01-01

    The seasonal dynamics of larval populations of Aedes aegypti was studied in two different biotopes in Dar es Salaam, Tanzania. The first biotope was located on the Msasani peninsula on the coast 6 km north of Dar es Salaam, where A. aegypti breeds exclusively in coral rock holes. The population dynamics was studied during both the rainy and the dry season. Seasonal changes in the density of A. aegypti larvae depend primarily on variation in rainfall. The population of larvae dropped to zero only for a short time during the driest period while the adult population was maintained at a low level. The second biotope was in an automobile dump in a Dar es Salaam suburb, where A. aegypti breeds in artificial containers such as tires, automobile parts, tins, coconut shells, and snail shells. The greater part of the A. aegypti population of this biotope is maintained in the egg stage during the dry season. It serves as a focal point for breeding during the dry season: with the coming of the rains, the population expands into the surrounding residential areas. More than 70% of the larval population developed in tires, 20% in tins, 5% in coconut shells, and 1% in snail shells. PMID:4539415

  4. Potential for dengue in South Africa: mosquito ecology with particular reference to Aedes aegypti.

    PubMed

    Kemp, A; Jupp, P G

    1991-12-01

    Observations on prevalence, geographical distribution, utilization of artificial larval habitats and anthropophilism were made on diurnal mosquitoes at selected localities along the coast of Natal and inland in the Transvaal to identify potential vectors of dengue in South Africa. Larval collections made in artificial containers on the ground, the exposure of bamboo pots as ovitraps in trees and collection of mosquitoes biting man showed the following species as the most likely candidates for vectors: Aedes aegypti, Ae. demeilloni, Ae. simpsoni, Ae. strelitziae, Ae. furcifer, Ae. cordellieri and Eretmapodites quinquevittatus. The bamboo pots showed that Ae. aegypti and Ae. simpsoni were the most widespread species, occurring at 11 of 12 localities. Aedes aegypti was the most prevalent species with mean pot index of 60.3 +/- 9.8% (SE) and abundance index of 0.43 +/- 0.15 (SE). Aedes aegypti was frequently present as larvae in artificial containers at indices of 11-83% (mean 56.8 +/- 5.6%, SE) and was the most anthropophilic species with average biting rates of 10-29 per man-hour at 7 localities. Although Ae. aegypti was abundant in the pots at Ndumu (northern Natal) and at Skukuza (eastern Transvaal), the local populations were poorly anthropophilic at these localities. At some localities, populations of Ae. demeilloni, Ae. simpsoni and Ae. strelitziae had average biting rates of 5.4-9.6 per man-hour. Aedes furcifer was collected for the first time at Durban, extending its distribution southward to latitude 29 degrees 53' S.

  5. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia

    PubMed Central

    Getachew, Dejene; Tekie, Habte; Gebre-Michael, Teshome; Mesfin, Akalu

    2015-01-01

    Background and Objectives. Entomological survey was carried out from May-June to September-October 2014 to investigate the presence of dengue vectors in discarded tires and artificial water containers in houses and peridomestic areas. Methods. A cross-sectional immature stage survey was done indoors and outdoors in 301 houses. Mosquito larval sampling was conducted using pipette or dipper depending on container types. Larvae were identified morphologically and larval indices were also calculated. Results. A total of 750 containers were inspected, and of these 405 were positive for mosquito larvae. A total of 1,873 larvae were collected and morphologically identified as Aedes aegypti (n = 1580: 84.4%) and Culex (n = 293: 15.6%). The larval indices, house index, container index, and breteau index, varied from 33.3 to 86.2, from 23.2 to 73.9, and from 56.5 to 188.9, respectively. Conclusion. Aedes aegypti is breeding in a wide range of artificial containers. To control these mosquitoes, the integration of different methods should be taken into consideration. PMID:26435712

  6. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  7. A MIDGUT DIGESTIVE PHOSPHOLIPASE A2 IN LARVAL MOSQUITOES, AEDES ALBOPICTUS AND CULEX QUINQUEFASCIATUS

    USDA-ARS?s Scientific Manuscript database

    Phospholipase A2 (PLA2) is a secretory digestive enzyme that hydrolyzes ester bond at sn-2 position of dietary phospholipids, creating free fatty acid and lysophopholipid. The free fatty acids (arachidonic acid) are absorbed into midgut cells. Aedes albopictus and Culex quinquefasciatus digestive PL...

  8. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.

    PubMed

    Soares, Tatiane Sanches; Rodriguez Gonzalez, Boris Luis; Torquato, Ricardo José Soares; Lemos, Francisco Jose Alves; Costa-da-Silva, André L; Capurro Guimarães, Margareth de Lara; Tanaka, Aparecida Sadae

    2018-01-01

    During feeding with blood meal, female Aedes aegypti can transmit infectious agents, such as dengue, yellow fever, chikungunya and Zika viruses. Dengue virus causes human mortality in tropical regions of the world, and there is no specific treatment or vaccine with maximum efficiency being used for these infections. In the vector-virus interaction, the production of several molecules is modulated by both mosquitoes and invading agents. However, little information is available about these molecules in the Ae. aegypti mosquito during dengue infection. Inhibitors of the pacifastin family have been described to participate in the immune response of insects and Pac2 is the only gene of this family present in Ae. aegypti being then chosen for investigation. Pac2 was expressed in E. coli, purified and analyzed by mass spectrometry and SDS-PAGE. The Pac2 transcript was detected by qPCR, and its protein levels were assessed by Western blotting. The inhibitory activity of Pac2 was measured using its K i , IC 50 and zymography. Mosquito infections with DENV were introduced with the Brazilian ACS-46 DENV-2 strain propagated in C6/36 cells. In the present work, we showed that it is possibly involved in the interaction of the mosquitoes with the dengue virus. The Pac2 transcript was detected in larvae and in both the salivary gland and midgut of Ae. aegypti females, while the native protein was identified in females 3 h post-blood meal. Pac2 is a strong inhibitor of trypsin-like and thrombin-like proteases, which are present in 4th instar larvae midgut and females 24 h after blood meal. During DENV infection, up regulation of Pac2 expression occurs in the salivary gland and midgut. Pac2 is the first Pacifastin inhibitor member described in mosquitoes. Our results suggest that Pac2 acts on mosquito serine proteases, mainly the trypsin-like type, and is under transcriptional control by virus infection signals to allow its survival in the vector or by the mosquito as a defense

  9. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres.

    PubMed

    Manrique-Saide, P; Ibáñez-Bernal, S; Delfín-González, H; Parra Tabla, V

    1998-10-01

    The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus, and the survival data were compared using log-linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test. Survivorship curves were constructed for each treatment. In the absence of M. longisetus, the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under seminatural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico.

  10. Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes.

    PubMed

    Muturi, Ephantus J; Buckner, Eva; Bara, Jeffrey

    2017-04-01

    Dengue virus consists of four antigenically distinct serotypes (DENV 1-4) that are transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes. In many dengue-endemic regions, co-circulation of two or more DENV serotypes is fairly common increasing the likelihood for exposure of the two vectors to multiple serotypes. We used a model system of DENV-2 and DENV-4 to investigate how prior exposure of Aedes aegypti to one DENV serotype affects its susceptibility to another serotype. Aedes aegypti mosquitoes were sequentially infected with DENV-2 and DENV-4 and the infection and dissemination rates for each virus determined. We found that prior infection of Ae. aegypti mosquitoes with DENV-4 rendered them significantly less susceptible to secondary infection with DENV-2. Although the results were not statistically significant, mosquitoes infected with DENV-2 were also less susceptible to secondary infection with DENV-4. The midgut dissemination and population dissemination rates for DENV-2 were significantly higher than those of DENV-4 when either virus was administered 7 days after administration of either a non-infectious blood meal or a blood meal containing a heterologous dengue serotype. These results demonstrate that superinfection interference between DENV serotypes is possible within Ae. aegypti mosquitoes, but its effect on DENV epidemiology may be dependent on the fitness of interacting serotypes. © 2017 John Wiley & Sons Ltd.

  11. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti.

    PubMed

    Fujiwara, Gislene M; Annies, Vinícius; de Oliveira, Camila F; Lara, Ricardo A; Gabriel, Maria M; Betim, Fernando C M; Nadal, Jéssica M; Farago, Paulo V; Dias, Josiane F G; Miguel, Obdulio G; Miguel, Marilis D; Marques, Francisco A; Zanin, Sandra M W

    2017-05-01

    The frequent use of synthetic pesticides to control Aedes aegypti population can lead to environmental and/or human contamination and the emergence of resistant insects. Linalool and methyl cinnamate are presented as an alternative to the synthetic pesticides, since they can exhibit larvicidal, repellent and/or insecticidal activity and are considered safe for use. The aim of this study was to evaluate the larvicidal activity of methyl cinnamate, linalool and methyl cinnamate/linalool in combination (MC-L) (1:4 ratio, respectively) against Aedes aegypti. The in vitro preliminary toxicity through brine shrimp lethality assay and hemolytic activity, and the phytotoxic potential were also investigated to assess the safety of their use as larvicide. Methyl cinnamate showed significant larvicidal activity when compared to linalool (LC 50 values of 35.4µg/mL and 275.2µg/mL, respectively) and to MC-L (LC 50 138.0µg/mL). Larvae morphological changes subjected to the specified treatments were observed, as the flooding of tracheal system and midgut damage, hindering the larval development and survival. Preliminary in vitro toxicity through brine shrimp showed the high bioactivity of the substances (methyl cinnamate LC 50 35.5µg/mL; linalool LC 50 96.1µg/mL) and the mixture (MC-L LC 50 57.7µg/mL). The results showed that, despite the higher larvicidal activity of methyl cinnamate, the use of MC-L as a larvicide seems to be more appropriate due to its significant larvicidal activity and low toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases

    PubMed Central

    Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.

    2017-01-01

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  13. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    PubMed Central

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-01

    Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection. PMID:17263893

  14. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    PubMed

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  15. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad.

    PubMed

    Polson, Karen A; Brogdon, William G; Rawlins, Samuel C; Chadee, Dave D

    2012-07-01

    To examine the effects of increasing larval rearing temperatures on the resistance status of Trinidadian populations of Aedes aegypti to organophosphate (OP) insecticides. In 2007-2008, bioassays and biochemical assays were conducted on A. aegypti larvae collected in 2006 from eight geographically distinct areas in Trinidad (Trinidad and Tobago). Larval populations were reared at four temperatures (28 ± 2ºC, 32ºC, 34ºC, and 36ºC) prior to bioassays with OP insecticides (fenthion, malathion, and temephos) and biochemical assays for esterase enzymes. Most larval populations reared at 28 ± 2ºC were susceptible to fenthion (>98% mortality) but resistant to malathion and temephos (< 80% mortality). A positive association was found between resistance to OP insecticides and increased activities of α- and β-esterases in larval populations reared at 28 ± 2ºC. Although larval populations reared at higher temperatures showed variations in resistance to OPs, there was a general increase in susceptibility. However, increases or decreases in activity levels of enzymes did not always correspond with an increase or decrease in the proportion of resistant individuals reared at higher temperatures. Although global warming may cause an increase in dengue transmission, based on the current results, the use of insecticides for dengue prevention and control may yet be effective if temperatures increase as projected.

  16. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    PubMed

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  17. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].

    PubMed

    Menéndez Díaz, Zulema; Rodríguez Rodríguez, Jinnay; Gato Armas, René; Companioni Ibañez, Ariamys; Díaz Pérez, Manuel; Bruzón Aguila, Rosa Yirian

    2012-01-01

    the integration of chemical and biological methods is one of the strategies for the vector control, due to the existing environmental problems and the concerns of the community as a result of the synthetic organic insecticide actions. The bacterium called Bacillus thuringiensis var. israelensis in liquid formulation has been widely used in the vector control programs in several countries and has shown high efficacy at lab in Cuba. to determine the susceptibility of Aedes aegypti collected in the municipalities of La Habana province to Bacillus thuringiensis var. israelensis. fifteen Aedes aegypti strains, one from each municipality, were used including larvae and pupas collected in 2010 and one reference strain known as Rockefeller. The aqueous formulation of Bacillus thuringiensis var. israelensis (Bactivec, Labiofam, Cuba) was used. The bioassays complied with the World Health Organization guidelines for use of bacterial larvicides in the public health sector. The larval mortality was read after 24 hours and the results were processed by the statistical system SPSS (11.0) through Probit analysis. the evaluated mosquito strains showed high susceptibility to biolarvicide, there were no significant differences in LC50 values of Ae. aegypti strains, neither in the comparison of these values with those of the reference strain. the presented results indicate that the use of Bacillus thuringiensis var. israelensis continues to be a choice for the control of Aedes aegypti larval populations in La Habana province.

  18. Amino acids trigger down-regulation of superoxide via TORC pathway in the midgut of Rhodnius prolixus

    PubMed Central

    Gandara, Ana Caroline P.; Oliveira, José Henrique M.; Nunes, Rodrigo D.; Goncalves, Renata L.S.; Dias, Felipe A.; Hecht, Fabio; Fernandes, Denise C.; Genta, Fernando A.; Laurindo, Francisco R.M.; Oliveira, Marcus F.; Oliveira, Pedro L.

    2016-01-01

    Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus. We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway. PMID:26945025

  19. Ecdysone has an effect on the regeneration of midgut epithelial cells that is distinct from 20-hydroxyecdysone in the silkworm Bombyx mori.

    PubMed

    Tanaka, Y; Yukuhiro, F

    1999-12-01

    We investigated the effects of two ecdysteroids, ecdysone (E) and 20-hydroxyecdysone (20E), on silkworm larval development. Silkworm larvae, Bombyx mori, were fed an artificial diet supplemented with 20E during the fourth instar to promote premature molting. At the onset of the fifth instar, these precocious fifth-instar larvae were fed diets supplemented with either E or 20E to determine the effects of the two ecdysteroids on the morphology of midgut epithelial cells. Regeneration of midgut epithelial cells normally occurs only during the molting period. However, in larvae fed E, complete replacement of midgut epithelial cells was observed 24 h before the larvae entered apolysis. In larvae fed 20E, the morphology of midgut epithelial cells was disrupted, leading to death of the larvae during the fifth instar. We also observed similar differences in the effects of the two ecdysteroids in an in vitro experiment. These results suggest that E has a specific effect on the morphological change of midgut epithelial cells in precocious fifth-instar larvae that is distinct from 20E. Copyright 1999 Academic Press.

  20. Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti and Aedes albopictus in three major Cameroonian towns.

    PubMed

    Kamgang, B; Happi, J Y; Boisier, P; Njiokou, F; Hervé, J-P; Simard, F; Paupy, C

    2010-06-01

    Aedes albopictus (Diptera: Culicidae) was first reported in Central Africa in 2000, together with the indigenous mosquito species Aedes aegypti (Diptera: Culicidae). Because Ae. albopictus can also transmit arboviruses, its introduction is a public health concern. We undertook a comparative study in three Cameroonian towns (Sahelian domain: Garoua; equatorial domain: Douala and Yaoundé) in order to document infestation by the two species and their ecological preferences. High and variable levels of pre-imaginal Ae. aegypti and Ae. albopictus infestation were detected. Only Ae. aegypti was encountered in Garoua, whereas both species were found in Douala and Yaoundé, albeit with significant differences in their relative prevalence. Peridomestic water containers were the most strongly colonized and productive larval habitats for both species. No major differences in types of larval habitat were found, but Ae. albopictus preferentially bred in containers containing plant debris or surrounded by vegetation, whereas Ae. aegypti tended to breed in containers located in environments with a high density of buildings. These findings may have important implications for vector control strategies.

  1. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

    PubMed

    Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe

    2008-05-01

    The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.

  2. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).

    PubMed

    Pacey, Evan K; O'Donnell, Michael J

    2014-02-01

    Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus.

    PubMed

    Vazeille, Marie; Gaborit, Pascal; Mousson, Laurence; Girod, Romain; Failloux, Anna-Bella

    2016-07-08

    Dengue viruses (DENV) are comprised in four related serotypes (DENV-1 to 4) and are critically important arboviral pathogens affecting human populations in the tropics. South American countries have seen the reemergence of DENV since the 1970's associated with the progressive re-infestation by the mosquito vector, Aedes aegypti. In French Guiana, DENV is now endemic with the co-circulation of different serotypes resulting in viral epidemics. Between 2009 and 2010, a predominant serotype change occurred from DENV-1 to DENV-4 suggesting a competitive displacement. The aim of the present study was to evaluate the potential role of the mosquito in the selection of the new epidemic serotype. To test this hypothesis of competitive displacement of one serotype by another in the mosquito vector, we performed mono- and co-infections of local Ae. aegypti collected during the inter-epidemic period with both viral autochthonous epidemic serotypes and compared infection, dissemination and transmission rates. We performed oral artificial infections of F1 populations in BSL-3 conditions and analyzed infection, dissemination and transmission rates. When two populations of Ae. aegypti from French Guiana were infected with either serotype, no significant differences in dissemination and transmission were observed between DENV-1 and DENV-4. However, in co-infection experiments, a strong competitive advantage for DENV-4 was seen at the midgut level leading to a much higher dissemination of this serotype. Furthermore only DENV-4 was present in Ae. aegypti saliva and therefore able to be transmitted. In an endemic context, mosquito vectors may be infected by several DENV serotypes. Our results suggest a possible competition between serotypes at the midgut level in co-infected mosquitoes leading to a drastically different transmission potential and, in this case, favoring the competitive displacement of DENV-1 by DENV-4. This phenomenon was observed despite a similar replicative fitness

  4. Characterization of a Western Pacific Zika Virus Strain in Australian Aedes aegypti.

    PubMed

    Hall-Mendelin, Sonja; Pyke, Alyssa T; Moore, Peter R; Ritchie, Scott A; Moore, Frederick A J; van den Hurk, Andrew F

    2018-06-01

    Zika virus (ZIKV) is a globally emerging arbovirus responsible for widespread epidemics in the western Pacific, the Americas, and Asia. The virus predominately circulates in urban transmission cycles between Aedes aegypti and humans. Australia is considered at risk to outbreaks of ZIKV due to the presence of A. aegypti populations in northern areas of the state of Queensland. Furthermore, close proximity to epidemic regions has led to almost 50% of imported cases reported since 2012 originating in the Pacific region. We conducted the first vector competence experiments with A. aegypti from three Australian populations for a western Pacific strain of ZIKV. When exposed to bloodmeals containing between 10 5 and 10 8 tissue culture infectious dose (TCID) 50 /mL of virus, infection, dissemination, and transmission, rates were <10%. In comparison to using frozen virus stock, exposing mosquitoes to freshly cultured virus also did not increase infection or transmission rates. It was only when bloodmeal titers exceeded 10 8 TCID 50 /mL that infection rates approached 50% and transmission rates increased to >20%. However, this concentration of virus is considerably higher than levels previously reported in blood samples from viremic humans. The Australian A. aegypti tested appear to express a midgut barrier to ZIKV infection, as 50% of mosquitoes that became infected developed a disseminated infection, and 50% of those mosquitoes transmitted the virus. Overall, these results suggest that while Australian A. aegypti strains are able to transmit the western Pacific ZIKV strain, they are relatively inefficient vectors of the virus.

  5. Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti.

    PubMed

    Pullikuth, Ashok K; Aimanova, Karlygash; Kang'ethe, Wanyoike; Sanders, Heather R; Gill, Sarjeet S

    2006-09-01

    Transport across insect epithelia is thought to depend on the activity of a vacuolar-type proton ATPase (V-ATPase) that energizes ion transport through a secondary proton/cation exchanger. Although several of the subunits of the V-ATPase have been cloned, the molecular identity of the exchanger has not been elucidated. Here, we present the identification of sodium/proton exchanger isoform 3 (NHE3) from yellow fever mosquito, Aedes aegypti (AeNHE3). AeNHE3 localizes to the basal plasma membrane of Malpighian tubule, midgut and the ion-transporting sector of gastric caeca. Midgut expression of NHE3 shows a different pattern of enrichment between larval and adult stages, implicating it in the maintenance of regional pH in the midgut during the life cycle. In all tissues examined, NHE3 predominantly localizes to the basal membrane. In addition the limited expression in intracellular vesicles in the median Malpighian tubules may reflect a potential functional versatility of NHE3 in a tissue-specific manner. The localization of V-ATPase and NHE3, and exclusion of Na+/K+-ATPase from the distal ion-transporting sector of caeca, indicate that the role of NHE3 in ion and pH regulation is intricately associated with functions of V-ATPase. The AeNHE3 complements yeast mutants deficient in yeast NHEs, NHA1 and NHX1. To further examine the functional property of AeNHE3, we expressed it in NHE-deficient fibroblast cells. AeNHE3 expressing cells were capable of recovering intracellular pH following an acid load. The recovery was independent of the large cytoplasmic region of AeNHE3, implying this domain to be dispensable for NHE3 ion transport function. 22Na+ uptake studies indicated that AeNHE3 is relatively insensitive to amiloride and EIPA and is capable of Na+ transport in the absence of the cytoplasmic tail. Thus, the core domain containing the transmembrane regions of NHE3 is sufficient for pH recovery and ion transport. The present data facilitate refinement of the

  6. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia

    PubMed Central

    Aziz, Al Thabiany; Dieng, Hamady; Ahmad, Abu Hassan; Mahyoub, Jazem A; Turkistani, Abdulhafis M; Mesed, Hatabbi; Koshike, Salah; Satho, Tomomitsu; Salmah, MR Che; Ahmad, Hamdan; Zuharah, Wan Fatma; Ramli, Ahmad Saad; Miake, Fumio

    2012-01-01

    Objective To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence. Methods Monthly visits were performed between April 2008 and March 2009 to randomly selected houses. During each visit, mosquito larvae were collected from indoors and outdoors containers by either dipping or pipetting. Mosquitoes were morphologically identified. Data on temperature, relative humidity, rain/precipitations during the survey period was retrieved from governmental sources and analyzed. Results The city was warmer in dry season (DS) than wet season (WS). No rain occurred at all during DS and even precipitations did fall, wetting events were much greater during WS. Larval survey revealed the co-breeding of Aedes, Culex and Anopheles in a variety of artificial containers in and around homes. 32 109 larvae representing 1st , 2nd, 3rd, and 4th stages were collected from 22 618 container habitats. Culicines was far the commonest and Aedes genus was as numerous as the Culex population. Ae. aegypti larval abundance exhibited marked temporal variations, overall, being usually more abundant during WS. Ten types of artificial containers were found with developing larvae. 70% of these habitats were located indoors. 71.42% of indoor containers were permanent and 28.58% was semi-permanent during WS. Cement tanks was the only container type permanent during DS. Ae. aegypti larval indices (CI, HI, BI) recorded were greater during WS. Conclusions Taken together, these results indicate a high risk of dengue transmission in the holy city. PMID:23569860

  7. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  8. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti.

    PubMed

    Barletta, Ana Beatriz Ferreira; Nascimento-Silva, Maria Clara L; Talyuli, Octávio A C; Oliveira, José Henrique M; Pereira, Luiza Oliveira Ramos; Oliveira, Pedro L; Sorgine, Marcos Henrique F

    2017-02-23

    Aedes aegypti is the main vector of important arboviruses such as dengue, Zika and chikungunya. During infections mosquitoes can activate the immune pathways Toll, IMD and JAK/STAT to limit pathogen replication. Here, we evaluate the immune response profile of Ae. aegypti against Sindbis virus (SINV). We analyzed gene expression of components of Toll, IMD and JAK/STAT pathways and showed that a blood meal and virus infection upregulated aaREL2 in a microbiota-dependent fashion, since this induction was prevented by antibiotic. The presence of the microbiota activates IMD and impaired the replication of SINV in the midgut. Constitutive activation of the IMD pathway, by Caspar depletion, leads to a decrease in microbiota levels and an increase in SINV loads. Together, these results suggest that a blood meal is able to activate innate immune pathways, through a nutrient induced growth of microbiota, leading to upregulation of aaREL2 and IMD activation. Microbiota levels seemed to have a reciprocal interaction, where the proliferation of the microbiota activates IMD pathway that in turn controls bacterial levels, allowing SINV replication in Ae. aegypti mosquitoes. The activation of the IMD pathway seems to have an indirect effect in SINV levels that is induced by the microbiota.

  9. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  10. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    PubMed

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  12. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donly, B. Cameron, E-mail: Cam.Donly@agr.gc.ca

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, asmore » well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.« less

  13. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    PubMed

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  14. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.

  15. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina.

    PubMed

    Grech, Marta G; Sartor, Paolo D; Almirón, Walter R; Ludueña-Almeida, Francisco F

    2015-06-01

    We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of

  16. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    PubMed

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-01

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  17. The design of a community-based health education intervention for the control of Aedes aegypti.

    PubMed

    Lloyd, L S; Winch, P; Ortega-Canto, J; Kendall, C

    1994-04-01

    This report describes the process used to develop locally appropriate educational materials and to implement the education component of a community-based Aedes aegypti control program in Merida, Yucatan, Mexico. The process is broken into five stages: formative research, developing recommendations for behavior change, development of educational messages, development and production of educational materials, and distribution of the materials. Appropriate terminology and taxonomies for dengue were obtained from open in-depth interviews; baseline data from a knowledge, beliefs, and practices questionnaire served to confirm this information. A larval survey of house lots was carried out to identify the Ae. aegypti larval production sites found on individual house lots. This enabled the program to target the most important larval habitats. Community groups were organized to work on the development of messages and production of the educational materials to be used. The education intervention was successful in stimulating changes in both knowledge and behavior, which were measured in the evaluations of the intervention. To be successful, community-based strategies must be flexible and adapted to the local setting because of ecologic, cultural, and social differences between localities.

  18. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil.

    PubMed

    Dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana Dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.

  19. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil

    PubMed Central

    dos Santos Dias, Luciana; Macoris, Maria de Lourdes da Graça; Andrighetti, Maria Teresa Macoris; Otrera, Vanessa Camargo Garbeloto; Dias, Adriana dos Santos; Bauzer, Luiz Guilherme Soares da Rocha; Rodovalho, Cynara de Melo; Martins, Ademir Jesus; Lima, José Bento Pereira

    2017-01-01

    The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected. PMID:28301568

  20. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.

    PubMed

    Macedo, Maria Lígia R; Freire, Maria das Graças M; Kubo, Carlos Eduardo G; Parra, José Roberto P

    2011-01-01

    Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  2. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.

    PubMed

    LaCon, Genevieve; Morrison, Amy C; Astete, Helvio; Stoddard, Steven T; Paz-Soldan, Valerie A; Elder, John P; Halsey, Eric S; Scott, Thomas W; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-08-01

    Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae

  3. Histochemical study of lectin binding sites in fourth and fifth instar gypsy moth larval midgut epithelium

    Treesearch

    Algimantas P. Valaitis

    2011-01-01

    There is evidence that the gypsy moth, Lymantria dispar, midgut epithelial brush border membrane has membrane-bound glycoconjugates, such as BTR-270 and aminopeptidase N (APN), which function as high affinity binding sites (receptors) for the insecticidal proteins produced by Bacillus thuringiensis (Bt). As gypsy...

  4. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix.

    PubMed

    Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W

    2005-10-01

    Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.

  5. Biology of two larval morphological phenotypes of Aedes aegypti in Abidjan, Côte d'Ivoire.

    PubMed

    Guindo-Coulibaly, N; Diakite, N R; Adja, A M; Coulibaly, J T; Bassa, K F; Konan, Y L; N'Goran, K E

    2017-11-23

    Since 2008, several outbreaks of yellow fever and dengue occurred in Abidjan, the economic capital of Côte d'Ivoire. A better knowledge of the biology of Aedes aegypti populations, the main vector of yellow fever and dengue viruses, is necessary to tailor vector control strategies implemented in the city. This study was designed to determine some biological parameters, occurring during the life cycle of two morphological phenotypes of Ae. aegypti larvae. Mosquitoes were sampled in a suburb of Abidjan (Treichville) using the WHO layer-traps technique. Biological parameters were studied in laboratory under standard conditions of temperature (27°C ± 2°C) and relative humidity (80% ± 10%). Our results indicated that the mean eggs laid by females from 'brown larvae' (BL) (85.95, 95% confidence interval (CI 95%) 78.87-93.02) was higher than those from 'white larvae' (WL) (64.40%, CI 95% 55.27-73.54). The gonotrophic cycle was 3 and 4 days in females from BL and WL, respectively. The overall yield of breeding mosquitoes from BL (63.88%, CI 95% 62.61-65.14) was higher compared with those of mosquitoes from WL (59.73%, CI 95% 58.35-61.12). The sex ratio (male/female) was 0.95 and 1.68 in Ae. aegypti populations from BL and WL, respectively. Females from BL lived slightly longer than those from WL (t = -2.332; P = 0.021). This study shows that Ae. Aegypti populations from BL and WL present different biological parameters during their life cycle. This could have an implication on their ability to transmit human disease viruses such as dengue and yellow fever. Further molecular studies are needed to determine genetic divergence between these Ae. aegypti populations.

  6. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico

    PubMed Central

    Ernst, Kacey C.; Walker, Kathleen R.; Reyes-Castro, Pablo; Joy, Teresa K.; Castro-Luque, A. Lucia; Diaz-Caravantes, Rolando E.; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H.; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R.

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period. PMID:28082648

  7. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    PubMed

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  8. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection

    PubMed Central

    Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765

  9. Transcriptome Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Kolliopoulou, Anna; Van Nieuwerburgh, Filip; Stravopodis, Dimitrios J.; Deforce, Dieter; Swevers, Luc; Smagghe, Guy

    2015-01-01

    Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host’s transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic / metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host’s RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following

  10. Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasília (DF, Brazil).

    PubMed

    Favier, Charly; Degallier, Nicolas; Vilarinhos, Paulo de Tarso Ribeiro; de Carvalho, Maria do Socorro Laurentino; Yoshizawa, Maria Amelia Cavalcanti; Knox, Monique Britto

    2006-07-01

    To determine the influence of climate and of environmental vector control with or without insecticide on Aedes aegypti larval indices and pupae density. An 18-month longitudinal survey of infestation of Ae. aegypti immature stages was conducted for the 1015 residences (premises) of Vila Planalto, an area of Brasilia where the Breteau Index was about 40 before the study. This area was divided into five zones: a control zone with environmental management alone and four zones with insecticide treatment (methoprene, Bti, temephos). We tested for significant differences between infestation levels in the control and insecticide-treated areas, for relationships between climatic variables and larval indices, and to determine risk factors of infestation for certain types of premises and containers. Environmental vector control strategies dramatically decreased infestation in the five areas. No significant differences could be detected between control strategies with insecticide and without. Some premises and container types were particularly suitable for breeding. The influence of climate on the emergence of Ae. aegypti adults for the area is described. In a moderately infested area such as Brasilia, insecticides do not improve environmental vector control. Rather, infestations could be further reduced by focusing on residences and containers particularly at risk. The nature of the link between climate and larval population should be investigated in larger-scale studies before being used in forecasting models.

  11. Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal

    PubMed Central

    2012-01-01

    Background Although adult mosquito vectors of sylvatic arbovirus [yellow fever (YFV), dengue-2 (DENV-2) and chikungunya (CHIKV)] have been studied for the past 40 years in southeastern Senegal, data are still lacking on the ecology of larval mosquitoes in this area. In this study, we investigated the larval habitats of mosquitoes and characterized their seasonal and spatial dynamics in arbovirus foci. Methods We searched for wet microhabitats, classified in 9 categories, in five land cover classes (agriculture, forest, savannah, barren and village) from June, 2010 to January, 2011. Mosquito immatures were sampled monthly in up to 30 microhabitats of each category per land cover and bred until adult stage for determination. Results No wet microhabitats were found in the agricultural sites; in the remaining land covers immature stages of 35 mosquito species in 7 genera were sampled from 9 microhabitats (tree holes, fresh fruit husks, decaying fruit husks, puddles, bamboo holes, discarded containers, tires, rock holes and storage containers). The most abundant species was Aedes aegypti formosus, representing 30.2% of the collections, followed by 12 species, representing each more than 1% of the total, among them the arbovirus vectors Ae. vittatus (7.9%), Ae. luteocephalus (5.7%), Ae. taylori (5.0%), and Ae. furcifer (1.3%). Aedes aegypti, Cx. nebulosus, Cx. perfuscus, Cx. tritaeniorhynchus, Er. chrysogster and Ae. vittatus were the only common species collected from all land covers. Aedes furcifer and Ae. taylori were collected in fresh fruit husks and tree holes. Species richness and dominance varied significantly in land covers and microhabitats. Positive associations were found mainly between Ae. furcifer, Ae. taylori and Ae. luteocephalus. A high proportion of potential enzootic vectors that are not anthropophilic were found in the larval mosquito fauna. Conclusions In southeastern Senegal, Ae. furcifer and Ae. taylori larvae showed a more limited distribution

  12. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    PubMed

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  13. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection

    PubMed Central

    Stoddard, Steven T.; Barker, Christopher M.; Van Rie, Annelies; Messer, William B.; Meshnick, Steven R.; Morrison, Amy C.; Scott, Thomas W.

    2017-01-01

    Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection. PMID:28333938

  14. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti.

    PubMed

    Richardson, Jason; Molina-Cruz, Alvaro; Salazar, Ma Isabel; Black, William

    2006-01-01

    Dengue virus-2 (DENV-2) RNA was quantified from the midgut and legs of individual Aedes aegypti at each of 14 days postinfectious blood meal (dpi) in a DENV-2 susceptible strain from Chetumal, Mexico. A SYBR Green I based strand-specific, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed. The lower detection and quantitation limits were 20 and 200 copies per reaction, respectively. Amounts of positive and negative strand viral RNA strands were correlated. Numbers of plaque-forming units (PFU) were correlated with DENV-2 RNA copy number in both C6/36 cell cultures and mosquitoes. PFU were consistently lower than RNA copy number by 2-3 log(10). Midgut levels of DENV-2 RNA peaked 8 dpi and fluctuated erratically between 6 and 9 dpi. Copies of DENV-2 RNA varied significantly among infected mosquitoes at each time point. Quantitative real-time RT-PCR is a convenient and reliable method that provides new insights into virus-vector interactions.

  15. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico.

    PubMed

    Saavedra-Rodriguez, Karla; Maloof, Farah Vera; Campbell, Corey L; Garcia-Rejon, Julian; Lenhart, Audrey; Penilla, Patricia; Rodriguez, Americo; Sandoval, Arturo Acero; Flores, Adriana E; Ponce, Gustavo; Lozano, Saul; Black, William C

    2018-04-30

    Aedes aegypti is the primary urban mosquito vector of viruses causing dengue, Zika and chikungunya fevers -for which vaccines and effective pharmaceuticals are still lacking. Current strategies to suppress arbovirus outbreaks include removal of larval-breeding sites and insecticide treatment of larval and adult populations. Insecticidal control of Ae. aegypti is challenging, due to a recent rapid global increase in knockdown-resistance (kdr) to pyrethroid insecticides. Widespread, heavy use of pyrethroid space-sprays has created an immense selection pressure for kdr, which is primarily under the control of the voltage-gated sodium channel gene (vgsc). To date, eleven replacements in vgsc have been discovered, published and shown to be associated with pyrethroid resistance to varying degrees. In Mexico, F1,534C and V1,016I have co-evolved in the last 16 years across Ae. aegypti populations. Recently, a novel replacement V410L was identified in Brazil and its effect on vgsc was confirmed by electrophysiology. Herein, we screened V410L in 25 Ae. aegypti historical collections from Mexico, the first heterozygote appeared in 2002 and frequencies have increased in the last 16 years alongside V1,016I and F1,534C. Knowledge of the specific vgsc replacements and their interaction to confer resistance is essential to predict and to develop strategies for resistance management.

  16. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects.

    PubMed

    Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Edwin, Edward-Sam; Ponsankar, Athirstam; Chellappandian, Muthiah; Selin-Rani, Selvaraj; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy

    2017-03-01

    Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC 50 and LC 90 ) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    PubMed

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P < 0.001), none (0.0%) had immatures (P < 0.001), and 3 (5.8%) contained adults (P = 0.039). The total number of Ae. aegypti immatures collected decreased from 109 to 0 (P < 0.001) and adults decreased from 37 to 8 (P = 0.011) after the intervention. Collection of immature and adult non-Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result

  18. Suppressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors.

    PubMed

    Kang, Seokyoung; Shields, Alicia R; Jupatanakul, Natapong; Dimopoulos, George

    2014-08-01

    Dengue virus host factors (DENV HFs) that are essential for the completion of the infection cycle in the mosquito vector and vertebrate host represent potent targets for transmission blocking. Here we investigated whether known mammalian DENV HF inhibitors could influence virus infection in the arthropod vector A. aegypti. We evaluated the potency of bafilomycin (BAF; inhibitor of vacuolar H+-ATPase (vATPase)), mycophenolic acid (MPA; inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH)), castanospermine (CAS; inhibitor of glucosidase), and deoxynojirimycin (DNJ; inhibitor of glucosidase) in blocking DENV infection of the mosquito midgut, using various treatment methods that included direct injection, ingestion by sugar feeding or blood feeding, and silencing of target genes by RNA interference (RNAi). Injection of BAF (5 µM) and MPA (25 µM) prior to feeding on virus-infected blood inhibited DENV titers in the midgut at 7 days post-infection by 56% and 60%, and in the salivary gland at 14 days post-infection by 90% and 83%, respectively, while treatment of mosquitoes with CAS or DNJ did not affect susceptibility to the virus. Ingestion of BAF and MPA through a sugar meal or together with an infectious blood meal also resulted in various degrees of virus inhibition. RNAi-mediated silencing of several vATPase subunit genes and the IMPDH gene resulted in a reduced DENV infection, thereby indicating that BAF- and MPA-mediated virus inhibition in adult mosquitoes most likely occurred through the inhibition of these DENV HFs. The route and timing of BAF and MPA administration was essential, and treatment after exposure to the virus diminished the antiviral effect of these compounds. Here we provide proof-of-principle that chemical inhibition or RNAi-mediated depletion of the DENV HFs vATPase and IMPDH can be used to suppress DENV infection of adult A. aegypti mosquitoes, which may translate to a reduction in DENV transmission.

  19. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

    2013-01-01

    Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

  20. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae).

    PubMed

    Govindarajan, M; Rajeswary, M; Sivakumar, R

    2013-01-01

    In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC₅₀ and LC₉₀ values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes.

  1. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  2. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis.

    PubMed

    Mai, Taoyi; Chen, Shuna; Lin, Xianyu; Zhang, Xiaojuan; Zou, Xiaopeng; Feng, Qili; Zheng, Sichun

    2017-09-01

    Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dengue virus replicates and accumulates in Aedes aegypti salivary glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidencemore » that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.« less

  4. Midgut glycosidases activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri.

    PubMed

    Nakonieczny, Mirosław; Michalczyk, Katarzyna; Kedziorski, Andrzej

    2006-10-01

    Parnassius apollo (Lepidoptera, Papilionidae) declines on numerous localities all over Europe. Its local subspecies frankenbergeri, inhabiting the Pieniny Mts (southern Poland) and successfully recovered from extinction, is monophagous in larval stage. In natural conditions, it completes development on the orpine Sedum telephium ssp. maximum. Since proper quality and quantity of necessary nutritional compounds of the food plant ensure developmental success, the digestive processes in the insect midgut should reflect adaptation to a specific food source. The paper presents, for the first time, the activity of detected glycolytic enzymes in midgut tissue and liquid gut contents of the L4 and L5 instars of P. apollo larvae. alpha-Amylase plays the main role in utilization of carbohydrates, contrary to cellulase activity. Saccharase seems to be the main disaccharidase, and high activity of beta-glycosidase enables hydrolysis of the plant glycosides. Trehalase activity was unexpectedly low and comparable to those of cellobiase and lactase. alpha-Amylolytic and other glycolytic activities indicate that larvae utilize starch and other carbohydrate compounds as energy sources. Possible use of some plant allelochemicals as energy sources by Apollo larvae is discussed.

  5. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector

    PubMed Central

    Dickson, Laura B.; Jiolle, Davy; Minard, Guillaume; Moltini-Conclois, Isabelle; Volant, Stevenn; Ghozlane, Amine; Bouchier, Christiane; Ayala, Diego; Paupy, Christophe; Moro, Claire Valiente; Lambrechts, Louis

    2017-01-01

    Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector. PMID:28835919

  6. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    PubMed

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  8. Detritus Type Alters the Outcome of Interspecific Competition Between Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    MURRELL, EBONY G.; JULIANO, STEVEN A.

    2008-01-01

    Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (λ’) was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti λ’ was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field. PMID:18533429

  9. Refinements in the short-circuit technique and its application to active potassium transport across the cecropia midgut.

    PubMed

    Wood, J L; Moreton, R B

    1978-12-01

    1. The conventional, two-electrode method for measuring potential difference across an epithelium is subject to error due to potential gradients caused by current flow in the bathing medium. Mathematical analysis shows that the error in measuring short-circuit current is proportional to the resistivity of the bathing medium and to the separation of the two recording electrodes. It is particularly serious for the insect larval midgut, where the resistivity of the medium is high, and that of the tissue is low. 2. A system has been devised, which uses a third recording electrode to monitor directly the potential gradient in the bathing medium. By suitable electrical connexions, the gradient can be automatically compensated, leaving a residual error which depends on the thickness of the tissue, but not on the electrode separation. Because the thicknesses of most epithelia are smaller than the smallest practical electrode spacing, this error is smaller than that inherent in a two-electrode system. 3. Since voltage-gradients are automatically compensated, it is possible to obtain continuous readings of potential and current. A 'voltage-clamp' circuit is described, which allows the time-course of the short-circuit current to be studied. 4.The three-electrode system has been used to study the larval midgut of Hyalophora cecropia. The average results from five experiments were: initial potential difference (open-circuit): 98+/-11 mV (S.E.M.); short-circuit current at time 60 min: 498+/-160 microA cm=2; 'steady-state' resistance at 60 min: 150+/-26 omega cm2. The current is equivalent to a net potassium transport of 18.6 mu-equiv cm-2 h-1. 5. The electrical parameters of the midgut change rapidly with time. The potential difference decays with a half-time of about 158 min, the resistance increases with a half-time of about 16 min, and the short-circuit current decays as the sum of two exponential terms, with half-times of about 16 and 158 min respectively. In addition

  10. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya.

    PubMed

    Ngugi, Harun N; Mutuku, Francis M; Ndenga, Bryson A; Musunzaji, Peter S; Mbakaya, Joel O; Aswani, Peter; Irungu, Lucy W; Mukoko, Dunstan; Vulule, John; Kitron, Uriel; LaBeaud, Angelle D

    2017-07-12

    Aedes aegypti, the principal vector for dengue and other emerging arboviruses, breeds preferentially in various man-made and natural container habitats. In the absence of vaccine, epidemiological surveillance and vector control remain the best practices for preventing dengue outbreaks. Effective vector control depends on a good understanding of larval and adult vector ecology of which little is known in Kenya. In the current study, we sought to characterize breeding habitats and establish container productivity profiles of Ae. aegypti in rural and urban sites in western and coastal Kenya. Twenty sentinel houses in each of four study sites (in western and coastal Kenya) were assessed for immature mosquito infestation once a month for a period of 24 months (June 2014 to May 2016). All water-holding containers in and around the households were inspected for Ae. aegypti larvae and pupae. Collections were made from a total of 22,144 container visits: Chulaimbo (7575) and Kisumu (8003) in the west, and from Msambweni (3199) and Ukunda (3367) on the coast. Of these, only 4-5.6% were positive for Ae. aegypti immatures. In all four sites, significantly more positive containers were located outdoors than indoors. A total of 17,537 Ae. aegypti immatures were sampled from 10 container types. The most important habitat types were buckets, drums, tires, and pots, which produced over 75% of all the pupae. Key outdoor containers in the coast were buckets, drums and tires, which accounted for 82% of the pupae, while pots and tires were the only key containers in the western region producing 70% of the pupae. Drums, buckets and pots were the key indoor containers, producing nearly all of the pupae in the coastal sites. No pupae were collected indoors in the western region. The coastal region produced significantly more Ae. aegypti immatures than the western region both inside and outside the sentinel houses. These results indicate that productive Ae. aegypti larval habitats are

  11. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  12. The Steroid Hormone 20-Hydroxyecdysone Regulates the Conjugation of Autophagy-Related Proteins 12 and 5 in a Concentration and Time-Dependent Manner to Promote Insect Midgut Programmed Cell Death

    PubMed Central

    Li, Yong-Bo; Yang, Ting; Wang, Jin-Xing; Zhao, Xiao-Fan

    2018-01-01

    Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12–ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12–ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12–ATG5 in a concentration and time-dependent manner. The ATG12–ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12–ATG5 conjugate level decreased at the time of pupation. At low concentrations (2–5 µM) over a short time course (1–48 h), 20E promoted the conjugation of ATG12–ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12–ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12–ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD. PMID:29467720

  13. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic.

    PubMed

    Ngoagouni, Carine; Kamgang, Basile; Brengues, Cécile; Yahouedo, Gildas; Paupy, Christophe; Nakouné, Emmanuel; Kazanji, Mirdad; Chandre, Fabrice

    2016-11-24

    Aedes aegypti and Ae. albopictus are the main epidemic vectors of dengue, chikungunya and Zika viruses worldwide. Their control during epidemics relies mainly on control of larvae and adults with insecticides. Unfortunately, loss of susceptibility of both species to several insecticide classes limits the efficacy of interventions. In Africa, where Aedes-borne viruses are of growing concern, few data are available on resistance to insecticides. To fill this gap, we assessed the susceptibility to insecticides of Ae. aegypti and Ae. albopictus populations in the Central African Republic (CAR) and studied the mechanisms of resistance. Immature stages were sampled between June and September 2014 in six locations in Bangui (the capital of CAR) for larval and adult bioassays according to WHO standard procedures. We also characterized DDT- and pyrethroid-resistant mosquitoes molecularly and biochemically, including tests for the activities of nonspecific esterases (α and β), mixed-function oxidases, insensitive acetylcholinesterase and glutathione S-transferases. Larval bioassays, carried out to determine the lethal concentrations (LC 50 and LC 95 ) and resistance ratios (RR 50 and RR 95 ), suggested that both vector species were susceptible to Bacillus thuringiensis var. israeliensis and to temephos. Bioassays of adults showed susceptibility to propoxur and fenitrothion, except for one Ae. albopictus population that was suspected to be resistant to fenithrothion. None of the Ae. aegypti populations was fully susceptible to DDT. Ae. albopictus presented a similar profile to Ae. aegypti but with a lower mortality rate (41%). Possible resistance to deltamethrin was observed among Ae. aegypti and Ae. albopictus, although some were susceptible. No kdr mutations were detected in either species; however, the activity of detoxifying enzymes was higher in most populations than in the susceptible Ae. aegypti strain, confirming decreased susceptibility to DDT and deltamethrin

  14. Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae).

    PubMed

    Chitolina, R F; Anjos, F A; Lima, T S; Castro, E A; Costa-Ribeiro, M C V

    2016-12-01

    The selection of oviposition sites by females of Aedes (Stegomyia) aegypti is a key factor for the larval survival and egg dispersion and has a direct influence in vector control programs. In this study, we evaluated the aspects of reproductive physiology of Ae. aegypti mosquitoes tested in the presence of raw sewage. Ae. aegypti females were used in oviposition bioassays according to two methodologies: (i) choice assay, in which three oviposition substrates were offered in the same cage: treatment (raw sewage), positive control (distilled water) and negative control (1% sodium hypochlorite) and; (ii) no choice assay, in which only one substrate was available. The physicochemical and microbiological analysis of the raw sewage used in this study indicated virtually no levels of chlorine, low levels of dissolved oxygen and high levels of nitrogenous compounds as well as the presence of Escherichia coli and total fecal coliforms. After 72h of oviposition, the eggs were counted and there was no statistically significant difference (p>0.05) in the oviposition rate between raw sewage and positive control in both methodologies. In addition, females were dissected to evaluate egg-retention and also there were no appreciable differences in egg retention even when raw sewage was the only substrate offered. The data also showed that egg hatching and larvae development occurred normally in the raw sewage. Therefore, the present study suggests that Ae. aegypti can adapt to new sites and lay eggs in polluted water, such as the raw sewage. These findings are of particular importance for the control and surveillance programs against Ae. aegypti in countries where the conditions of poor infrastructure and lack of basic sanitation are still an issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Intestinal Rotation Abnormalities and Midgut Volvulus.

    PubMed

    Langer, Jacob C

    2017-02-01

    Rotation abnormalities may be asymptomatic or may be associated with obstruction caused by bands, midgut volvulus, or associated atresia or web. The most important goal of clinicians is to determine whether the patient has midgut volvulus with intestinal ischemia, in which case an emergency laparotomy should be done. If the patient is not acutely ill, the next goal is to determine whether the patient has a narrow-based small bowel mesentery. In general, the outcomes for children with a rotation abnormality are excellent, unless there has been midgut volvulus with significant intestinal ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

  17. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  18. Changing domesticity of Aedes aegypti in northern peninsular Malaysia: reproductive consequences and potential epidemiological implications.

    PubMed

    Saifur, Rahman G M; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.

  19. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    PubMed

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  20. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  1. Structure-Activity Relationship Studies on Derivatives of Eudesmanolides from Inula Helenium as Toxicants against Aedes Aegypti Larvae and Adults

    DTIC Science & Technology

    2010-01-01

    flavonoids , sesquiterpenoids, and triterpenoids, among others, were CHEMISTRY & BIODIVERSITY – Vol. 7 (2010)1682 Table 1. Larvicidal Activities of Various...Gainesville, FL 32608, USA c) Department of Chemistry , Louisiana State University, Baton Rouge, Louisiana 70803, USA AnAedes aegypti larval toxicity...bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids

  2. [Inhibitory effect of turpentine oil on Aedes aegypti (Diptera:Culicidae) larvae growth].

    PubMed

    Leyva Silva, Maureen; Marquetti Fernández, Maria del Carmen; Tacoronte González, Juan E; Tiomno Tiomnovay, Olinka; Montada Dorta, Domingo

    2010-01-01

    in the fight for environmental protection, finding out alternative ways to control vectors that are important from the medical viewpoint is a must. Those plants having potent active principles and high chemical stability to act as pesticides can contribute to this end. to evaluate the possible inhibitory effect of photochemically-modified turpentine oil on Aedes aegypti larvae growth. Aedes aegypti larvae of an insecticide-sensitive strain from the insect breeding site located in the Institute of Tropical Medicine were used. During a week after the exposure to the lethal dose causing 90% mortality, the mortality indexes of larvae and pupas were recorded as well as the number of emerged adults and their sex in addition to adults stuck to the exuvias. high larval and pupal mortality was observed in the survivors to the lethal dose causing 90% mortality after one week of the exposure; mortality index was 39.46%. Larvae which managed to grow to become adults amounted to 60.54% of the surviving larvae. Female to male ratio was very similar in the control whereas the exposed group showed a higher number of male adults. On estimating the hatching inhibition percentage, it got 36.47%. the activity of turpentine oil as larvicide and Ae. aegypti growth inhibitor was demonstrated.

  3. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes

    PubMed Central

    Ramirez, Jose L.; Dimopoulos, George

    2010-01-01

    Dengue virus has become one of the most important arboviral pathogens affecting the world today. The virus is transmitted among humans by the mosquitoes Aedes aegypti and Ae. albopictus. Like other vector-borne pathogens, this virus encounters innate immune defenses within the mosquito vector that limit infection. We have previously demonstrated the involvement of the Toll pathway in the anti-dengue defense at 7 days after infection. In the present study, we have investigated the activity of this immune signaling pathway against different dengue virus serotypes at the early stages of infection in laboratory and field-derived mosquito strains. Our studies corroborate the importance of the Toll pathway in the anti-dengue defense repertoire at 3 days after an infectious blood meal, when new virions are released from the midgut for dissemination and infection of other mosquito tissues. These immune defenses are furthermore conserved among different Ae. aegypti strains and can act against a broad range of dengue virus serotypes. PMID:20079370

  4. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say).

    PubMed

    Shi, Ji-Feng; Mu, Li-Li; Chen, Xu; Guo, Wen-Chao; Li, Guo-Qing

    2016-01-01

    Dietary introduction of bacterially expressed double-stranded RNA (dsRNA) has great potential for management of Leptinotarsa decemlineata . Identification of the most attractive candidate genes for RNA interference (RNAi) is the first step. In the present paper, three complete chitin synthase cDNA sequences ( LdChSAa , LdChSAb and LdChSB ) were cloned. LdChSAa and LdChSAb , two splicing variants of LdChSA gene, were highly expressed in ectodermally-derived epidermal cells forming epidermis, trachea, foregut and hindgut, whereas LdChSB was mainly transcribed in midgut cells. Feeding bacterially expressed ds ChSA (derived from a common fragment of LdChSAa and LdChSAb ), ds ChSAa , ds ChSAb and ds ChSB in the second- and fourth-instar larvae specifically knocked down their target mRNAs. RNAi of LdChSAa + LdChSAb and LdChSAa lowered chitin contents in whole body and integument samples, and thinned tracheal taenidia. The resulting larvae failed to ecdyse, pupate, or emerge as adults. Comparably, knockdown of LdChSAb mainly affected pupal-adult molting. The LdChSAb RNAi pupae did not completely shed the old larval exuviae, which caused failure of adult emergence. In contrast, silencing of LdChSB significantly reduced foliage consumption, decreased chitin content in midgut sample, damaged midgut peritrophic matrix, and retarded larval growth. As a result, the development of the LdChSB RNAi hypomorphs was arrested. Our data reveal that these LdChS s are among the effective candidate genes for an RNAi-based control strategy against L. decemlineata .

  5. Evaluating the Vector Control Potential of the In2Care® Mosquito Trap Against Aedes aegypti and Aedes albopictus Under Semifield Conditions in Manatee County, Florida.

    PubMed

    Buckner, Eva A; Williams, Katie F; Marsicano, Ambyr L; Latham, Mark D; Lesser, Christopher R

    2017-09-01

    Successful integrated vector management programs may need new strategies in addition to conventional larviciding and adulticiding strategies to target Aedes aegypti and Ae. albopictus, which can develop in small, often cryptic, artificial and natural containers. The In2Care® mosquito trap was recently developed to target and kill larval and adult stages of these invasive container-inhabiting Aedes mosquitoes by utilizing autodissemination. Gravid females that visit the trap pick up pyriproxyfen (PPF) that they later transfer to nearby larval habitats as well as Beauveria bassiana spores that slowly kill them. We assessed the efficacy of the In2Care mosquito trap in a semifield setting against locally sourced strains of Ae. aegypti and Ae. albopictus. We found that the In2Care mosquito trap is attractive to gravid Ae. aegypti and Ae. albopictus females and serves as an egg sink, preventing any adult emergence from the trap (P = 0.0053 for both species). Adult females successfully autodisseminated PPF to surrounding water-filled containers, leading to a statistically significant reduction in new mosquito emergence (P ≤ 0.0002 for both species). Additionally, we found effective contamination with Beauveria bassiana spores, which significantly reduced the survivorship of exposed Ae. aegypti and Ae. albopictus (P ≤ 0.008 for both species in all experimental setups). In summary, the In2Care mosquito trap successfully killed multiple life stages of 2 main mosquito vector species found in Florida under semifield conditions.

  6. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion?

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip; O’Meara, George F.

    2007-01-01

    We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar experiments manipulating numbers of A. albopictus in cemetery vases were conducted at three sites of A. aegypti persistence and three sites where A. aegypti was apparently extinct. The experiments were done using numbers of larvae that were determined by observed numbers of larvae for each site, and with resources (leaf detritus) that accumulated in experimental vases placed into each field site. In both the early rainy season (when number of mosquito larvae was low) and the late rainy season (when number of mosquito larvae was high), there was a significant effect of treatment on developmental progress of experimental A. aegypti. In the late rainy season, when numbers of larvae were high, there was also a significant effect of treatment on survivorship of A. aegypti. However, the competition treatment × site type (A. aegypti persists vs extinct) interaction was never significant, indicating that the competitive effect of A. albopictus on A. aegypti did not differ systematically between persistence versus extinction sites. Thus, although competition from A. albopictus is strong under field conditions at all sites, we find no evidence that variation in the impact of interspecific competition is associated with coexistence or exclusion. Interspecific competition among larvae is thus a viable explanation for exclusion or reduction of A. aegypti in south Florida, but variation in the persistence of A. aegypti following invasion does not seem to be primarily a product of variation in the conditions in the aquatic environments of cemetery vases. PMID:15024640

  7. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  8. Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta:Diptera:Culicidae).

    PubMed

    Murugan, K; Murugan, P; Noortheen, A

    2007-01-01

    Investigations were made to test the larval toxicity and smoke repellent potential of Albizzia amara and Ocimum basilicum at different concentration (2%, 4%, 6%, 8% and 10%) against the different instar (I, II, III and IV) larvae and pupae of Aedes aegypti. The LC50 values of A. amara and O. basilicum for I instar larvae was 5.412 and 3.734, II instar 6.480 and 4.154, III instar 7.106 and 4.664, IV instar 7.515 and 5.124, respectively. The LC50 and LC90 values of pupae were 6.792%, 5.449% and 16.925%, 15.474%. The smoke toxicity of A. amara was more effective against A. aegypti than the O. basilicum.

  9. Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Viana-Medeiros, P F; Bellinato, D F; Martins, A J; Valle, D

    2017-12-01

    In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR 95  ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR 95  > 10), which is consistent with the use of intense chemical control. In Crato, RR 95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR 95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  10. Ecological studies on the breeding of Aedes aegypti and other mosquitos in shells of the giant African snail Achatina fulica

    PubMed Central

    Trpis, Milan

    1973-01-01

    The breeding of larvae of Aedes aegypti, Aedes simpsoni, and Eretmapodites quinquevittatus in empty shells of Achatina fulica was studied in the coastal zone of Dar es Salaam, Tanzania. The average density of shells was estimated to be 228 per ha. From 11 to 35% were positive for mosquito larvae. A. aegypti were found in 82-84% of positive shells; A. simpsoni in 8-13%. On Msasani peninsula, during the 3-month rainy season April—June 1970, the larval density of A. aegypti in shells was estimated at 1 100 per ha, that of A. simpsoni and E. quinquevittatus being estimated at 60 and 280 larvae per ha, respectively. Empty shells of A. fulica may contain up to 250 ml of water (average: 56.5 ml). The number of larvae per shell varies from 1 to 35 (average: 8.4) and it was estimated that, depending on the availability of food, and other factors, approximately 10 ml of water are required per larva. Viable eggs of A. aegypti were still to be found in 4% of the shells at the end of the dry season. PMID:4148745

  11. A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor.

    PubMed

    Moreira, Nathalia R; Cardoso, Christiane; Dias, Renata O; Ferreira, Clelia; Terra, Walter R

    2017-05-01

    Physiological data showed that T. molitor midgut is buffered at pH 5.6 at the two anterior thirds and at 7.9 at the posterior third. Furthermore, water is absorbed and secreted at the anterior and posterior midgut, respectively, driving a midgut counter flux of fluid. To look for the molecular mechanisms underlying these phenomena and nutrient absorption as well, a transcriptomic approach was used. For this, 11 types of transporters were chosen from the midgut transcriptome obtained by pyrosequencing (Roche 454). After annotation with the aid of databanks and manual curation, the sequences were validated by RT-PCR. The expression level of each gene at anterior, middle and posterior midgut and carcass (larva less midgut) was evaluated by RNA-seq taking into account reference sequences based on 454 contigs and reads obtained by Illumina sequencing. The data showed that sugar and amino acid uniporters and symporters are expressed along the whole midgut. In the anterior midgut are found transporters for NH 3 and NH 4 + that with a chloride channel may be responsible for acidifying the lumen. At the posterior midgut, bicarbonate-Cl - antiporter with bicarbonate supplied by carbonic anhydrase may alkalinize the lumen. Water absorption caused mainly by an anterior Na + -K + -2Cl - symporter and water secretion caused by a posterior K + -Cl - may drive the midgut counter flux. Transporters that complement the action of those described were also found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  13. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  14. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  15. Ultrastructure and immunolocalization of digestive enzymes in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae).

    PubMed

    Fialho, Maria do Carmo Q; Terra, Walter R; Moreira, Nathália R; Zanuncio, José C; Serrão, Jose Eduardo

    2013-07-01

    The predatory stinkbug Podisus nigrispinus has been utilized in biological control programs. Its midgut is anatomically divided into anterior, middle and posterior regions, which play different roles in the digestive process. We describe the midgut ultrastructure and the secretion of digestive enzymes in the midgut of P. nigrispinus. Midguts were analyzed with transmission electron microscopy and the digestive enzymes amylase, cathepsin L, aminopeptidase and α-glucosidase were immunolocalized. The ultrastructural features of the digestive cells in the anterior, middle and posterior midgut regions suggest that they play a role in digestive enzyme synthesis, ion and nutrient absorption, storage and excretion. The digestive enzymes have different distribution along the midgut regions of the predator P. nigrispinus. Amylase, aminopeptidase and α-glucosidase occur in three midgut regions, whereas cathepsin L occurs in the middle and posterior midgut regions. The anterior midgut region of P. nigrispinus seems to play a role in water absorption, the middle midgut may be involved in nutrient absorption and the posterior midgut region is responsible for water transport to the midgut lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status.

    PubMed

    Kinney, Michael P; Panting, Nicholas D; Clark, Thomas M

    2014-03-15

    The effects of the serotonin-selective reuptake inhibitor paroxetine (2×10(-5) mol l(-1)) on behavior of the larval mosquito Aedes aegypti are described. Four discrete behavioral states dominate larval behavior: wriggling, two distinct types of feeding, and quiescence. Feeding behaviors consist of foraging along the bottom of the container (substrate browsing), and stationary filter feeding while suspended from the surface film. Fed larvae respond to paroxetine with increased wriggling, and reductions in both feeding behaviors. In contrast, food-deprived larvae treated with paroxetine show no change in the proportion of time spent wriggling or feeding, but shift from stationary filter feeding to substrate browsing. Thus, actions of paroxetine in fed larvae are consistent with suppression of appetite and stimulation of wriggling, whereas paroxetine causes food-deprived larvae to switch from one feeding behavior to another. Further analysis of unfed larvae revealed that paroxetine decreased the power stroke frequency during wriggling locomotion, but had no effect on the swimming velocity during either wriggling or substrate browsing. These data suggest that: (1) serotonergic pathways may trigger shifts between distinct behaviors by actions on higher level (brain) integrating centers where behaviors such as feeding and locomotion are coordinated; (2) these centers in fed and food-deprived larvae respond differently to serotonergic stimulation suggesting sensory feedback from feeding status; and (3) serotonergic pathways also modulate central pattern generators of the nerve cord where the bursts of action potentials originate that drive the rhythmic muscle contractions of wriggling.

  17. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    PubMed

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  18. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti

    PubMed Central

    Cao-Lormeau, Van-Mai; Lambrechts, Louis

    2017-01-01

    Abstract Like other pathogens with high mutation and replication rates, within-host dengue virus (DENV) populations evolve during infection of their main mosquito vector, Aedes aegypti. Within-host DENV evolution during transmission provides opportunities for adaptation and emergence of novel virus variants. Recent studies of DENV genetic diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues such as midgut and salivary glands, suggesting that convergent positive selection is not a major driver of within-host DENV evolution in the vector. However, it is unknown whether this conclusion extends to the transmitted viral subpopulation because it is technically difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual Ae. aegypti mosquitoes previously infected with one of two DENV-1 genotypes. We compared the transmitted viral subpopulations found in the pooled saliva samples collected in time series with the input viral population present in the infectious blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of the input viral population was unchanged. Although the pooling strategy prevents analysis of individual saliva samples, our results demonstrate the lack of strong convergent positive selection during a single round of DENV transmission by Ae. aegypti. This finding reinforces the idea that genetic drift and purifying selection are the dominant evolutionary forces shaping within-host DENV genetic diversity during transmission by mosquitoes. PMID:29497564

  19. Co-breeding Association of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Relation to Location and Container Size

    PubMed Central

    Hashim, Nur Aida; Ahmad, Abu Hassan; Talib, Anita; Athaillah, Farida; Krishnan, Kumara Thevan

    2018-01-01

    The occurrence of major outbreaks of dengue, and other vector borne diseases such as chikungunya and zika in tropical and subtropical regions has rendered control of the diseases a top-priority for many affected countries including Malaysia. Control of the mosquito vectors Aedes aegypti and Aedes albopictus through the reduction of breeding sites and the application of insecticides to kill immature forms and adults are the main control efforts to combat these diseases. The present study describes the association between Ae. albopictus and Ae. aegypti in shared breeding sites. This study is important given that any measure taken against one species may affect the other. A yearlong larval survey was conducted in four dengue endemic areas of Penang Island. Sorenson’s coefficient index indicated that no association between number of the immatures of the two species regardless of container size and study location. Therefore, the mean number Ae. albopictus immature was not decreased in the presence of Ae. aegypti in shared breeding container. However Ae. aegypti appeared to prefer breeding in habitats not occupied by Ae. albopictus, the two species sharing breeding sites only where available containers were limited. In control efforts, eliminating the preferred breeding containers for one species might not affect or reduce the population of the other species. PMID:29644025

  20. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; dos Santos, Daniela Carvalho

    2013-01-01

    The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Aedes aegypti Larval Indices and Risk for Dengue Epidemics

    PubMed Central

    Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lázara; Marquetti, María del Carmen; Guzman, María Guadalupe; Bisset, Juan; van der Stuyft, Patrick

    2006-01-01

    We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BImax (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission. PMID:16704841

  2. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae).

    PubMed

    Godoy, Raquel S M; Fernandes, Kenner M; Martins, Gustavo F

    2015-10-30

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes.

  3. Effect of Oxadiazolyl 3(2H)-Pyridazinone on the Larval Growth and Digestive Physiology of the Armyworm, Pseudaletia separata

    PubMed Central

    Huang, Qingchun; Kong, Yuping; Liu, Manhui; Feng, Jun; Liu, Yang

    2008-01-01

    The effect of oxadiazolyl 3(2H)-pyridazinone (ODP), a new insect growth regulator, on growth of larvae of the armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae) was evaluated in comparison to the insecticide, toosendanin, a tetranortriterpenoid extracted from the bark of Melia toosendan that has multiple effects on insects. The digestive physiological properties of these compounds on insects were investigated by feeding them maize leaves dipped in these compounds. The results showed that ODP inhibited the growth of P. separata significantly, causing a slowed development and a prolonged larval period, smaller body size and sluggish behavior, delayed pupation and a reduced eclosion rate of pupae and adults. Moreover, ODP strongly inhibited the activities of weak alkaline trypsine-like enzyme, chymotrypsin-like enzyme and alpha amylase in the midguts of fifth instar P. separata larvae, in vivo, and inhibited the activity of alpha amylase, in vitro. These data suggest that ODP has severe consequences on the larval carbohydrate assimilation and/or nutrient intake and thereby causes inhibition of larval growth. The regulatory action of ODP on larval growth development was similar to that of toosendanin; both could be used to decrease the growth of insect populations. PMID:20337556

  4. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti

    PubMed Central

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; da Silva, Lilliam May Grespan Estodutto; de Souza, Albert Schiaveto; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-01-01

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  5. Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana.

    PubMed

    da Silva Góis, Roberto Wagner; de Sousa, Leôncio Mesquita; Santiago, Gilvandete Maria Pinheiro; Romero, Nirla Rodrigues; Lemos, Telma Leda Gomes; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo

    2013-07-01

    The aim of the present study was to evaluate the activity of pacharin isolated from the ethanol extract from roots of Bauhinia acuruana on third-instar larvae of Aedes aegypti Linn. (Diptera: Culicidae). The crude ethanol extract showed larvicidal activity at the concentration of 500 μg/mL. Given this larvicidal activity, this extract was submitted to chromatographic fractionation on a silica gel column eluted with n-hexane, dichloromethane, ethyl ether, ethyl acetate, and methanol in order to isolate the active compound(s). Pacharin, obtained in pure form from fraction eluted with ethyl ether, was evaluated for their larvicidal effects against A. aegypti. In these bioassays, the larvae were exposed at concentrations of 500, 250, 100, 50, and 25 μg/mL of the crude ethanol extract or pacharin. After 24 h, the number of dead larvae was counted and the LC₅₀ values for larval mortality were calculated. Pacharin showed LC50 value of 78.9 ± 1.8 μg/mL. The structure of isolated compound was identified on the basis of their spectral data (IR, 1D- and 2D-NMR) and by comparison with literature spectral data. The results indicate pacharin as a potential natural larvicide.

  6. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  8. Risk of transmission of viral haemorrhagic fevers and the insecticide susceptibilitystatus of aedes aegypti (linnaeus) in some sites in Accra, Ghana.

    PubMed

    Suzuki, Takashi; Osei, Joseph H; Sasaki, Akihiro; Adimazoya, Michelle; Appawu, Maxwell; Boakye, Daniel; Ohta, Nobuo; Dadzie, Samuel

    2016-09-01

    Dengue is one of the emerging diseases that can mostly only be controlled by vector control since there is no vaccine for the disease. Although, Dengue has not been reported in Ghana, movement of people from neighbouring countries where the disease has been reported can facilitate transmission of the disease. This study was carried on the University of Ghana campus to determine the risk of transmission of viral haemorrhagic fevers and the insecticide susceptibility status of Ae. aegypti in some sites in Accra, Ghana. Larval surveys were carried to inspect containers within households and estimate larval indices and adult Aedes mosquitoes were collected using human landing collection technique. WHO tube assays was used to assess the insecticide susceptibility status of Aedes mosquitoes. Ae. aegypti were the most prevalent species, 75.5% and followed by Ae. vittatus , 23.9 %. Ae. albopictus and Ae. granti were in smaller numbers. Household index (HI), Breteau index (BI), and container index were calculated as 8.2%, 11.2% and 10.3% respectively with man-vector contact rate of 0.67 bites/man-hour estimated for the area. The mortalities recorded for Ae. aegypti from WHO tube assays was 88%, 94%, 80% and 99% for DDT (4%), deltamethrin (0.05%), lambdacyhalothrin (0.05%) and permethrin (0.75%) respectively. The survey results indicated that the density of Aedes mosquitoes was considered to be sufficient to promote an outbreak of viral haemorrhagic fevers on Legon Campus. Aedes mosquitoes were found to be resistant to DDT, deltamethrin and lamdacyhalothrin, but susceptible to permethrin. This study was supported in part by Japan Initiative for Global Research Network on Infectious Diseases (J-Grid).

  9. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  10. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).

    PubMed

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-10-26

    The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of

  11. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  12. Global Genetic Diversity of Aedes aegypti

    PubMed Central

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  13. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection

    PubMed Central

    Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George

    2014-01-01

    Upon exposure to dengue virus, the Aedes aegypti mosquito vector mounts an anti-viral immune defense by activating the Toll, JAK/STAT, and RNAi pathways, thereby limiting infection. While these pathways and several other factors have been identified as dengue virus antagonists, our knowledge of factors that facilitate dengue virus infection is limited. Previous dengue virus infection-responsive transcriptome analyses have revealed an increased mRNA abundance of members of the myeloid differentiation 2-related lipid recognition protein (ML) and the Niemann Pick-type C1 (NPC1) families upon dengue virus infection. These genes encode lipid-binding proteins that have been shown to play a role in host-pathogen interactions in other organisms. RNAi-mediated gene silencing of a ML and a NPC1 gene family member in both laboratory strain and field-derived Ae. aegypti mosquitoes resulted in significantly elevated resistance to dengue virus in mosquito midguts, suggesting that these genes play roles as dengue virus agonists. In addition to their possible roles in virus cell entry and replication, gene expression analyses suggested that ML and NPC1 family members also facilitate viral infection by modulating the mosquito’s immune competence. Our study suggests that the dengue virus influences the expression of these genes to facilitate its infection of the mosquito host. PMID:24135719

  14. Laboratory evaluation of Vectobac as against Aedes aegypti in Monterrey, Nuevo León, Mexico.

    PubMed

    Ponce G, Gustavo; Flores, Adriana E; Badii, Mohammad H; Rodríguez-Tovar, M Luisa; Fernández-Salas, Ildefonso

    2002-12-01

    Intensive use of the organophosphate insecticide malathion against adults and temephos against larvae of Aedes aegypti in Mexico over the past 30 years has led to problems requiring the use of new larvicides. Toward this objective, Bacillus thuringiensis var. israelensis (Bti), a target-specific and environmentally safer control agent, was evaluated. Laboratory bioassays were done to determine the susceptibility of 2nd- and 3rd-stage larvae of Ae. aegypti to Vectobac 12 AS (aqueous suspension, 600 ITU/mg). A median lethal concentration of 0.0104 ppm and a 95% lethal concentration of 0.18 ppm were determined after 24 h of exposure to the agent. The values obtained were adjusted for field application and were further tested in the field by the State of Nuevo León, Mexico Vector Control Program. Suspensions of Bti were poured into pipe-water trucks and transferred to domestic 200-gal metal water drums. Larval populations were reduced during a 2-week study period. However, residents complained about a fine dusty film on the water surface. Nevertheless, these results are promising for future Bti field applications.

  15. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature.

    PubMed

    Bargielowski, I E; Lounibos, L P; Shin, D; Smartt, C T; Carrasquilla, M C; Henry, A; Navarro, J C; Paupy, C; Dennett, J A

    2015-12-01

    Aedes aegypti and Aedes albopictus, two important vectors of the dengue and chikungunya viruses to humans, often come in contact in their invasive ranges. In these circumstances, a number of factors are thought to influence their population dynamics, including resource competition among the larval stages, prevailing environmental conditions and reproductive interference in the form of satyrization. As the distribution and abundance of Ae. aegypti and Ae. albopictus have profound epidemiological implications, understanding the competitive interactions that influence these patterns in nature is important. While evidence for resource competition and environmental factors had been gathered from the field, the evidence for reproductive interference, though strongly inferred through laboratory trials, remained sparse (one small-scale field trial). In this paper we demonstrate that low rates (1.12-3.73%) of interspecific mating occur in nature among populations of these species that have co-existed sympatrically from 3 to 150yrs. Finally this report contributes a new species-specific primer set for identifying the paternity of sperm extracted from field collected specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Updating the larval habitats of Aedes aegypti (Diptera: Culicidae) in Camagüey, Cuba].

    PubMed

    Diéguez, Lorenzo; Pino, Rafael; Andrés, Julio; Hernández, Arturo; Alarón-Elbal, Pedro Mª; San Martín, José L

    2016-12-01

    Several illnesses of vectorial origin have a great medical and veterinary relevance, due to the adaptations developed by the species involved in their transmission. To support preventive programs with updated ecological information of Ae. aegypti populations, an entomological survey was carried out in three Health Areas of Camagüey, Cuba, during low and high rain seasons of 2013. For this, we assessed the type and number of positive containers, quantified larvae and pupae in positive containers, according to the container location in or outside the house. Both the container representativeness percentage and the pupal index by specific containers were calculated (PIsC). The total of houses as well as the positive habitual-use and non-disposable containers were compared among weather seasons, using the non parametric Chi2 test. The existent relationship between the total of positive houses and the habitual-use and non-disposable container was explored through the test of proportions hypothesis, with a level of significance of P ≤ 0.05. Ae. aegypti colonized 73 different types of containers, being habitual-use and non-disposable a 23.2 %. This number included 76 % of the positive containers. The greatest larvae collections were obtained in exterior water tanks and barrels, with important pupal production (PIsC = 3.04 and 1.75, respectively), and as well as significant differences towards the rainy season respect to positive houses (PUIA: Chi2 = 32.89; P = 0.00; PUE: Chi2 = 127.44; P = 0.00 and PUJAM: Chi2 = 127.44; P = 0.00), and the habitual-use and non-disposable container (PUIA: Chi2 = 30.37; P = 0.00; PUE: Chi2 = 37.26; P = 0.00 and PUJAM: Chi2 = 81.82; P = 0.00). These data reinforce the priority given to the control and surveillance actions conducted by the community in their respective houses.

  17. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  19. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    PubMed

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.

  20. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity

    PubMed Central

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387

  1. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers.

    PubMed

    Vezzani, D; Albicócco, A P

    2009-03-01

    The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water-filled containers (100 sunlit and 100 shaded), out of approximately 3738 containers present (approximately 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [chi(2) = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [chi(2) = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa-positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting

  2. Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia

    PubMed Central

    Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that

  3. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.

    PubMed

    Garcia-Gonzalez, Eva; Genersch, Elke

    2013-11-01

    Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects.

    PubMed

    Vasantha-Srinivasan, Prabhakaran; Thanigaivel, Annamalai; Edwin, Edward-Sam; Ponsankar, Athirstam; Senthil-Nathan, Sengottayan; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2018-04-01

    Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The mosquito, Aedes aegypti, also spreads Yellow fever, Chikungunya, and Zika virus. As the primary vector for dengue, Ae. aegypti now occurs in over 20 countries and is a serious concern with reports of increasing insecticide resistance. Developing new treatments to manage mosquitoes are needed. Formulation of crude volatile oil from Piper betle leaves (Pb-CVO) was evaluated as a potential treatment which showed larvicidal, ovipositional, and repellency effects. Gut-histology and enzyme profiles were analyzed post treatment under in-vitro conditions. The Pb-CVO from leaves of field collected plants was obtained by steam distillation and separated through rotary evaporation. The Pb-CVO were evaluated for chemical constituents through GC-MS analyses revealed 20 vital compounds. The peak area was establish to be superior in Eudesm-7(11)-en-4-ol (14.95%). Pb-CVO were determined and tested as four different concentrations (0.25, 0.5, 1.0, and 1.5 mg/L) of Pb-CVO towards Ae. aegypti. The larvicidal effects exhibited dose dependent mortality being greatest at 1.5 mg Pb-CVO/10 g leaves. The LC 50 occurred at 0.63 mg Pb-CVO/L. Larva of Ae. aegypti exposed to Pb-CVO showed significantly reduced digestive enzyme actions of α- and β-carboxylesterases. In contrast, GST and CYP450 enzyme levels increased significantly as concentration increased. Correspondingly, oviposition deterrence index and egg hatch of Ae. aegypti exposed to sub-lethal doses of Pb-CVO demonstrated a strong effect suitable for population suppression. Repellency at 0.6 mg Pb-CVO applied as oil had a protection time of 15-210 min. Mid-gut histological of Ae. aegypti larvae showed severe damage when treated with 0.6 mg of Pb-CVO treatment compared to the control. Non-toxic effects against aquatic beneficial insects, such as Anisops bouvieri and Toxorhynchites splendens, were observed at the highest concentrations, exposed

  5. Primary midgut, salivary gland, and ovary cultures from Boophilus microplus.

    PubMed

    Mosqueda, Juan; Cossío-Bayugar, Raquel; Rodríguez, Elba; Falcón, Alfonso; Ramos, Alberto; Figueroa, Julio V; Alvarez, Antonio

    2008-12-01

    Primary cell cultures from different tick organs are a valuable tool for host parasite research in the study of the protozoan Babesia sp., which infects different organs of the tick. In this work we describe the generation of midgut, salivary gland, and ovary primary cell cultures from dissections of Boophilus microplus. Midguts, salivary glands, and ovaries were dissected from B. microplus ticks on different days after bovine infestation; different enzymatic disaggregating protocols were tested in the presence of proteolytic enzymes, such as trypsin and collagenase type I and II, for tissue disaggregation and primary cell culture generation. The dissected tick organs obtained 18-20 days after bovine infestation showed a major cellular differentiation and were easier to identify by cellular morphology. The enzymatic disaggregation results showed that each tissue required a different proteolytic enzyme for optimal disaggregation; collagenase type I produced the most complete disaggregation for ovaries but not for midgut or salivary glands. Collagenase type II was effective for salivary glands but performed poorly on ovaries and midgets, and typsin was effective for midguts only. The midgut and ovary primary cell cultures were maintained for 4 weeks in optimal conditions after the cells were no longer viable. The salivary gland cell cultures were viable for 8 months.

  6. Malathion resistance in Aedes aegypti and Culex quinquefasciatus after its use in Aedes aegypti control programs.

    PubMed

    Coto, M M; Lazcano, J A; de Fernández, D M; Soca, A

    2000-12-01

    The continued widespread use of malathion in Aedes aegypti control programs in Latin America has generated insecticide resistance to this chemical in Culex quinquefasciatus but not in Ae. aegypti. To determine the extent of this resistance, the susceptibility of Cx. quinquefasciatus and Ae. aegypti from several countries to malathion was evaluated. Bioassay results indicated that all Ae. aegypti strains evaluated from Cuba, Venezuela, Costa Rica, and Jamaica were susceptible to malathion in spite of the historical use of this insecticide in Ae. aegypti control programs in these countries. In contrast, a high level of resistance to this insecticide was found in Cx. quinquefasciatus from Venezuela, Colombia, Brazil, and Cuba. Synergist assays indicated that neither esterases nor mixed-function oxidases (MFOs) were involved as the resistance mechanism to malathion in any of the Ae. aegypti strains tested. In Cx. quinquefasciatus, synergist assays confirmed that esterases played an important role in malathion resistance but MFOs were not involved in causing malathion resistance in this species. Biochemical assays showed that both resistance mechanisms were present in the Ae. aegypti and Cx. quinquefasciatus populations. Acrylamide electrophoresis gels revealed that all Ae. aegypti strains had a strongly staining, clear band, named A4, and had a relative mobility (Rm) value of 0.7. Analysis if the results of this study suggested that malathion could continue to be used for the emergency control of Ae. aegypti, the mosquito vector for dengue and dengue hemorrhagic fever in the Americas, but that malathion is probably not effective for the control of adult Cx. quinquefasciatus in urban areas. Therefore, control operations should integrate nonorganophosphate insecticides such as pyrethroids for control of these 2 species found in the urban environment.

  7. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Technical Reports Server (NTRS)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; hide

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  8. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  9. Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura.

    PubMed

    Yi, Xin; Qi, Jiangwei; Zhou, Xiaofan; Hu, Mei Ying; Zhong, Guo Hua

    2017-03-22

    While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.

  10. Investigation of the Cry4B-prohibitin interaction in Aedes aegypti cells.

    PubMed

    Kuadkitkan, Atichat; Smith, Duncan R; Berry, Colin

    2012-10-01

    Bacillus thuringiensis (Bt) produces insecticidal toxins active against insects. Cry4B, one of the major insecticidal toxins produced by Bt subsp. israelensis, is highly toxic to mosquitoes in the genus Aedes: the major vectors of dengue, yellow fever, and chikungunya. Previous work has shown that Cry4B binds to several mid-gut membrane proteins in Aedes aegypti larvae including prohibitin, a protein recently identified as a receptor that also mediates entry of dengue virus into Aedes cells. This study confirms the interaction between Cry4B and prohibitin by co-immunoprecipitation analysis and demonstrates colocalization of prohibitin and Cry4B by confocal microscopy. While activated Cry4B toxin showed high larvicidal activity, it was not cytotoxic to two Aedes cell lines, allowing determination of its effect on dengue virus infectivity in the absence of Cry4B-induced cell lysis. Pre-exposure of Aedes cells to Cry4B resulted in a significant reduction in the number of infected cells compared to untreated cells.

  11. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while

  12. Intestinal stem cells in the adult Drosophila midgut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu; Edgar, Bruce A., E-mail: b.edgar@dkfz.de; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights:more » Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.« less

  13. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, D.W.; Thathy, V.; Mori, A.

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI],more » is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.« less

  14. A new ovitrap made of slow release natural materials containing pyriproxyfen for Aedes aegypti (Diptera:Culicidae) control.

    PubMed

    Juan, Laura; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2013-07-01

    ABSTRACT This initial study is aimed to measure the performance of incorporating pyriproxyfen in natural materials with low environmental impact to obtain slow release formulations that can be used as larvicidal or autocidal ovitraps avoiding hatched Aedes aegypti (L.) eggs to emerge as adults. Hollow candles made of beeswax or paraffin:stearin 1:1 mixture containing pyriproxyfen 0.01 and 0.05% were prepared and used as holding water containers for larval bioassay. Pyriproxyfen was released quickly into the larvae-breeding water. Ae. aegypti larvae were introduced immediately after the addition of tap water to the hollow candles (t = 1 min) or after 1, 4, and 8 h. More than 40% of the larvae did not emerge as adults for t = 1 min, reaching 80-100% when the larvae were added after 1 or 4 h, respectively. The hollow candles were kept at room temperature, and water was replaced every 15 d. Bioassays performed every 30 d showed that the residual activity obtained for both matrices and both concentrations of pyriproxyfen was higher than 360 d, with 100% inhibition of adult emergence.

  15. The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762).

    PubMed

    Silva, Ary G; Almeida, Drielle L; Ronchi, Silas N; Bento, Amarildo C; Scherer, Rodrigo; Ramos, Alessandro C; Cruz, Zilma Ma

    2010-08-27

    The ability of mosquitoes of the genus Aedes and its allies, such as Stegomyia, to transmit diseases such as dengue and yellow fever, makes them important in public health. This study aims to evaluate the use of the essential oil of Brazilian pepper in biological control of by assessing and quantifying the larvicidal effect against S. aegypti, the only available access to dengue control, and test its risk of genotoxicity with Salmonella typhimurium as an indicator of safety for its environmental use. The density of the oil was 0.8622 g mL-1. Gas chromatography coupled with mass spectrometry revealed six major constituents: δ-3-carene (55.43%), α-pinene (16.25%), sylvestrene (10.67%), germacrene D (2.17), β-myrcene (1.99%), and isoterpinolene (1.4%). The minimum inhibitory dose to larvae development was 862.20 μg mL-1. The median lethal dose (LD50) of the essential oil for larvae was between the concentrations of 172.44-344.88 μg mL-1. There was no mutagenic risk for the essential oil, since there were no biochemical or morphological changes in S. typhimurium after exposure to the essential oil. The minimum inhibitory essential oil concentration and the median lethal dose pointed to the value of the use of water dispersions of Brazilian pepper essential oil as an environmental safe natural larvicidal for S. aegypti.

  16. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest

  17. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida Two Decades After Competitive Displacements.

    PubMed

    Lounibos, L Philip; Bargielowski, Irka; Carrasquilla, María Cristina; Nishimura, Naoya

    2016-11-01

    The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating

  18. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesismore » and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.« less

  19. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae).

    PubMed

    Telang, Aparna; Frame, Laura; Brown, Mark R

    2007-03-01

    What little is known about the endocrine regulation of mosquito development suggests that models based on Lepidoptera and Drosophila may not apply. We report on basic parameters of larval development and the commitment to metamorphosis in the yellow fever mosquito Aedes aegypti that are affected by varying the length of feeding time for last instar larvae. A critical mass for pupal commitment was achieved after 24 h of feeding by last instars, also the age at which tissue production and hemolymph titers of ecdysteroids are increasing. A greater proportion of last instars successfully pupated and eclosed as adults as the length of their feeding time increased. Less than 24 h of feeding time resulted in last instars that were developmentally arrested; these larvae tolerated starvation conditions for up to 2 weeks and retained the capacity to pupate if re-fed. Starvation tolerance may be a common trait among container-inhabiting species, and this period is an important factor to be considered for vectorial capacity and control measures. To distinguish cues for metamorphosis related to a larva's nutritional status versus its age, newly molted last instars were fed for different periods of time but sampled at the same age; ecdysteroid levels, body mass and nutrient reserves were then measured for each group. Our data suggest that metamorphic capacity is dependent on a larva's nutritional condition and not just the age at which ecdysteroid titers increase. Last instars that have fed for a particular length of time may initiate their metamorphic molt when both threshold levels of nutrient reserves and ecdysteroid titer have been met. Future studies will lead to a conceptual model specific for the nutritional and hormonal regulation of mosquito post-embryonic development. This model should facilitate the exploitation of current and novel insect growth regulators that are among favored strategies for vector population suppression.

  20. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  1. Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, K; Murugan, K; Vincent, S; Barnard, Donald R

    2012-04-01

    To determine the mosquito larvicidal activities of hexane, chloroform, ethyl acetate, acetone and methanol leaf extract of Orthosiphon thymiflorus (O. thymiflorus) against Anopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus) and Aedes aegypti (Ae. aegypti). The larvicidal activity was assayed against three mosquito species at various concentrations ranging from (50-450 ppm) under the laboratory conditions. The LC(50) and LC(90) value of the O. thymiflorus leaf extract was determined by Probit analysis. The LC(50) values of hexane, chloroform, ethyl acetate, acetone and methanol extract of O. thymiflorus third instar larvae of An. stephensi were LC(50)= 201.39, 178.76, 158.06, 139.22 and 118.74 ppm; Cx. quinquefasciatus were LC(50)=228.13, 209.72, 183.35, 163.55 and 149.96 ppm and Ae. aegypti were LC(50)=215.65, 197.91, 175.05, 154.80 and 137.26 ppm, respectively. Maximum larvicidal activity was observed in the methanolic extract followed by acetone, ethyl acetate chloroform and hexane extract. The larval mortality was observed after 24 h exposure. No mortality was observed in control. The present results suggest that the effective plant crude extracts have potential to be used as an ideal eco-friendly approach for the control of mosquito vectors. This study provides the first report on the larvicidal activity of this plant crude solvent extract of against An. stephensi, Cx. quinquefasciatus and Ae. aegypti mosquitoes. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates.

    PubMed

    Padmanabha, H; Soto, E; Mosquera, M; Lord, C C; Lounibos, L P

    2010-08-01

    Understanding linkages between household behavior and Aedes aegypti (L.) larval ecology is essential for community-based dengue mitigation. Here we associate water storage behaviors with the rate of A. aegypti pupal production in three dengue-endemic Colombian cities with different mean temperatures. Qualitative, semi-structured interviews and pupal counts were conducted over a 7-15-day period in 235 households containing a water storage vessel infested with larvae. Emptying vessels more often than every 7 days strongly reduced pupal production in all three cities. Emptying every 7-15 days reduced production by a similar magnitude as emptying <7 days in Armenia (21.9 degrees C), has a threefold smaller reduction as compared to <7 days in Bucaramanga (23.9 degrees C), and did not reduce production in Barranquilla (29.0 degrees C). Lidding vessels reduced mosquito production and was most feasible in Barranquilla because of container structure. Vessel emptying strongly correlated with usage in Barranquilla, where many households stored water in case of interruptions in piped service rather than for regular use. In the cooler cities, >90% of households regularly used stored water for washing clothes, generating a weaker correlation between emptying and usage. Emptying was less frequent in the households surveyed in the dry season in all three cities. These results show that A. aegypti production and human behaviors are coupled in a temperature-dependent manner. In addition to biological effects on aquatic stages, climate change may impact A. aegypti production through human behavioral adaptations. Vector control programs should account for geographic variation in temperature and water usage behaviors in designing targeted interventions.

  3. Survey on aedes mosquito density and pattern distribution of aedes aegypti and aedes albopictus in high and low incidence districts in north sumatera province

    NASA Astrophysics Data System (ADS)

    Siregar, Fazidah A.; Makmur, Tri

    2018-03-01

    Transmission and control of dengue hemorrhagic fever are related to its vectors. This study investigated vector density and distribution patterns of Aedes aegypty and Aedes albopictus in Medan and Langkat as high and low incidence district, respectively. An entomological survey was carried out in 304 households both in Medan and Langkat. The results showed that adult Ae. aegypti were predominantly in Medan, while adult Ae. albopictus was only in Langkat. Larvae indices (HI, CI, BI) for Aedes in Medan ( 35,13 and 43) were higher than langkat ( 22,8 and 30). Adult indices (AHI, AD, RR) for Ae. aegypti in Medan and for Ae. albopictus in Langkat were 20,38,24 and 3,5, and 5, respectively. Pattern distribution of Aedes larvae and adult mosquitoes in both district had similar pattern. Aedes larval indices and adult indices both in HIDs and LIDs were above the critical level, indicating potential high risk for DHF transmission. By multiple regression analysis, HI is predictor for DHF transmission in North Sumatera. Thus, in designing an effective control measures for dengue hemorrhagic fever, monitoring distribution and vector density is crucial.

  4. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    PubMed

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  5. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus

    PubMed Central

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian

    2015-01-01

    ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the

  6. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia

    PubMed Central

    Tiruneh, Moges; Abate, Ebba; Wondimeneh, Yitayih; Damtie, Demekech; Tessema, Belay

    2018-01-01

    OBJECTIVES The Aedes mosquito is a vector for transmitting many arboviruses. Knowledge of the breeding habitat of this vector is vital for implementing appropriate interventions. Thus, this study was conducted to determine the breeding habitats and presence of Aedes mosquito species in the study areas. METHODS A house-to-house cross-sectional survey of Aedes mosquito breeding habitats was carried out in Metema and Humera, Ethiopia, in August 2017. All available water-holding containers present in and around houses were inspected for the presence of immature stages of Aedes mosquitoes, and they were collected and reared to the adult stage for species identification. In the larval survey, the house index, container index, and Breteau index were computed as risk indices. RESULTS Of the 384 houses surveyed for the presence of Aedes mosquito larval breeding, 98 were found to be positive for larvae. During the survey, a total of 566 containers were inspected, of which 186 were found to be infested with Aedes mosquito larvae, with a container index of 32.9, a house index of 25.5, and a Breteau index of 48.4. The most common Aedes mosquito breeding habitats were discarded tires (57.5%), followed by mud pots (30.0%). Of the 1,077 larvae and pupae collected and reared, Aedes aegypti (49.3%), Ae. vittatus (6.5%), and Culex species (44.2%) were identified. CONCLUSIONS Discarded tires were the most preferred breeding habitats for Aedes mosquitoes. Moreover, Ae. aegypti, the main vector of dengue and other arboviruses, was identified for the first time in this region, suggesting a high potential for arbovirus transmission in the study areas. PMID:29748457

  7. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia.

    PubMed

    Ferede, Getachew; Tiruneh, Moges; Abate, Ebba; Kassa, Wondmeneh Jemberie; Wondimeneh, Yitayih; Damtie, Demekech; Tessema, Belay

    2018-01-01

    The Aedes mosquito is a vector for transmitting many arboviruses. Knowledge of the breeding habitat of this vector is vital for implementing appropriate interventions. Thus, this study was conducted to determine the breeding habitats and presence of Aedes mosquito species in the study areas. A house-to-house cross-sectional survey of Aedes mosquito breeding habitats was carried out in Metema and Humera, Ethiopia, in August 2017. All available water-holding containers present in and around houses were inspected for the presence of immature stages of Aedes mosquitoes, and they were collected and reared to the adult stage for species identification. In the larval survey, the house index, container index, and Breteau index were computed as risk indices. Of the 384 houses surveyed for the presence of Aedes mosquito larval breeding, 98 were found to be positive for larvae. During the survey, a total of 566 containers were inspected, of which 186 were found to be infested with Aedes mosquito larvae, with a container index of 32.9, a house index of 25.5, and a Breteau index of 48.4. The most common Aedes mosquito breeding habitats were discarded tires (57.5%), followed by mud pots (30.0%). Of the 1,077 larvae and pupae collected and reared, Aedes aegypti (49.3%), Ae. vittatus (6.5%), and Culex species (44.2%) were identified. Discarded tires were the most preferred breeding habitats for Aedes mosquitoes. Moreover, Ae. aegypti , the main vector of dengue and other arboviruses, was identified for the first time in this region, suggesting a high potential for arbovirus transmission in the study areas.

  8. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  9. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  10. The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762)

    PubMed Central

    2010-01-01

    Background The ability of mosquitoes of the genus Aedes and its allies, such as Stegomyia, to transmit diseases such as dengue and yellow fever, makes them important in public health. This study aims to evaluate the use of the essential oil of Brazilian pepper in biological control of by assessing and quantifying the larvicidal effect against S. aegypti, the only available access to dengue control, and test its risk of genotoxicity with Salmonella typhimurium as an indicator of safety for its environmental use. Results The density of the oil was 0.8622 g mL-1. Gas chromatography coupled with mass spectrometry revealed six major constituents: δ-3-carene (55.43%), α-pinene (16.25%), sylvestrene (10.67%), germacrene D (2.17), β-myrcene (1.99%), and isoterpinolene (1.4%). The minimum inhibitory dose to larvae development was 862.20 μg mL-1. The median lethal dose (LD50) of the essential oil for larvae was between the concentrations of 172.44-344.88 μg mL-1. There was no mutagenic risk for the essential oil, since there were no biochemical or morphological changes in S. typhimurium after exposure to the essential oil. Conclusions The minimum inhibitory essential oil concentration and the median lethal dose pointed to the value of the use of water dispersions of Brazilian pepper essential oil as an environmental safe natural larvicidal for S. aegypti. PMID:20799936

  11. Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Intirach, J; Junkum, A; Lumjuan, N; Chaithong, U; Jitpakdi, A; Riyong, D; Wannasan, A; Champakaew, D; Muangmoon, R; Chansang, A; Pitasawat, B

    2016-12-01

    showed significant resistance to temephos, permethrin, and deltamethrin in either the larval or adult stage. Interestingly, high susceptibility to P. crispum oil was observed in the larvae and adults of MCM-S, which are pyrethroid-susceptible A. aegypti, and comparable to those of the pyrethroid-resistant strains, PMD-R and UPK-R. GC-MS analysis of P. crispum oil demonstrated that 19 compounds, accounting for 98.25 % of the whole oil, were identified, with the main constituents being thymol (42.41 %), p-cymene (27.71 %), and γ-terpinene (20.98 %). In conclusion, the profound larvicidal and adulticidal potential of P. crispum oil promises to form a new larvicide and adulticide against either the pyrethroid-susceptible or resistant strain of A. aegypti. Consequently, P. crispum oil and its constituents can be used or incorporated with other chemicals/measures in integrated mosquito management for controlling A. aegypti, particularly in localities with high levels of pyrethroid and organophosphate resistance.

  12. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina).

    PubMed

    Espinosa, Manuel; Weinberg, Diego; Rotela, Camilo H; Polop, Francisco; Abril, Marcelo; Scavuzzo, Carlos Marcelo

    2016-05-01

    Since 2009, Fundación Mundo Sano has implemented an Aedes aegypti Surveillance and Control Program in Tartagal city (Salta Province, Argentina). The purpose of this study was to analyze temporal dynamics of Ae. aegypti breeding sites spatial distribution, during five years of samplings, and the effect of control actions over vector population dynamics. Seasonal entomological (larval) samplings were conducted in 17,815 fixed sites in Tartagal urban area between 2009 and 2014. Based on information of breeding sites abundance, from satellite remote sensing data (RS), and by the use of Geographic Information Systems (GIS), spatial analysis (hotspots and cluster analysis) and predictive model (MaxEnt) were performed. Spatial analysis showed a distribution pattern with the highest breeding densities registered in city outskirts. The model indicated that 75% of Ae. aegypti distribution is explained by 3 variables: bare soil coverage percentage (44.9%), urbanization coverage percentage(13.5%) and water distribution (11.6%). This results have called attention to the way entomological field data and information from geospatial origin (RS/GIS) are used to infer scenarios which could then be applied in epidemiological surveillance programs and in the determination of dengue control strategies. Predictive maps development constructed with Ae. aegypti systematic spatiotemporal data, in Tartagal city, would allow public health workers to identify and target high-risk areas with appropriate and timely control measures. These tools could help decision-makers to improve health system responses and preventive measures related to vector control.

  13. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis.

    PubMed

    Rost-Roszkowska, Magdalena M; Poprawa, Izabela; Wójtowicz, Maria; Kaczmarek, Lukasz

    2011-04-01

    The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis--early choriogenesis, vitellogenesis--middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.

  14. What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms.

    PubMed

    Breaux, Jennifer A; Schumacher, Molly K; Juliano, Steven A

    2014-07-07

    For organisms with complex life cycles, larval environments can modify adult phenotypes. For mosquitoes and other vectors, when physiological impacts of stressors acting on larvae carry over into the adult stage they may interact with infectious dose of a vector-borne pathogen, producing a range of phenotypes for vector potential. Investigation of impacts of a common source of stress, larval crowding and intraspecific competition, on adult vector interactions with pathogens may increase our understanding of the dynamics of pathogen transmission by mosquito vectors. Using Aedes aegypti and the nematode parasite Brugia pahangi, we demonstrate dose dependency of fitness effects of B. pahangi infection on the mosquito, as well as interactions between competitive stress among larvae and infectious dose for resulting adults that affect the physiological and functional ability of mosquitoes to act as vectors. Contrary to results from studies on mosquito-arbovirus interactions, our results suggest that adults from crowded larvae may limit infection better than do adults from uncrowded controls, and that mosquitoes from high-quality larval environments are more physiologically and functionally capable vectors of B. pahangi. Our results provide another example of how the larval environment can have profound effects on vector potential of resulting adults. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Insecticidal activity against Aedes aegypti of m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds.

    PubMed

    Souza, Terezinha M; Cunha, Arcelina P; Farias, Davi F; Machado, Lyeghyna K; Morais, Selene M; Ricardo, Nágila Mps; Carvalho, Ana Fu

    2012-10-01

    Myracrodruon urundeuva Fr. Allemao is a common tree in the Caatinga that has been widely used for various medical purposes. Previous studies showed that the ethanol seed extract of M. urundeuva has potent activity against the larval stage of the dengue vector Aedes aegypti. Given this potential insecticidal activity, bioguided separation steps were performed in order to isolate the active compound(s). The isolation process resulted in only one active chemical compound, identified by infrared spectroscopy and mass spectrometry as m-pentadecadienyl-phenol. This compound presented potent larvicidal and pupicidal activity (LC50 10.16 and 99.06 µg mL(-1) respectively) and great egg hatching inhibitory activity (IC50 49.79 µg mL(-1)). The mode of action was investigated through observations of behavioural and morphological changes performed in third-instar larvae treated with m-pentadecadienyl-phenol solution after 1, 6, 12, 16 and 20 h of exposure. Some changes were observed as flooding of the tracheal system, alterations in siphonal valves and anal gills and lethargy, probably caused by the strong anticholinesterasic activity reported previously. The compound isolated from M. urundeuva seeds, m-pentadecadienyl-phenol, showed potent activity against immature stages of dengue vector, Ae. aegypti, being considered the main larvicidal principle. Copyright © 2012 Society of Chemical Industry.

  16. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.

  17. A chitin-like component in Aedes aegypti eggshells, eggs and ovaries.

    PubMed

    Moreira, Mônica F; Dos Santos, Amanda S; Marotta, Humberto R; Mansur, Juliana F; Ramos, Isabela B; Machado, Ednildo A; Souza, Gustavo H M F; Eberlin, Marcos N; Kaiser, Carlos R; Kramer, Karl J; Muthukrishnan, Subbaratnam; Vasconcellos, Ana Maria H

    2007-12-01

    An insoluble white substance was prepared from extracts of eggshells of Aedes aegypti, the yellow fever mosquito and dengue vector. Its infrared and proton NMR spectra were similar to that of standard commercial chitin. This putative chitin-like material, also obtained from ovaries, newly laid and dark eggs, was hydrolyzed in acid and a major product was identified by HPLC to be glucosamine. The eggshell acid hydrolysate was also analyzed by ESI-MS and an ion identical to a glucosamine monoprotonated species was detected. The presence of chitin was also analyzed during different developmental stages of the ovary using a fluorescent microscopy technique and probes specific for chitin. The results showed that a chitin-like material accumulates in oocytes during oogenesis. Streptomyces griseus chitinase pre-treatment of oocytes greatly reduced the chitin-derived fluorescence. Chitinase activity was detected in newborn larvae and eggs prior to hatching. Feeding experiments indicated that the chitin synthesis inhibitor lufenuron inhibited chitin synthesis, either when mosquitoes were allowed to feed directly on lufenuron-treated chickens or when an artificial feeding system was used. Lufenuron inhibited egg hatch, larval development and reduced mosquito viability. These data demonstrate for the first time that (1) a chitin-like material is present in A. aegypti eggs, ovaries and eggshells; (2) a chitin synthesis inhibitor can be used to inhibit mosquito oogenesis; and (3) chitin synthesis inhibitors have potential for controlling mosquito populations.

  18. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

    PubMed Central

    Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka

    2013-01-01

    A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408

  19. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    PubMed Central

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  20. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR.

    PubMed

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Celestino-Montes, Antonio; Cortés-Martínez, Leticia; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2016-11-01

    The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes. © 2016 Wiley Periodicals, Inc.

  1. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti

    PubMed Central

    Zhao, Bo; Kokoza, Vladimir A.; Saha, Tusar T.; Wang, Stephanie; Roy, Sourav; Raikhel, Alexander S.

    2015-01-01

    Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5' upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4>UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4>UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin kinase (TOR). RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4>UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes. PMID:25152428

  2. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    PubMed Central

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  3. Intrauterine midgut volvulus without malrotation: Diagnosis from the ‘coffee bean sign’

    PubMed Central

    Park, Jun Seok; Cha, Seong Jae; Kim, Beom Gyu; Kim, Yong Seok; Choi, Yoo Shin; Chang, In Taik; Kim, Gwang Jun; Lee, Woo Seok; Kim, Gi Hyeon

    2008-01-01

    Fetal midgut volvulus is quite rare, and most cases are associated with abnormalities of intestinal rotation or fixation. We report a case of midgut volvulus without malrotation, associated with a meconium pellet, during the gestation period. This 2.79 kg, 33-wk infant was born via a spontaneous vaginal delivery caused by preterm labor. Prenatal ultrasound showed dilated bowel loops with the appearance of a ‘coffee bean sign’. This patient had an unusual presentation with a distended abdomen showing skin discoloration. An emergency laparotomy revealed a midgut volvulus and a twisted small bowel, caused by complicated meconium ileus. Such nonspecific prenatal radiological signs and a low index of suspicion of a volvulus during gestation might delay appropriate surgical management and result in ischemic necrosis of the bowel. Preterm labor, specific prenatal sonographic findings (for example, the coffee bean sign) and bluish discoloration of the abdominal wall could suggest intrauterine midgut volvulus requiring prompt surgical intervention. PMID:18322966

  4. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand.

    PubMed

    Vannavong, Nanthasane; Seidu, Razak; Stenström, Thor-Axel; Dada, Nsa; Overgaard, Hans J

    2017-04-04

    Dengue fever is a mosquito-borne disease accounting for 50-100 million annual cases globally. Laos and Thailand are countries in south-east Asia where the disease is endemic in both urban and rural areas. Household water storage containers, which are favourable breeding sites for dengue mosquitoes, are common in these areas, due to intermittent or limited access to water supply. This study assessed the effect of household water management and socio-demographic risk factors on Aedes aegypti infestation of water storage containers. A cross-sectional survey of 239 households in Laos (124 suburban and 115 rural), and 248 households in Thailand (127 suburban and 121 rural) was conducted. Entomological surveys alongside semi-structured interviews and observations were conducted to obtain information on Ae. aegypti infestation, socio-demographic factors and water management. Zero-inflated negative binomial regression models were used to assess risk factors associated with Ae. aegypti pupal infestation. Household water management rather than socio-demographic factors were more likely to be associated with the infestation of water containers with Ae. aegypti pupae. Factors that was significantly associated with Ae. aegypti infestation were tanks, less frequent cleaning of containers, containers without lids, and containers located outdoors or in toilets/bathrooms. Associations between Ae. aegypti pupae infestation, household water management, and socio-demographic factors were found, with risk factors for Ae. aegypti infestation being specific to each study setting. Most of the containers did not have lids, larvicides, such as temephos was seldom used, and containers were not cleaned regularly; factors are facilitating dengue vector proliferation. It is recommended that, in Lao villages, health messages should promote proper use and maintenance of tightly fitted lids, and temephos in tanks, which were the most infested containers. Recommendations for Thailand are that small

  5. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.

  6. Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand.

    PubMed

    Thavara, U; Tawatsin, A; Chansang, C; Kong-ngamsuk, W; Paosriwong, S; Boon-Long, J; Rongsriyam, Y; Komalamisra, N

    2001-12-01

    A 1995 outbreak of dengue haemorrhagic fever (DHF) occurred on Samui Island in Thailand with an incidence of almost 500 cases/100,000 population. To find and develop effective strategies to control this disease through cost-effective vector control programs, entomological studies were carried out on the island between 1996 and 1998. There were two species of DHF vectors, Aedes aegypti and Ae. albopictus prevailing on the island, and the population of Ae. aegypti remained relatively constant throughout the year while the abundance of Ae. albopictus increased substantially during the rainy season (May-December) and then declined drastically in the dry season (January-April). The ranges of the three Aedes larval indices, Breteau index (BI), house index (HI) and container index (CI) were 93-310, 43-89 and 16-50 respectively. The ceramic or earthen jars both inside and outside the dwellings and concrete water storage tanks (mostly in toilets and bathrooms) served as the main breeding places of Ae. aegypti whereas coconut husks and coconut floral spathes found outdoors were the major breeding sites of Ae. albopictus. The number of washing water jars, concrete tanks and natural sites infested with Aedes larvae increased significantly in rainy season, with 60% of ovitraps become positive for Ae. albopictus eggs with an average number of 26 eggs/trap in 3 days of setting. There was a complete lack of oviposition by Ae. aegypti in outdoor ovitraps (15 m away from the houses). The indoor biting rate ranged from 1.5 to 8.1 mosquitoes/man-hour, while the outdoor rate was between 5 and 78 mosquitoes/man-hour. Of the indoor biting mosquitoes, 75.4% were identified as Ae. aegypti and 99% of the outdoor ones were Ae. albopictus. The diel biting activity of Aedes during the period from 0800 h to 1700 h in the houses was higher in the morning than in the afternoon period, with a low prevalence between 1300 h and 1400 h.

  7. Midgut protease activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri.

    PubMed

    Nakonieczny, Mirosław; Michalczyk, Katarzyna; Kedziorski, Andrzej

    2007-02-01

    We assayed the relative activities of midgut proteolytic enzymes in individuals of the fourth (L(4)) and fifth (L(5)) instar of Apollo larvae, inhabiting Pieniny Mts (southern Poland). The comparisons between midgut tissue with glicocalyx (MT) and liquid midgut contents with peritrophic membrane (MC) were made. Optimal media pHs of the assayed proteolytic enzymes in P. apollo midgut samples were similar to those of other lepidopteran species. Endopeptidases, as well as carboxypeptidases, digested effectively in alkaline environment, while aminopeptidases were active in a broad pH range. Trypsin is probably the main endoprotease (correlation with caseinolytic activity in MC of L(5) larvae: r=0.606; p=0.004); however, its activity was low as compared with that in other leaf-eating Lepidoptera. This suggests a minor role of trypsin and chymotrypsin in protein digestion in Apollo larvae, probably due to limited availability of the leaf proteins. Instead, due to very high carboxypeptidase A activity in midgut tissue, the larvae obtain exogenous amino acids either directly or from oligopeptides and glycoproteins. High and significant positive correlations between the enzyme activity and glucosidase as well as galactosidase activities strongly support this opinion.

  8. Histopathological Effects of the Yen-Tc Toxin Complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) Larval Midgut

    PubMed Central

    Hares, Michelle C.; Jones, Sandra A.; Harper, Lincoln A.; Vernon, James R.; Harland, Duane P.; Jackson, Trevor A.; Hurst, Mark R. H.

    2012-01-01

    Yersinia entomophaga MH96, which was originally isolated from the New Zealand grass grub, Costelytra zealandica, produces an orally active proteinaceous toxin complex (Yen-Tc), and this toxin is responsible for mortality in a range of insect species, mainly within the Coleoptera and Lepidoptera. The genes encoding Yen-Tc are members of the toxin complex (Tc) family, with orthologs identified in several other bacterial species. As the mechanism of Yen-Tc activity remains unknown, a histopathological examination of C. zealandica larvae was undertaken in conjunction with cultured cells to identify the effects of Yen-Tc and to distinguish the contributions that its individual subunit components make upon intoxication. A progressive series of events that led to the deterioration of the midgut epithelium was observed. Additionally, experiments using a cell culture assay system were carried out to determine the cellular effects of intoxication on cells after topical application and the transient expression of Yen-Tc and its individual components. While observations were broadly consistent with those previously reported for other Tc family members, some differences were noted. In particular, the distinct stepwise disintegration of the midgut shared features associated with both apoptosis and necrotic programmed cell death pathways. Second, we observed, for the first time, a contribution of toxicity from two chitinases associated with the Yen-Tc complex. Our findings were suggestive of the activities encoded within the subunit components of Yen-Tc targeting different sites along putative programmed cell death pathways. Given the observed broad host range for Yen-Tc, these targeted loci are likely to be widely shared among insects. PMID:22544254

  9. Resistance of Aedes aegypti to temephos and adaptive disadvantages

    PubMed Central

    Diniz, Morgana Michele Cavalcanti de Souza Leal; Henriques, Alleksandra Dias da Silva; Leandro, Renata da Silva; Aguiar, Dalvanice Leal; Beserra, Eduardo Barbosa

    2014-01-01

    OBJECTIVE To evaluate the resistance of Aedes aegypti to temephos Fersol 1G (temephos 1% w/w) associated with the adaptive disadvantage of insect populations in the absence of selection pressure. METHODS A diagnostic dose of 0.28 mg a.i./L and doses between 0.28 mg a.i./L and 1.40 mg a.i./L were used. Vector populations collected between 2007 and 2008 in the city of Campina Grande, state of Paraíba, were evaluated. To evaluate competition in the absence of selection pressure, insect populations with initial frequencies of 20.0%, 40.0%, 60.0%, and 80.0% resistant individuals were produced and subjected to the diagnostic dose for two months. Evaluation of the development of aquatic and adult stages allowed comparison of the life cycles in susceptible and resistant populations and construction of fertility life tables. RESULTS No mortality was observed in Ae. aegypti populations subjected to the diagnostic dose of 0.28 mg a.i./L. The decreased mortality observed in populations containing 20.0%, 40.0%, 60.0%, and 80.0% resistant insects indicates that temephos resistance is unstable in the absence of selection pressure. A comparison of the life cycles indicated differences in the duration and viability of the larval phase, but no differences were observed in embryo development, sex ratio, adult longevity, and number of eggs per female. CONCLUSIONS The fertility life table results indicated that some populations had reproductive disadvantages compared with the susceptible population in the absence of selection pressure, indicating the presence of a fitness cost in populations resistant to temephos. PMID:25372168

  10. Biting Deterrence and Insecticidal Activity of Hydrazide-Hydrazones and Their Corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles Against Aedes aegypti

    DTIC Science & Technology

    2012-09-11

    against biting insects and later on new insecticides including pyrethroids have been widely used to control a wide range of insect pests in agriculture and...1 to 20 are shown in Table 1. 2.2 Biological activity 2.2.1 Insects The Ae. aegypti (L.) mosquitoes used in these studies were from a laboratory...sucrose solution. Females (5–9 days old) were selected for bioassays. For larval bioassays, the eggs were hatched 1 day prior to testing, and the

  11. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-08-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. In mosquito control programs, botanical origin may have the potential to be used successfully as eggs, larvae, and adult. The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl acetate extracts of leaf of Ervatamia coronaria and Caesalpinia pulcherrima were assayed for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in benzene extract of E. coronaria against the larvae of Anopheles Stephensi, Aedes aegypti, and Culex quinquefasciatus with the LC(50) and LC(90) values were 79.08, 89.59, and 96.15 ppm and 150.47, 166.04, and 174.10 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h posttreatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. The leaf extract of E. coronaria was found to be most effective than Caesalpinia pulcherrima against eggs/egg rafts of three vector mosquitoes. For E. coronaria, the benzene extract exerted 300, 250, and 200 ppm against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, respectively. The results of the repellent activity of benzene and ethyl acetate extract of E. coronaria and Caesalpinia pulcherrima plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm(2) were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the

  12. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Shanthakumar, Shanmugam Perumal; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-10-01

    Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50) = 345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90) = 653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50) = 361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90) = 687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50) = 382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90) = 726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three

  13. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina)

    PubMed Central

    Espinosa, Manuel; Weinberg, Diego; Rotela, Camilo H.; Polop, Francisco; Abril, Marcelo; Scavuzzo, Carlos Marcelo

    2016-01-01

    Background Since 2009, Fundación Mundo Sano has implemented an Aedes aegypti Surveillance and Control Program in Tartagal city (Salta Province, Argentina). The purpose of this study was to analyze temporal dynamics of Ae. aegypti breeding sites spatial distribution, during five years of samplings, and the effect of control actions over vector population dynamics. Methodology/Principal Findings Seasonal entomological (larval) samplings were conducted in 17,815 fixed sites in Tartagal urban area between 2009 and 2014. Based on information of breeding sites abundance, from satellite remote sensing data (RS), and by the use of Geographic Information Systems (GIS), spatial analysis (hotspots and cluster analysis) and predictive model (MaxEnt) were performed. Spatial analysis showed a distribution pattern with the highest breeding densities registered in city outskirts. The model indicated that 75% of Ae. aegypti distribution is explained by 3 variables: bare soil coverage percentage (44.9%), urbanization coverage percentage(13.5%) and water distribution (11.6%). Conclusions/Significance This results have called attention to the way entomological field data and information from geospatial origin (RS/GIS) are used to infer scenarios which could then be applied in epidemiological surveillance programs and in the determination of dengue control strategies. Predictive maps development constructed with Ae. aegypti systematic spatiotemporal data, in Tartagal city, would allow public health workers to identify and target high-risk areas with appropriate and timely control measures. These tools could help decision-makers to improve health system responses and preventive measures related to vector control. PMID:27223693

  14. piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues

    PubMed Central

    Wang, Yanhai; Jin, Binbin; Liu, Peiwen; Li, Jing; Chen, Xiaoguang; Gu, Jinbao

    2018-01-01

    The Asian tiger mosquito, Aedes albopictus, is a competent vector for the majority of arboviruses. The mosquito innate immune response is a primary determinant for arthropod-borne virus transmission, and the midgut is the first barrier to pathogen transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. However, the roles that the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway play in antiviral immunity in Ae. albopictus and its midgut still need further exploration. This study aimed to explore the profiles of both viral-derived and host-originated piRNAs in the whole body and midgut infected with Dengue virus 2 (DENV-2) in Ae. albopictus, and to elucidate gene expression profile differences of the PIWI protein family between adult females and their midguts. A deep sequencing-based method was used to identify and analyze small non-coding RNAs, especially the piRNA profiles in DENV-2-infected Ae. albopictus and its midgut. The top-ranked, differentially-expressed piRNAs were further validated using Stem-loop qRT-PCR. Bioinformatics analyses and reverse-transcription PCR (RT-PCR) methods were used to detect PIWI protein family members, and their expression profiles. DENV-2 derived piRNAs (vpiRNA, 24–30 nts) were observed in both infected Ae. albopictus and its midgut; however, only vpiRNA in the whole-body library had a weak preference for adenine at position 10 (10A) in the sense molecules as a feature of secondary piRNA. These vpiRNAs were not equally distributed, instead they were derived from a few specific regions of the genome, especially several hot spots, and displayed an obvious positive strand bias. We refer to the differentially expressed host piRNAs after DENV infection as virus-induced host endogenous piRNAs (vepiRNAs). However, we found that vepiRNAs were abundant in mosquito whole-body tissue, but deficient in the midgut. A total of eleven PIWI family genes were identified in Ae

  15. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Gomes, Simone A; Paula, Adriano R; Ribeiro, Anderson; Moraes, Catia O P; Santos, Jonathan W A B; Silva, Carlos P; Samuels, Richard I

    2015-12-30

    Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Commercially available neem oil was used at concentrations ranging from 0.0001 to 1%. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 10(5) to 1 × 10(9) conidia mL(-1)) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001%). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. 1% neem was toxic to A. aegypti larvae reducing survival to 18% with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24% (S50 = 3 days) when using 1 × 10(9) conidia mL(-1). Using 1 × 10(8) conidia mL(-1), 30% survival (S50 = 3 days) was observed. We tested a "sub-lethal" neem concentration (0.001%) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 10(7) conidia mL(-1) + neem (0.001%), the survival rates were 36%, whereas exposure to the fungus alone resulted in 74% survival and exposure to neem alone resulted in 78% survival. When using 1 × 10(8) conidia mL(-1), the survival curves were modified, with a combination of the fungus + neem resulting in 12% survival, whilst the fungus alone at this concentration also

  16. Dispersal of Engineered Male Aedes aegypti Mosquitoes.

    PubMed

    Winskill, Peter; Carvalho, Danilo O; Capurro, Margareth L; Alphey, Luke; Donnelly, Christl A; McKemey, Andrew R

    2015-11-01

    Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m). Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.

  17. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    PubMed

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    developmental zero temperature (10-14 degrees C) is exceeded, there is a near-linear relationship up to 30 degrees C. Above this temperature, the development rate is relatively stable or even decreases slightly before falling dramatically near the upper developmental zero temperature, which occurs at -38-42 degrees C. Based on life stage-specific linear relationships between water temperature and development rate in the 15-28 degrees C range, the lower developmental zero temperature is estimated to be 14.0 degrees C for eggs, 11.8 degrees C for larvae, and 10.3 degrees C for pupae. We further conclude that available population dynamics models for Ae. aegypti, such as CIMSiM and Skeeter Buster, likely produce robust predictions based on water temperatures in the 16-35 degrees C range, which includes the geographic areas where Ae. aegypti and its associated pathogens present the greatest threat to human health, but that they may be less reliable in cool range margins where water temperatures regularly fall below 15 degrees C. Finally, we identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its range, now and in the future, based on impacts on mosquito population dynamics of temperature and other important factors, such as water nutrient content, larval density, presence of biological competitors, and human behavior.

  18. iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains.

    PubMed

    Yu, Haizhong; Wang, Xueyang; Xu, Jiaping; Ma, Yan; Zhang, Shangzhi; Yu, Dong; Fei, Dongqiong; Muhammad, Azharuddin

    2017-08-08

    Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially

  19. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

    PubMed

    Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H

    1990-03-01

    Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.

  20. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting.

    PubMed

    Morris, Alexandra; Murrell, Ebony G; Klein, Talan; Noden, Bruce H

    2016-07-01

    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820 μg/m(2) of glyphosate and 0.74, 1.49, 2.24 μL imazamox/m(2)), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth.

  2. AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Hansen, Immo A.; Boudko, Dmitri Y.; Shiao, Shin-Hong; Voronov, Dmitri A.; Meleshkevitch, Ella A.; Drake, Lisa L.; Aguirre, Sarah E.; Fox, Jeffrey M.; Attardo, Geoffrey M.; Raikhel, Alexander S.

    2011-01-01

    Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies and the yellow fever mosquito, Aedes aegypti. However, the transport function of these proteins was unknown. We report expression and functional characterization of AaCAT1, cloned from the fat body of A. aegypti. Expression of AaCAT1 transcript and protein undergoes dynamic changes during postembryonic development of the mosquito. Transcript expression was especially high in the third and fourth larval stages; however, the AaCAT1 protein was detected only in pupa and adult stages. Functional expression and analysis of AaCAT1 in Xenopus oocytes revealed that it acts as a sodium-independent cationic amino acid transporter, with unique selectivity to l-histidine at neutral pH (K0.5l-His = 0.34 ± 0.07 mm, pH 7.2). Acidification to pH 6.2 dramatically increases AaCAT1-specific His+-induced current. RNAi-mediated silencing of AaCAT1 reduces egg yield of subsequent ovipositions. Our data show that AaCAT1 has notable differences in its transport mechanism when compared with related mammalian cationic amino acid transporters. It may execute histidine-specific transport and signaling in mosquito tissues. PMID:21262963

  3. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  4. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  5. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  6. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  7. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-08-01

    In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  8. Classification of immature mosquito species according to characteristics of the larval habitat in the subtropical province of Chaco, Argentina.

    PubMed

    Stein, Marina; Ludueña-Almeida, Francisco; Willener, Juana Alicia; Almirón, Walter Ricardo

    2011-06-01

    To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitat's water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.

  9. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  10. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  11. The toxicity of a lipid transfer protein (Cc-LTP1) from Coffea canephora Seeds on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    Zottich, Umberto; Da Cunha, Maura; Dias, Germana B; Rabelo, Guilherme R; Oliveira, Antonia Elenir A; Carvalho, André O; Fernandes, Kátia Valevski S; do Nascimento, Viviane V; Gomes, Valdirene M

    2014-10-01

    In this work, we analyzed the effects of coffee seed proteins, especially Cc-LTP1 on the larval development of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), a bruchid pest of beans and the most important insect pest of Vigna unguiculata (L.) Walp. Artificial seed assay, which incorporated the F/0-90 fraction from Coffea canephora seeds, resulted in the reduction of oviposition and caused an inhibition of C. maculatus larval development in a dose-dependent manner. The F/0-90 fraction used at a 4 % concentration resulted in the survival of no larvae. The purified Cc-LTP1, at a concentration of 0.5 %, also demonstrated effective inhibition of larval development, reducing both females oviposition and the weight and number of larvae. Cc-LTP1 was also able to inhibit the C. maculatus gut α-amylase activity, and immunolabeling by an anti-LTP serum was observed in the midgut tissues of the C. maculatus larvae. Cc-LTP1 has shown binding affinity towards microvillar cells, endoplasmic reticulum and mitochondria, as demonstrated by micrographic images taken by a transmission electron microscope. The results from this study indicate that Cc-LTP1 has insecticidal actions toward C. maculatus and exerts anti-nutritional effects with direct actions on intestinal tissues.

  12. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori

    PubMed Central

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. PMID:26163666

  13. Building Infestation Index for Aedes aegypti and occurrence of dengue fever in the municipality of Foz do Iguaçu, Paraná, Brazil, from 2001 to 2016.

    PubMed

    Rivas, Açucena Veleh; Defante, Renata; Delai, Robson Michael; Rios, Jean Avemir; Britto, André da Silva; Leandro, André de Souza; Gonçalves, Daniela Dib

    2018-01-01

    the Building Infestation Index (BII) uses the Rapid Assay of the Larval Index for Aedes aegypti (LIRAa) to express the relationship between positive and surveyed properties. We evaluated LIRAa and the relationship between the BII and climate variables for dengue cases in Foz do Iguaçu municipality, Paraná. Spearman's correlations for mean precipitation, mean temperature, BII, and dengue cases (time lag). positive correlations between BII and cases, and mean temperature and cases at two months. Weak correlation between precipitation and cases at three months. LIRAa and climate variables correlate with dengue cases.

  14. A novel quick transendoscopic enteral tubing in mid-gut: technique and training with video.

    PubMed

    Long, Chuyan; Yu, Yan; Cui, Bota; Jagessar, Sabreen Abdul Rahman; Zhang, Jie; Ji, Guozhong; Huang, Guangming; Zhang, Faming

    2018-03-13

    This study aimed to evaluate the feasibility, safety, and value of a quick technique for transendoscopic enteral tubing (TET) through mid-gut. A prospective interventional study was performed in a single center. A TET tube was inserted into mid-gut through the nasal orifice and fixed on the pylorus wall by one tiny titanium endoscopic clip under anesthesia. The feasibility, safety, success rate, and satisfaction with TET placement were evaluated for enteral nutrition or fecal microbiota transplantation. A total of 86 patients underwent mid-gut TET. The success rate of the TET procedure was 98.8% (85/86). Mean tubing time of the TET procedure was 4.2 ± 1.9 min. 10 cases of procedure was enough for training of general endoscopist to shorten the procedure time (7.0 min vs 4.0 min, p < 0.05). 97.7% (84/86) of patients were satisfied with the TET placement. Procedure-related and tube-related adverse events were observed in 8.1% (7/86) and 7.0% (6/86) of patients respectively. There were no moderate to severe adverse events during tube extubation. TET through mid-gut is a novel, convenient, reliable and safe procedure for mid-gut administration with a high degree of patient satisfaction. This research was retrospectively registered with clinicaltrials.gov. Trial registration date: 29th November 2017. NCT03335982 .

  15. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    PubMed

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  16. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    PubMed

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  17. Identification of Essential Containers for Aedes Larval Breeding to Control Dengue in Dhaka, Bangladesh.

    PubMed

    Ferdousi, Farhana; Yoshimatsu, Shoji; Ma, Enbo; Sohel, Nazmul; Wagatsuma, Yukiko

    2015-12-01

    Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted.

  18. Identification of Essential Containers for Aedes Larval Breeding to Control Dengue in Dhaka, Bangladesh

    PubMed Central

    Ferdousi, Farhana; Yoshimatsu, Shoji; Ma, Enbo; Sohel, Nazmul; Wagatsuma, Yukiko

    2015-01-01

    Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted. PMID:26865829

  19. Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue

    PubMed Central

    Jeffery, Jason A. L.; Thi Yen, Nguyen; Nam, Vu Sinh; Nghia, Le Trung; Hoffmann, Ary A.; Kay, Brian H.; Ryan, Peter A.

    2009-01-01

    Background A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population. Methodology/Principal Findings In Tri Nguyen village (611 households) on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult) abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8–6.7∶1 for gravid females (and similarly aged males) or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2–78 wMelPop-infected gravid females and similarly aged males per house, or 7–290 infected teneral female and male mosquitoes per house. Conclusions/Significance Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that there was no

  20. Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera: Cimicidae).

    PubMed

    Rost-Roszkowska, M M; Vilimova, J; Włodarczyk, A; Sonakowska, L; Kamińska, K; Kaszuba, F; Marchewka, A; Sadílek, D

    2017-02-01

    Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.

  1. Does autophagy in the midgut epithelium of centipedes depend on the day/night cycle?

    PubMed

    Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K; Kszuk-Jendrysik, M

    2015-01-01

    The midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata, is composed of digestive, secretory and regenerative cells. In L. forficatus, the autophagy occurred only in the cytoplasm of the digestive cells as a sporadic process, while in S. cingulata, it occurred intensively in the digestive, secretory and regenerative cells of the midgut epithelium. In both of the species that were analyzed, this process proceeded in a continuous manner and did not depend on the day/night cycle. Ultrastructural analysis showed that the autophagosomes and autolysosomes were located mainly in the apical and perinuclear cytoplasm of the digestive cells in L. forficatus. However, in S. cingulata, the entire cytoplasm was filled with autophagosomes and autolysosomes. Initially the membranes of phagophores surround organelles during autophagosome formation. Autolysosomes result from the fusion of autophagosomes and lysosomes. Residual bodies which are the last stage of autophagy were released into the midgut lumen due to necrosis. Autophagy in the midgut epithelia that were analyzed was confirmed using acid phosphatase and mono-dansyl-cadaverine stainings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Prolidase is a critical enzyme for complete gliadin digestion in Tenebrio molitor larvae

    USDA-ARS?s Scientific Manuscript database

    Prolidase is a proline specific metallopeptidase that cleaves imidodipeptides with C-terminal Pro residue. Prolidase was purified and characterized from the Tenebrio molitor larval midgut. The enzyme was localized in the soluble fraction of posterior midgut tissues, corresponding to a predicted cyto...

  3. Identification of midgut proteins that are differentially expressed in trypanosome-susceptible and normal tsetse flies (Glossina morsitans morsitans).

    PubMed

    Haddow, J D; Haines, L R; Gooding, R H; Olafson, R W; Pearson, T W

    2005-05-01

    Molecules in the midgut of tsetse flies (Diptera: Glossinidiae) are thought to play important roles in the life cycle of African trypanosomes by influencing initial parasite establishment and subsequent differentiation events that ultimately lead to maturation of mammal-infective trypanosomes. The molecular composition of the tsetse midgut is, therefore, of critical importance to disease transmission by these medically important vectors. In this study we compared protein expression profiles of midguts of the salmon mutant and wild type Glossina morsitans morsitans Westwood that display marked differences in their susceptibility to infection by African trypanosomes. Isotope coded affinity tag (ICAT) technology was used to identify 207 proteins including 17 that were up regulated and nine that were down regulated in the salmon mutants. Several of the up regulated molecules were previously described as tsetse midgut or salivary gland proteins. Of particular interest was the up regulation in the salmon flies of tsetse midgut EP protein, a recently described molecule with lectin-like activity that was also found to be induced in tsetse by bacterial challenge. The up regulation of the EP protein in midguts of salmon mutants was confirmed by two-dimensional gel electrophoresis and tandem mass spectrometry.

  4. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae.

    PubMed

    Padmanabha, H; Lord, C C; Lounibos, L P

    2011-12-01

    Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  5. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    PubMed

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control. © 2012 The Royal Entomological Society.

  6. Evaluation of Household Bleach as an Ovicide for the Control of Aedes Aegypti

    PubMed Central

    Mackay, Andrew J.; Amador, Manuel; Felix, Gilberto; Acevedo, Veronica; Barrera, Roberto

    2015-01-01

    Accumulations of dormant eggs in container habitats allow Aedes aegypti populations to survive harsh environmental conditions and may frustrate control interventions directed at larval and adult life stages. While sodium hypochlorite solutions (NaOCl) have long been recognized as ovicides for use against dengue vectors, the susceptibility of eggs to spray applications has not been robustly evaluated on substrate materials representative of the most frequently utilized artificial container habitats. Experiments were performed under controlled and natural conditions by applying dilutions of household bleach (52.5 ppt NaOCl) as a spray to eggs on plastic, rubber, and concrete surfaces, with and without a smectite clay thickener. Laboratory assays identified the minimum NaOCl concentrations required to eliminate eggs on plastic (10 ppt), rubber (20 ppt) and concrete (20 ppt) surfaces. Addition of smectite clay reduced the minimum effective concentration to 10 ppt NaOCl for all 3 substrates. A minimum exposure period of 24 h was required to completely eliminate egg viability on concrete surfaces, even at the highest NaOCl concentration (52.5 ppt). Field experiments verified that spray application of a 1:3 dilution of household bleach mixed with smectite clay can reduce egg hatching by ≥ 99% in shaded and sun-exposed plastic containers. Similarly, 4:1 dilution of household bleach (with or without smectite clay) eliminated ≥ 98% of eggs from concrete surfaces in outdoor, water-filled drums. In this study, we propose a practical, effective and safe strategy for using household bleach to eliminate Ae. aegypti eggs in a range of artificial container habitats. PMID:25843179

  7. [Segregation of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) niche under laboratory conditions].

    PubMed

    Leyva, Maureen; Marquetti, María del Carmen; Montada, Domingo

    2012-01-01

    Aedes and Culex are two mosquito genuses of epidemiological importance, being Aedes aegypti and Culex quinquefasciatus the predominant ones in urban areas. It is common to find both of them associated in the same breeding sites where they share a lot of things despite the literature. To determine if there is inter-specific competence between these two species when they co-exist in a single reservoir under lab conditions. First staging larvae, which had been kept in the insect storage deposit of the Vector Control Department, were used. The three bioassays used 2 000 mL, 1 000 mL and 500 mL of dechlorinated water. The larvae were daily fed on with 0.7 g of fish flour; temperature was 26 degrees C +/- 2 degrees C. The larval cycle for Aedes aegypti was 6 days in crossbreds and in controls whereas it was 8 days for Culex quinquefasciatus, regardless of variation in the number of individuals of each species and in each bioassay. The larvae of each species completely developed since food was always provided and the living space remained the same. It should be noticed that the water was not totally translucent but no pollution indicators were observed. The sexual index for each species was determined after adult vectors emerged, with 1:1 ratio for both sexes approximately. Under lab conditions, these species did not compete one against the other for either food or living space and there was segregation of niche that favored their co-existence.

  8. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts.

    PubMed

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W; Eyun, Seong-Il; Noriega, Daniel D; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.

  9. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts

    PubMed Central

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W.; Eyun, Seong-il; Noriega, Daniel D.; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest. PMID:26949943

  10. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico.

    PubMed

    Vazquez-Prokopec, Gonzalo M; Medina-Barreiro, Anuar; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Correa-Morales, Fabian; Guillermo-May, Guillermo; Bibiano-Marín, Wilbert; Uc-Puc, Valentín; Geded-Moreno, Eduardo; Vadillo-Sánchez, José; Palacio-Vargas, Jorge; Ritchie, Scott A; Lenhart, Audrey; Manrique-Saide, Pablo

    2017-06-01

    The operational impact of deltamethrin resistance on the efficacy of indoor insecticide applications to control Aedes aegypti was evaluated in Merida, Mexico. A randomized controlled trial quantified the efficacy of indoor residual spraying (IRS) against adult Ae. aegypti in houses treated with either deltamethrin (to which local Ae. aegypti expressed a high degree of resistance) or bendiocarb (to which local Ae. aegypti were fully susceptible) as compared to untreated control houses. All adult Ae. aegypti infestation indices during 3 months post-spraying were significantly lower in houses treated with bendiocarb compared to untreated houses (odds ratio <0.75; incidence rate ratio < 0.65) whereas no statistically significant difference was detected between the untreated and the deltamethrin-treated houses. On average, bendiocarb spraying reduced Ae. aegypti abundance by 60% during a 3-month period. Results demonstrate that vector control efficacy can be significantly compromised when the insecticide resistance status of Ae. aegypti populations is not taken into consideration.

  11. Recurrent intestinal volvulus in midgut malrotation causing acute bowel obstruction: A case report

    PubMed Central

    Sheikh, Fayed; Balarajah, Vickna; Ayantunde, Abraham Abiodun

    2013-01-01

    Intestinal malrotation occurs when there is a disruption in the normal embryological development of the bowel. The majority of patients present with clinical features in childhood, though rarely a first presentation can take place in adulthood. Recurrent bowel obstruction in patients with previous abdominal operation for midgut malrotation is mostly due to adhesions but very few reported cases have been due to recurrent volvulus. We present the case of a 22-year-old gentleman who had laparotomy in childhood for small bowel volvulus and then presented with acute bowel obstruction. Preoperative computerised tomography scan showed small bowel obstruction and features in keeping with midgut malrotation. Emergency laparotomy findings confirmed midgut malrotation with absent appendix, abnormal location of caecum, ascending colon and small bowel. In addition, there were small bowel volvulus and a segment of terminal ileal stricture. Limited right hemicolectomy was performed with excellent postoperative recovery. This case is presented to illustrate a rare occurrence and raise an awareness of the possibility of dreadful recurrent volvulus even several years following an initial Ladd’s procedure for midgut malrotation. Therefore, one will need to exercise a high index of suspicion and this becomes very crucial in order to ensure prompt surgical intervention and thereby preventing an attendant bowel ischaemia with its associated high fatality. PMID:23556060

  12. Recurrent intestinal volvulus in midgut malrotation causing acute bowel obstruction: A case report.

    PubMed

    Sheikh, Fayed; Balarajah, Vickna; Ayantunde, Abraham Abiodun

    2013-03-27

    Intestinal malrotation occurs when there is a disruption in the normal embryological development of the bowel. The majority of patients present with clinical features in childhood, though rarely a first presentation can take place in adulthood. Recurrent bowel obstruction in patients with previous abdominal operation for midgut malrotation is mostly due to adhesions but very few reported cases have been due to recurrent volvulus. We present the case of a 22-year-old gentleman who had laparotomy in childhood for small bowel volvulus and then presented with acute bowel obstruction. Preoperative computerised tomography scan showed small bowel obstruction and features in keeping with midgut malrotation. Emergency laparotomy findings confirmed midgut malrotation with absent appendix, abnormal location of caecum, ascending colon and small bowel. In addition, there were small bowel volvulus and a segment of terminal ileal stricture. Limited right hemicolectomy was performed with excellent postoperative recovery. This case is presented to illustrate a rare occurrence and raise an awareness of the possibility of dreadful recurrent volvulus even several years following an initial Ladd's procedure for midgut malrotation. Therefore, one will need to exercise a high index of suspicion and this becomes very crucial in order to ensure prompt surgical intervention and thereby preventing an attendant bowel ischaemia with its associated high fatality.

  13. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  14. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation.

    PubMed

    Mikani, Azam; Wang, Qiu-Shi; Takeda, Makio

    2012-03-01

    Immunohistochemical reactivity against short neuropeptide F (sNPF) was observed in the brain-corpus cardiacum and midgut paraneurons of the American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells in the midgut epithelium but the refeeding decreased the number in 3h. Dramatic rises in sNPF contents in the midgut epithelium and hemolymph of roaches starved for 4 weeks were confirmed by ELISA. Starvation for 4 weeks reduced α-amylase, protease and lipase activities in the midgut of P. americana but refeeding restored these to high levels. Co-incubation of dissected midgut with sNPF at physiological concentrations inhibited α-amylase, protease and lipase activities. sNPF injection into the hemocoel led to a decrease in α-amylase, protease and lipase activities, whereas PBS injection had no effects. The injection of d-(+)-trehalose and l-proline into the hemocoel of decapitated adult male cockroaches that had been starved for 4 weeks had no effect on these digestive enzymes. However, injection into the hemocoel of head-intact starved cockroaches stimulated digestive activity. Injection of d-(+)-trehalose and l-proline into the lumen of decapitated cockroaches that had been starved for 4 weeks increased enzymes activities and suppressed sNPF in the midgut. Our data indicate that sNPF from the midgut paraneurons suppresses α-amylase, protease and lipase activities during starvation. Injection of d-(+)-trehalose/l-proline into the hemocoel of head-intact starved cockroach decreased the hemolymph sNPF content, which suggests that sNPF could be one of the brain factors, demonstrating brain-midgut interplay in the regulation of digestive activities and possibly nutrition-associated behavioral modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori.

    PubMed

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations.

    PubMed

    Martins, Ademir Jesus; Ribeiro, Camila Dutra e Mello; Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost.

  17. Effect of Insecticide Resistance on Development, Longevity and Reproduction of Field or Laboratory Selected Aedes aegypti Populations

    PubMed Central

    Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost. PMID:22431967

  18. Neem oil (Azadirachta indica A. Juss) affects the ultrastructure of the midgut muscle of Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Pinheiro, Patricia Fernanda Felipe; Santos, Daniela Carvalho Dos

    2017-01-01

    Cytomorphological changes, by means of ultrastructural analyses, have been used to determine the effects of the biopesticide neem oil on the muscle fibers of the midgut of the predator Ceraeochrysa claveri. Insects, throughout the larval period, were fed eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% or 2%. In the adult stage, the midgut was collected from female insects at two stages of adulthood (newly emerged and at the start of oviposition) and processed for ultrastructural analyses. In the newly emerged insects obtained from neem oil treatments, muscle fibers showed a reduction of myofilaments as well as swollen mitochondria and an accumulation of membranous structures. Muscular fibers responded to those cellular injuries with the initiation of detoxification mechanisms, in which acid phosphatase activity was observed in large vesicles located at the periphery of the muscle fiber. At the start of oviposition in the neem oil treated insects, muscle fibers exhibited signs of degeneration, containing vacant areas in which contractile myofilaments were reduced or completely absent, and an accumulation of myelin structures, a dilatation of cisternae of sarcoplasmic reticulum, and mitochondrial swelling and cristolysis were observed. Enzymatic activity for acid phosphatase was present in large vesicles, indicating that mechanisms of lytic activity during the cell injury were utilized but insufficient for recovery from all the cellular damage. The results indicate that the visceral muscle layer is also the target of action of neem oil, and the cytotoxic effects observed may compromise the function of that organ. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection. The domesticated silkworm, Bombyx mori, is renowned for silk production as well as being a traditional lepidopteron model insect served as a subject for morphological, genetic, physiological, and developmental studies. Bombyx mori cytoplasmic polyhedrosis

  20. Arylphorin is a mitogen in the Heliothis virescens midgut cell secretome upon Cry1Ac intoxication

    USDA-ARS?s Scientific Manuscript database

    Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) target cells in the midgut epithelium of susceptible larvae. While the mode of action of Cry toxins has been extensively investigated, the midgut response to Cry intoxication and its regulation are not well ch...

  1. Field trial on a novel control method for the dengue vector, Aedes aegypti by the systematic use of Olyset® Net and pyriproxyfen in Southern Vietnam

    PubMed Central

    2013-01-01

    Background Jars, tanks, and drums provide favorable rearing/breeding sites for Aedes aegypti in Vietnam. However, the use of insecticides to control mosquitoes at such breeding sites has not been approved in Vietnam since they are also often sources of drinking water, making larval vector control difficult. Mosquito nets pre-treated with long-lasting insecticide treated nets (LLITNs) form an effective measure for malaria control. We examined changes in the abundance of immature Aedes aegypti to evaluate the efficacy of covering ceramic jars with lids comprising one type of LLITN, Olyset® Net, in inhibiting oviposition by adult females, and to evaluate the effect of treating other breeding containers, such as flower vases, inside and around the outside of houses with a slow-release pyriproxyfen formulation to kill pupae. Methods We selected 313 households for the trial and 363 households for the control in Tan Chanh, Long An province, Vietnam. In the trial area, Olyset® Net lids were used to cover five major types of water container (ceramic jars, cylindrical concrete tanks, other concrete tanks, plastic drums, and plastic buckets), while pyriproxyfen was used to treat flower vases and ant traps. We also monitored dengue virus transmission by measuring anti-dengue IgM and IgG levels in healthy residents in both control and trial areas to estimate the effectiveness of Olyset® Net at controlling the dengue vector, Aedes aegypti. Results The container-index and house-index for immature Ae. aegypti fell steeply one month after treatment in the trial area. Lids with Olyset® Net that fit container openings clearly seemed to reduce the presence of immature Ae. aegypti as the density of pupae decreased 1 month after treatment in the trial area. Pyriproxyfen was also effective at killing pupae in the water containers in the trial area. Although the dengue seroconversion rate was not influenced by Olyset® Net, it was lower in two-five year old children when compared to

  2. Field trial on a novel control method for the dengue vector, Aedes aegypti by the systematic use of Olyset® Net and pyriproxyfen in Southern Vietnam.

    PubMed

    Tsunoda, Takashi; Kawada, Hitoshi; Huynh, Trang T T; Luu, Loan Le; Le, San Hoang; Tran, Huu Ngoc; Vu, Huong Thi Que; Le, Hieu Minh; Hasebe, Futoshi; Tsuzuki, Ataru; Takagi, Masahiro

    2013-01-11

    Jars, tanks, and drums provide favorable rearing/breeding sites for Aedes aegypti in Vietnam. However, the use of insecticides to control mosquitoes at such breeding sites has not been approved in Vietnam since they are also often sources of drinking water, making larval vector control difficult. Mosquito nets pre-treated with long-lasting insecticide treated nets (LLITNs) form an effective measure for malaria control. We examined changes in the abundance of immature Aedes aegypti to evaluate the efficacy of covering ceramic jars with lids comprising one type of LLITN, Olyset® Net, in inhibiting oviposition by adult females, and to evaluate the effect of treating other breeding containers, such as flower vases, inside and around the outside of houses with a slow-release pyriproxyfen formulation to kill pupae. We selected 313 households for the trial and 363 households for the control in Tan Chanh, Long An province, Vietnam. In the trial area, Olyset® Net lids were used to cover five major types of water container (ceramic jars, cylindrical concrete tanks, other concrete tanks, plastic drums, and plastic buckets), while pyriproxyfen was used to treat flower vases and ant traps. We also monitored dengue virus transmission by measuring anti-dengue IgM and IgG levels in healthy residents in both control and trial areas to estimate the effectiveness of Olyset® Net at controlling the dengue vector, Aedes aegypti. The container-index and house-index for immature Ae. aegypti fell steeply one month after treatment in the trial area. Lids with Olyset® Net that fit container openings clearly seemed to reduce the presence of immature Ae. aegypti as the density of pupae decreased 1 month after treatment in the trial area. Pyriproxyfen was also effective at killing pupae in the water containers in the trial area. Although the dengue seroconversion rate was not influenced by Olyset® Net, it was lower in two-five year old children when compared to older children and adults in

  3. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  4. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration.

    PubMed

    Rost-Roszkowska, M M; Kszuk-Jendrysik, M; Marchewka, A; Poprawa, I

    2018-01-01

    The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells-digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.

  5. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti.

    PubMed

    Kim, Soon-Il; Ahn, Young-Joon

    2017-05-04

    The yellow fever mosquito, Aedes aegypti, and the common house mosquito, Culex pipiens pallens, transmit dengue fever and West Nile virus diseases, respectively. This study was conducted to determine the toxicity of the three lignans (-)-asarinin, sesamin and (+)-xanthoxylol-γ,γ-dimethylallylether (XDA), and the alkaloid pellitorine from Zanthoxylum piperitum (Rutaceae) bark to third-instar larvae from insecticide-susceptible C. pipiens pallens and Ae. aegypti as well as wild C. pipiens pallens resistant to deltamethrin, cyfluthrin, fenthion, and temephos. The toxicities of all isolates were compared with those of mosquito larvicide temephos. LC 50 values for each species and their treatments were significantly different from one another when their 95% confidence intervals did not overlap. XDA was isolated from Z. piperitum as a new larvicidal principle. XDA (LC 50 , 0.27 and 0.24 mg/l) was 4, 53, and 144 times and 4, 100, and 117 times more toxic than pellitorine, sesamin, and asarinin toward larvae from susceptible C. pipiens pallens and Ae. aegypti, respectively. Overall, all the isolates were less toxic than temephos (LC 50 , 0.006 and 0.009 mg/l). These constituents did not differ in toxicity to larvae from the two Culex strains. The present finding indicates that the lignans and alkaloid and the insecticides do not share a common mode of larvicidal action or elicit cross-resistance. Naturally occurring Z. piperitum bark-derived compounds, particularly XDA, merit further study as potential mosquito larval control agents or as lead compounds for the control of insecticide-resistant mosquito populations.

  6. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.

  7. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  8. An unexpected cause of small bowel obstruction in an adult patient: midgut volvulus

    PubMed Central

    Söker, Gökhan; Yılmaz, Cengiz; Karateke, Faruk; Gülek, Bozkurt

    2014-01-01

    The most important complication of intestinal malrotation is midgut volvulus because it may lead to intestinal ischaemia and necrosis. A 29-year-old male patient was admitted to the emergency department with abdominal pain. Ultrasonography (US), colour Doppler ultrasonography (CDUS), CT and barium studies were carried out. On US and CDUS, twisting of intestinal segments around the superior mesenteric artery (SMA) and superior mesenteric vein (SMV) and alteration of the SMA–SMV relationship were detected. CT demonstrated that the small intestine was making a rotation around the SMA and SMV, which amounted to more than 360°. The upper gastrointestinal barium series revealed a corkscrew appearance of the duodenum and proximal jejunum, which is a pathognomonic finding of midgut volvulus. Prior knowledge of characteristic imaging findings of midgut volvulus is essential in order to reach proper diagnosis and establish proper treatment before the development of intestinal ischaemia and necrosis. PMID:24811563

  9. Transovarial transmission of dengue 1 virus in Aedes aegypti larvae: real-time PCR analysis in a Brazilian city with high mosquito population density.

    PubMed

    Moraes, Alexsander; Cortelli, Filipe C; Miranda, Taís B; Aquino, Davi R; Cortelli, José R; Guimarães, Maria Isabel A; Costa, Fernando O; Cortelli, Sheila C

    2018-06-01

    Transovarial transmission is among the reported factors able to influence environmental maintenance of dengue virus (DENV). Endemic areas with active transmission of dengue are suitable for studying transovarial transmission. Brazil is a country where dengue is endemic and where DENV-1 is the most common disease-related virus serotype. This study aimed to identify transovarial transmission of DENV-1 in Aedes aegypti larvae by reverse-transcriptase nested real-time polymerase chain reaction. Between March and October 2016, Culicidae larvae were collected using traps in 3 locations in Taubaté, São Paulo, Brazil, which has a high occurrence of dengue. The collected larvae were sacrificed in the 3rd or 4th larval stage, classified, and stored at -20 °C. The A. aegypti larvae samples (n = 910) were separated into 91 pools of 10 specimens each from which RNA was extracted, reverse transcribed into cDNA, and analyzed by nested qPCR. None of the pools tested positive for DENV-1. Due to the absence of detectable virus in the evaluated samples, we concluded that transovarial transmission may not be the primary mechanism for maintenance of DENV-1 in this particular environment.

  10. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. © 2012 The Royal Entomological Society.

  11. Prolidase is a critical enzyme for complete gliadin digestion in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Zhuzhikov, Dmitry P; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2017-08-01

    Prolidase is a proline-specific metallopeptidase that cleaves imidodipeptides with C-terminal Pro residue. Prolidase was purified and characterized from the Tenebrio molitor larval midgut. The enzyme was localized in the soluble fraction of posterior midgut tissues, corresponding to a predicted cytoplasmic localization of prolidase according to the structure of the mRNA transcript. Expression of genes encoding prolidase and the major digestive proline-specific peptidase (PSP)-dipeptidyl peptidase 4-were similar. The pH optimum of T. molitor prolidase was 7.5, and the enzyme was inhibited by Z-Pro, indicating that it belongs to type I prolidases. In mammals, prolidase is particularly important in the catabolism of a proline-rich protein-collagen. We propose that T. molitor larval prolidase is a critical enzyme for the final stages of digestion of dietary proline-rich gliadins, providing hydrolysis of imidodipeptides in the cytoplasm of midgut epithelial cells. We propose that the products of hydrolysis are absorbed from the luminal contents by peptide transporters, which we have annotated in the T. molitor larval gut transcriptome. The origin of prolidase substrates in the insect midgut is discussed in the context of overall success of grain feeding insects. © 2017 Wiley Periodicals, Inc.

  12. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    de Sá, Leonardo Figueira Reis; Wermelinger, Tierry Torres; Ribeiro, Elane da Silva; Gravina, Geraldo de Amaral; Fernandes, Kátia Valevski Sales; Xavier-Filho, José; Venancio, Thiago Motta; Rezende, Gustavo Lazzaro; Oliveira, Antonia Elenir Amancio

    2014-01-01

    Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  14. Larvicidal Efficacy of Different Plant Parts of Railway Creeper, Ipomoea cairica Extract Against Dengue Vector Mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    AhbiRami, Rattanam; Zuharah, Wan Fatma; Thiagaletchumi, Maniam; Subramaniam, Sreeramanan; Sundarasekar, Jeevandran

    2014-01-01

    Abstract Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts ( F  = 5.71, df = 2, P  < 0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC 50 of 101.94 ppm followed by Ae. albopictus with LC 50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC 50 value compared with Ae. albopictus ( F  = 8.83, df = 1, P  < 0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I

  15. Potential of a Northern Population of Aedes vexans (Diptera: Culicidae) to Transmit Zika Virus.

    PubMed

    O'Donnell, Kyle L; Bixby, Mckenzie A; Morin, Kelsey J; Bradley, David S; Vaughan, Jefferson A

    2017-09-01

    Zika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme.

    PubMed

    Espinosa, Manuel O; Polop, Francisco; Rotela, Camilo H; Abril, Marcelo; Scavuzzo, Carlos M

    2016-11-21

    The main objective of this study was to obtain and analyse the space-time dynamics of Aedes aegypti breeding sites in Clorinda City, Formosa Province, Argentina coupled with landscape analysis using the maximum entropy approach in order to generate a dengue vector niche model. In urban areas, without vector control activities, 12 entomologic (larval) samplings were performed during three years (October 2011 to October 2014). The entomologic surveillance area represented 16,511 houses. Predictive models for Aedes distribution were developed using vector breeding abundance data, density analysis, clustering and geoprocessing techniques coupled with Earth observation satellite data. The spatial analysis showed a vector spatial distribution pattern with clusters of high density in the central region of Clorinda with a well-defined high-risk area in the western part of the city. It also showed a differential temporal behaviour among different areas, which could have implications for risk models and control strategies at the urban scale. The niche model obtained for Ae. aegypti, based on only one year of field data, showed that 85.8% of the distribution of breeding sites is explained by the percentage of water supply (48.2%), urban distribution (33.2%), and the percentage of urban coverage (4.4%). The consequences for the development of control strategies are discussed with reference to the results obtained using distribution maps based on environmental variables.

  17. Purification and partial characterization of an aminopeptidase from the midgut tissue of Dysdercus peruvianus.

    PubMed

    Costa, Inês A; Samuels, Richard I; Bifano, Thaís D; Terra, Walter R; Silva, Carlos P

    2011-03-01

    The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106kDa (gel filtration) and 55kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, AβNA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3, Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks

    PubMed Central

    Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr

    2016-01-01

    Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139

  19. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  20. Diaphorina citri Nymphs Are Resistant to Morphological Changes Induced by "Candidatus Liberibacter asiaticus" in Midgut Epithelial Cells.

    PubMed

    Mann, Marina; Fattah-Hosseini, Somayeh; Ammar, El-Desouky; Stange, Richard; Warrick, EricaRose; Sturgeon, Kasie; Shatters, Robert; Heck, Michelle

    2018-04-01

    " Candidatus Liberibacter asiaticus" is the causative bacterium associated with citrus greening disease. " Ca Liberibacter asiaticus" is transmitted by Diaphorina citri more efficiently when it is acquired by nymphs rather than adults. Why this occurs is not known. We compared midguts of D. citri insects reared on healthy or " Ca Liberibacter asiaticus"-infected citrus trees using quantitative PCR, confocal microscopy, and mitochondrial superoxide staining for evidence of oxidative stress. Consistent with its classification as propagative, " Ca Liberibacter asiaticus" titers were higher in adults than in nymphs. Our previous work showed that adult D. citri insects have basal levels of karyorrhexis (fragmentation of the nucleus) in midgut epithelial cells, which is increased in severity and frequency in response to " Ca Liberibacter asiaticus." Here, we show that nymphs exhibit lower levels of early-stage karyorrhexis than adults and are refractory to the induction of advanced karyorrhexis by " Ca Liberibacter asiaticus" in the midgut epithelium. MitoSox Red staining showed that guts of infected adults, particularly males, experienced oxidative stress in response to " Ca Liberibacter asiaticus." A positive correlation between the titers of " Ca Liberibacter asiaticus" and the Wolbachia endosymbiont was observed in adult and nymph midguts, suggesting an interplay between these bacteria during development. We hypothesize that the resistance of the nymph midgut to late-stage karyorrhexis through as yet unknown molecular mechanisms benefits " Ca Liberibacter asiaticus" for efficient invasion of midgut epithelial cells, which may be a factor explaining the developmental dependency of " Ca Liberibacter asiaticus" acquisition by the vector.

  1. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    PubMed

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    NASA Astrophysics Data System (ADS)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  3. Biological Activity of Bacillus thuringiensis and Associated Toxins against the Asian Longhorned Beetle (Coleoptera: Cerambycidae)

    Treesearch

    Vincent D' amico; John D. Podgwaite; Sara Duke; Sara Duke

    2004-01-01

    Bacillus thuringiensis Berliner var. tenebrionis and B. thuringiensis toxins were assayed against larval and adult Asian longhorned beetles, Anoplophora glabripennis (A. glabripennis). Preliminary in vitro assays showed some toxins to be active on whole midgut preparations in voltage clamp assays and in assays on brush border membrane vesicles formed from midgut...

  4. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.

    PubMed

    Basseri, Hamid R; Javazm, Mahdi Salari; Farivar, Leila; Abai, Mohammad R

    2016-04-01

    Potential targets of Plasmodium ookinetes at the mosquito midgut walls were investigated in relation to interfering malarial transmission. In this study, the essential application of Quantum Dots (QDs) was used to examine the interaction between Plasmodium berghei ookinetes and the Anopheles stephensi midgut, based on lectin-carbohydrate recognition. Two significant lectins were utilized to determine this interaction. Two QDs, cadmium telluride (CdTe)/CdS and cadmium selenide (CdSe)/CdS, were employed in staining Plasmodium ookinete to study its interaction in the midgut of the mosquito vector in vivo. Concurrently, two lectins, wheat germ agglutinin (WGA) and concanavalin A (Con A), were inadvertently exploited to mask lectin binding sites between ookinetes and mosquito midgut cells. The numbers of ookinetes in both lumen and epithelial cells were eventually counted, following adequate preparation of wax sections extracted from whole midgut, and subsequent examination using a differential interference contrast a fluorescence microscopic technique. Interestingly, we detected that neither of the QDs mutated ookinete invasion into the midgut cells of the investigated mosquitoes. QD staining of ookinetes remained permanent despite the effective embedding procedure. The massive binding potency of ookinetes to midgut cells of the cross-examined mosquitoes undoubtedly revealed that Con A did not interrupt ookinete penetration into the midgut wall. In contrast, WGA inhibited ookinete invasion into the midgut cells. The results proved that QD nanoparticles are biocompatible, non-toxic to P. berghei and stable to photobleaching. The QDs staining, which was successfully implemented for ookinete labelling, is a simple and effective tool which plays a crucial role in bioimaging including the study of parasite-vector interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucatán State, México, with a summary of published collection records for Ae. cozumelensis.

    PubMed

    García-Rejón, Julián E; López-Uribe, Mildred P; Loroño-Pino, María Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; López-Uribe, Genny M; Coba-Tún, Carlos; Baak-Baak, Carlos M; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black, William C; Beaty, Barry J; Eisen, Lars

    2012-12-01

    We collected mosquito immatures from artificial containers during 2010-2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires, and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México's Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur. © 2012 The Society for Vector Ecology.

  6. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  7. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.

    PubMed

    Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain

    2015-11-01

    The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, J.K.; Molyneux, D.H.; Wallbanks, K.R.

    1989-05-01

    In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage wasmore » atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection.« less

  9. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  10. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua.

    PubMed

    Lu, Keyu; Gu, Yuqing; Liu, Xiaoping; Lin, Yi; Yu, Xiao-Qiang

    2017-03-15

    Cry toxins are insecticidal toxin proteins produced by a spore-forming Gram-positive bacterium Bacillus thuringiensis. Interactions between the Cry toxins and the receptors from midgut brush border membrane vesicles (BBMVs), such as cadherin, alkaline phosphatase, and aminopeptidase, are key steps for the specificity and insecticidal activity of Cry proteins. However, little is known about the midgut juice proteins that may interfere with Cry binding to the receptors. To validate the hypothesis that there exist Cry-binding proteins that can interfere with the insecticidal process of Cry toxins, we applied Cry1Ab1-coupled Sepharose beads to isolate Cry-binding proteins form midgut juice of Plutella xylostella and Spodoptera exigua. Trypsin-like serine proteases and Dorsal were found to be Cry1Ab1-binding proteins in the midgut juice of P. xylostella. Peroxidase-C (POX-C) was found to be the Cry1Ab1-binding protein in the midgut juice of S. exigua. We proposed possible insecticidal mechanisms of Cry1Ab1 mediated by the two immune-related proteins: Dorsal and POX-C. Our results suggested that there exist, in the midgut juice, Cry-binding proteins, which are different from BBMV-specific receptors.

  11. Termiticidal lectins from Myracrodruon urundeuva (Anacardiaceae) cause midgut damage when ingested by Nasutitermes corniger (Isoptera: Termitidae) workers.

    PubMed

    Lima, Thâmarah A; Fernandes, Kenner M; Oliveira, Ana Patrícia S; Dornelles, Leonardo P; Martins, Gustavo F; Napoleão, Thiago H; Paiva, Patrícia Mg

    2017-05-01

    Myracrodruon urundeuva is a hardwood tree, and its bark, heartwood and leaf contain lectins (MuBL, MuHL and MuLL respectively) with termiticidal activity against Nasutitermes corniger. In this work, the effects of these lectins on the midgut of N. corniger workers were evaluated. The insects were supplied with an artificial diet containing the lectins at their respective LC 50 (previously determined). At 48 h after treatment, the midguts were dissected and fixed for histopathology analyses. Toluidine-blue-stained midguts from lectin-treated workers showed disorganisation, with the presence of debris in the lumen and the absence of brush border. Fluorescence microscopy revealed that the numbers of digestive and proliferating cells were lower in lectin-treated individuals than in the control, and caspase-3 staining confirmed the occurrence of cell apoptosis. Enteroendocrine cells were not seen in the treated individuals. The midguts from treated insects showed greater staining for peroxidase than the control, suggesting that the lectins caused oxidative stress. Staining with wheat germ agglutinin conjugated to FITC revealed that the lectins interfered with the integrity of the peritrophic matrix. This study showed that termiticidal lectins from M. urundeuva cause severe injuries, oxidative stress and cell death in the midgut of N. corniger workers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Diaphorina citri Nymphs Are Resistant to Morphological Changes Induced by “Candidatus Liberibacter asiaticus” in Midgut Epithelial Cells

    PubMed Central

    2018-01-01

    ABSTRACT “Candidatus Liberibacter asiaticus” is the causative bacterium associated with citrus greening disease. “Ca. Liberibacter asiaticus” is transmitted by Diaphorina citri more efficiently when it is acquired by nymphs rather than adults. Why this occurs is not known. We compared midguts of D. citri insects reared on healthy or “Ca. Liberibacter asiaticus”-infected citrus trees using quantitative PCR, confocal microscopy, and mitochondrial superoxide staining for evidence of oxidative stress. Consistent with its classification as propagative, “Ca. Liberibacter asiaticus” titers were higher in adults than in nymphs. Our previous work showed that adult D. citri insects have basal levels of karyorrhexis (fragmentation of the nucleus) in midgut epithelial cells, which is increased in severity and frequency in response to “Ca. Liberibacter asiaticus.” Here, we show that nymphs exhibit lower levels of early-stage karyorrhexis than adults and are refractory to the induction of advanced karyorrhexis by “Ca. Liberibacter asiaticus” in the midgut epithelium. MitoSox Red staining showed that guts of infected adults, particularly males, experienced oxidative stress in response to “Ca. Liberibacter asiaticus.” A positive correlation between the titers of “Ca. Liberibacter asiaticus” and the Wolbachia endosymbiont was observed in adult and nymph midguts, suggesting an interplay between these bacteria during development. We hypothesize that the resistance of the nymph midgut to late-stage karyorrhexis through as yet unknown molecular mechanisms benefits “Ca. Liberibacter asiaticus” for efficient invasion of midgut epithelial cells, which may be a factor explaining the developmental dependency of “Ca. Liberibacter asiaticus” acquisition by the vector. PMID:29311247

  13. The risk of midgut volvulus in patients with abdominal wall defects: A multi-institutional study.

    PubMed

    Fawley, Jason A; Abdelhafeez, Abdelhafeez H; Schultz, Jessica A; Ertl, Allison; Cassidy, Laura D; Peter, Shawn St; Wagner, Amy J

    2017-01-01

    The management of malrotation in patients with congenital abdominal wall defects has varied among surgeons. We were interested in investigating the risk of midgut volvulus in patients with gastroschisis and omphalocele to help determine if these patients may benefit from undergoing a Ladd procedure. A retrospective chart review was performed for all patients managed at three institutions born between 1/1/2000 and 12/31/2008 with a diagnosis of gastroschisis or omphalocele. Patient charts were reviewed through 12/31/2012 for occurrence of midgut volvulus or need for second laparotomy. Of the 414 patients identified with abdominal wall defects, 299 patients (72%) had gastroschisis, and 115 patients (28%) had omphalocele. The mean gestational age at birth was 36.1±2.3weeks, and the mean birth weight was 2.57±0.7kg. There were a total of 8 (1.9%) cases of midgut volvulus: 3 (1.0%) patients with gastroschisis compared to 5 patients (4.4%) with omphalocele (p=0.04). Patients with omphalocele have a greater risk of developing midgut volvulus, and a Ladd procedure should be considered during definitive repair to mitigate these risks. III; retrospective comparative study. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  15. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment.

    PubMed

    Myšková, Jitka; Dostálová, Anna; Pěničková, Lucie; Halada, Petr; Bates, Paul A; Volf, Petr

    2016-07-25

    Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed "specific/restricted" vectors that support the development of one Leishmania species only, while the others belong to so-called "permissive" vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45-50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.

  16. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis

    PubMed Central

    Schaub, Christoph; Frasch, Manfred

    2013-01-01

    The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut. PMID:23380635

  17. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis.

    PubMed

    Schaub, Christoph; Frasch, Manfred

    2013-04-15

    The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Infection dynamics of Nosema ceranae in honey bee midgut and host cell apoptosis.

    PubMed

    Kurze, Christoph; Le Conte, Yves; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Moritz, Robin F A

    2018-05-01

    Nosema ceranae is an intracellular microsporidian parasite that infects epithelial cells of the honey bee (Apis mellifera) midgut. Previous studies have shown that Nosema may alter cell renewal and apoptosis in honey bees. We found that the amount of apoptotic cells progressively declines from the anterior towards posterior regions of the midgut in Nosema-infected sensitive bees. There was no such pattern in the infected Nosema tolerant honey bees and controls. These data provide additional evidence that N. ceranae appears to alter apoptosis in its host cells for its own advantage. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Morphological abnormalities and cell death in the Asian citrus psyllid (Diaphorina citri) midgut associated with Candidatus Liberibacter asiaticus.

    PubMed

    Ghanim, Murad; Fattah-Hosseini, Somayeh; Levy, Amit; Cilia, Michelle

    2016-09-15

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited, gram-negative, fastidious bacterium that is associated with the development of citrus greening disease, also known as Huanglongbing (HLB). CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri, in a circulative manner. Two major barriers to transmission within the insect are the midgut and the salivary glands. We performed a thorough microscopic analysis within the insect midgut following exposure to CLas-infected citrus trees. We observed changes in nuclear architecture, including pyknosis and karyorrhexis as well as changes to the actin cytoskeleton in CLas-exposed midgut cells. Further analyses showed that the changes are likely due to the activation of programmed cell death as assessed by Annexin V staining and DNA fragmentation assays. These results suggest that exposure to CLas-infected trees induces apoptotic responses in the psyllid midgut that should be further investigated. Understanding the adaptive significance of the apoptotic response has the potential to create new approaches for controlling HLB.

  20. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology.

    PubMed

    Movva, Vijaya; Pathipati, Usha Rani

    2017-05-01

    We studied the role of induced plant phenols as a defense response to insect herbivory. Phenolic compounds were induced in Capsicum annuum L., the source of many culinary peppers, after feeding by different stages of the insect pest, Spodoptera litura F. The phenols were identified and quantified using high performance liquid chromatography (HPLC) and effects produced by these phenols on larval development were studied. Vanillic acid was identified in plants challenged by second, fourth, and fifth instar larvae, but not in plants challenged by third instar nor unchallenged plants. Syringic acid production was induced in chili plants infested with second (0.429 ± 0.003 μg/g fresh weight, fourth (0.396 ± 0.01 μg/g fresh weight), and fifth instar (5.5 ± 0.06 μg/g fresh weight) larvae, compared to untreated plants (0.303 ± 0.01 μg/g fresh weight) plants. Leaves surface treated with the rutin deterred oviposition. Dietary exposure to chlorogenic acid, vanillic acid, syringic acid, sinapic acid, and rutin led to enhanced activities of detoxifying enzymes, β-glucosidase, carboxyl esterase, glutathione S-transferase, and glutathione reductase in the midgut tissues of all the larval instars, indicating the toxic nature of these compounds. Protein carbonyl content and acetylcholinesterase activity was analyzed to appreciate the role of induced plant phenols in insect protein oxidation and terminating nerve impulses. © 2017 Wiley Periodicals, Inc.

  1. [Specificity of the Adultrap for capturing females of Aedes aegypti (Diptera: Culicidae)].

    PubMed

    Gomes, Almério de Castro; da Silva, Nilza Nunes; Bernal, Regina Tomie Ivata; Leandro, André de Souza; de Camargo, Natal Jataí; da Silva, Allan Martins; Ferreira, Adão Celestino; Ogura, Luis Carlos; de Oliveira, Sebastião José; de Moura, Silvestre Marques

    2007-01-01

    The Adultrap is a new trap built for capturing females of Aedes aegypti. Tests were carried out to evaluate the specificity of this trap in comparison with the technique of aspiration of specimens in artificial shelters. Adultraps were kept for 24 hours inside and outside 120 randomly selected homes in two districts of the city of Foz do Iguaçú, State of Paraná. The statistical test was Poissons log-linear model. The result was 726 mosquitoes captured, of which 80 were Aedes aegypti. The Adultrap captured only females of this species, while the aspiration method captured both sexes of Aedes aegypti and another five species. The Adultrap captured Aedes aegypti inside and outside the homes, but the analysis indicated that, outside the homes, this trap captured significantly more females than aspiration did. The sensitivity of the Adultrap for detecting females of Aedes aegypti in low-frequency situations was also demonstrated.

  2. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

    PubMed Central

    Luz, Paula M.; Castro, Márcia G.; Lourenço-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

    2011-01-01

    Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission. PMID:21408119

  3. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  4. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells

    Treesearch

    Algimantas P. Valaitis

    2008-01-01

    The insecticidal Cry proteins produced by Bacillus thuringiensis strains are pore-forming toxins (PFTs) that bind to the midgut brush border membrane and cause extensive damage to the midgut epithelial cells of susceptible insect larvae. Force-feeding B. thuringiensis PFTs to Lymantria dispar larvae elicited...

  5. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species.

    PubMed

    Tabanca, Nurhayat; Gao, Zengping; Demirci, Betul; Techen, Natascha; Wedge, David E; Ali, Abbas; Sampson, Blair J; Werle, Chris; Bernier, Ulrich R; Khan, Ikhlas A; Baser, Kemal Husnu Can

    2014-09-03

    In this study, Angelica dahurica and Angelica pubescentis root essential oils were investigated as pest management perspectives, and root samples were also analyzed genetically using the nuclear ribosomal internal transcribed spacer (ITS) region as a DNA barcode marker. A. pubescentis root essential oil demonstrated weak antifungal activity against Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. dahurica root essential oil did not show antifungal activity. Conversely, A. dahurica root essential oil demonstrated better biting deterrent and insecticidal activity against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A. dahurica oil were found as α-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). α-Pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) were the major compounds found in the A. pubescentis oil. In mosquito bioassays, 1-dodecanol and 1-tridecanol showed antibiting deterrent activity similar to the positive control DEET (N,N-diethyl-3-methylbenzamide) at 25 nmol/cm(2) against Ae. aegypti, whereas only 1-tridecanol showed repellent activity in human-based cloth patch bioassay with minimum effective dosages (MED) of 0.086 ± 0.089 mg/cm(2) (DEET = 0.007 ± 0.003 mg/cm(2)). In larval bioassays, 1-tridecanol was more toxic with an LC50 value of 2.1 ppm than 1-dodecanol having an LC50 value of 5.2 ppm against 1-day-old Ae. aegypti larvae. 1-Dodecanol and 1-tridecanol could be useful for the natural mosquito control agents.

  6. Effects of a Five-Year Citywide Intervention Program To Control Aedes aegypti and Prevent Dengue Outbreaks in Northern Argentina

    PubMed Central

    Gürtler, Ricardo E.; Garelli, Fernando M.; Coto, Héctor D.

    2009-01-01

    Background Dengue has propagated widely through the Americas. Most countries have not been able to maintain permanent larval mosquito control programs, and the long-term effects of control actions have rarely been documented. Methodology The study design was based on a before-and-after citywide assessment of Aedes aegypti larval indices and the reported incidence of dengue in Clorinda, northeastern Argentina, over 2003–2007. Interventions were mainly based on focal treatment with larvicides of every mosquito developmental site every four months (14 cycles), combined with limited source reduction efforts and ultra-low-volume insecticide spraying during emergency operations. The program conducted 120,000 house searches for mosquito developmental sites and 37,000 larvicide applications. Principal Findings Random-effects regression models showed that Breteau indices declined significantly in nearly all focal cycles compared to pre-intervention indices clustered by neighborhood, after allowing for lagged effects of temperature and rainfall, baseline Breteau index, and surveillance coverage. Significant heterogeneity between neighborhoods was revealed. Larval indices seldom fell to 0 shortly after interventions at the same blocks. Large water-storage containers were the most abundant and likely to be infested. The reported incidence of dengue cases declined from 10.4 per 10,000 in 2000 (by DEN-1) to 0 from 2001 to 2006, and then rose to 4.5 cases per 10,000 in 2007 (by DEN-3). In neighboring Paraguay, the reported incidence of dengue in 2007 was 30.6 times higher than that in Clorinda. Conclusions Control interventions exerted significant impacts on larval indices but failed to keep them below target levels during every summer, achieved sustained community acceptance, most likely prevented new dengue outbreaks over 2003–2006, and limited to a large degree the 2007 outbreak. For further improvement, a shift is needed towards a multifaceted program with intensified

  7. The immune strategies of mosquito Aedes aegypti against microbial infection.

    PubMed

    Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen

    2018-06-01

    Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  9. Midgut volvulus following laparoscopic gastric banding--a rare and dangerous situation.

    PubMed

    Arbell, Dan; Koplewitz, Benjamin; Zamir, Gideon; Bala, Miklosh

    2007-06-01

    Intestinal malrotation is usually encountered in infants. Its main complication is midgut volvulus, a situation that presents itself with bilious vomiting. This symptom allows for early surgical treatment. A delay in diagnosis and treatment may lead to catastrophic sequelae, such as extensive bowel necrosis and death. This situation is rare but well known in adults. Laparoscopic gastric banding is a popular option for treating morbid obesity. One of the consequences of this procedure may be impaired vomiting when there is an obstruction below the band. In this paper, we present a case in which a patient suffered from midgut volvulus 4 years after a laparoscopic gastric banding. Owing to impaired vomiting, the diagnosis was delayed, therefore, severely endangering the patient. This case prompted us to suggest that malrotation should be actively sought after before or during any bariatric procedure.

  10. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.

    PubMed

    Rodrigues, A M S; de Paula, J E; Roblot, F; Fournet, A; Espíndola, L S

    2005-12-01

    The larvicidal activity against Aedes aegypti larvae of a stem wood hexane extract of Cybistax antisyphilitica was evaluated. Bioassay-guided fractionation of the crude extract, monitored by larvicidal assay, led to the isolation of a natural quinone identified as 2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone (lapachol). This compound was quite potent against A. aegypti larvae (LC50 26.3 microg/ml).

  11. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  12. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA

    PubMed Central

    Champion, Samantha R; Vitek, Christopher J

    2014-01-01

    The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region. PMID:25520559

  13. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan.

    PubMed

    Tsai, Pui-Jen; Teng, Hwa-Jen

    2016-11-09

    Aedes mosquitoes in Taiwan mainly comprise Aedes albopictus and Ae. aegypti. However, the species contributing to autochthonous dengue spread and the extent at which it occurs remain unclear. Thus, in this study, we spatially analyzed real data to determine spatial features related to local dengue incidence and mosquito density, particularly that of Ae. albopictus and Ae. aegypti. We used bivariate Moran's I statistic and geographically weighted regression (GWR) spatial methods to analyze the globally spatial dependence and locally regressed relationship between (1) imported dengue incidences and Breteau indices (BIs) of Ae. albopictus, (2) imported dengue incidences and BI of Ae. aegypti, (3) autochthonous dengue incidences and BI of Ae. albopictus, (4) autochthonous dengue incidences and BI of Ae. aegypti, (5) all dengue incidences and BI of Ae. albopictus, (6) all dengue incidences and BI of Ae. aegypti, (7) BI of Ae. albopictus and human population density, and (8) BI of Ae. aegypti and human population density in 348 townships in Taiwan. In the GWR models, regression coefficients of spatially regressed relationships between the incidence of autochthonous dengue and vector density of Ae. aegypti were significant and positive in most townships in Taiwan. However, Ae. albopictus had significant but negative regression coefficients in clusters of dengue epidemics. In the global bivariate Moran's index, spatial dependence between the incidence of autochthonous dengue and vector density of Ae. aegypti was significant and exhibited positive correlation in Taiwan (bivariate Moran's index = 0.51). However, Ae. albopictus exhibited positively significant but low correlation (bivariate Moran's index = 0.06). Similar results were observed in the two spatial methods between all dengue incidences and Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The regression coefficients of spatially regressed relationships between imported dengue cases and Aedes mosquitoes

  14. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  15. Characterization of Tolypocladium cylindrosporum (Hypocreales: Ophiocordycipitaceae) and Its Impact Against Aedes aegypti and Aedes albopictus Eggs at Low Temperature.

    PubMed

    Flor-Weiler, Lina B; Rooney, Alejandro P; Behle, Robert W; Muturi, Ephantus J

    2017-09-01

    We examined the growth characteristics of Tolypocladium cylindrosporum IBT 41712 and its potential to infect eggs of Aedes aegypti and Ae. albopictus at a low temperature (15°C). When grown on Sabouraud dextrose agar supplemented with yeast extract, the IBT 41712 formed white colonies turning to a slightly darker, off-white color when mature. The mycelia bore swollen conidiophores producing smooth-walled, oblong to cylindrical conidia with varying sizes, ranging from 1.5 to 3.5 μm long. To determine the optimum temperature for the fungus, we cultured the fungus at eight temperatures (4°C, 12°C, 15°C, 21°C, 28°C, 33°C, 37°C, and 40°C) and measured the diametric growth. The optimum temperature for growth was 28°C since it had the highest diametric growth rate (2.1 ± 0.05 mm/day) and the fastest sporulation period (within 8-10 days of incubation). There was no fungal growth at the 3 highest temperatures (33°C, 37°C, and 40°C) but plates incubated at 33°C, when shifted to optimal temperature (28°C), showed visible growth indicating that following incubation at 33°C, the fungus remained viable. The IBT 41712 successfully infected mosquito eggs at 15°C. Fungal treatment induced egg hatch on moist seed-germination paper and this effect was more pronounced in Ae. aegypti compared to Ae. albopictus. When treated eggs were immersed in dH 2 O 21 days posttreatment, larval hatch of both Ae. aegypti (control = 91%, 1 × 10 7 conidia/ml, fungal treatment = 0%) and Ae. albopictus (control = 85%, fungal treatment = 28%) was significantly lower in fungal treatment compared to the controls. The ability of the strain to grow in a wide temperature range, and effectively infect mosquito eggs and induce egg hatch at a low temperature warrants further investigation for its potential as a mosquito control agent targeting eggs that overwinter or undergo long diapause.

  16. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.

    PubMed

    Ocampo, Clara B; Wesson, Dawn M

    2004-10-01

    This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently.

  17. Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae

    DTIC Science & Technology

    2014-01-01

    Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae by Hiroshi Nakano*a)b)c), Abbas...larvicides against Aedes aegypti. Structural differences among compounds 3, 5, and 8 consisted in differing AcO and OH groups attached to C(3’’) and C(4...serious human diseases including malaria, Japanese encephalitis, yellow fever, dengue, and filariasis. The urban-adapted Aedes aegypti mosquito has become

  18. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  19. Proteome-wide analysis of Anopheles culicifacies mosquito midgut: new insights into the mechanism of refractoriness.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Singh, Jagbir; Adak, Tridibesh; Sharma, Arun

    2018-05-08

    Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An. culicifacies susceptible and refractory species, proteomic approaches coupled with bioinformatics analysis is an effective means in order to understand the mechanism of refractoriness. In the present study, an integrated in solution- in gel trypsin digestion approach, along with Isobaric tag for relative and absolute quantitation (iTRAQ)-Liquid chromatography/Mass spectrometry (LC/MS/MS) and data mining were performed to identify the proteomic profile and differentially expressed proteins in Anopheles culicifacies susceptible species A and refractory species B. Shot gun proteomics approaches led to the identification of 80 proteins in An. culicifacies susceptible species A and 92 in refractory species B and catalogue was prepared. iTRAQ based proteomic analysis identified 48 differentially expressed proteins from total 130 proteins. Of these, 41 were downregulated and 7 were upregulated in refractory species B in comparison to susceptible species A. We report that the altered midgut proteins identified in naturally refractory mosquitoes are involved in oxidative phosphorylation, antioxidant and proteolysis process that may suggest their role in parasite growth inhibition. Furthermore, real time polymerase chain reaction (PCR) analysis of few proteins indicated higher expression of iTRAQ upregulated protein in refractory species than susceptible species. This study elucidates the first proteome of the midguts of An. culicifacies sibling species that attempts to analyze unique proteogenomic interactions to provide insights for better understanding of the mechanism of refractoriness. Functional implications

  20. Cytological lesions in the midgut of Tribolium confusum larvae exposed to gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafri, R.H.; Ismail, M.

    1977-01-01

    The major cytological lesions in Tribolium confusum after irradiation were displayed by the midgut epithelium. At 24 hr following exposure to 5.3 kR, the regenerative cells called nidi appeared numerous. They gradually disappeared with increases in dosage and time in accordance with Arndt-Schulze's Law. The columnar epithelial cells and their nuclei appeared swollen and vacuolated on the fifth and twelfth day following exposure to 5.3 kR. They appeared disorganized and shed into the lumen of the midgut on the twelfth and fifth day following 50- and 70-kR irradiation, respectively. The basement membrane and the muscularis appeared loose on the fifthmore » and twelfth day dollowing 70-kR irradiation. It was observed that once the catabolic activity, i.e., histolysis, was initiated in the midgut, it continued to accelerate with increasing dose and time. Thus, the last effects at low doses, 5.3 and 10 kR, appeared as immediate effects at high doses, 50 and 70 kR. The differentiated cells, i.e., columnar epithelial cells, appeared radioresistant as compared to undifferentiated cells, i.e., regenerative cells, which appeared radiosensitive in accordance with the principle of Bergonie and Tribondeau.« less

  1. Lufenuron impact upon Anthonomus grandis Boheman (Coleoptera: Curculionidae) midgut and its reflection in gametogenesis.

    PubMed

    Costa, Hilton Nobre; da Cunha, Franklin Magliano; Cruz, Glaucilane Santos; D'assunção, Carolline Guimarães; Rolim, Guilherme Gomes; Barros, Maria Edna Gomes; Breda, Mariana Oliveira; Teixeira, Alvaro Aguiar Coelho; Teixeira, Valéria Wanderley

    2017-04-01

    The insecticide Match® (lufenuron), one of the main insect growth regulators used in pest control, has been presented as a viable alternative against the boll weevil, Anthonomus grandis (Coleoptera: Curculionidae), by inhibiting chitin synthesis. Thus, this study aimed to examine whether Match® interferes in the synthesis of the peritrophic matrix, leading to changes in the midgut epithelium, resulting in nutritional deficiency and reflecting, thereby, in the gametogenesis process of A. grandis. Floral cotton buds were immersed in the insecticide solution (800μL of Match®+200mL of distilled water) and offered to the adult insects. The midguts of the insects were evaluated after 24 and 120h after feeding. The gonads were evaluated after 120h. The results showed that Match®, in both evaluation periods, induced histopathological alterations such as disorganization, vacuolization and desquamation of the midgut epithelium; histochemical modifications in the distribution patterns of carbohydrates, although without quantitative changes; and a strong decrease in protein levels. No apoptosis were observed, however, there was an increase in the number of regenerative cell nests. In the testicles, a reduction in the amount of spermatozoids and reduced carbohydrate levels were observed, but no difference in protein levels. The ovarioles presented structural disorganization of follicular cells, yolk reduction and decrease in protein levels, however, no change in carbohydrates levels was noted. Therefore, it is concluded that Match® performs histopathologic and histochemical alterations in the midgut epithelium and the gonads of A. grandis adults, reflecting in the gametogenesis process, presenting itself as a promising tool in the management of this pest on cotton crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Larvicidal, Histopathological Efficacy of Penicillium daleae against Larvae of Culex quinquefasciatus and Aedes aegypti Plus Biotoxicity on Artemia nauplii a Non-target Aquatic Organism

    PubMed Central

    Ragavendran, C.; Mariappan, T.; Natarajan, Devarajan

    2017-01-01

    Mosquitoes can transmit the terrible diseases to human beings. Soil-borne fungal products act as potential source for low-cost chemicals, used for developing eco-friendly control agents against mosquito-vector borne diseases. The prime aim of study was to check the larvicidal potential of fungus mycelia (by ethyl acetate solvent) extract from Penicillium daleae (KX387370) against Culex quinquefasciatus and Aedes aegypti and to test the toxicity of brine shrimp Artemia nauplii, by observing the physiological activity. The ethyl acetate extract of P. daleae mycelia (after 15 days) from Potato dextrose broth (PDB) medium revealed better result with least LC50 and LC90 values of I-IV instars larvae of Cx. quinquefasciatus (LC50 = 127.441, 129.087, 108.683, and 93.521; LC90 = 152.758, 158.169, 139.091, and 125.918 μg/ml) and Ae. aegypti (LC50 = 105.077, 83.943, 97.158, and 76.513; LC90 = 128.035, 106.869, 125.640, and 104.606 μg/ml) respectively. At higher concentration (1000 μg/ml) of extracts, mortality begins at 18 h of exposure and attained 100% mortality after 48 h exposure. Overall, the activity was depends on the dose and time of exposure to the extracts. The stereomicroscopic and histopathological analysis of Ae. aegypti and Cx. quinquefasciatus larvae treated with mycelium ethyl acetate extract showed complete disintegration of abdominal region, particularly the midgut and caeca, loss of cuticular parts and caudal hairs. Morphological characterization of the fungi was performed and taxonomically identified through 5.8s rDNA technique. The phylogenetic analysis of rDNA sequence was carried out to find out the taxonomic and the evolutionary sketch of isolate in relation to earlier described genus Penicillium. Behavior and swimming speed alteration was analyzed together with mortality. The results of the experiment indicates that swimming behavior recorder (SBR) is a appropriate tool to detect individual swimming speed of the A. nauplii organisms, since the

  3. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti.

    PubMed

    Inocente, Edna Alfaro; Shaya, Marguerite; Acosta, Nuris; Rakotondraibe, L Harinantenaina; Piermarini, Peter M

    2018-02-01

    Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule's toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.

  4. Effects of periplocoside X on midgut cells and digestive enzymes activity of the soldiers of red imported fire ant.

    PubMed

    Li, Yan; Zeng, Xin-Nian

    2013-07-01

    The pathological effects of ingested periplocoside X, an insecticidal component isolated from the root of Periploca sepium Bunge, on the midgut epithelial cells of the soldiers of red imported fire ant were studied and the symptom was described. The results showed that periplocoside X could induce a severe, time-dependent cytotoxicity in the midgut epithelial cells. An optical microscopy showed that epithelial cells swelled firstly and then lysed. Transmission electron microscopy (TEM) showed that numerous swollen lysosomes were appeared, microvilli were disrupted and sloughed off, and the numbers of the rough endoplasmic reticulum and the mitochondria decreased sharply in earlier stage. Numerous vacuoles were observed in the later stage. Finally, periplocoside X resulted in cell death by cytolysis. Assay of main three digestive enzymes activity indicated that amylase activity was significantly inhibited, but no significant changes were seen for lipase activity and total protease activity. So it is suggested that periplocoside X induced mainly to organic damage of midgut epithelium cells of insect. In all, insect midgut is one of targets for periplocoside X. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Field comparison of thermal and non-thermal ultra-low-volume applications using water and diesel as solvents for managing dengue vector, Aedes aegypti.

    PubMed

    Harburguer, Laura; Lucia, Alejandro; Licastro, Susana; Zerba, Eduardo; Masuh, Héctor

    2012-10-01

    To compare the effectiveness on Aedes aegypti (Linneo) (Diptera: Culicidae) of a larvicide-adulticide ULV formulation applied by a thermal or a cold fogger using different solvents. We applied, in field conditions, a ULV formulation containing pyriproxyfen and permethrin, using a thermal and a cold fogger and water or diesel as solvent. We determined the effectiveness of these applications on Ae. aegypti adults and larvae by different bioassays and measuring Breteau, house and adult indices. When water was used as solvent, the treatments applied with the cold or the thermal foggers were equally effective on adult mortality (close to 90%) and adult emergence inhibition (% EI) (close to 70%). When the thermal fogger was used with water as solvent, the adult mortality outside the houses (85%) was higher, but not significantly different, than with diesel (65%). The contrary happens inside (22%vs. 58%), while there were no differences in %EI. Adult and larval indices behaved similarly in all areas, with a slight tendency for the treatments applied using water as solvent to be more effective. Water-based formulations are equally or more effective than the one applied with diesel as solvent. The use of water as solvent will not only improve the effectiveness of this formulation but also reduce the environmental impact and costs of spraying compared to the use of diesel. © 2012 Blackwell Publishing Ltd.

  6. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  7. Structural Activity of Bovidic Acid and Related Compounds as Feeding Deterrents against Aedes aegypti

    DTIC Science & Technology

    2007-01-01

    fatty acid analogues were evaluated against Aedes aegypti (L.) mosquitoes and results indicate that this may generate class of topical repellents for use...duced risk to humans, pets and environment, natu- Structural Activity of Bovidic Acid and Related Compounds as Feeding Deterrents against Aedes aegypti K...against insects that transmit pathogens to humans. KEY WORDS : Bovidic acid , feeding deterrents , Aedes aegypti , hydroxy furanoid

  8. Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India.

    PubMed

    Ghosh, Susanta K; Chakaravarthy, Preethi; Panch, Sandhya R; Krishnappa, Pushpalatha; Tiwari, Satyanarayan; Ojha, Vijay P; Manjushree, R; Dash, Aditya P

    2011-07-28

    In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations. Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda. Poecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude that Poecilia + IEC is an effective

  9. Swarming Mechanisms in the Yellow Fever Mosquito: Aggregation Pheromones are Involved in the Mating Behavior of Aedes aegypti

    DTIC Science & Technology

    2014-12-01

    behavior of Aedes aegypti Emadeldin Y. Fawaz1, Sandra A. Allan2, Ulrich R. Bernier2, Peter J. Obenauer3, and Joseph W. Diclaro II1 1Vector Biology... Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of...the isolated aggregation pheromones in controlling Ae. aegypti. Journal of Vector Ecology 39 (2): 347-354. 2014. Keyword Index: Aedes aegypti, swarm

  10. Biochemical, molecular, and phylogenetic analysis of pyruvate carboxylase in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Tu, Z; Hagedorn, H H

    1997-02-01

    Pyruvate carboxylase (PC, pyruvate: carbon dioxide ligase [ADP-forming], EC 6.4.1.1) was purified from the yellow fever mosquito, Aedes aegypti. The purified PC showed two polypeptides of similar M(r) (133 and 128 k). The N-terminal sequences of both polypeptides were shown to be very similar, if not identical. A polyclonal antiserum against the 133 kDa polypeptide cross-reacted strongly with the 128 kDa polypeptide. PC was found in all tissues examined. Using a semi-quantitative Western blot assay, PC was shown to be concentrated in the indirect flight muscles and fat body preparations. The ratios of the 133 to 128 kDa polypeptides were shown to differ in various tissues and an Aedes albopictus cell line. The indirect flight muscle was the only tissue in which the 128 kDa polypeptide was more abundant, while both the midgut and the cell line showed almost exclusively the 133 kDa polypeptide. Both peptides were present in varying amounts in brain, malpighian tubule, ovary and fat body preparation. The two isoforms of PC could play different roles in the flight muscle and other tissues. Clones covering a complete cDNA of PC of A. aegypti were obtained using a directional approach. The 3952 bp nucleotide sequence, including a 3585 bp coding region, was determined from these cDNA clones. The deduced 1195 amino acid sequence has a calculated M(r) of 132,200. A putative mitochondrial targeting sequence was determined by comparing the deduced amino acid sequence to the N-terminal sequences of the mature protein. The presence of a mitochondrial targeting sequence indicates that the mosquito PC encoded by the cloned cDNA may be localized in the mitochondria. After the targeting sequence, three functional domains were identified in the following order; biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP). The mosquito PC showed very high similarity to PCs from other sources (55.1-75.2% identity). Genomic Southern analysis indicated

  11. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae).

    PubMed

    Fruttero, Leonardo L; Demartini, Diogo R; Rubiolo, Edilberto R; Carlini, Célia R; Canavoso, Lilián E

    2014-09-01

    Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [(3)H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-(3)H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology

    PubMed Central

    2013-01-01

    Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE

  13. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology.

    PubMed

    Bizzarro, Bruna; Barros, Michele S; Maciel, Ceres; Gueroni, Daniele I; Lino, Ciro N; Campopiano, Júlia; Kotsyfakis, Michalis; Amarante-Mendes, Gustavo P; Calvo, Eric; Capurro, Margareth L; Sá-Nunes, Anderson

    2013-11-15

    Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by

  14. Circulation of Chikungunya virus in Aedes aegypti in Maranhão, Northeast Brazil.

    PubMed

    Aragão, Carine Fortes; Cruz, Ana Cecília Ribeiro; Neto, Joaquim Pinto Nunes; Monteiro, Hamilton Antonio de Oliveira; da Silva, Eliana Vieira Pinto; da Silva, Sandro Patroca; Andrade, Aylane Tamara Dos Santos; Tadei, Wanderli Pedro; Pinheiro, Valéria Cristina Soares

    2018-06-19

    The simultaneous circulation of Dengue virus (DENV), Chikungunya virus (CHIKV) and Zika virus (ZIKV) arboviruses have placed Brazil among the main worldwide endemic areas. Brazilian Northeast region concentrates the highest incidence of infections caused by CHIKV and ZIKV. In Maranhão, the second biggest northeastern state, there are cases of human infections caused by these three arboviruses and presence of Aedes aegypti and Aedes albopictus vectors. In this context, this study aimed to investigate the circulation of CHIKV, DENV and ZIKV in Ae. aegypti and Ae. albopictus mosquitoes collected in urban areas of Barra do Corda, Caxias, Codó, São Luís and São Mateus do Maranhão municipalities in the state of Maranhão through Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) technique. 428 Ae. aegypti and 1 Ae. albopictus were collected, which formed 44 pools. Three of these showed positive results for CHIKV: AR832767 (five Ae. aegypti female collected in Caxias), AR832784 and AR832785 (both composed of 20 Ae. aegypti female collected in São Mateus do Maranhão). This study consolidates information about CHIKV circulation in state of Maranhão, as well as the role of Ae. aegypti in the transmission of CHIKV in urban area. Copyright © 2018. Published by Elsevier B.V.

  15. Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia.

    PubMed

    Calvez, Elodie; Guillaumot, Laurent; Girault, Dominique; Richard, Vaea; O'Connor, Olivia; Paoaafaite, Tuterarii; Teurlai, Magali; Pocquet, Nicolas; Cao-Lormeau, Van-Mai; Dupont-Rouzeyrol, Myrielle

    2017-08-09

    Dengue virus (DENV) is the arbovirus with the highest incidence in New Caledonia and in the South Pacific region. In 2012-2014, a major DENV-1 outbreak occurred in New Caledonia. The only known vector of DENV in New Caledonia is Aedes aegypti but no study has yet evaluated the competence of New Caledonia Ae. aegypti populations to transmit DENV. This study compared the ability of field-collected Ae. aegypti from different locations in New Caledonia to transmit the DENV-1 responsible for the 2012-2014 outbreak. This study also aimed to compare the New Caledonia results with the vector competence of Ae. aegypti from French Polynesia as these two French countries have close links, including arbovirus circulation. Three wild Ae. aegypti populations were collected in New Caledonia and one in French Polynesia. Female mosquitoes were orally exposed to DENV-1 (10 6 FFU/ml). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination, transmission rates and transmission efficiency, at 7, 14 and 21 days post-infection (dpi), respectively. DENV-1 infection rates were heterogeneous, but dissemination rates were high and homogenous among the three Ae. aegypti populations from New Caledonia. Despite this high DENV-1 dissemination rate, the transmission rate, and therefore the transmission efficiency, observed were low. Aedes aegypti population from New Caledonia was less susceptible to infection and had lower ability to transmit DENV-1 than Ae. aegypti populations from French Polynesia. This study suggests that even if susceptible to infection, the New Caledonian Ae. aegypti populations were moderately competent vectors for DENV-1 strain from the 2012-2014 outbreak. These results strongly suggest that other factors might have contributed to the spread of this DENV-1 strain in New Caledonia and in the Pacific region.

  16. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  17. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago.

    PubMed

    Dia, Ibrahima; Diagne, Cheikh Tidiane; Ba, Yamar; Diallo, Diawo; Konate, Lassana; Diallo, Mawlouth

    2012-10-22

    Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal.

  18. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú.

  19. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-07-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  20. Foraging characteristics of larval bluegill sunfish and larval longear sunfish in the Kanawha River, West Virginia

    USGS Publications Warehouse

    Rider, S.J.; Margraf, F.J.

    1998-01-01

    We determined spatial and temporal foraging characteristics of larval bluegill sunfish (Lepomis macrochirus) and longear sunfish (Lepomis megalotis) in the upper Kanawha River, West Virginia during the summer of 1989. Stomach contents were examined among habitat types (i.e., main channel, main-channel border, and shoreline habitats) and depth (surface, middle, and bottom). Diet of larval bluegill sunfish was dominated by Chironomidae, temporally and spatially. Chironomidae dominated larval longear sunfish diet in main channel and main-channel border collections from all three depths. However, along the shoreline, larval longear sunfish diet was dominated by Cladocera.

  1. Sterculia guttata seeds extractives--an effective mosquito larvicide.

    PubMed

    Katade, Sushama R; Pawar, Pushpa V; Wakharkar, Radhika D; Deshpande, Nirmala R

    2006-08-01

    The larvicidal activity of ethanol, chloroform and hexane soxhlet extracts obtained from S. guttata seeds was investigated against the IVth instar larvae of Dengue fever vector, Aedes aegypti and filarial vector, Culex quinquefasciatus. All extracts including fractions of ethanol extract exhibited 100% larval kill within 24 hr exposure period at 500 ppm concentration. Fraction A1 of ethanol was found to be most promising; its LC50 was 21.552 and 35.520 ppm against C. quinquefasciatus and A. aegypti respectively. Naturally occurring S. guttata seed derived fractions merit further study as potential mosquito larval control agents or lead compounds.

  2. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors.

    PubMed

    Strosberg, Jonathan; El-Haddad, Ghassan; Wolin, Edward; Hendifar, Andrew; Yao, James; Chasen, Beth; Mittra, Erik; Kunz, Pamela L; Kulke, Matthew H; Jacene, Heather; Bushnell, David; O'Dorisio, Thomas M; Baum, Richard P; Kulkarni, Harshad R; Caplin, Martyn; Lebtahi, Rachida; Hobday, Timothy; Delpassand, Ebrahim; Van Cutsem, Eric; Benson, Al; Srirajaskanthan, Rajaventhan; Pavel, Marianne; Mora, Jaime; Berlin, Jordan; Grande, Enrique; Reed, Nicholas; Seregni, Ettore; Öberg, Kjell; Lopera Sierra, Maribel; Santoro, Paola; Thevenet, Thomas; Erion, Jack L; Ruszniewski, Philippe; Kwekkeboom, Dik; Krenning, Eric

    2017-01-12

    Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 ( 177 Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177 Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) ( 177 Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177 Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177 Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177 Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177 Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Treatment with 177 Lu

  3. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    PubMed

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.

  4. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae)

    PubMed Central

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-01-01

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  5. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera:Culicidae).

    PubMed

    Sivakumar, R; Jebanesan, A; Govindarajan, M; Rajasekar, P

    2011-09-01

    To investigate the larvicidal and repellent efficacy of tetradecanoic acid against Aedes aegypti (Ae. aegypti) L. and Culex quinquefasciatus (Cx. quinquefasciatus) Say (Diptera: Culicidae). Larvicidal efficacy of tetradecanoic acid was tested at various concentrations against the early third instar larvae of Ae. aegypti and Cx. quinquefasciatus. The repellent activity was determined against two mosquito species at three concentrations viz., 1.0,2.5 and 5.0 ppm under the laboratory conditions. The tetradecanoic acid was found to be more effective against Cx. quinquefasciatus than Ae. aegypti larvae. The LC(50) values were 14.08 ppm and 25.10 ppm, respectively. Tetradecanoic acid showed lesser repellency against Ae. aegypti and Cx. quinquefasciatus. The highest repellency was observed in higher concentration of 5.0 mg/cm(2) provided 100% protection up to 60 and 90 min against Ae. aegypti and Cx. quinquefasciatus respectively. From the results it can be concluded the tetradecanoic acid is a potential for controlling Cx. quinquefasciatus and Ae. aegypti mosquitoes. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Pseudoxanthomonas icgebensis sp. nov., isolated from the midgut of Anopheles stephensi field-collected larvae.

    PubMed

    Rani, Asha; Sharma, Anil; Adak, Tridibes; Bhatnagar, Raj K

    2010-10-01

    A Gram-negative, aerobic, golden yellow, rod-shaped bacterium, a strain designated ICGEB-L15(T), was isolated from the larval midgut of Anopheles stephensi captured in District Jhajjar, Haryana, India. The strain ICGEB-L15(T) grows at 30-50°C (optimum 30-37°C), pH 6.5-8.5 (optimum 7.0-8.0) and in the presence of 2% NaCl. The major fatty acids were iso-C(15:0) (22.5% of total fatty acid), anteiso-C(15:0) (16.5%), iso-C(17:1) 9c (10.3%), iso-C(16:0) (7.3%), C(16:0) (6.1%), and iso-C(11:0) (5.3%). The strain showed the highest 16S rRNA gene sequence similarities with the type strains Pseudoxanthomonas daejeonensis KCTC 12207(T) (97.4%), Pseudoxanthomonas kaohsiungensis J36(T) (97.17%), and Pseudoxanthomonas mexicana AMX 26B(T) (97.11%). The DNA relatedness between ICGEB-L15(T) and Pseudoxanthomonas daejeonensis KCTC 12207(T), Pseudoxanthomonas kaohsiungensis J36(T) and Pseudoxanthomonas mexicana AMX 26B(T) was 24.5%, 28.2%, and 33.6%, respectively. The G+C content of genomic DNA was 69.9 mol%. The major isoprenoid quinone of strain ICGEB-L15(T) was Q-8. The strain ICGEB-L15(T) represents a novel species of the genus Pseudoxanthomonas based on physiological, biochemical and phylogenetic properties; therefore, the name Pseudoxanthomonas icgebensis sp. nov. is proposed. The type strain is ICGEB-L15(T) (=KACC 14090(T) =DSM 22536(T)).

  7. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa.

    PubMed

    Elleuch, Jihen; Jaoua, Samir; Ginibre, Carole; Chandre, Fabrice; Tounsi, Slim; Zghal, Raida Z

    2016-12-01

    Bacillus thuringiensis δ-endotoxins are the most widely used biopesticides for controlling economically important crop pests and disease vectors. Improving their efficacy is of great benefit. Here, an improvement in Cry2Aa δ-endotoxin toxicity was attempted via a cry gene over expression system using P20 from B. thuringiensis israelensis. The coexpression of Cry2Aa with P20 resulted in a seven fold increase in its production yield in B. thuringiensis. Generated crystals proved to be significantly more toxic (505.207 µg g -1 , 1.99 mg L -1 and 1.49 mg L -1 ) than the P20-lacking control (720.78 µg g -1 , 705.69 mg L -1 and 508.51 mg L -1 ) against Ephestia kuehniella, Aedes aegypti and Culex pipiens larvae respectively. In vitro, processing experiments revealed a P20-mediated protection of Cry2Aa against degradation under larval gut conditions. Thus, P20 could promote the maintenance of a tightly packaged conformation of Cry2Aa toxins in the larval midgut upon correct activation and binding to its membrane receptors. Based on their resistance against excessive proteolysis, Cry2Aa δ-endotoxins, produced in the presence of P20, could be considered as a successful control agent for E. kuehniella and an effective alternative for mosquito control, implying its possible exploitation in pest management programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  9. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  10. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. © The American Society of Tropical Medicine and Hygiene.

  11. Larvicidal Activity against Aedes aegypti and Chemical Characterization of the Inflorescences of Tagetes patula

    PubMed Central

    Antonelli-Ushirobira, Tânia Mara; Panizzon, Gean; Sereia, Ana Luiza; de Souza, José Roberto Pinto; Zequi, João Antonio Cyrino; Novello, Cláudio Roberto; Lopes, Gisely Cristiny; de Medeiros, Daniela Cristina; Silva, Denise Brentan; Leite-Mello, Eneri Vieira de Souza

    2017-01-01

    The crude acetone extract (CAE) of defatted inflorescences of Tagetes patula was partitioned into five semipurified fractions: n-hexane (HF), dichloromethane (DF), ethyl acetate (EAF), n-butanol (BF), and aqueous (AQF). BF was fractionated by reversed-phase polyamide column chromatography, obtaining 34 subfractions, which were subjected to HSCCC, where patuletin and patulitrin were isolated. CAE and the fractions BF, EAF, DF, and AQF were analyzed by LC-DAD-MS, and patuletin and patulitrin were determined as the major substances in EAF and BF, respectively. BF was also analyzed by HPLC and capillary electrophoresis (CE), and patulitrin was again determined to be the main substance in this fraction. CAE and the semipurified fractions (750, 500, 300, 100, and 50 mg/L) were assayed for larvicidal activity against Aedes aegypti, with mortality rate expressed as percentage. All fractions except AQF showed insecticidal activity after 24 h exposure of larvae to the highest concentration. However, EAF showed the highest activity with more than 50% reduction in larval population at 50 mg/L. The insecticidal activity observed with EAF might have been due to the higher concentration of patuletin present in this fraction. PMID:29362590

  12. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus

    PubMed Central

    Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W

    2017-01-01

    BACKGROUND Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised. OBJECTIVES Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR). METHODS Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR. FINDINGS The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV. MAIN CONCLUSIONS These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions. PMID:29211244

  13. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus.

    PubMed

    Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W

    2017-12-01

    Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised. Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR). Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR. The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV. These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions.

  14. Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in Plautia splendens and Allied Stinkbugs

    PubMed Central

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi

    2015-01-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae. PMID:25636847

  15. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis.

    PubMed

    Liu, Yan; Lin, Jingjing; Zhang, Minjie; Chen, Kai; Yang, Shengxi; Wang, Qun; Yang, Hongqin; Xie, Shusen; Zhou, Yongjian; Zhang, Xi; Chen, Fei; Yang, Yufeng

    2016-11-15

    Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied. To examine the potential contribution of PINK1 in developmental processes, we monitored the dynamic expression pattern of PINK1 in the midgut development by taking advantage of a newly CRISPR/Cas9 generated knock-in fly strain expressing PINK1-mCherry fusion protein that presumably recapitulates the endogenous expression pattern of PINK1. We disclosed a spatiotemporal correlation between the expression pattern of PINK1 and the mitochondrial clearance or persistence in ECs or ISCs respectively. By mosaic genetic analysis, we then demonstrated that PINK1 and PARKIN function epistatically to mediate the specific timely removal of mitochondria, and are involved in global autophagy in ECs during Drosophila midgut metamorphosis, with kinase-dead PINK1 exerting dominant negative effects. Taken together, our studies concluded that the PINK1/PARKIN is crucial for timely cell-type specific mitophagy under physiological conditions and demonstrated again that Drosophila midgut metamorphosis might serve as an elegant in vivo model to study autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  17. [Aedes aegypti control strategies: a review].

    PubMed

    Zara, Ana Laura de Sene Amâncio; Santos, Sandra Maria Dos; Fernandes-Oliveira, Ellen Synthia; Carvalho, Roberta Gomes; Coelho, Giovanini Evelim

    2016-01-01

    to describe the main strategies to control Aedes aegypti, with emphasis on promising technological innovations for use in Brazil. this study is a non-systematic review of the literature. several technologies have been developed as alternatives in the control of Ae. aegypti, using different mechanisms of action, such as selective monitoring of the infestation, social interventions, dispersing insecticides, new biological control agents and molecular techniques for population control of mosquitoes, also considering the combination between them. Evolving technologies require evaluation of the effectiveness, feasibility and costs of implementation strategies as complementary to the actions already recommended by the National Program for Dengue Control. the integration of different compatible and effective vector control strategies, considering the available technologies and regional characteristics, appears to be a viable method to try to reduce the infestation of mosquitoes and the incidence of arbovirus transmitted by them.

  18. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.

    PubMed

    Fatima, Syeda Hira; Atif, Salman; Rasheed, Syed Basit; Zaidi, Farrah; Hussain, Ejaz

    2016-03-01

    Statistical tools are effectively used to determine the distribution of mosquitoes and to make ecological inferences about the vector-borne disease dynamics. In this study, we utilised species distribution models to understand spatial patterns of Aedes aegypti in two dengue-prevalent regions of Pakistan, Lahore and Swat. Species distribution models can potentially indicate the probability of suitability of Ae. aegypti once introduced to new regions like Swat, where invasion of this species is a recent phenomenon. The distribution of Ae. aegypti was determined by applying the MaxEnt algorithm on a set of potential environmental factors and species sample records. The ecological dependency of species on each environmental variable was analysed using response curves. We quantified the statistical performance of the models based on accuracy assessment and spatial predictions. Our results suggest that Ae. aegypti is widely distributed in Lahore. Human population density and urban infrastructure are primarily responsible for greater probability of mosquito occurrence in this region. In Swat, Ae. aegypti has clumped distribution, where urban patches provide refuge to the species in an otherwise hostile heterogeneous environment and road networks are assumed to have facilitated in passive-mediated dispersal of species. In Pakistan, Ae. aegypti is expanding its range northwards; this could be associated with rapid urbanisation, trade and travel. The main implication of this expansion is that more people are at risk of dengue fever in the northern highlands of Pakistan. © 2016 John Wiley & Sons Ltd.

  19. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  20. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    PubMed

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. © 2012 The Royal Entomological Society.

  1. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut.

    PubMed

    Chen, Zhi; Wu, Xiaochun; Luo, Hongjie; Zhao, Lingling; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    We used Drosophila as an animal model to study the digestive tract in response to the exposure of inorganic mercury (HgCl2). We found that after oral administration, mercury was mainly sequestered within the midgut. This resulted in increased cell death, which in turn stimulated the tissue regeneration program, including accelerated proliferation and differentiation of the intestinal stem cells (ISCs). We further demonstrated that these injuries correlate closely with the excessive production of the reactive oxygen species (ROS), as vitamin E, an antioxidant reagent, efficiently suppressed the HgCl2-induced phenotypes of midgut and improved the viability. We propose that the Drosophila midgut could serve as a suitable model to study the treatment of acute hydrargyrism on the digestive systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be

  3. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  4. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Heterodimeric Glycoprotein Hormone, GPA2/GPB5, Regulates Ion Transport across the Hindgut of the Adult Mosquito, Aedes aegypti

    PubMed Central

    Paluzzi, Jean-Paul; Vanderveken, Mark; O’Donnell, Michael J.

    2014-01-01

    A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important

  6. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Mahesh Kumar, Palanisamy; Kovendan, Kalimuthu; Amerasan, Duraisamy; Subrmaniam, Jayapal; Hwang, Jiang-Shiou

    2012-10-01

    Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present study explored the effects of orange peel ethanol extract of Citrus sinensis on larvicidal, pupicidal, repellent and adulticidal activity against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The orange peel material was shade dried at room temperature and powdered coarsely. From orange peel, 300 g powdered was macerated with 1 L of ethanol sequentially for a period of 72 h each and filtered. The yields of the orange peel ethanol crude extract of C. sinensis 13.86 g, respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4 °C. The larvicidal, pupicidal and adult mortality was observed after 24 h of exposure; no mortality was observed in the control group. For C. sinensis, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species A. stephensi first to fourth larval instars and pupae were 182.24, 227.93, 291.69, 398.00 and 490.84 ppm; A. aegypti values were 92.27, 106.60, 204.87, 264.26, 342.45, 436.93 and 497.41 ppm; and C. quinquefasciatus values were 244.70, 324.04, 385.32, 452.78 and 530.97 ppm, respectively. The results of maximum repellent activity were observed at 450 ppm in ethanol extracts of C. sinensis and the mean complete protection time ranged from 150 to 180 min was tested. The ethanol extract of C. sinensis showed 100% repellency in 150 min and showed complete protection in 90 min at 350 ppm against A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The adult mortality was found in ethanol extract of C. sinensis with the LC(50) and LC(90) values of 272.19 and 457.14 ppm, A. stephensi; 289.62 and

  7. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    PubMed

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  8. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Drake, Lisa L; Boudko, Dmitri Y; Marinotti, Osvaldo; Carpenter, Victoria K; Dawe, Angus L; Hansen, Immo A

    2010-12-29

    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  9. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  10. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  11. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  12. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    PubMed Central

    Rezende, Gustavo Lazzaro; Martins, Ademir Jesus; Gentile, Carla; Farnesi, Luana Cristina; Pelajo-Machado, Marcelo; Peixoto, Alexandre Afrânio; Valle, Denise

    2008-01-01

    Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle. PMID:18789161

  13. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Vincent, Savariar

    2012-02-01

    The leaf extract of Acalypha alnifolia with different solvents - hexane, chloroform, ethyl acetate, acetone and methanol - were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC(50) = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC(90) = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC(50) = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC(90) = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC(50) = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC(90) = 458.73, 430

  15. Midgut pseudotumors and the maintenance of tissue homeostasis: studies on aging and manipulated stick insects.

    PubMed

    Holtmann, Matthias; Dorn, August

    2009-02-01

    Stick insects (Carausius morosus) develop pseudotumors in aging adults. Pseudotumor formation starts at the M2 midgut region where an accumulation of stomatogastric nerve terminals is observed. Pseudotumors arise from dying columnar cells whose basal parts form an "amorphous substance" at the basement membrane whereas the apical parts, including the nucleus, are expelled into the gut lumen. The "amorphous substance" is ensheathed by hemocytes. These nodules, which do not melanize, characterize the phenotype of the pseudotumors. With age, cell death and pseudotumor infestation increases. It is shown that the maintenance of midgut tissue homoeostasis is disturbed and becomes more serious with growing pseudotumor incidence. The increased death rate of differentiated columnar cells is no longer compensated by the proliferation of regenerative cells, i.e., intestinal stem cells, in the midgut nidi. The appearance of "holes" in the intestinal wall is evidently a causative factor of premature death. Extirpation of the hypocerebral ganglion in young adults of the stick insect (before the onset of spontaneous pseudotumor formation) provokes the apoptosis of a large number of columnar cells within 24 h and the formation of pseudotumors that are histologically identical with spontaneous ones. We conclude that the stomatogastric nervous system plays a decisive role in the regulatory mechanism maintaining midgut tissue homeostasis. The possibility of experimentally manipulating the regulatory system provides a valuable tool for the exploration of extrinsic factors involved into the feedback circuitry of tissue homeostasis. The fact that comparable pseudotumors were observed in a number of orthopteromorphan species, where they could also be induced by the interruption of the stomatogastric nervous system, indicates that its role in tissue homoeostasis may be widespread in insects and possibly represent a general principle. (c) 2008 Wiley-Liss, Inc.

  16. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  17. TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti

    PubMed Central

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20–40% of fertile survivors produced kmo alleles that failed to complement an existing khw mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1–7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  18. In Vitro Inhibition of Leishmania Attachment to Sandfly Midguts and LL-5 Cells by Divalent Metal Chelators, Anti-gp63 and Phosphoglycans.

    PubMed

    Soares, Rodrigo Pedro; Altoé, Ellen Cristina Félix; Ennes-Vidal, Vítor; da Costa, Simone M; Rangel, Elizabeth Ferreira; de Souza, Nataly Araújo; da Silva, Vanderlei Campos; Volf, Petr; d'Avila-Levy, Claudia Masini

    2017-07-01

    Leishmania braziliensis and Leishmania infantum are the causative agents of cutaneous and visceral leishmaniasis, respectively. Several aspects of the vector-parasite interaction involving gp63 and phosphoglycans have been individually assayed in different studies. However, their role under the same experimental conditions was not studied yet. Here, the roles of divalent metal chelators, anti-gp63 antibodies and purified type I phosphoglycans (PGs) were evaluated during in vitro parasite attachment to the midgut of the vector. Parasites were treated with divalent metal chelators or anti-gp63 antibodies prior to the interaction with Lutzomyia longipalpis/Lutzomyia intermedia midguts or sand fly LL-5 cells. In vitro binding system was used to examine the role of PG and gp63 in parallel. Treatment with divalent metal chelators reduced Le. infantum adhesion to the Lu. longipalpis midguts. The most effective compound (Phen) inhibited the binding in both vectors. Similar results were observed in the interaction between both Leishmania species and the cell line LL-5. Finally, parallel experiments using anti-gp63-treated parasites and PG-incubated midguts demonstrated that both approaches substantially inhibited attachment in the natural parasite-vector pairs Le. infantum/Lu. longipalpis and Le. braziliensis/Lu. intermedia. Our results suggest that gp63 and/or PG are involved in parasite attachment to the midgut of these important vectors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  20. Host-derived transferrin is maintained and transferred from midgut to ovary in Haemaphysalis longicornis ticks.

    PubMed

    Mori, Hiroyuki; Galay, Remil Linggatong; Maeda, Hiroki; Matsuo, Tomohide; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2014-03-01

    Transferrin is known to be an iron transporter in vertebrates and several arthropods. Iron from host blood is essential for ovarian development in blood-sucking arthropods. However, tick transferrin has been identified in only a few species, and its function has yet to be elucidated, resulting in incomplete understanding of iron metabolism in ticks. Here, we investigated the transfer of host-derived transferrin in the hard tick Haemaphysalis longicornis using immunological methods. Western blot showed that host-derived transferrin was maintained in all developmental stages of ticks up to 28 days after engorgement and was detected in the midgut and the ovary of adult females following blood feeding. However, no host-derived transferrin was detected in eggs after laying or in larvae after hatching, indicating that host-derived transferrin is not transferred to offspring transovarially. Indirect immunofluorescent antibody testing showed the localization of host-derived transferrin in digestive cells of the midgut and oocytes of the ovary from engorged adult females. These results suggest that host-derived transferrin is transferred to the ovary through the midgut and the hemolymph, and raise the possibility of the function of host-derived transferrin as an iron source in the ovary, providing additional insight on iron metabolism in ticks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism.

    PubMed

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-06-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains.

  2. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  3. Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection.

    PubMed

    Lin, Junhan; Xia, Xiaofeng; Yu, Xiao-Qiang; Shen, Jinhong; Li, Yong; Lin, Hailan; Tang, Shanshan; Vasseur, Liette; You, Minsheng

    2018-03-20

    Insect gut immunity plays a key role in defense against microorganism infection. The knowledge of insect gut immunity has been obtained mostly from Drosophila melanogaster. Little is known about gut immunity in the diamondback moth, Plutella xylostella (L.), a pest destroying cruciferous crops worldwide. In this study, expressions of the immune-related genes in the midgut of P. xylostella orally infected with Staphylococcus aureus, Escherichia coli and Pichia pastoris were profiled by RNA-seq and qRT-PCR approaches. The results revealed that the Toll, IMD, JNK and JAK-STAT pathways and possibly the prophenoloxidase activation system in P. xylostella could be activated by oral infections, and moricins, gloverins and lysozyme2 might act as important effectors against microorganisms. Subsequent knock-down of IMD showed that this gene was involved in regulating the expression of down-stream genes in the IMD pathway. Our work indicates that the Toll, IMD, JNK and JAK-STAT pathways may synergistically modulate immune responses in the P. xylostella midgut, implying a complex and diverse immune system in the midgut of insects. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides.

  5. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  6. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  7. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  8. Temporal Patterns of Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and Mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic

    PubMed Central

    Kamgang, Basile; Ngoagouni, Carine; Manirakiza, Alexandre; Nakouné, Emmanuel; Paupy, Christophe; Kazanji, Mirdad

    2013-01-01

    The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa. PMID:24349596

  9. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  10. Spread, establishment & prevalence of dengue vector Aedes aegypti (L.) in Konkan region, Maharashtra, India.

    PubMed

    Fulmali, P V; Walimbe, A; Mahadev, P V M

    2008-06-01

    Aedes aegypti (L.) (Diptera: Culicidae) was surveyed in the residential biotopes of Sindhudurg, Ratnagiri and Raigadh districts, Maharashtra State during dry (January-May & November- December) and wet (June-October) months in 2002 to update information on its distribution, to analyse post invasion establishment, and to study its prevalence. The survey was designed to unfold Ae. aegypti distributions at landscape, habitat and micro-habitat levels. Risks of distribution and establishment due to differences amongst settlements, households and habitat attributes were analysed by univariate and multivariate methods. Demographic/transport changes were surveyed for its breeding refugia during dry months and prevalence during the wet seasons. Chi square tests for difference and relative risks of container types were applied to assess container habitats preferences for Ae. aegypti breeding, thus contributing to the risk of establishment and prevalence through seasons. Ae. aegypti was present in 16 out of total 28 settlements in dry season and 22 of 25 in wet season; the Breteau index (BI) varied from 1.25 to 57.33 and the container index (CI) was 0.6 to 25.81 in the dry season and BI from 1.25 to 110-00 and CI - 0.2 to 11.37 in the wet season, respectively. At macro-level, rural settlements and ports showed higher odds ratios (OR>1) for presence of Ae. aegypti. At meso-level, OR were 65.8, 24.8 and 4.9 for Ae. aegypti breeding in compact houses, clustered housing and in houses with tap water source respectively. At micro-level the plastic drums and small plastic containers were the important key habitats of its breeding. In the non-residential areas Ae. aegypti breeding was noted in one port during dry season; 10-road transport tyre dumps and scrap, 5 of 7 seaports and none of the two railway station areas during wet season. At macro-geographic level Ae. aegypti distribution increased in 3 settlements, new establishment was seen in 7, new records in ten settlements and two

  11. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes.

    PubMed

    Fraser, Johanna E; De Bruyne, Jyotika Taneja; Iturbe-Ormaetxe, Iñaki; Stepnell, Justin; Burns, Rhiannon L; Flores, Heather A; O'Neill, Scott L

    2017-12-01

    Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing.

  12. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    PubMed

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  13. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia.

    PubMed

    Paupy, Christophe; Le Goff, Gilbert; Brengues, Cécile; Guerra, Mabel; Revollo, Jimmy; Barja Simon, Zaïra; Hervé, Jean-Pierre; Fontenille, Didier

    2012-08-01

    Between the 16th and 18th centuries, Aedes aegypti (Diptera: Culicidae), a mosquito native to Africa, invaded the Americas, where it was successively responsible for the emergence of yellow fever (YF) and dengue (DEN). The species was eradicated from numerous American countries in the mid-20th century, but re-invaded them in the 1970s and 1980s. Little is known about the precise identities of Ae. aegypti populations which successively thrived in South America, or their relation with the epidemiological changes in patterns of YF and DEN. We examined these questions in Bolivia, where Ae. aegypti, eradicated in 1943, re-appeared in the 1980s. We assessed the genetic variability and population genetics of Ae. aegypti samples in order to deduce their genetic structure and likely geographic origin. Using a 21-population set covering Bolivia, we analyzed the polymorphism at nine microsatellite loci and in two mitochondrial DNA regions (COI and ND4). Microsatellite markers revealed a significant genetic structure among geographic populations (F(ST)=0.0627, P<0.0001) in relation with the recent re-expansion of Ae. aegypti in Bolivia. Analysis of mtDNA sequences revealed the existence of two genetic lineages, one dominant lineage recovered throughout Bolivia, and the second restricted to rural localities in South Bolivia. Phylogenic analysis indicated that this minority lineage was related to West African Ae. aegypti specimens. In conclusion, our results suggested a temporal succession of Ae. aegypti populations in Bolivia, that potentially impacted the epidemiology of dengue and yellow fever. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Spatial patterns of high Aedes aegypti oviposition activity in northwestern Argentina.

    PubMed

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005-2007). Spatial autocorrelation was measured with Moran's Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC=0.77), obtaining 99% of sensitivity and 75.29% of specificity. Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health Ministry to focus resources more effectively.

  15. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  16. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    USGS Publications Warehouse

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  17. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    PubMed

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.

  18. Larval Connectivity and the International Management of Fisheries

    PubMed Central

    Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.

    2013-01-01

    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273

  19. Alternative control of Aedes aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpene bioinsecticides.

    PubMed

    Silva, Indira Ma; Martins, Gustavo F; Melo, Carlisson R; Santana, Alisson S; Faro, Ruan Rn; Blank, Arie F; Alves, Péricles B; Picanço, Marcelo C; Cristaldo, Paulo F; Araújo, Ana Paula A; Bacci, Leandro

    2018-04-01

    The mosquito Aedes aegypti is intensively controlled because it is a vector of viruses that cause numerous diseases, especially in tropical regions. As a consequence of the indiscriminate use of insecticides, populations from different regions have become resistant to pyrethroids. Here, we analyzed the lethal and sublethal effects of essential oil of Aristolochia trilobata and its major compounds on A. aegypti from susceptible and pyrethroid-resistant populations. Our results showed that the toxicity of the different compounds and behavioral changes in response to them are dependent on the stage of the insect life cycle. The monoterpene ρ-cymene caused high mortality in both larvae and adult females of A. aegypti, including those from the pyrethroid-resistant population. The monoterpenes limonene and linalool caused a sublethal effect in the larvae, triggering changes in the swimming pattern. This study highlights the potential of the essential oil of A. trilobata and its major compounds ρ-cymene and limonene for the control of A. aegypti and reveals the importance of analyzing sublethal effects on the population dynamics of the A. aegypti mosquito. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    PubMed

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2016-10-01

    Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  1. Detecting larval export from marine reserves

    PubMed Central

    Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.

    2010-01-01

    Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570

  2. Insect midgut α-mannosidases from family 38 and 47 with emphasis on those of Tenebrio molitor.

    PubMed

    Moreira, Nathalia R; Cardoso, Christiane; Ribeiro, Alberto F; Ferreira, Clelia; Terra, Walter R

    2015-12-01

    α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is

  3. Interaction between the predator Toxorhynchites brevipalpis and its prey Aedes aegypti1

    PubMed Central

    Trpis, Milan

    1973-01-01

    In a circumscribed area in Tanzania where the predacious larvae of Toxorhynchites brevipalpis were particularly abundant, it was found that water-filled tires and tins containing Toxorhynchites larvae had fewer larvae of Aedes aegypti than those without the predator larvae. The peaks of infestation with Toxorhynchites larvae occurred almost a month later than the peaks of A. aegypti infestation. Cannibalism was observed among the predator larvae in these containers. PMID:4152925

  4. Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia.

    PubMed

    Ali, Khalil H Al; El-Badry, Ayman A; Ali, Mouhanad Al; El-Sayed, Wael S M; El-Beshbishy, Hesham A

    2016-06-01

    Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. The present study has aimed to perform phylogenetic analysis of Aedes aegypti based on mitochondrial NADH dehydrogenase subunit 4 ( ND4 ) gene at Almadinah, Saudi Arabia in order to get further insight into the epidemiology and transmission of this vector. Mitochondrial ND4 gene was sequenced in the eight isolated Aedes aegypti mosquitoes from Almadinah, Saudi Arabia, sequences were aligned, and phylogenetic analysis were performed and compared with 54 sequences of Aedes reported in the previous studies from Mexico, Thailand, Brazil, and Africa. Our results suggest that increased gene flow among Aedes aegypti populations occurs between Africa and Saudi Arabia. Phylogenetic relationship analysis showed two genetically distinct Aedes aegypti in Saudi Arabia derived from dual African ancestor.

  5. Multi-modal Aedes aegypti mosquito reduction interventions and dengue fever prevention.

    PubMed

    Ballenger-Browning, Kara K; Elder, John P

    2009-12-01

    To systematically review the effectiveness of biological, chemical and educational dengue fever prevention programs on the reduction of entomologic indicators. Searches of PubMed, GoogleScholar, CabDirect databases and reference lists yielded over 1000 articles containing mosquito abatement interventions. Inclusion criteria were: Vector control programs targeting Aedes aegypti and Aedes albopictus mosquitoes; Studies providing pre- and post-test data. Intervention effectiveness was assessed using Mulla's formula to determine percent reductions for all studies with control groups. Twenty-one studies were reviewed. Twelve dependent variables were presented, however, the Breteau, House and Container indices were the primary measurement tools for monitoring larval populations. Behavioural methods consisting of educational campaigns and maintaining water containers to reduce the mosquito population were applied in eight studies. Eight studies involved the use of biological methods such as predatory organisms or bacteria. Finally, eight studies used chemical control techniques including insecticide sprays, larvicides, insecticide-treated materials, and cleaning water of containers with household chemicals with three studies using a combination of intervention techniques. Post-intervention reduction in entomologic indices ranged from 100% to an increase of 13.9% from baseline. Little evidence exists to support the efficacy of mosquito abatement programs owing to poor study designs and lack of congruent entomologic indices. Creation of a standard entomological index, use of clustered and randomized-controlled trials, and testing the generalizability of proven methods are recommended for future research.

  6. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti.

    PubMed

    Panneerselvam, Chellasamy; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy

    2012-12-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. The aim of the present study, to evaluate the larvicidal, pupicidal, repellent, and adulticidal activities of methanol crude extract of Artemisia nilagirica were assayed for their toxicity against two important vector mosquitoes, viz., Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The fresh leaves of A. nilagirica were washed thoroughly in tap water and shade dried at room temperature (28 ± 2 °C) for 5-8 days. The air-dried materials were powdered separately using commercial electrical blender. From the plants, 500 g powdered was macerated with 1.5 L organic solvents of methanol sequentially for a period of 72 h each and filtered. The larval and pupal mortality was observed after 24 h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC(50) = 272.50, 311.40, 361.51, 442.51, and 477.23 ppm, and the LC(90) = 590.07, 688.81, 789.34, 901.59, and 959.30 ppm; the A. aegypti had values of LC(50) = 300.84, 338.79, 394.69, 470.74, and 542.11 ppm, and the LC(90) = 646.67, 726.07, 805.49, 892.01, and 991.29 ppm, respectively. The results of the repellent activity of plant extract of A. nilagirica plants at five different concentrations of 50, 150, 250, 350, and 450 ppm were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, the plant crude extract gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. The adult mortality was found in methanol extract of A. nilagirica, with the LC(50) and LC(90) values of 205.78 and 459.51 ppm for A. stephensi, and 242.52 and 523.73 ppm for A. aegypti

  7. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea.

    PubMed

    Alexandre, Daniel; Ozório, Renata A; Derner, Roberto B; Fracalossi, Débora M; Oliveira, Gabriel B; Samuels, Richard I; Terra, Walter R; Silva, Carlos P

    2014-01-01

    The effect of dietary protein concentration on the spatial distribution of digestive proteinases in the shrimp Litopenaeus vannamei indicates the existence of endo-ectoperitrophic enzyme circulation in this species. Samples recovered from the midgut gland tissues, stomach contents, three different portions of the midgut and feces were used for quantitative and qualitative analyses of the composition and distribution of the digestive proteinases. Animals were divided into three different groups: (1) animals (controls) fed with a commercial 35% protein diet, (2) animals fed with a commercial diet supplemented with ovalbumin to a final protein concentration of 60%; (3) animals fed with an 80% protein diet. Quantitative determinations using different substrates and zymograms showed that increasing protein concentration in the diet alters the distribution of proteinases along the digestive tract. Composition of proteinases in the midgut gland, stomach contents, midgut sections and feces were similar, but not identical. Chymotrypsin and trypsin paralogues were identified in all enzyme sources in a concentration gradient along the midgut in the control shrimp, the expected distribution supporting the existence of a recycling mechanism. The occurrence of a peritrophic membrane in other Decapoda suggests that endo-ectoperitrophic circulation of digestive enzymes and nutrients may also occur in other crustaceans and also extends beyond the Insecta. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut.

    PubMed

    Verma, Sudha; Das, Sushmita; Mandal, Abhishek; Ansari, Md Yousuf; Kumari, Sujata; Mansuri, Rani; Kumar, Ajay; Singh, Ruby; Saini, Savita; Abhishek, Kumar; Kumar, Vijay; Sahoo, Ganesh Chandra; Das, Pradeep

    2017-06-23

    In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to

  9. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya

    PubMed Central

    Ndenga, Bryson Alberto; Mutuku, Francis Maluki; Ngugi, Harun Njenga; Mbakaya, Joel Omari; Aswani, Peter; Musunzaji, Peter Siema; Vulule, John; Mukoko, Dunstan; Kitron, Uriel; LaBeaud, Angelle Desiree

    2017-01-01

    Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001), outdoors than indoors (P<0.001) and in urban than rural sites (P = 0.008). Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001) and in urban than rural areas (P<0.001). Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008) and in western than coastal sites (P = 0.006). The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral

  10. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya.

    PubMed

    Ndenga, Bryson Alberto; Mutuku, Francis Maluki; Ngugi, Harun Njenga; Mbakaya, Joel Omari; Aswani, Peter; Musunzaji, Peter Siema; Vulule, John; Mukoko, Dunstan; Kitron, Uriel; LaBeaud, Angelle Desiree

    2017-01-01

    Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001), outdoors than indoors (P<0.001) and in urban than rural sites (P = 0.008). Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001) and in urban than rural areas (P<0.001). Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008) and in western than coastal sites (P = 0.006). The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral

  11. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source

    PubMed Central

    Zhang, Xinyang; Crippen, Tawni L.; Coates, Craig J.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes “eavesdrop” on the chemical discussions occurring

  12. History of domestication and spread of Aedes aegypti--a review.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya.

  13. History of domestication and spread of Aedes aegypti - A Review

    PubMed Central

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  14. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia.

    PubMed

    Overgaard, Hans J; Olano, Víctor Alberto; Jaramillo, Juan Felipe; Matiz, María Inés; Sarmiento, Diana; Stenström, Thor Axel; Alexander, Neal

    2017-07-27

    Aedes aegypti, the major vector of dengue, breeds in domestic water containers. The development of immature mosquitoes in such containers is influenced by various environmental, ecological and socioeconomic factors. Urban and rural disparities in water storage practices and water source supply may affect mosquito immature abundance and, potentially, dengue risk. We evaluated the effect of water and container characteristics on A. aegypti immature abundance in urban and rural areas. Data were collected in the wet season of 2011 in central Colombia from 36 urban and 35 rural containers, which were either mosquito-positive or negative. Immature mosquitoes were identified to species. Data on water and container characteristics were collected from all containers. A total of 1452 Aedes pupae and larvae were collected of which 81% were A. aegypti and 19% A. fluviatilis. Aedes aegypti immatures were found in both urban and rural sites. However, the mean number of A. aegypti pupae was five times higher in containers in the urban sites compared to those in the rural sites. One of the important factors associated with A. aegypti infestation was frequency of container washing. Monthly-washed or never-washed containers were both about four times more likely to be infested than those washed every week. There were no significant differences between urban and rural sites in frequency of washing containers. Aedes aegypti immature infestation was positively associated with total dissolved solids, but negatively associated with dissolved oxygen. Water temperature, total dissolved solids, ammonia, nitrate, and organic matter were significantly higher in urban than in rural containers, which might explain urban-rural differences in breeding of A. aegypti. However, many of these factors vary substantially between studies and in their degree of association with vector breeding, therefore they may not be reliable indices for vector control interventions. Although containers in urban areas

  15. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector

    PubMed Central

    Seixas, Gonçalo; Salgueiro, Patrícia; Silva, Ana Clara; Campos, Melina; Spenassatto, Carine; Reyes-Lugo, Matías; Novo, Maria Teresa; Ribolla, Paulo Eduardo Martins; Pinto, João Pedro Soares da Silva; Sousa, Carla Alexandra

    2013-01-01

    The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance ( kdr ) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures. PMID:24473797

  16. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector.

    PubMed

    Seixas, Gonçalo; Salgueiro, Patrícia; Silva, Ana Clara; Campos, Melina; Spenassatto, Carine; Reyes-Lugo, Matías; Novo, Maria Teresa; Ribolla, Paulo Eduardo Martins; Silva Pinto, João Pedro Soares da; Sousa, Carla Alexandra

    2013-01-01

    The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures.

  17. Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti.

    PubMed

    Green, M M; Singer, J M; Sutherland, D J; Hibben, C R

    1991-06-01

    The steam distilled oils of 3 species of marigold, Tagetes patula, T. erecta and T. minuta, were tested for larvicidal activity toward third instar Aedes aegypti; activity at 10 ppm was demonstrated only for T. minuta. The larvicidal property of the whole oil dispersed in water persisted for at least 9 days. The terpene, ocimenone, which is a part of the whole oil, was found to be larvicidal only at a higher concentration than the whole oil and to lose its activity within 24 h after dispersal in water. These results suggest a potential utilization of oil of T. minuta or its components for the control of Ae. aegypti and other species of mosquitoes.

  18. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    PubMed

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  19. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis

    PubMed Central

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J.; Quan, Guoxing

    2015-01-01

    Background The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. Methodology and Principal Findings High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. Conclusions and Significance This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects. PMID:26244979

  20. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.