Sample records for aerial imaging technology

  1. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  2. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  3. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  4. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  5. An algorithm for approximate rectification of digital aerial images

    USDA-ARS?s Scientific Manuscript database

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  6. Aerial image based die-to-model inspections of advanced technology masks

    NASA Astrophysics Data System (ADS)

    Kim, Jun; Lei, Wei-Guo; McCall, Joan; Zaatri, Suheil; Penn, Michael; Nagpal, Rajesh; Faivishevsky, Lev; Ben-Yishai, Michael; Danino, Udy; Tam, Aviram; Dassa, Oded; Balasubramanian, Vivek; Shah, Tejas H.; Wagner, Mark; Mangan, Shmoolik

    2009-10-01

    Die-to-Model (D2M) inspection is an innovative approach to running inspection based on a mask design layout data. The D2M concept takes inspection from the traditional domain of mask pattern to the preferred domain of the wafer aerial image. To achieve this, D2M transforms the mask layout database into a resist plane aerial image, which in turn is compared to the aerial image of the mask, captured by the inspection optics. D2M detection algorithms work similarly to an Aerial D2D (die-to-die) inspection, but instead of comparing a die to another die it is compared to the aerial image model. D2M is used whenever D2D inspection is not practical (e.g., single die) or when a validation of mask conformity to design is needed, i.e., for printed pattern fidelity. D2M is of particular importance for inspection of logic single die masks, where no simplifying assumption of pattern periodicity may be done. The application can tailor the sensitivity to meet the needs at different locations, such as device area, scribe lines and periphery. In this paper we present first test results of the D2M mask inspection application at a mask shop. We describe the methodology of using D2M, and review the practical aspects of the D2M mask inspection.

  7. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  8. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-03

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  9. Aerial imaging technology for photomask qualification: from a microscope to a metrology tool

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Scherübl, Thomas; Peters, Jan Hendrik

    2012-09-01

    Photomasks carry the structured information of the chip designs printed with lithography scanners onto wafers. These structures, for the most modern technologies, are enlarged by a factor of 4 with respect to the final circuit design, and 20-60 of these photomasks are needed for the production of a single completed chip used, for example, in computers or cell phones. Lately, designs have been reported to be on the drawing board with close to 100 of these layers. Each of these photomasks will be reproduced onto the wafer several hundred times and typically 5000-50 000 wafers will be produced with each of them. Hence, the photomasks need to be absolutely defect-free to avoid any fatal electrical shortcut in the design or drastic performance degradation. One well-known method in the semiconductor industry is to analyze the aerial image of the photomask in a dedicated tool referred to as Aerial Imaging Measurement System, which emulates the behavior of the respective lithography scanner used for the imaging of the mask. High-end lithography scanners use light with a wavelength of 193 nm and high numerical apertures (NAs) of 1.35 utilizing a water film between the last lens and the resist to be illuminated (immersion scanners). Complex illumination shapes enable the imaging of structures well below the wavelength used. Future lithography scanners will work at a wavelength of 13.5 nm [extreme ultraviolet (EUV)] and require the optical system to work with mirrors in vacuum instead of the classical lenses used in current systems. The exact behavior of these systems is emulated by the Aerial Image Measurement System (AIMS™; a Trademark of Carl Zeiss). With these systems, any position of the photomask can be imaged under the same illumination condition used by the scanners, and hence, a prediction of the printing behavior of any structure can be derived. This system is used by mask manufacturers in their process flow to review critical defects or verify defect repair

  10. Estimating occupancy and abundance using aerial images with imperfect detection

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.; Womble, Jamie N.; Bower, Michael R.

    2017-01-01

    Species distribution and abundance are critical population characteristics for efficient management, conservation, and ecological insight. Point process models are a powerful tool for modelling distribution and abundance, and can incorporate many data types, including count data, presence-absence data, and presence-only data. Aerial photographic images are a natural tool for collecting data to fit point process models, but aerial images do not always capture all animals that are present at a site. Methods for estimating detection probability for aerial surveys usually include collecting auxiliary data to estimate the proportion of time animals are available to be detected.We developed an approach for fitting point process models using an N-mixture model framework to estimate detection probability for aerial occupancy and abundance surveys. Our method uses multiple aerial images taken of animals at the same spatial location to provide temporal replication of sample sites. The intersection of the images provide multiple counts of individuals at different times. We examined this approach using both simulated and real data of sea otters (Enhydra lutris kenyoni) in Glacier Bay National Park, southeastern Alaska.Using our proposed methods, we estimated detection probability of sea otters to be 0.76, the same as visual aerial surveys that have been used in the past. Further, simulations demonstrated that our approach is a promising tool for estimating occupancy, abundance, and detection probability from aerial photographic surveys.Our methods can be readily extended to data collected using unmanned aerial vehicles, as technology and regulations permit. The generality of our methods for other aerial surveys depends on how well surveys can be designed to meet the assumptions of N-mixture models.

  11. Study on Practical Technologies of Aerial Triangulation for Real Scene 3d Moeling with Oblique Photography

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Liu, W.; Luo, G.; Xiang, Z.

    2018-04-01

    The key technologies in the real scene 3D modeling of oblique photography mainly include the data acquisition of oblique photography, layout and surveying of photo control points, oblique camera calibration, aerial triangulation, dense matching of multi-angle image, building of triangulation irregular network (TIN) and TIN simplification and automatic texture mapping, among which aerial triangulation is the core and the results of aerial triangulation directly affect the later model effect and the corresponding data accuracy. Starting from this point of view, this paper aims to study the practical technologies of aerial triangulation for real scene 3D modeling with oblique photography and finally proposes a technical method of aerial triangulation with oblique photography which can be put into practice.

  12. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    NASA Astrophysics Data System (ADS)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  13. Aerial image databases for pipeline rights-of-way management

    NASA Astrophysics Data System (ADS)

    Jadkowski, Mark A.

    1996-03-01

    Pipeline companies that own and manage extensive rights-of-way corridors are faced with ever-increasing regulatory pressures, operating issues, and the need to remain competitive in today's marketplace. Automation has long been an answer to the problem of having to do more work with less people, and Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) solutions have been implemented at several pipeline companies. Until recently, the ability to cost-effectively acquire and incorporate up-to-date aerial imagery into these computerized systems has been out of the reach of most users. NASA's Earth Observations Commercial Applications Program (EOCAP) is providing a means by which pipeline companies can bridge this gap. The EOCAP project described in this paper includes a unique partnership with NASA and James W. Sewall Company to develop an aircraft-mounted digital camera system and a ground-based computer system to geometrically correct and efficiently store and handle the digital aerial images in an AM/FM/GIS environment. This paper provides a synopsis of the project, including details on (1) the need for aerial imagery, (2) NASA's interest and role in the project, (3) the design of a Digital Aerial Rights-of-Way Monitoring System, (4) image georeferencing strategies for pipeline applications, and (5) commercialization of the EOCAP technology through a prototype project at Algonquin Gas Transmission Company which operates major gas pipelines in New England, New York, and New Jersey.

  14. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  15. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  16. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  17. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  18. Hybrid display of static image and aerial image by use of transparent acrylic cubes and retro-reflectors

    NASA Astrophysics Data System (ADS)

    Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu

    2017-02-01

    Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.

  19. Comparison of SLAR images and small-scale, low-sun aerial photographs.

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1971-01-01

    A comparison of side-looking airborne radar (SLAR) images and black and white aerial photos of similar scale and illumination of an area in the Mojave Desert of California shows that aerial photos yield far more information about geology than do SLAR images because of greater resolution, tonal range, and geometric fidelity, and easier use in stereo. Nevertheless, radar can differentiate some materials or surfaces that aerial photos cannot; thus, they should be considered as complementary, rather than competing tools in geologic investigations. The most significant advantage of SLAR, however, is its freedom from the stringent conditions of weather, date, and time that are required by small-scale aerial photos taken with a specified direction and angle of illumination. Indeed, in low latitudes, SLAR is the only way to obtain small-scale images with low illumination from certain directions; moreover, in areas of nearly continuous cloudiness, radar may be the only practical source of small-scale images.

  20. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  1. Comparison of line shortening assessed by aerial image and wafer measurements

    NASA Astrophysics Data System (ADS)

    Ziegler, Wolfram; Pforr, Rainer; Thiele, Joerg; Maurer, Wilhelm

    1997-02-01

    Increasing number of patterns per area and decreasing linewidth demand enhancement technologies for optical lithography. OPC, the correction of systematic non-linearity in the pattern transfer process by correction of design data is one possibility to tighten process control and to increase the lifetime of existing lithographic equipment. The two most prominent proximity effects to be corrected by OPC are CD variation and line shortening. Line shortening measured on a wafer is up to 2 times larger than full resist simulation results. Therefore, the influence of mask geometry to line shortening is a key item to parameterize lithography. The following paper discusses the effect of adding small serifs to line ends with 0.25 micrometer ground-rule design. For reticles produced on an ALTA 3000 with standard wet etch process, the corner rounding on them mask can be reduced by adding serifs of a certain size. The corner rounding was measured and the effect on line shortening on the wafer is determined. This was investigated by resist measurements on wafer, aerial image plus resist simulation and aerial image measurements on the AIMS microscope.

  2. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    NASA Astrophysics Data System (ADS)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  3. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  4. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    PubMed

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  5. Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System

    DTIC Science & Technology

    2015-03-01

    PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...REFUELING FROM A STEREO IMAGING SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS

  6. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  7. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  8. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  9. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  10. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  11. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  12. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  13. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  14. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  15. Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ji, S.; Zhang, C.; Qin, Z.

    2018-05-01

    Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.

  16. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  17. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously.

  18. A Low-Cost Imaging System for Aerial Applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  19. Aerial image metrology for OPC modeling and mask qualification

    NASA Astrophysics Data System (ADS)

    Chen, Ao; Foong, Yee Mei; Thaler, Thomas; Buttgereit, Ute; Chung, Angeline; Burbine, Andrew; Sturtevant, John; Clifford, Chris; Adam, Kostas; De Bisschop, Peter

    2017-06-01

    As nodes become smaller and smaller, the OPC applied to enable these nodes becomes more and more sophisticated. This trend peaks today in curve-linear OPC approaches that are currently starting to appear on the roadmap. With this sophistication of OPC, the mask pattern complexity increases. CD-SEM based mask qualification strategies as they are used today are starting to struggle to provide a precise forecast of the printing behavior of a mask on wafer. An aerial image CD measurement performed on ZEISS Wafer-Level CD system (WLCD) is a complementary approach to mask CD-SEMs to judge the lithographical performance of the mask and its critical production features. The advantage of the aerial image is that it includes all optical effects of the mask such as OPC, SRAF, 3D mask effects, once the image is taken under scanner equivalent illumination conditions. Additionally, it reduces the feature complexity and analyzes the printing relevant CD.

  20. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  1. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  2. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu

    2018-09-01

    A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.

  3. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    NASA Astrophysics Data System (ADS)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  4. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  5. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis

    DTIC Science & Technology

    1989-08-01

    Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17

  6. Automated aerial image based CD metrology initiated by pattern marking with photomask layout data

    NASA Astrophysics Data System (ADS)

    Davis, Grant; Choi, Sun Young; Jung, Eui Hee; Seyfarth, Arne; van Doornmalen, Hans; Poortinga, Eric

    2007-05-01

    The photomask is a critical element in the lithographic image transfer process from the drawn layout to the final structures on the wafer. The non-linearity of the imaging process and the related MEEF impose a tight control requirement on the photomask critical dimensions. Critical dimensions can be measured in aerial images with hardware emulation. This is a more recent complement to the standard scanning electron microscope measurement of wafers and photomasks. Aerial image measurement includes non-linear, 3-dimensional, and materials effects on imaging that cannot be observed directly by SEM measurement of the mask. Aerial image measurement excludes the processing effects of printing and etching on the wafer. This presents a unique contribution to the difficult process control and modeling tasks in mask making. In the past, aerial image measurements have been used mainly to characterize the printability of mask repair sites. Development of photomask CD characterization with the AIMS TM tool was motivated by the benefit of MEEF sensitivity and the shorter feedback loop compared to wafer exposures. This paper describes a new application that includes: an improved interface for the selection of meaningful locations using the photomask and design layout data with the Calibre TM Metrology Interface, an automated recipe generation process, an automated measurement process, and automated analysis and result reporting on a Carl Zeiss AIMS TM system.

  7. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  8. A low-cost dual-camera imaging system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  9. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 18 MAY 1948. NCA HISTORY COLLECTION. - Knoxville National Cemetery, 939 Tyson Street, Northwest, Knoxville, Knox County, TN

  10. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation

  11. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    PubMed

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  12. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks

    PubMed Central

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-01-01

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed. PMID:29186756

  13. Using aerial photography and image analysis to measure changes in giant reed populations

    USDA-ARS?s Scientific Manuscript database

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  14. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  15. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    NASA Astrophysics Data System (ADS)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  16. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously.

  17. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  18. Aberration measurement technique based on an analytical linear model of a through-focus aerial image.

    PubMed

    Yan, Guanyong; Wang, Xiangzhao; Li, Sikun; Yang, Jishuo; Xu, Dongbo; Erdmann, Andreas

    2014-03-10

    We propose an in situ aberration measurement technique based on an analytical linear model of through-focus aerial images. The aberrations are retrieved from aerial images of six isolated space patterns, which have the same width but different orientations. The imaging formulas of the space patterns are investigated and simplified, and then an analytical linear relationship between the aerial image intensity distributions and the Zernike coefficients is established. The linear relationship is composed of linear fitting matrices and rotation matrices, which can be calculated numerically in advance and utilized to retrieve Zernike coefficients. Numerical simulations using the lithography simulators PROLITH and Dr.LiTHO demonstrate that the proposed method can measure wavefront aberrations up to Z(37). Experiments on a real lithography tool confirm that our method can monitor lens aberration offset with an accuracy of 0.7 nm.

  19. Building block extraction and classification by means of aerial images fused with super-resolution reconstructed elevation data

    NASA Astrophysics Data System (ADS)

    Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros

    2017-10-01

    The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.

  20. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  1. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 6 APRIL 1968. NCA HISTORY COLLECTION. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  2. A low-cost single-camera imaging system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  3. Integration of aerial remote sensing imaging data in a 3D-GIS environment

    NASA Astrophysics Data System (ADS)

    Moeller, Matthias S.

    2003-03-01

    For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.

  4. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  5. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge-Based Image Analysis.

    DTIC Science & Technology

    1988-01-19

    approach for the analysis of aerial images. In this approach image analysis is performed ast three levels of abstraction, namely iconic or low-level... image analysis , symbolic or medium-level image analysis , and semantic or high-level image analysis . Domain dependent knowledge about prototypical urban

  6. The lucky image-motion prediction for simple scene observation based soft-sensor technology

    NASA Astrophysics Data System (ADS)

    Li, Yan; Su, Yun; Hu, Bin

    2015-08-01

    High resolution is important to earth remote sensors, while the vibration of the platforms of the remote sensors is a major factor restricting high resolution imaging. The image-motion prediction and real-time compensation are key technologies to solve this problem. For the reason that the traditional autocorrelation image algorithm cannot meet the demand for the simple scene image stabilization, this paper proposes to utilize soft-sensor technology in image-motion prediction, and focus on the research of algorithm optimization in imaging image-motion prediction. Simulations results indicate that the improving lucky image-motion stabilization algorithm combining the Back Propagation Network (BP NN) and support vector machine (SVM) is the most suitable for the simple scene image stabilization. The relative error of the image-motion prediction based the soft-sensor technology is below 5%, the training computing speed of the mathematical predication model is as fast as the real-time image stabilization in aerial photography.

  7. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  8. Neural-network classifiers for automatic real-world aerial image recognition

    NASA Astrophysics Data System (ADS)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  9. Neural-network classifiers for automatic real-world aerial image recognition.

    PubMed

    Greenberg, S; Guterman, H

    1996-08-10

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  10. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  11. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  12. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  13. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    PubMed

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  14. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  15. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 5 : aerial bridge deck imaging data collection and software revision.

    DOT National Transportation Integrated Search

    2012-02-01

    For rapid deployment of bridge scan missions, sub-inch aerial imaging using small format aerial photography : is suggested. Under-belly photography is used to generate high resolution aerial images that can be geo-referenced and : used for quantifyin...

  16. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  17. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  18. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  19. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  20. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  1. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  2. A workflow for extracting plot-level biophysical indicators from aerially acquired multispectral imagery

    USDA-ARS?s Scientific Manuscript database

    Advances in technologies associated with unmanned aerial vehicles (UAVs) has allowed for researchers, farmers and agribusinesses to incorporate UAVs coupled with various imaging systems into data collection activities and aid expert systems for making decisions. Multispectral imageries allow for a q...

  3. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  4. 3D Power Line Extraction from Multiple Aerial Images.

    PubMed

    Oh, Jaehong; Lee, Changno

    2017-09-29

    Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  5. 3D Power Line Extraction from Multiple Aerial Images

    PubMed Central

    Lee, Changno

    2017-01-01

    Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters. PMID:28961204

  6. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  7. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changesmore » occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.« less

  8. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  9. Geodetic glacier mass balances at the push of a button: application of Structure from Motion technology on aerial images in mountain regions

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Mölg, N.

    2017-12-01

    The application of Structure-from-Motion (SfM) to generate digital terrain models (DTMs) derived out of images from various kinds of sources has strongly increased in recent years. The major reason for this is its easy-to-use handling in comparison to conventional photogrammetry. In glaciology, DTMs are intensely used, among others, to calculate the geodetic mass balances. Few studies investigated the application of SfM to aerial images in mountainous terrain and results look promising. We tested this technique in a demanding environment in the Swiss Alps including very steep slopes, snow and ice covered terrain. SfM (using the commercial software packages of Agisoft Photoscan and Pix4DMapper) and conventional photogrammetry (ERDAS Photogrammetry) were applied on archival aerial images for nine dates between 1946 and 2005 the results were compared regarding bundle adjustment and final DTM quality. The overall precision of the DTMs could be defined with the use of a modern, high-quality reference DTM by Swisstopo. Results suggest a high performance of SfM to produce DTMs of similar quality as conventional photogrammetry. A ground resolution of high quality (little noise and artefacts) can be up to 50% higher, with 3-6 times less user effort. However, the controls on the commercial SfM software packages are limited in comparison to ERDAS Photogrammetry. SfM performs less reliably when few images with little overlap are processed. Overall, the uncertainty of DTMs from the different software are comparable and mostly within the uncertainty range of the reference DTM, making them highly valuable for glaciological purposes. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available.

  10. Feature-based registration of historical aerial images by Area Minimization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  11. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    USDA-ARS?s Scientific Manuscript database

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  12. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  13. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  14. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid

  15. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  16. Suitability of low cost commercial off-the-shelf aerial platforms and consumer grade digital cameras for small format aerial photography

    NASA Astrophysics Data System (ADS)

    Turley, Anthony Allen

    Many research projects require the use of aerial images. Wetlands evaluation, crop monitoring, wildfire management, environmental change detection, and forest inventory are but a few of the applications of aerial imagery. Low altitude Small Format Aerial Photography (SFAP) is a bridge between satellite and man-carrying aircraft image acquisition and ground-based photography. The author's project evaluates digital images acquired using low cost commercial digital cameras and standard model airplanes to determine their suitability for remote sensing applications. Images from two different sites were obtained. Several photo missions were flown over each site, acquiring images in the visible and near infrared electromagnetic bands. Images were sorted and analyzed to select those with the least distortion, and blended together with Microsoft Image Composite Editor. By selecting images taken within minutes apart, radiometric qualities of the images were virtually identical, yielding no blend lines in the composites. A commercial image stitching program, Autopano Pro, was purchased during the later stages of this study. Autopano Pro was often able to mosaic photos that the free Image Composite Editor was unable to combine. Using telemetry data from an onboard data logger, images were evaluated to calculate scale and spatial resolution. ERDAS ER Mapper and ESRI ArcGIS were used to rectify composite images. Despite the limitations inherent in consumer grade equipment, images of high spatial resolution were obtained. Mosaics of as many as 38 images were created, and the author was able to record detailed aerial images of forest and wetland areas where foot travel was impractical or impossible.

  17. Unmanned Aerial Vehicle (UAV) associated DTM quality evaluation and hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Jen; Chen, Shao-Der; Chao, Yu-Jui; Chiang, Yi-Lin; Chang, Kuo-Jen

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Concerning to the catastrophic landslides, the key information of landslide, including range of landslide, volume estimation and the subsequent evolution are important when analyzing the triggering mechanism, hazard assessment and mitigation. Thus, the morphological analysis gives a general overview for the landslides and been considered as one of the most fundamental information. We try to integrate several technologies, especially by Unmanned Aerial Vehicle (UAV) and multi-spectral camera, to decipher the consequence and the potential hazard, and the social impact. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. Benefited of the advancing of informatics, remote-sensing and electric technologies, the Unmanned Aerial Vehicle (UAV) photogrammetry mas been improve significantly. The study tries to integrate several methods, including, 1) Remote-sensing images gathered by Unmanned Aerial Vehicle (UAV) and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS and Ground LiDAR field in-site geoinfomatics measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAV and aerial photos; 5) Discrete element method should be applied to understand the geomaterial composing the slope failure, for predicting earthquake-induced and rainfall-induced landslides displacement. First at all, we evaluate the Microdrones MD4-1000 UAV airphotos derived Digital Terrain Model (DTM). The ground resolution of the DSM point cloud of could be as high as 10 cm. By integrated 4 ground control point within an area of 56 hectares, compared with LiDAR DSM and filed RTK-GPS surveying, the mean error is as low as 6cm with a standard deviation of 17cm. The quality of the

  18. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  19. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  20. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  1. Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging

    NASA Astrophysics Data System (ADS)

    Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.

    2017-12-01

    In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four

  2. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  3. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    PubMed

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  4. Three dimensional monitoring of urban development by means of ortho-rectified aerial photographs and high-resolution satellite images.

    PubMed

    Ayhan, E; Erden, O; Gormus, E T

    2008-12-01

    Nowadays, cities are developing and changing rapidly due to the increases in the population and immigration. Rapid changing brings obligation to control the cities by planning. The satellite images and the aerial photographs enable us to track the urban development and provide the opportunity to get the current data about urban. With the help of these images, cities may have interrogated dynamic structures. This study is composed of three steps. In the first step, orthophoto images have been generated in order to track urban developments by using the aerial photographs and the satellite images. In this step, the panchromatic (PAN), the multi spectral (MS) and the pan-sharpened image of IKONOS satellite have been used as input satellite data and the accuracy of orthophoto images has been investigated in detail, in terms of digital elevation model (DEM), control points, input images and their properties. In the second step, a 3D city model with database has been generated with the help of orthophoto images and the vector layouts. And in the last step, up to date urban information obtained from 3D city model. This study shows that it is possible to detect the unlicensed buildings and the areas which are going to be nationalized and it also shows that it is easy to document the existing alterations in the cities with the help of current development plans and orthophoto images. And since accessing updated data is very essential to control development and monitor the temporal alterations in urban areas, in this study it is proven that the orthophoto images generated by using aerial photos and satellite images are very reliable to use in obtaining topographical information, in change detection and in city planning. When digital orthophoto images used with GIS, they provide quick decision control mechanisms and quick data collection. Besides, they help to find efficient solutions in a short time in the planning applications.

  5. Computer 3D site model generation based on aerial images

    NASA Astrophysics Data System (ADS)

    Zheltov, Sergey Y.; Blokhinov, Yuri B.; Stepanov, Alexander A.; Skryabin, Sergei V.; Sibiriakov, Alexandre V.

    1997-07-01

    The technology for 3D model design of real world scenes and its photorealistic rendering are current topics of investigation. Development of such technology is very attractive to implement in vast varieties of applications: military mission planning, crew training, civil engineering, architecture, virtual reality entertainments--just a few were mentioned. 3D photorealistic models of urban areas are often discussed now as upgrade from existing 2D geographic information systems. Possibility of site model generation with small details depends on two main factors: available source dataset and computer power resources. In this paper PC based technology is presented, so the scenes of middle resolution (scale of 1:1000) be constructed. Types of datasets are the gray level aerial stereo pairs of photographs (scale of 1:14000) and true color on ground photographs of buildings (scale ca.1:1000). True color terrestrial photographs are also necessary for photorealistic rendering, that in high extent improves human perception of the scene.

  6. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  7. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    NASA Astrophysics Data System (ADS)

    Shi, Yeyin; Thomasson, J. Alex; Yang, Chenghai; Cope, Dale; Sima, Chao

    2017-05-01

    Though sharing with many commonalities, one of the major differences between conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing is that the latter one has much smaller ground footprint for each image shot. To cover the same area on the ground, it requires the low-altitude UASbased platform to take many highly-overlapped images to produce a good mosaic, instead of just one or a few image shots by the high-altitude aerial platform. Such an UAS flight usually takes 10 to 30 minutes or even longer to complete; environmental lighting change during this time span cannot be ignored especially when spectral variations of various parts of a field are of interests. In this case study, we compared the visible reflectance of two aerial imagery - one generated from mosaicked UAS images, the other generated from a single image taken by a manned aircraft - over the same agricultural field to quantitatively evaluate their spectral variations caused by the different data acquisition strategies. Specifically, we (1) developed our customized ground calibration points (GCPs) and an associated radiometric calibration method for UAS data processing based on camera's sensitivity characteristics; (2) developed a basic comparison method for radiometrically calibrated data from the two aerial platforms based on regions of interests. We see this study as a starting point for a series of following studies to understand the environmental influence on UAS data and investigate the solutions to minimize such influence to ensure data quality.

  8. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  9. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  10. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  11. Aerial spray technology: possibilities and limitations for control of pear thrips

    Treesearch

    Karl Mierzejewski

    1991-01-01

    The feasibility of using aerial application as a means of managing a pear thrips infestation in maple forest stands is examined, based on existing knowledge of forest aerial application acquired from theoretical and empirical studies. Specific strategies by which aerial application should be performed and potential problem areas are discussed. Two new tools, aircraft...

  12. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  13. Moving object detection in top-view aerial videos improved by image stacking

    NASA Astrophysics Data System (ADS)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  14. Ground-Cover Measurements: Assessing Correlation Among Aerial and Ground-Based Methods

    NASA Astrophysics Data System (ADS)

    Booth, D. Terrance; Cox, Samuel E.; Meikle, Tim; Zuuring, Hans R.

    2008-12-01

    Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than 3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.

  15. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  16. Archaeological Feature Detection from Archive Aerial Photography with a Sfm-Mvs and Image Enhancement Pipeline

    NASA Astrophysics Data System (ADS)

    Peppa, M. V.; Mills, J. P.; Fieber, K. D.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P. G.

    2018-05-01

    Understanding and protecting cultural heritage involves the detection and long-term documentation of archaeological remains alongside the spatio-temporal analysis of their landscape evolution. Archive aerial photography can illuminate traces of ancient features which typically appear with different brightness values from their surrounding environment, but are not always well defined. This research investigates the implementation of the Structure-from-Motion - Multi-View Stereo image matching approach with an image enhancement algorithm to derive three epochs of orthomosaics and digital surface models from visible and near infrared historic aerial photography. The enhancement algorithm uses decorrelation stretching to improve the contrast of the orthomosaics so as archaeological features are better detected. Results include 2D / 3D locations of detected archaeological traces stored into a geodatabase for further archaeological interpretation and correlation with benchmark observations. The study also discusses the merits and difficulties of the process involved. This research is based on a European-wide project, entitled "Cultural Heritage Through Time", and the case study research was carried out as a component of the project in the UK.

  17. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing.

    PubMed

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-02-23

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.

  18. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

    PubMed Central

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-01-01

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479

  19. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  20. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  1. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data

    PubMed Central

    Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan

    2009-01-01

    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data. PMID:22573971

  2. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carlisle; Woo, Bryana Lynn

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infraredmore » imagers.« less

  3. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  4. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-09-01

    Report Al-TR-346. Artifcial Intelligence Laboratory, Mamachusetts Institute of Tech- niugy. Cambridge, Mmeh mett. June 19 [G.usmn@ A. Gaman-Arenas...Testbed Coordinator, 415/859-4395 Artificial Intelligence Center Computer Science and Technology Division Prepared for: Defense Advanced Research...to support processing of aerial photographs for such military applications as cartography, Intelligence , weapon guidance, and targeting. A key

  5. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  6. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  7. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  8. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  9. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  10. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  11. Modelling and representation issues in automated feature extraction from aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Sowmya, Arcot; Trinder, John

    New digital systems for the processing of photogrammetric and remote sensing images have led to new approaches to information extraction for mapping and Geographic Information System (GIS) applications, with the expectation that data can become more readily available at a lower cost and with greater currency. Demands for mapping and GIS data are increasing as well for environmental assessment and monitoring. Hence, researchers from the fields of photogrammetry and remote sensing, as well as computer vision and artificial intelligence, are bringing together their particular skills for automating these tasks of information extraction. The paper will review some of the approaches used in knowledge representation and modelling for machine vision, and give examples of their applications in research for image understanding of aerial and satellite imagery.

  12. Near Real-Time Georeference of Umanned Aerial Vehicle Images for Post-Earthquake Response

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-04-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL). The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  13. Application possibilities of aerial and terrain data evaluation in particulate pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, V.; Berke, J.; Martin, G.

    2012-04-01

    Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in

  14. Surrogate Joint Aerial Layer Network (JALN) Experiment: Applications of Commercial-Off-The-Shelf Technologies for Researching Future JALN Challenges

    DTIC Science & Technology

    2014-12-01

    CHALLENGES DECEMBER 2014 TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE RESEARCH LABORATORY INFORMATION...JOINT AERIAL LAYER NETWORK (JALN) EXPERIMENT: APPLICATION OF COMMERCIAL-OFF-THE-SHELF TECHNOLOGIES FOR RESEARCHING FUTURE JALN CHALLENGES 5a... challenge JALN developers. The use of low-cost COTS wireless technology is found to be a suitable surrogate for military hardware for investigating

  15. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  16. Optimizing Radiometric Fidelity to Enhance Aerial Image Change Detection Utilizing Digital Single Lens Reflex (DSLR) Cameras

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew D.

    Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and

  17. Low-resolution ship detection from high-altitude aerial images

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  18. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  19. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  20. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  1. Converting aerial imagery to application maps

    USDA-ARS?s Scientific Manuscript database

    Over the last couple of years in Agricultural Aviation and at the 2014 and 2015 NAAA conventions, we have written about and presented both single-camera and two-camera imaging systems for use on agricultural aircraft. Many aerial applicators have shown a great deal of interest in the imaging systems...

  2. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  3. Low aerial imagery - an assessment of georeferencing errors and the potential for use in environmental inventory

    NASA Astrophysics Data System (ADS)

    Smaczyński, Maciej; Medyńska-Gulij, Beata

    2017-06-01

    Unmanned aerial vehicles are increasingly being used in close range photogrammetry. Real-time observation of the Earth's surface and the photogrammetric images obtained are used as material for surveying and environmental inventory. The following study was conducted on a small area (approximately 1 ha). In such cases, the classical method of topographic mapping is not accurate enough. The geodetic method of topographic surveying, on the other hand, is an overly precise measurement technique for the purpose of inventorying the natural environment components. The author of the following study has proposed using the unmanned aerial vehicle technology and tying in the obtained images to the control point network established with the aid of GNSS technology. Georeferencing the acquired images and using them to create a photogrammetric model of the studied area enabled the researcher to perform calculations, which yielded a total root mean square error below 9 cm. The performed comparison of the real lengths of the vectors connecting the control points and their lengths calculated on the basis of the photogrammetric model made it possible to fully confirm the RMSE calculated and prove the usefulness of the UAV technology in observing terrain components for the purpose of environmental inventory. Such environmental components include, among others, elements of road infrastructure, green areas, but also changes in the location of moving pedestrians and vehicles, as well as other changes in the natural environment that are not registered on classical base maps or topographic maps.

  4. Online Aerial Terrain Mapping for Ground Robot Navigation

    PubMed Central

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-01-01

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496

  5. Online Aerial Terrain Mapping for Ground Robot Navigation.

    PubMed

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-02-20

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  6. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  7. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  8. An improved algorithm of mask image dodging for aerial image

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Zou, Songbai; Zuo, Zhiqi

    2011-12-01

    The technology of Mask image dodging based on Fourier transform is a good algorithm in removing the uneven luminance within a single image. At present, the difference method and the ratio method are the methods in common use, but they both have their own defects .For example, the difference method can keep the brightness uniformity of the whole image, but it is deficient in local contrast; meanwhile the ratio method can work better in local contrast, but sometimes it makes the dark areas of the original image too bright. In order to remove the defects of the two methods effectively, this paper on the basis of research of the two methods proposes a balance solution. Experiments show that the scheme not only can combine the advantages of the difference method and the ratio method, but also can avoid the deficiencies of the two algorithms.

  9. Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda

    2018-04-01

    The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.

  10. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  11. Geometric Calibration and Validation of Ultracam Aerial Sensors

    NASA Astrophysics Data System (ADS)

    Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried

    2016-03-01

    We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.

  12. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging.

    PubMed

    Zhang, Dongyan; Zhou, Xingen; Zhang, Jian; Lan, Yubin; Xu, Chao; Liang, Dong

    2018-01-01

    Detection and monitoring are the first essential step for effective management of sheath blight (ShB), a major disease in rice worldwide. Unmanned aerial systems have a high potential of being utilized to improve this detection process since they can reduce the time needed for scouting for the disease at a field scale, and are affordable and user-friendly in operation. In this study, a commercialized quadrotor unmanned aerial vehicle (UAV), equipped with digital and multispectral cameras, was used to capture imagery data of research plots with 67 rice cultivars and elite lines. Collected imagery data were then processed and analyzed to characterize the development of ShB and quantify different levels of the disease in the field. Through color features extraction and color space transformation of images, it was found that the color transformation could qualitatively detect the infected areas of ShB in the field plots. However, it was less effective to detect different levels of the disease. Five vegetation indices were then calculated from the multispectral images, and ground truths of disease severity and GreenSeeker measured NDVI (Normalized Difference Vegetation Index) were collected. The results of relationship analyses indicate that there was a strong correlation between ground-measured NDVIs and image-extracted NDVIs with the R2 of 0.907 and the root mean square error (RMSE) of 0.0854, and a good correlation between image-extracted NDVIs and disease severity with the R2 of 0.627 and the RMSE of 0.0852. Use of image-based NDVIs extracted from multispectral images could quantify different levels of ShB in the field plots with an accuracy of 63%. These results demonstrate that a customer-grade UAV integrated with digital and multispectral cameras can be an effective tool to detect the ShB disease at a field scale.

  13. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  14. Precision measurements from very-large scale aerial digital imagery.

    PubMed

    Booth, D Terrance; Cox, Samuel E; Berryman, Robert D

    2006-01-01

    Managers need measurements and resource managers need the length/width of a variety of items including that of animals, logs, streams, plant canopies, man-made objects, riparian habitat, vegetation patches and other things important in resource monitoring and land inspection. These types of measurements can now be easily and accurately obtained from very large scale aerial (VLSA) imagery having spatial resolutions as fine as 1 millimeter per pixel by using the three new software programs described here. VLSA images have small fields of view and are used for intermittent sampling across extensive landscapes. Pixel-coverage among images is influenced by small changes in airplane altitude above ground level (AGL) and orientation relative to the ground, as well as by changes in topography. These factors affect the object-to-camera distance used for image-resolution calculations. 'ImageMeasurement' offers a user-friendly interface for accounting for pixel-coverage variation among images by utilizing a database. 'LaserLOG' records and displays airplane altitude AGL measured from a high frequency laser rangefinder, and displays the vertical velocity. 'Merge' sorts through large amounts of data generated by LaserLOG and matches precise airplane altitudes with camera trigger times for input to the ImageMeasurement database. We discuss application of these tools, including error estimates. We found measurements from aerial images (collection resolution: 5-26 mm/pixel as projected on the ground) using ImageMeasurement, LaserLOG, and Merge, were accurate to centimeters with an error less than 10%. We recommend these software packages as a means for expanding the utility of aerial image data.

  15. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected bymore » high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.« less

  16. Comparison of DSMs acquired by terrestrial laser scanning, UAV-based aerial images and ground-based optical images at the Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Rothmund, Sabrina; Niethammer, Uwe; Walter, Marco; Joswig, Manfred

    2013-04-01

    In recent years, the high-resolution and multi-temporal 3D mapping of the Earth's surface using terrestrial laser scanning (TLS), ground-based optical images and especially low-cost UAV-based aerial images (Unmanned Aerial Vehicle) has grown in importance. This development resulted from the progressive technical improvement of the imaging systems and the freely available multi-view stereo (MVS) software packages. These different methods of data acquisition for the generation of accurate, high-resolution digital surface models (DSMs) were applied as part of an eight-week field campaign at the Super-Sauze landslide (South French Alps). An area of approximately 10,000 m² with long-term average displacement rates greater than 0.01 m/day has been investigated. The TLS-based point clouds were acquired at different viewpoints with an average point spacing between 10 to 40 mm and at different dates. On these days, more than 50 optical images were taken on points along a predefined line on the side part of the landslide by a low-cost digital compact camera. Additionally, aerial images were taken by a radio-controlled mini quad-rotor UAV equipped with another low-cost digital compact camera. The flight altitude ranged between 20 m and 250 m and produced a corresponding ground resolution between 0.6 cm and 7 cm. DGPS measurements were carried out as well in order to geo-reference and validate the point cloud data. To generate unscaled photogrammetric 3D point clouds from a disordered and tilted image set, we use the widespread open-source software package Bundler and PMVS2 (University of Washington). These multi-temporal DSMs are required on the one hand to determine the three-dimensional surface deformations and on the other hand it will be required for differential correction for orthophoto production. Drawing on the example of the acquired data at the Super-Sauze landslide, we demonstrate the potential but also the limitations of the photogrammetric point clouds. To

  17. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  18. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

    PubMed Central

    Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722

  19. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.

    PubMed

    Yu, Yunlong; Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.

  20. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different

  1. The sky is the limit: reconstructing physical geography fieldwork from an aerial perspective

    NASA Astrophysics Data System (ADS)

    Williams, R.; Tooth, S.; Gibson, M.; Barrett, B.

    2017-12-01

    In an era of rapid geographical data acquisition, interpretations of remote sensing products (e.g. aerial photographs, satellite images, digital elevation models) are an integral part of many undergraduate geography degree schemes but there are fewer opportunities for collection and processing of primary remote sensing data. Unmanned aerial vehicles (UAVs) provide a relatively cheap opportunity to introduce the principles and practice of airborne remote sensing into fieldcourses, enabling students to learn about image acquisition, data processing and interpretation of derived products. Three case studies illustrate how a low cost DJI Phantom UAV can be used by students to acquire images that can be processed using off the shelf Structure-from-Motion photogrammetry software. Two case studies are drawn from an international fieldcourse that takes students to field sites that are the focus of current funded research whilst a third case study is from a course in topographic mapping. Results from a student questionnaire and analysis of assessed student reports showed that using UAVs in fieldwork enhanced student engagement with themes on their fieldcourse and equipped them with data processing skills. The derivation of bespoke orthophotos and Digital Elevation Models also provided students with opportunities to gain insight into the various data quality issues that are associated with aerial imagery acquisition and topographic reconstruction, although additional training is required to maximise this potential. Recognition of the successes and limitations of this teaching intervention provides scope for improving exercises that use UAVs and other technologies in future fieldcourses. UAVs are enabling both a reconstruction of how we measure the Earth's surface and a reconstruction of how students do fieldwork.

  2. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  3. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  4. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  5. Towards collaboration between unmanned aerial and ground vehicles for precision agriculture

    NASA Astrophysics Data System (ADS)

    Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat

    2017-05-01

    This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.

  6. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  7. Aerial secure display by use of polarization-processing display with retarder film and retro-reflector

    NASA Astrophysics Data System (ADS)

    Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu

    2017-02-01

    Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.

  8. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  9. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  10. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  11. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    USDA-ARS?s Scientific Manuscript database

    Although conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing share many commonalities, one of the major differences between the two remote sensing platforms is that the latter has much smaller image footprint. To cover the same area o...

  12. Precision aerial application for site-specific rice crop management

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  13. Complex Building Detection Through Integrating LIDAR and Aerial Photos

    NASA Astrophysics Data System (ADS)

    Zhai, R.

    2015-02-01

    This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.

  14. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  15. Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach

    NASA Astrophysics Data System (ADS)

    Rahman, A. A. Ab; Maulud, K. N. Abdul; Mohd, F. A.; Jaafar, O.; Tahar, K. N.

    2017-12-01

    Unmanned Aerial Vehicles (UAV) technology has evolved dramatically in the 21st century. It is used by both military and general public for recreational purposes and mapping work. Operating cost for UAV is much cheaper compared to that of normal aircraft and it does not require a large work space. The UAV systems have similar functions with the LIDAR and satellite images technologies. These systems require a huge cost, labour and time consumption to produce elevation and dimension data. Measurement of difficult objects such as water tank can also be done by using UAV. The purpose of this paper is to show the capability of UAV to compute the volume of water tank based on a different number of images and control points. The results were compared with the actual volume of the tank to validate the measurement. In this study, the image acquisition was done using Phantom 3 Professional, which is a low cost UAV. The analysis in this study is based on different volume computations using two and four control points with variety set of UAV images. The results show that more images will provide a better quality measurement. With 95 images and four GCP, the error percentage to the actual volume is about 5%. Four controls are enough to get good results but more images are needed, estimated about 115 until 220 images. All in all, it can be concluded that the low cost UAV has a potential to be used for volume of water and dimension measurement.

  16. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  17. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs

  18. Multiple vehicle tracking in aerial video sequence using driver behavior analysis and improved deterministic data association

    NASA Astrophysics Data System (ADS)

    Zhang, Xunxun; Xu, Hongke; Fang, Jianwu

    2018-01-01

    Along with the rapid development of the unmanned aerial vehicle technology, multiple vehicle tracking (MVT) in aerial video sequence has received widespread interest for providing the required traffic information. Due to the camera motion and complex background, MVT in aerial video sequence poses unique challenges. We propose an efficient MVT algorithm via driver behavior-based Kalman filter (DBKF) and an improved deterministic data association (IDDA) method. First, a hierarchical image registration method is put forward to compensate the camera motion. Afterward, to improve the accuracy of the state estimation, we propose the DBKF module by incorporating the driver behavior into the Kalman filter, where artificial potential field is introduced to reflect the driver behavior. Then, to implement the data association, a local optimization method is designed instead of global optimization. By introducing the adaptive operating strategy, the proposed IDDA method can also deal with the situation in which the vehicles suddenly appear or disappear. Finally, comprehensive experiments on the DARPA VIVID data set and KIT AIS data set demonstrate that the proposed algorithm can generate satisfactory and superior results.

  19. Spectral Imaging from Uavs Under Varying Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I.

    2013-08-01

    Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes with stereoscopic overlaps. On field the weather conditions vary and the UAV operator often has to decide between flight in sub optimal conditions and no flight. Our objective was to investigate methods for quantitative radiometric processing of images taken under varying illumination conditions, thus expanding the range of weather conditions during which successful imaging flights can be made. A new method that is based on insitu measurement of irradiance either in UAV platform or in ground was developed. We tested the methods in a precision agriculture application using realistic data collected in difficult illumination conditions. Internal homogeneity of the original image data (average coefficient of variation in overlapping images) was 0.14-0.18. In the corrected data, the homogeneity was 0.10-0.12 with a correction based on broadband irradiance measured in UAV, 0.07-0.09 with a correction based on spectral irradiance measurement on ground, and 0.05-0.08 with a radiometric block adjustment based on image data. Our results were very promising, indicating that quantitative UAV based remote sensing could be operational in diverse conditions, which is prerequisite for many environmental remote sensing applications.

  20. Metadata-assisted nonuniform atmospheric scattering model of image haze removal for medium-altitude unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Chunlei; Ding, Wenrui; Li, Hongguang; Li, Jiankun

    2017-09-01

    Haze removal is a nontrivial work for medium-altitude unmanned aerial vehicle (UAV) image processing because of the effects of light absorption and scattering. The challenges are attributed mainly to image distortion and detail blur during the long-distance and large-scale imaging process. In our work, a metadata-assisted nonuniform atmospheric scattering model is proposed to deal with the aforementioned problems of medium-altitude UAV. First, to better describe the real atmosphere, we propose a nonuniform atmospheric scattering model according to the aerosol distribution, which directly benefits the image distortion correction. Second, considering the characteristics of long-distance imaging, we calculate the depth map, which is an essential clue to modeling, on the basis of UAV metadata information. An accurate depth map reduces the color distortion compared with the depth of field obtained by other existing methods based on priors or assumptions. Furthermore, we use an adaptive median filter to address the problem of fuzzy details caused by the global airlight value. Experimental results on both real flight and synthetic images demonstrate that our proposed method outperforms four other existing haze removal methods.

  1. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  2. Aerial LED signage by use of crossed-mirror array

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro

    2013-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.

  3. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  4. Using aerial images for establishing a workflow for the quantification of water management measures

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg

    2017-04-01

    Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for

  5. Craniofacial imaging informatics and technology development.

    PubMed

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  6. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  7. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  8. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  9. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  10. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  11. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  12. Assessing Long-Term Seagrass Changes by Integrating a High-Spatial Resolution Image, Historical Aerial Photography and Field Data

    NASA Astrophysics Data System (ADS)

    Leon-Perez, M.; Hernandez, W. J.; Armstrong, R.

    2016-02-01

    Reported cases of seagrass loss have increased over the last 40 years, increasing the awareness of the need for assessing seagrass health. In situ monitoring has been the main method to assess spatial and temporal changes in seagrass ecosystem. Although remote sensing techniques with multispectral imagery have been recently used for these purposes, long-term analysis is limited to the sensor's mission life. The objective of this project is to determine long-term changes in seagrass habitat cover at Caja de Muertos Island Nature Reserve, by combining in situ data with a satellite image and historical aerial photography. A current satellite imagery of the WorldView-2 sensor was used to generate a 2014 benthic habitat map for the study area. The multispectral image was pre-processed using: conversion of digital numbers to radiance, and atmospheric and water column corrections. Object-based image analysis was used to segment the image into polygons representing different benthic habitats and to classify those habitats according to the classification scheme developed for this project. The scheme include the following benthic habitat categories: seagrass (sparse, dense and very dense), colonized hard bottom (sparse, dense and very dense), sand and mix algae on unconsolidated sediments. Field work was used to calibrate the satellite-derived benthic maps and to asses accuracy of the final products. In addition, a time series of satellite imagery and historic aerial photography from 1950 to 2014 provided data to assess long-term changes in seagrass habitat cover within the Reserve. Preliminary results show an increase in seagrass habitat cover, contrasting with the worldwide declining trend. The results of this study will provide valuable information for the conservation and management of seagrass habitat in the Caja de Muertos Island Nature Reserve.

  13. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  14. Use of Aerial Hyperspectral Imaging For Monitoring Forest Health

    Treesearch

    Milton O. Smith; Nolan J. Hess; Stephen Gulick; Lori G. Eckhardt; Roger D. Menard

    2004-01-01

    This project evaluates the effectiveness of aerial hyperspectral digital imagery in the assessment of forest health of loblolly stands in central Alabama. The imagery covers 50 square miles, in Bibb and Hale Counties, south of Tuscaloosa, AL, which includes intensive managed forest industry sites and National Forest lands with multiple use objectives. Loblolly stands...

  15. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-08-12

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

  16. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  17. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  18. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  19. Assessing a potential solution for spatially referencing of historical aerial photography in South Africa

    NASA Astrophysics Data System (ADS)

    Denner, Michele; Raubenheimer, Jacobus H.

    2018-05-01

    Historical aerial photography has become a valuable commodity in any country, as it provides a precise record of historical land management over time. In a developing country, such as South Africa, that has undergone enormous political and social change over the last years, such photography is invaluable as it provides a clear indication of past injustices and serves as an aid to addressing post-apartheid issues such as land reform and land redistribution. National mapping organisations throughout the world have vast repositories of such historical aerial photography. In order to effectively use these datasets in today's digital environment requires that it be georeferenced to an accuracy that is suitable for the intended purpose. Using image-to-image georeferencing techniques, this research sought to determine the accuracies achievable for ortho-rectifying large volumes of historical aerial imagery, against the national standard for ortho-rectification in South Africa, using two different types of scanning equipment. The research conducted four tests using aerial photography from different time epochs over a period of sixty years, where the ortho-rectification matched each test to an already ortho-rectified mosaic of a developed area of mixed land use. The results of each test were assessed in terms of visual accuracy, spatial accuracy and conformance to the national standard for ortho-rectification in South Africa. The results showed a decrease in the overall accuracy of the image as the epoch range between the historical image and the reference image increased. Recommendations on the applications possible given the different epoch ranges and scanning equipment used are provided.

  20. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  1. Evaluation of remote sensing aerial systems in existing transportation practices, phase II.

    DOT National Transportation Integrated Search

    2011-06-01

    A low-cost aerial platform represents a flexible tool for acquiring high-resolution images for ground areas of interest. The geo-referencing of objects within these images could benefit civil engineers in a variety of research areas including, but no...

  2. Introduction to Raman chemical imaging technology

    USDA-ARS?s Scientific Manuscript database

    New developments in computer and imaging hardware have significantly advanced Raman spectroscopy and spectral imaging technologies, and have led to the recent emergence of new Raman detection techniques for rapid and online applications. This book chapter presents Raman chemical imaging technology a...

  3. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  4. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  5. Counter unmanned aerial system testing and evaluation methodology

    NASA Astrophysics Data System (ADS)

    Kouhestani, C.; Woo, B.; Birch, G.

    2017-05-01

    Unmanned aerial systems (UAS) are increasing in flight times, ease of use, and payload sizes. Detection, classification, tracking, and neutralization of UAS is a necessary capability for infrastructure and facility protection. We discuss test and evaluation methodology developed at Sandia National Laboratories to establish a consistent, defendable, and unbiased means for evaluating counter unmanned aerial system (CUAS) technologies. The test approach described identifies test strategies, performance metrics, UAS types tested, key variables, and the necessary data analysis to accurately quantify the capabilities of CUAS technologies. The tests conducted, as defined by this approach, will allow for the determination of quantifiable limitations, strengths, and weaknesses in terms of detection, tracking, classification, and neutralization. Communicating the results of this testing in such a manner informs decisions by government sponsors and stakeholders that can be used to guide future investments and inform procurement, deployment, and advancement of such systems into their specific venues.

  6. Use of micro unmanned aerial vehicles for roadside condition assessment

    DOT National Transportation Integrated Search

    2010-12-01

    Micro unmanned aerial vehicles (MUAVs) that are equipped with digital imaging systems and global : positioning systems provide a potential opportunity for improving the effectiveness and safety of roadside : condition and inventory surveys. This stud...

  7. Enhancement of spectral quality of archival aerial photographs using satellite imagery for detection of land cover

    NASA Astrophysics Data System (ADS)

    Siok, Katarzyna; Jenerowicz, Agnieszka; Woroszkiewicz, Małgorzata

    2017-07-01

    Archival aerial photographs are often the only reliable source of information about the area. However, these data are single-band data that do not allow unambiguous detection of particular forms of land cover. Thus, the authors of this article seek to develop a method of coloring panchromatic aerial photographs, which enable increasing the spectral information of such images. The study used data integration algorithms based on pansharpening, implemented in commonly used remote sensing programs: ERDAS, ENVI, and PCI. Aerial photos and Landsat multispectral data recorded in 1987 and 2016 were chosen. This study proposes the use of modified intensity-hue-saturation and Brovey methods. The use of these methods enabled the addition of red-green-blue (RGB) components to monochrome images, thus enhancing their interpretability and spectral quality. The limitations of the proposed method relate to the availability of RGB satellite imagery, the accuracy of mutual orientation of the aerial and the satellite data, and the imperfection of archival aerial photographs. Therefore, it should be expected that the results of coloring will not be perfect compared to the results of the fusion of recent data with a similar ground sampling resolution, but still, they will allow a more accurate and efficient classification of land cover registered on archival aerial photographs.

  8. Aeronautics Education, Research, and Industry Alliance (AERIAL) Year 2 Report and Year 3 Proposal

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, Geroge; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.

    2003-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL): a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, contributes to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL enables Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. This report contains a summary of AERIAL's activities and accomplishments during the second year of implementation. The AERIAL Year 3 proposal is also included.

  9. Semantic Segmentation and Difference Extraction via Time Series Aerial Video Camera and its Application

    NASA Astrophysics Data System (ADS)

    Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.

    2015-04-01

    Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.

  10. Aerial surveillance vehicles augment security at shipping ports

    NASA Astrophysics Data System (ADS)

    Huck, Robert C.; Al Akkoumi, Muhammad K.; Cheng, Samuel; Sluss, James J., Jr.; Landers, Thomas L.

    2008-10-01

    With the ever present threat to commerce, both politically and economically, technological innovations provide a means to secure the transportation infrastructure that will allow efficient and uninterrupted freight-flow operations for trade. Currently, freight coming into United States ports is "spot checked" upon arrival and stored in a container yard while awaiting the next mode of transportation. For the most part, only fences and security patrols protect these container storage yards. To augment these measures, the authors propose the use of aerial surveillance vehicles equipped with video cameras and wireless video downlinks to provide a birds-eye view of port facilities to security control centers and security patrols on the ground. The initial investigation described in this paper demonstrates the use of unmanned aerial surveillance vehicles as a viable method for providing video surveillance of container storage yards. This research provides the foundation for a follow-on project to use autonomous aerial surveillance vehicles coordinated with autonomous ground surveillance vehicles for enhanced port security applications.

  11. Development of Autonomous Optimal Cooperative Control in Relay Rover Configured Small Unmanned Aerial Systems

    DTIC Science & Technology

    2013-03-01

    Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan

  12. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  13. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  14. Overall design of imaging spectrometer on-board light aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongqi, H.; Zhengkui, C.; Changhua, C.

    1996-11-01

    Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less

  15. Three-dimensional imaging technology offers promise in medicine.

    PubMed

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  16. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  17. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  18. The future of structural fieldwork - UAV assisted aerial photogrammetry

    NASA Astrophysics Data System (ADS)

    Vollgger, Stefan; Cruden, Alexander

    2015-04-01

    Unmanned aerial vehicles (UAVs), commonly referred to as drones, are opening new and low cost possibilities to acquire high-resolution aerial images and digital surface models (DSM) for applications in structural geology. UAVs can be programmed to fly autonomously along a user defined grid to systematically capture high-resolution photographs, even in difficult to access areas. The photographs are subsequently processed using software that employ SIFT (scale invariant feature transform) and SFM (structure from motion) algorithms. These photogrammetric routines allow the extraction of spatial information (3D point clouds, digital elevation models, 3D meshes, orthophotos) from 2D images. Depending on flight altitude and camera setup, sub-centimeter spatial resolutions can be achieved. By "digitally mapping" georeferenced 3D models and images, orientation data can be extracted directly and used to analyse the structural framework of the mapped object or area. We present UAV assisted aerial mapping results from a coastal platform near Cape Liptrap (Victoria, Australia), where deformed metasediments of the Palaeozoic Lachlan Fold Belt are exposed. We also show how orientation and spatial information of brittle and ductile structures extracted from the photogrammetric model can be linked to the progressive development of folds and faults in the region. Even though there are both technical and legislative limitations, which might prohibit the use of UAVs without prior commercial licensing and training, the benefits that arise from the resulting high-resolution, photorealistic models can substantially contribute to the collection of new data and insights for applications in structural geology.

  19. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  20. Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Giordano, S.; Le Bris, A.; Mallet, C.

    2018-05-01

    Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.

  1. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  2. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  3. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  4. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  5. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  6. Evaluating the use of unmanned aerial vehicles for transportation purposes : [parts A-D].

    DOT National Transportation Integrated Search

    2015-03-01

    Advances in unmanned aerial vehicle (UAV) technology have enabled these tools to become : easier to use and afford. In a budget-limited environment, these flexible remote sensing : technologies can help address transportation agency needs in operatio...

  7. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    PubMed

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  8. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    PubMed

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  9. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  10. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Damian; Fryskowska, Anna; Kedzierski, Michal; Wojtkowska, Michalina; Delis, Paulina

    2018-01-01

    Unmanned aerial vehicles are suited to various photogrammetry and remote sensing missions. Such platforms are equipped with various optoelectronic sensors imaging in the visible and infrared spectral ranges and also thermal sensors. Nowadays, near-infrared (NIR) images acquired from low altitudes are often used for producing orthophoto maps for precision agriculture among other things. One major problem results from the application of low-cost custom and compact NIR cameras with wide-angle lenses introducing vignetting. In numerous cases, such cameras acquire low radiometric quality images depending on the lighting conditions. The paper presents a method of radiometric quality assessment of low-altitude NIR imagery data from a custom sensor. The method utilizes statistical analysis of NIR images. The data used for the analyses were acquired from various altitudes in various weather and lighting conditions. An objective NIR imagery quality index was determined as a result of the research. The results obtained using this index enabled the classification of images into three categories: good, medium, and low radiometric quality. The classification makes it possible to determine the a priori error of the acquired images and assess whether a rerun of the photogrammetric flight is necessary.

  11. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    NASA Astrophysics Data System (ADS)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital

  12. Image Sharing Technologies and Reduction of Imaging Utilization: A Systematic Review and Meta-analysis.

    PubMed

    Vest, Joshua R; Jung, Hye-Young; Ostrovsky, Aaron; Das, Lala Tanmoy; McGinty, Geraldine B

    2015-12-01

    Image sharing technologies may reduce unneeded imaging by improving provider access to imaging information. A systematic review and meta-analysis were conducted to summarize the impact of image sharing technologies on patient imaging utilization. Quantitative evaluations of the effects of PACS, regional image exchange networks, interoperable electronic heath records, tools for importing physical media, and health information exchange systems on utilization were identified through a systematic review of the published and gray English-language literature (2004-2014). Outcomes, standard effect sizes (ESs), settings, technology, populations, and risk of bias were abstracted from each study. The impact of image sharing technologies was summarized with random-effects meta-analysis and meta-regression models. A total of 17 articles were included in the review, with a total of 42 different studies. Image sharing technology was associated with a significant decrease in repeat imaging (pooled effect size [ES] = -0.17; 95% confidence interval [CI] = [-0.25, -0.09]; P < .001). However, image sharing technology was associated with a significant increase in any imaging utilization (pooled ES = 0.20; 95% CI = [0.07, 0.32]; P = .002). For all outcomes combined, image sharing technology was not associated with utilization. Most studies were at risk for bias. Image sharing technology was associated with reductions in repeat and unnecessary imaging, in both the overall literature and the most-rigorous studies. Stronger evidence is needed to further explore the role of specific technologies and their potential impact on various modalities, patient populations, and settings. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. Image Sharing Technologies and Reduction of Imaging Utilization: A Systematic Review and Meta-analysis

    PubMed Central

    Vest, Joshua R.; Jung, Hye-Young; Ostrovsky, Aaron; Das, Lala Tanmoy; McGinty, Geraldine B.

    2016-01-01

    Introduction Image sharing technologies may reduce unneeded imaging by improving provider access to imaging information. A systematic review and meta-analysis were conducted to summarize the impact of image sharing technologies on patient imaging utilization. Methods Quantitative evaluations of the effects of PACS, regional image exchange networks, interoperable electronic heath records, tools for importing physical media, and health information exchange systems on utilization were identified through a systematic review of the published and gray English-language literature (2004–2014). Outcomes, standard effect sizes (ESs), settings, technology, populations, and risk of bias were abstracted from each study. The impact of image sharing technologies was summarized with random-effects meta-analysis and meta-regression models. Results A total of 17 articles were included in the review, with a total of 42 different studies. Image sharing technology was associated with a significant decrease in repeat imaging (pooled effect size [ES] = −0.17; 95% confidence interval [CI] = [−0.25, −0.09]; P < .001). However, image sharing technology was associated with a significant increase in any imaging utilization (pooled ES = 0.20; 95% CI = [0.07, 0.32]; P = .002). For all outcomes combined, image sharing technology was not associated with utilization. Most studies were at risk for bias. Conclusions Image sharing technology was associated with reductions in repeat and unnecessary imaging, in both the overall literature and the most-rigorous studies. Stronger evidence is needed to further explore the role of specific technologies and their potential impact on various modalities, patient populations, and settings. PMID:26614882

  14. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  15. Method of transmission of dynamic multibit digital images from micro-unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Kharina, N. L.

    2018-01-01

    In connection with successful usage of nanotechnologies in remote sensing great attention is paid to the systems in micro-unmanned aerial vehicles (MUAVs) capable to provide high spatial resolution of dynamic multibit digital images (MDI). Limited energy resources on board the MUAV do not allow transferring a large amount of video information in the shortest possible time. It keeps back the broad development of MUAV. The search for methods to shorten the transmission time of dynamic MDIs from MUAV over the radio channel leads to the methods of MDI compression without computational operations onboard the MUAV. The known compression codecs of video information can not be applied because of the limited energy resources. In this paper we propose a method for reducing the transmission time of dynamic MDIs without computational operations and distortions onboard the MUAV. To develop the method a mathematical apparatus of the theory of conditional Markov processes with discrete arguments was used. On its basis a mathematical model for the transformation of the MDI represented by binary images (BI) in the MDI, consisting of groups of neighboring BIs (GBI) transmitted by multiphase (MP) signals, is constructed. The algorithm for multidimensional nonlinear filtering of MP signals is synthesized, realizing the statistical redundancy of the MDI to compensate for the noise stability losses caused by the use of MP signals.

  16. Extraction of Dems and Orthoimages from Archive Aerial Imagery to Support Project Planning in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Cogliati, M.; Tonelli, E.; Battaglia, D.; Scaioni, M.

    2017-12-01

    Archive aerial photos represent a valuable heritage to provide information about land content and topography in the past years. Today, the availability of low-cost and open-source solutions for photogrammetric processing of close-range and drone images offers the chance to provide outputs such as DEM's and orthoimages in easy way. This paper is aimed at demonstrating somehow and to which level of accuracy digitized archive aerial photos may be used within a such kind of low-cost software (Agisoft Photoscan Professional®) to generate photogrammetric outputs. Different steps of the photogrammetric processing workflow are presented and discussed. The main conclusion is that this procedure may come to provide some final products, which however do not feature the high accuracy and resolution that may be obtained using high-end photogrammetric software packages specifically designed for aerial survey projects. In the last part a case study is presented about the use of four-epoch archive of aerial images to analyze the area where a tunnel has to be excavated.

  17. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  18. Current status and future directions of precision aerial application for site-specific crop management in the USA

    USDA-ARS?s Scientific Manuscript database

    The first variable-rate aerial application system was developed about a decade ago in the USA and since then, aerial application has benefitted from these technologies. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management, and variable-...

  19. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    PubMed

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-03-06

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  20. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution

    PubMed Central

    Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  1. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    PubMed Central

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe

    2017-01-01

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788

  2. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    PubMed

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  3. 14. Aerial view showing bldg grouping with bldg #2 intact ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Aerial view showing bldg grouping with bldg #2 intact previous to fire (long pitched roof with 7 distinct dormers near image center) - photo by Eastern Topographics, Wolfeboro, N.H., Sept. 1985 - Lawrence Machine Shop, Building No. 2, Union & Canal Streets, Lawrence, Essex County, MA

  4. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  5. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  6. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  7. Extracting Semantic Building Models from Aerial Stereo Images and Conversion to Citygml

    NASA Astrophysics Data System (ADS)

    Sengul, A.

    2012-07-01

    The collection of geographic data is of primary importance for the creation and maintenance of a GIS. Traditionally the acquisition of 3D information has been the task of photogrammetry using aerial stereo images. Digital photogrammetric systems employ sophisticated software to extract digital terrain models or to plot 3D objects. The demand for 3D city models leads to new applications and new standards. City Geography Mark-up Language (CityGML), a concept for modelling and exchange of 3D city and landscape models, defines the classes and relations for the most relevant topographic objects in cities and regional models with respect to their geometrical, topological, semantically and topological properties. It now is increasingly accepted, since it fulfils the prerequisites required e.g. for risk analysis, urban planning, and simulations. There is a need to include existing 3D information derived from photogrammetric processes in CityGML databases. In order to filling the gap, this paper reports on a framework transferring data plotted by Erdas LPS and Stereo Analyst for ArcGIS software to CityGML using Safe Software's Feature Manupulate Engine (FME)

  8. Use of archive aerial photography for monitoring black mangrove populations

    USDA-ARS?s Scientific Manuscript database

    A study was conducted on the south Texas Gulf Coast to evaluate archive aerial color-infrared (CIR) photography combined with supervised image analysis techniques to quantify changes in black mangrove [Avicennia germinans (L.) L.] populations over a 26-year period. Archive CIR film from two study si...

  9. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles

    PubMed Central

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926

  10. Aerial photography flight quality assessment with GPS/INS and DEM data

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao

    2018-01-01

    The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.

  11. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  12. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  13. Earth analog image digitization of field, aerial, and lab experiment studies for Planetary Data System archiving.

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Nelson, D. M.

    2017-12-01

    A portion of the earth analog image archive at the Ronald Greeley Center for Planetary Studies (RGCPS)-the NASA Regional Planetary Information Facility at Arizona State University-is being digitized and will be added to the Planetary Data System (PDS) for public use. This will be a first addition of terrestrial data to the PDS specifically for comparative planetology studies. Digitization is separated into four tasks. First is the scanning of aerial photographs of volcanic and aeolian structures and flows. The second task is to scan field site images taken from ground and low-altitude aircraft of volcanic structures, lava flows, lava tubes, dunes, and wind streaks. The third image set to be scanned includes photographs of lab experiments from the NASA Planetary Aeolian Laboratory wind tunnels, vortex generator, and of wax models. Finally, rare NASA documents are being scanned and formatted as PDF files. Thousands of images are to be scanned for this project. Archiving of the data will follow the PDS4 standard, where the entire project is classified as a single bundle, with individual subjects (i.e., the Amboy Crater volcanic structure in the Mojave Desert of California) as collections. Within the collections, each image is considered a product, with a unique ID and associated XML document. Documents describing the image data, including the subject and context, will be included with each collection. Once complete, the data will be hosted by a PDS data node and available for public search and download. As one of the first earth analog datasets to be archived by the PDS, this project could prompt the digitizing and making available of historic datasets from other facilities for the scientific community.

  14. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  15. UAV using the open-source flight-control-system in the application of aerial survey

    NASA Astrophysics Data System (ADS)

    Huang, Ji-chen; Ru, Chen

    2015-12-01

    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  16. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    NASA Astrophysics Data System (ADS)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  17. Unmanned Aerial Technologies for Observations at Active Volcanoes: Advances and Prospects

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M.; Makel, D.; Schwandner, F. M.; Buongiorno, M. F.; Elston, J. S.

    2017-12-01

    Modern application of unmanned aerial systems' (UASs) technology allow us to conduct in situ measurements in volcanic plumes and drifting volcanic clouds that were impossible to make in the past. Thus, we are now able to explore proximal airspace near and within eruption columns and or other active vents, at very high and at very low altitudes—risk to human investigators is vastly reduced (although not eliminated). We are now on the cusp of being able to make in situ measurements and conduct sampling at altitudes of 5000-6000 meters relatively routinely. We also are developing heat tolerant electronics and sensors that will deployed on, around, and over active lava lakes and lava flows at terrestrial volcanoes, but with a view toward developing planetary applications, for instance on the surface of Venus. We report on our 2012-present systematic UAS-based observations of light gases (e.g., SO2 CO2, H2S) at Turrialba Volcano in Costa Rica, at Italian volcanic sites (e.g., Isole Vulcano; La Solfatara), and most recently at Kilauea Volcano, Hawaii in collaboration with USGS and NPS colleagues. Other deployments for Fall 2017 and Winter 2018 are in planning stages for the Salton Sea Basin and Costa Rica, which will include an airborne miniature mass spectrometer onboard several different types of UAVs. In addition, under development is the first purpose-built-for-volcanology small unmanned aircraft. We discuss strategies for acquiring airborne data from proximal ash/gas plumes during restless periods and during eruptions, from distal drifting ash/gas clouds from eruptions, and from diffuse emissions (e.g., CO2) at very low altitudes, utilizing UASs (e.g., fixed wing, multi-rotor, aerostat), especially regarding inputs for source flux reverse models. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  18. REMOTE SENSING OF SEAGRASS WITH AVIRIS AND HIGH ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    On May 15,2002 AVIRlS (Advanced VisuaJ/lnfrared Imaging Spectrometer) data and high altitude aerial photographs were acquired tor coastal .waters from Cape Lookout to Oregon Inlet, North Carolina. The study encompasses extensive areas of seagrass, federally protected submersed, r...

  19. AERIAL MEASURING SYSTEM IN JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficultmore » terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.« less

  20. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    PubMed Central

    Chen, Chao-I; Koseluk, Robert; Buchanan, Chase; Duerner, Andrew; Jeppesen, Brian; Laux, Hunter

    2015-01-01

    An essential capability for an unmanned aerial vehicle (UAV) to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR). This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC) algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously. PMID:25970254

  1. Bird's-Eye View of Sampling Sites: Using Unmanned Aerial Vehicles to Make Chemistry Fieldwork Videos

    ERIC Educational Resources Information Center

    Fung, Fun Man; Watts, Simon Francis

    2017-01-01

    Drones, unmanned aerial vehicles (UAVs), usually helicopters or airplanes, are commonly used for warfare, aerial surveillance, and recreation. In recent years, drones have become more accessible to the public as a platform for photography. In this report, we explore the use of drones as a new technological filming tool to enhance student learning…

  2. Aerial surveys of landslide bodies through light UAVs: peculiarities and advantages

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Pellicani, Roberta; Leandro, Gianfranco; Marzo, Cosimo; Manzari, Paola; Belmonte, Antonella

    2015-04-01

    The use of UAV in civil applications and particularly for aerial surveillance or surveying is rapidly expanding for several reasons. The first reason is undoubtedly the lowering of the costs of the machines, accompanied by high technology for their positioning and control. The results are high performances and ease of driving. Authors have surveyed some big landslides by drones, with excellent results, which can retail for this technique a specific role, not in conflict with classical airborne aerial surveys, such as LIDAR and others. Obviously the first difference is in the amount of payload, over 100 Kg for classical airborne apparatus, but 1000 times lower in the case of the drones. Nevertheless the advantages of the use of drones and of their products can be synthesized as follows: -Start from the site, without the need of transfers, flight plans and long time weather forecasts; -Imagery product georeferenced and immediately exportable to GIS -Inspection of areas not easily accessible (impervious areas, high layers of mud, crossing of rivers, etc) or unreachable in safety conditions; -Inspection of specific points, relevant for the interpretation of the type and intensity of movement. -The pilot and the landslide specialist define route and compare images in real time -Possibility of flying at very low altitude and hovering. For the geomorphological interpretation of the big landslide of Montescaglioso (Mt, Italy) has been used a 1.5 m EPP (Expanded polipropilene) fixed wing, driven by 3DR Open Source Autopilot, equipped with a 16 Mp compact camera CANON A2300. Very useful revealed the image of the toe of the landslide, critical point for the interpretation of the mechanics of the whole landslide. Results have been of excellent quality and allowed authors to an early correct analysis Other landslides have been explored with a commercial drone (Phantom Vision 2 Dji), the use of which has proved likewise invaluable for returning images of areas not otherwise

  3. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  4. Multi-temporal analysis of aerial images for the investigation of spatial-temporal dynamics of shallow erosion - a case study from the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Wiegand, C.; Geitner, C.; Heinrich, K.; Rutzinger, M.

    2012-04-01

    Small and shallow eroded areas characterize the landscape of many pastures and meadows in the Alps. The extent of such erosion phenomena varies between 2 m2 and 200 m2. These patches tend to be only a few decimetres thick, with a maximum depth of 2 m. The processes involved are shallow landslides, superficial erosion by snow and livestock trampling. Key parameters that influence the emergence of shallow erosion are the geological, topographical and climatic circumstances in an area as well as its soils, vegetation and land use. The negative impact of this phenomenon includes not only the loss of soil but also the reduced attractiveness of the landscape, especially in tourist regions. One approach identifying and mapping geomorphological elements is remote sensing. The analysis of aerial images is a suitable method for identifying the multi-temporal dynamics of shallow eroded areas because of the good spatial and temporal resolution. For this purpose, we used a pixel-based approach to detect these areas semi-automatically in an orthophoto. In a first step, each aerial image was classified using dynamic thresholds derived from the histogram of the orthophoto. In a second step, the identified areas of erosion were filtered and visually in-terpreted. Based on this procedure, eroded areas with a minimum size of 5 m2 were detected in a test site located in the Inner Schmirn Valley (Tyrol, Austria). The altitude of the test site ranges between 1,980 m and 2,370 m, with a mean inclination of 36°, facing E to SE. Geologically, the slope is part of the "Hohe Tauern Window", characterized by "Bündner schists" deficient in lime and regolith. Until the 1960s, the slope was used as a hay meadow. Orthophotos from 2000, 2003, 2007 and 2010 were used for this investigation. Older aerial images were not suitable because of their lower resolution and poor ortho-rectification. However, they are useful for relating the results of the ten-year time-span to a larger temporal context

  5. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application.

    PubMed

    Maxwell, Susan K

    2010-12-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.

  6. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application

    PubMed Central

    Maxwell, Susan K.

    2010-01-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917

  7. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  8. Morphing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-10-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies.

  9. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  10. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    PubMed

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  11. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  12. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  13. Utilizing Light-field Imaging Technology in Neurosurgery.

    PubMed

    Chen, Brian R; Buchanan, Ian A; Kellis, Spencer; Kramer, Daniel; Ohiorhenuan, Ifije; Blumenfeld, Zack; Grisafe Ii, Dominic J; Barbaro, Michael F; Gogia, Angad S; Lu, James Y; Chen, Beverly B; Lee, Brian

    2018-04-10

    Traditional still cameras can only focus on a single plane for each image while rendering everything outside of that plane out of focus. However, new light-field imaging technology makes it possible to adjust the focus plane after an image has already been captured. This technology allows the viewer to interactively explore an image with objects and anatomy at varying depths and clearly focus on any feature of interest by selecting that location during post-capture viewing. These images with adjustable focus can serve as valuable educational tools for neurosurgical residents. We explore the utility of light-field cameras and review their strengths and limitations compared to other conventional types of imaging. The strength of light-field images is the adjustable focus, as opposed to the fixed-focus of traditional photography and video. A light-field image also is interactive by nature, as it requires the viewer to select the plane of focus and helps with visualizing the three-dimensional anatomy of an image. Limitations include the relatively low resolution of light-field images compared to traditional photography and video. Although light-field imaging is still in its infancy, there are several potential uses for the technology to complement traditional still photography and videography in neurosurgical education.

  14. Utilizing Light-field Imaging Technology in Neurosurgery

    PubMed Central

    Chen, Brian R; Kellis, Spencer; Kramer, Daniel; Ohiorhenuan, Ifije; Blumenfeld, Zack; Grisafe II, Dominic J; Barbaro, Michael F; Gogia, Angad S; Lu, James Y; Chen, Beverly B; Lee, Brian

    2018-01-01

    Traditional still cameras can only focus on a single plane for each image while rendering everything outside of that plane out of focus. However, new light-field imaging technology makes it possible to adjust the focus plane after an image has already been captured. This technology allows the viewer to interactively explore an image with objects and anatomy at varying depths and clearly focus on any feature of interest by selecting that location during post-capture viewing. These images with adjustable focus can serve as valuable educational tools for neurosurgical residents. We explore the utility of light-field cameras and review their strengths and limitations compared to other conventional types of imaging. The strength of light-field images is the adjustable focus, as opposed to the fixed-focus of traditional photography and video. A light-field image also is interactive by nature, as it requires the viewer to select the plane of focus and helps with visualizing the three-dimensional anatomy of an image. Limitations include the relatively low resolution of light-field images compared to traditional photography and video. Although light-field imaging is still in its infancy, there are several potential uses for the technology to complement traditional still photography and videography in neurosurgical education. PMID:29888163

  15. 27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT LOOKED IN 1983. OBLIQUE VIEW FACING EAST. BUNKER IS IN FOREGROUND, PROTECTIVE SHED FOR WFRP AT TOP OF IMAGE. INEL PHOTO NUMBER 83-574-12-1, TAKEN IN 1983. PHOTOGRAPHER: ROMERO. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. Image Registration of High-Resolution Uav Data: the New Hypare Algorithm

    NASA Astrophysics Data System (ADS)

    Bahr, T.; Jin, X.; Lasica, R.; Giessel, D.

    2013-08-01

    Unmanned aerial vehicles play an important role in the present-day civilian and military intelligence. Equipped with a variety of sensors, such as SAR imaging modes, E/O- and IR sensor technology, they are due to their agility suitable for many applications. Hence, the necessity arises to use fusion technologies and to develop them continuously. Here an exact image-to-image registration is essential. It serves as the basis for important image processing operations such as georeferencing, change detection, and data fusion. Therefore we developed the Hybrid Powered Auto-Registration Engine (HyPARE). HyPARE combines all available spatial reference information with a number of image registration approaches to improve the accuracy, performance, and automation of tie point generation and image registration. We demonstrate this approach by the registration of 39 still images from a high-resolution image stream, acquired with a Aeryon Photo3S™ camera on an Aeryon Scout micro-UAV™.

  17. 7 CFR 1755.506 - Aerial wire services

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Aerial wire services 1755.506 Section 1755.506... § 1755.506 Aerial wire services (a) Aerial services of one through six pairs shall consist of Service...), Specifications and Drawings for Service Installations at Customer Access Locations. The wire used for aerial...

  18. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  19. Investigating an Aerial Image First

    ERIC Educational Resources Information Center

    Wyrembeck, Edward P.; Elmer, Jeffrey S.

    2006-01-01

    Most introductory optics lab activities begin with students locating the real image formed by a converging lens. The method is simple and straightforward--students move a screen back and forth until the real image is in sharp focus on the screen. Students then draw a simple ray diagram to explain the observation using only two or three special…

  20. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  1. Correction of Line Interleaving Displacement in Frame Captured Aerial Video Imagery

    Treesearch

    B. Cooke; A. Saucier

    1995-01-01

    Scientists with the USDA Forest Service are currently assessing the usefulness of aerial video imagery for various purposes including midcycle inventory updates. The potential of video image data for these purposes may be compromised by scan line interleaving displacement problems. Interleaving displacement problems cause features in video raster datasets to have...

  2. Recent technological advancements in cardiac ultrasound imaging.

    PubMed

    Dave, Jaydev K; Mc Donald, Maureen E; Mehrotra, Praveen; Kohut, Andrew R; Eisenbrey, John R; Forsberg, Flemming

    2018-03-01

    About 92.1 million Americans suffer from at least one type of cardiovascular disease. Worldwide, cardiovascular diseases are the number one cause of death (about 31% of all global deaths). Recent technological advancements in cardiac ultrasound imaging are expected to aid in the clinical diagnosis of many cardiovascular diseases. This article provides an overview of such recent technological advancements, specifically focusing on tissue Doppler imaging, strain imaging, contrast echocardiography, 3D echocardiography, point-of-care echocardiography, 3D volumetric flow assessments, and elastography. With these advancements ultrasound imaging is rapidly changing the domain of cardiac imaging. The advantages offered by ultrasound imaging include real-time imaging, imaging at patient bed-side, cost-effectiveness and ionizing-radiation-free imaging. Along with these advantages, the steps taken towards standardization of ultrasound based quantitative markers, reviewed here, will play a major role in addressing the healthcare burden associated with cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Open Skies aerial photography of selected areas in Central America affected by Hurricane Mitch

    USGS Publications Warehouse

    Molnia, Bruce; Hallam, Cheryl A.

    1999-01-01

    Between October 27 and November 1, 1998, Central America was devastated by Hurricane Mitch. Following a humanitarian relief effort, one of the first informational needs was complete aerial photographic coverage of the storm ravaged areas so that the governments of the affected countries, the U.S. agencies planning to provide assistance, and the international relief community could come to the aid of the residents of the devastated area. Between December 4 and 19, 1998 an Open Skies aircraft conducted five successful missions and obtained more than 5,000 high-resolution aerial photographs and more than 15,000 video images. The aerial data are being used by the Reconstruction Task Force and many others who are working to begin rebuilding and to help reduce the risk of future destruction.

  4. The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.

    2016-06-01

    Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.

  5. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  6. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    PubMed Central

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-01

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168

  7. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  8. Geomorphological processes in a semiarid badland area using new technologies: TLS, terrestrial and aerial SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Ferrer, Victor; Errea, Paz; Alonso, Esteban; Gómez-Gutiérrez, Álvaro; Nadal-Romero, Estela

    2017-04-01

    We used three different methods Terrestrial Laser Scanner (TLS), terrestrial Structure from Motion photogrammetry (SfM) and aerial SfM photogrammetry with an Unmanned Aerial Vehicle (UAV) to analyse geomorphological processes in a semiarid badland landscape. Los Aguarales badlands, located in the Ebro Depression (Spain), occur in the Holocene sediment accumulated in a wide valley infilled with silt and clay. The morphology of Los Aguarales badlands is complex, making the geomorphological interpretation a difficult task. Los Aguarales badlands are characterized by the sequence of incision and piping processes developing an abrupt and complex landscape. Three different representative and small study sites were selected to carry out a detailed analysis of the geomorphological processes. Moreover, the capability of the three methods to produce high resolution point clouds was evaluated. The obtained topographical changes were very low during the first 6 months (March-October 2016). Measured topographical changes, with TLS and terrestrial SfM, were very low, and these values fall within the range of the acquisition error of the devices used (2-6 cm). The preliminary results indicated the possibilities of a multiscale approach using new technologies to study geomorphological and erosion processes, although long-term studies will be necessary to obtain erosion rates in this semiarid badland area. Acknowledgement This research was supported by ESPAS and eTERA 3D projects (CGL2015- 65569-R and CGL2014-54822-R, funded by the MINECO-FEDER). Estela Nadal-Romero is the recipient of a Ramón y Cajal postdoctoral contract (Spanish Ministry of Economy and Competitiveness).

  9. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  10. Very Large Scale Aerial (VLSA) imagery for assessing postfire bitterbrush recovery

    Treesearch

    Corey A. Moffet; J. Bret Taylor; D. Terrance Booth

    2008-01-01

    Very large scale aerial (VLSA) imagery is an efficient tool for monitoring bare ground and cover on extensive rangelands. This study was conducted to determine whether VLSA images could be used to detect differences in antelope bitterbrush (Purshia tridentata Pursh DC) cover and density among similar ecological sites with varying postfire recovery...

  11. Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Carvajal, F.; Agüera, F.; Pérez, M.

    2011-09-01

    Most of the works of civil engineering, and some others applications, need to be designed using a basic cartography with a suitable scale to the accuracy and extension of the plot.The Unmanned Aerial Vehicle (UAV) Photogrammetry covers the gap between classical manned aerial photogrammetry and hand- made surveying techniques because it works in the close-range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives. The aim of this work is developing of an accurate and low-cost method to characterize landslides located on the size of a road. It was applied at the kilometric point 339 belonging to the A92 dual carriageway, in the Abla municipal term, province of Almeria, Spain. A photogrammetric project was carried out from a set of images taken from an md4-200 Microdrones with an on-board calibrated camera 12 Megapixels Pentax Optio A40. The flight was previously planned to cover the whole extension of the embankment with three passes composed of 18 photos each one. All the images were taken with the vertical axe and it was registered 85% and 60% longitudinal and transversal overlaps respectively. The accuracy of the products, with planimetric and altimetric errors of 0.049 and 0.108m repectively, lets to take measurements of the landslide and projecting preventive and palliative actuations.

  12. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  13. Imaging Technology in Libraries: Photo CD Offers New Possibilities.

    ERIC Educational Resources Information Center

    Beiser, Karl

    1993-01-01

    Describes Kodak's Photo CD technology, a format for the storage and retrieval of photographic images in electronic form. Highlights include current and future Photo CD formats; computer imaging technology; ownership issues; hardware for using Photo CD; software; library and information center applications, including image collections and…

  14. Pipeline monitoring with unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  15. Intergraph video and images exploitation capabilities

    NASA Astrophysics Data System (ADS)

    Colla, Simone; Manesis, Charalampos

    2013-08-01

    The current paper focuses on the capture, fusion and process of aerial imagery in order to leverage full motion video, giving analysts the ability to collect, analyze, and maximize the value of video assets. Unmanned aerial vehicles (UAV) have provided critical real-time surveillance and operational support to military organizations, and are a key source of intelligence, particularly when integrated with other geospatial data. In the current workflow, at first, the UAV operators plan the flight by using a flight planning software. During the flight the UAV send a live video stream directly on the field to be processed by Intergraph software, to generate and disseminate georeferenced images trough a service oriented architecture based on ERDAS Apollo suite. The raw video-based data sources provide the most recent view of a situation and can augment other forms of geospatial intelligence - such as satellite imagery and aerial photos - to provide a richer, more detailed view of the area of interest. To effectively use video as a source of intelligence, however, the analyst needs to seamlessly fuse the video with these other types of intelligence, such as map features and annotations. Intergraph has developed an application that automatically generates mosaicked georeferenced image, tags along the video route which can then be seamlessly integrated with other forms of static data, such as aerial photos, satellite imagery, or geospatial layers and features. Consumers will finally have the ability to use a single, streamlined system to complete the entire geospatial information lifecycle: capturing geospatial data using sensor technology; processing vector, raster, terrain data into actionable information; managing, fusing, and sharing geospatial data and video toghether; and finally, rapidly and securely delivering integrated information products, ensuring individuals can make timely decisions.

  16. How to change students' images of science and technology

    NASA Astrophysics Data System (ADS)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  17. The Art of Aerial Warfare

    DTIC Science & Technology

    2005-03-01

    14 3 THE POLITICAL DIMENSIONS OF AERIAL WARFARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 How Political Effects in...Aerial Warfare . . . . . . Outweigh Military Effects . . . . . . . . . . . . . . . 19 Political Targets Versus Military Targets . . . . . 22...34 4 MILITARY AND POLITICAL EFFECTS OF STRATEGIC ATTACK . . . . . . . . . . . . . . . . . . 35 The Premise of

  18. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  19. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  20. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  1. New Technologies for Human Cancer Imaging

    PubMed Central

    Frangioni, John V.

    2008-01-01

    Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 103- to 104-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed. PMID:18711192

  2. How to Change Students' Images of Science and Technology

    ERIC Educational Resources Information Center

    Scherz, Zahava; Oren, Miri

    2006-01-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, "Investigation into Science and Technology" (IST), designed to introduce students to science and technology in the "real life."…

  3. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  4. Evaluation of a GPS used in conjunction with aerial telemetry

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.

    2001-01-01

    We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.

  5. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  6. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the

  7. A semi-operational agricultural inventory using small scale aerial photography

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.; Pettinger, L. R.

    1970-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography was studied. The results were encouraging on two counts: (1) The very practical problems of an operational survey are being faced and solutions are being found. (2) It seems that a fully operational agricultural inventory using space photography is not beyond the scope of present technology.

  8. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  9. Person identification from aerial footage by a remote-controlled drone.

    PubMed

    Bindemann, Markus; Fysh, Matthew C; Sage, Sophie S K; Douglas, Kristina; Tummon, Hannah M

    2017-10-19

    Remote-controlled aerial drones (or unmanned aerial vehicles; UAVs) are employed for surveillance by the military and police, which suggests that drone-captured footage might provide sufficient information for person identification. This study demonstrates that person identification from drone-captured images is poor when targets are unfamiliar (Experiment 1), when targets are familiar and the number of possible identities is restricted by context (Experiment 2), and when moving footage is employed (Experiment 3). Person information such as sex, race and age is also difficult to access from drone-captured footage (Experiment 4). These findings suggest that such footage provides a particularly poor medium for person identification. This is likely to reflect the sub-optimal quality of such footage, which is subject to factors such as the height and velocity at which drones fly, viewing distance, unfavourable vantage points, and ambient conditions.

  10. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  11. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  12. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms

    PubMed Central

    Perez-Sanz, Fernando; Navarro, Pedro J

    2017-01-01

    Abstract The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition technologies based on images has seen an important advance in the last years. As with other high-throughput technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion. PMID:29048559

  13. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  14. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  15. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  16. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    NASA Astrophysics Data System (ADS)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  17. Intra- and interspecific variation in tropical tree and liana phenology derived from Unmanned Aerial Vehicle images

    NASA Astrophysics Data System (ADS)

    Bohlman, S.; Park, J.; Muller-Landau, H. C.; Rifai, S. W.; Dandois, J. P.

    2017-12-01

    Phenology is a critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical tree and liana phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. Spectral, texture, and image information was extracted from the UAV images for individual tree crowns, which was then used as inputs for a machine learning algorithm to predict percent leaf and branch cover. We obtained the species identities of 2000 crowns in the images via field mapping. The objectives of this study are to (1) determined if machine learning algorithms, applied to UAV images, can effectively quantify changes in leaf cover, which we term "deciduousness; (2) determine how liana cover effects deciduousness and (3) test how well UAV-derived deciduousness patterns match satellite-derived temporal patterns. Machine learning algorithms trained on a variety of image parameters could effectively determine leaf cover, despite variation in lighting and viewing angles. Crowns with higher liana cover have less overall deciduousness (tree + liana together) than crowns with lower liana cover. Individual crown deciduousness, summed over all crowns measured in the 50-ha plot, showed a similar seasonal pattern as MODIS EVI composited over 10 years. However

  18. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  19. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  20. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  1. Monitoring Seabirds and Marine Mammals by Georeferenced Aerial Photography

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Weidauer, A.; Coppack, T.

    2016-06-01

    The assessment of anthropogenic impacts on the marine environment is challenged by the accessibility, accuracy and validity of biogeographical information. Offshore wind farm projects require large-scale ecological surveys before, during and after construction, in order to assess potential effects on the distribution and abundance of protected species. The robustness of site-specific population estimates depends largely on the extent and design of spatial coverage and the accuracy of the applied census technique. Standard environmental assessment studies in Germany have so far included aerial visual surveys to evaluate potential impacts of offshore wind farms on seabirds and marine mammals. However, low flight altitudes, necessary for the visual classification of species, disturb sensitive bird species and also hold significant safety risks for the observers. Thus, aerial surveys based on high-resolution digital imagery, which can be carried out at higher (safer) flight altitudes (beyond the rotor-swept zone of the wind turbines) have become a mandatory requirement, technically solving the problem of distant-related observation bias. A purpose-assembled imagery system including medium-format cameras in conjunction with a dedicated geo-positioning platform delivers series of orthogonal digital images that meet the current technical requirements of authorities for surveying marine wildlife at a comparatively low cost. At a flight altitude of 425 m, a focal length of 110 mm, implemented forward motion compensation (FMC) and exposure times ranging between 1/1600 and 1/1000 s, the twin-camera system generates high quality 16 bit RGB images with a ground sampling distance (GSD) of 2 cm and an image footprint of 155 x 410 m. The image files are readily transferrable to a GIS environment for further editing, taking overlapping image areas and areas affected by glare into account. The imagery can be routinely screened by the human eye guided by purpose-programmed software

  2. Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1977-01-01

    Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.

  3. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  4. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  5. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    PubMed

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  6. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  7. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms.

    PubMed

    Perez-Sanz, Fernando; Navarro, Pedro J; Egea-Cortines, Marcos

    2017-11-01

    The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition technologies based on images has seen an important advance in the last years. As with other high-throughput technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion. © The Author 2017. Published by Oxford University Press.

  8. Software for roof defects recognition on aerial photographs

    NASA Astrophysics Data System (ADS)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  9. Aeronautics Education, Research, and Industry Alliance (AERIAL) Progress Report and Proposal for Funding Continuation NASA Nebraska EPSCoR

    NASA Technical Reports Server (NTRS)

    Bowen, Brent; Fink, Mary; Gogos, George; Moussavi, Massoum; Nickerson, Jocelyn; Rundquist, Donald; Russell, Valerie; Tarry, Scott

    2004-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL), which began as a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, has contributed substantially to the strategic research and technology priorities of NASA, while intensifying Nebraska's rapidly growing aeronautics research and development endeavors. AERIAL has enabled Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. Nebraska has placed emphasis on successfully securing additional funds from non-EPSCoR and non-NASA sources. AERIAL researchers have aggressively pursued additional funding opportunities offered by NASA, industry, and other agencies. This report contains a summary of AERIAL's activities and accomplishments during its first three years of implementation.

  10. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  11. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  12. Aerial detection surveys in the United States

    Treesearch

    E. W. Johnson; D. Wittwer

    2006-01-01

    Aerial detection surveys, also known as aerial sketchmapping, is a remote sensing technique of observing forest change events from an aircraft and documenting them manually onto a map. Data from aerial surveys have become an important component of the Forest Health Monitoring, a national program designed to determine the status, changes, and trends in indicators of...

  13. Notable environmental features in some historical aerial photographs from Ashley Country, Arkansas

    Treesearch

    Don C. Bragg; Robert C. Jr. Weih

    2007-01-01

    A collection of 1939 aerial photographs from Ashley County, Arkansas was analyzed for its environmental information. Taken by the US Department of Defense (USDOD), these images show a number of features now either obscured or completely eliminated over the passage of time. One notable feature is the widespread coverage of "sand blows" in the eastern quarter...

  14. Mapping rock forming minerals at Boundary Canyon, Death Valey National Park, California, using aerial SEBASS thermal infrared hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Aslett, Zan; Taranik, James V.; Riley, Dean N.

    2018-02-01

    Aerial spatially enhanced broadband array spectrograph system (SEBASS) long-wave infrared (LWIR) hyperspectral image data were used to map the distribution of rock-forming minerals indicative of sedimentary and meta-sedimentary lithologies around Boundary Canyon, Death Valley, California, USA. Collection of data over the Boundary Canyon detachment fault (BCDF) facilitated measurement of numerous lithologies representing a contact between the relatively unmetamorphosed Grapevine Mountains allochthon and the metamorphosed core complex of the Funeral Mountains autochthon. These included quartz-rich sandstone, quartzite, conglomerate, and alluvium; muscovite-rich schist, siltstone, and slate; and carbonate-rich dolomite, limestone, and marble, ranging in age from late Precambrian to Quaternary. Hyperspectral data were reduced in dimensionality and processed to statistically identify and map unique emissivity spectra endmembers. Some minerals (e.g., quartz and muscovite) dominate multiple lithologies, resulting in a limited ability to differentiate them. Abrupt variations in image data emissivity amongst pelitic schists corresponded to amphibolite; these rocks represent gradation from greenschist- to amphibolite-metamorphic facies lithologies. Although the full potential of LWIR hyperspectral image data may not be fully utilized within this study area due to lack of measurable spectral distinction between rocks of similar bulk mineralogy, the high spectral resolution of the image data was useful in characterizing silicate- and carbonate-based sedimentary and meta-sedimentary rocks in proximity to fault contacts, as well as for interpreting some mineral mixtures.

  15. Bag of Lines (BoL) for Improved Aerial Scene Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less

  16. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  17. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    NASA Astrophysics Data System (ADS)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  18. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  19. Using Unmanned Aerial Vehicles (UAVs) to Modeling Tornado Impacts

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Doe, R. K.

    2017-12-01

    Using Unmanned Aerial Vehicles (UAVs) to assess storm damage is a useful research tool. Benefits include their ability to access remote or impassable areas post-storm, identify unknown damages and assist with more detailed site investigations and rescue efforts. Technological advancement of UAVs mean that they can capture high resolution images often at an affordable price. These images can be used to create 3D environments to better interpret and delineate damages from large areas that would have been difficult in ground surveys. This research presents the results of a rapid response site investigation of the 29 April 2017 Canton, Texas, USA, tornado using low cost UAVs. This was a multiple, high impact tornado event measuring EF4 at maximum. Rural farmland was chosen as a challenging location to test both equipment and methodology. Such locations provide multiple impacts at a variety of scales including structural and vegetation damage and even animal fatalities. The 3D impact models allow for a more comprehensive study prior to clean-up. The results show previously unseen damages and better quantify damage impacts at the local level. 3D digital track swaths were created allowing for a more accurate track width determination. These results demonstrate how effective the use of low cost UAVs can be for rapid response storm damage assessments, the high quality of data they can achieve, and how they can help us better visualize tornado site investigations.

  20. mapKITE: a New Paradigm for Simultaneous Aerial and Terrestrial Geodata Acquisition and Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2016-06-01

    We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a "virtual tether," acting as a "mapping kite." In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points -therefore, lowering mission costs- and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at

  1. Monitoring morphological changes in an arid zone by spaceborne images and aerial photography between 1945 - 2009; the Yamin Plateau, Israel

    NASA Astrophysics Data System (ADS)

    Hetz, Guy; Blumberg, Dan; Avraham, Dody; Cohen, Hai

    2010-05-01

    This research focuses on a geomorphic mapping of the Yamin Plateau in southern Israel which is part of the Yamin-Rotem Syncline and covers about 200 km2. This area has been restricted since the 1950s and therefore, provides a unique opportunity to study undisturbed geomorphic processes. Nowadays, the national nuclear waste depository is located in this area accepting waste from industrial factories, research institutes and hospitals. This is the main reason why environmental processes are of major interest in terms of landform changes in space and time. The exposed geology section of the Yamin Plateau mostly consists of the Miocene Hazeva Group where sedimentary processes started 20 million years ago and continued for 12-14 million years. Two formations of the Miocene Hazeva Group appear in the study area Zefa and Rotem. The compositions of these two formations are similar and sometimes defined as "the main sand body" in the Hazeva Group. The restriction of the area stopped the grazing and let the development of a biological soil crust on the surface. The research objective was to document and characterize landform changes from 1945 until 2009 within the Yamin Plateau based on spaceborne images and aerial photography. All the parameters we extracted in the laboratory were validated with field measurements. A combination of the spaceborne images, aerial photography and field measurements leads us to the following conclusions: The research results show that soil stabilization processes took place earlier than the area closure. Inspite of decreasing precipitation tendencies as measured during the last 50 years in Yamin Plateau, the vegetation cover increased from 55% in 1945 to 67% in 2009. The main reason for this is the area closure and reduction in grazing along with developing of vegetation and biological soil crusts. Field studies and image processing of aerial photographs and recent QuickBird images alongside grain-size distribution show that in the past there

  2. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    PubMed

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  3. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  4. Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars

    NASA Technical Reports Server (NTRS)

    Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.

    2002-01-01

    The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.

  5. Automatic Building Abstraction from Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Ley, A.; Hänsch, R.; Hellwich, O.

    2017-09-01

    Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.

  6. Detecting lost persons using the k-mean method applied to aerial photographs taken by unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Stec, Magdalena; Wieczorek, Malgorzata; Slopek, Jacek; Jurecka, Miroslawa

    2016-04-01

    The objective of this work is to discuss the usefulness of the k-mean method in the process of detecting persons on oblique aerial photographs acquired by unmanned aerial vehicles (UAVs). The detection based on the k-mean procedure belongs to one of the modules of a larger Search and Rescue (SAR) system which is being developed at the University of Wroclaw, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The module automatically processes individual geotagged visual-light UAV-taken photographs or their orthorectified versions. Firstly, we separate red (R), green (G) and blue (B) channels, express raster data as numeric matrices and acquire coordinates of centres of images using the exchangeable image file format (EXIF). Subsequently, we divide the matrices into matrices of smaller dimensions, the latter being associated with the size of spatial window which is suitable for discriminating between human and terrain. Each triplet of the smaller matrices (R, G and B) serves as input spatial data for the k-mean classification. We found that, in several configurations of the k-mean parameters, it is possible to distinguish a separate class which characterizes a person. We compare the skills of this approach by performing two experiments, based on UAV-taken RGB photographs and their orthorectified versions. This allows us to verify the hypothesis that the two exercises lead to similar classifications. In addition, we discuss the performance of the approach for dissimilar spatial windows, hence various dimensions of the above-mentioned matrices, and we do so in order to find the one which offers the most adequate classification. The numerical experiment is carried out using the data acquired during a dedicated observational UAV campaign carried out in the Izerskie Mountains (SW Poland).

  7. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  8. Towards establishing compact imaging spectrometer standards

    USGS Publications Warehouse

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  9. Determination of the Actual Land Use Pattern Using Unmanned Aerial Vehicles and Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Dindaroğlu, T.; Gündoğan, R.; Gülci, S.

    2017-11-01

    The international initiatives developed in the context of combating global warming are based on the monitoring of Land Use, Land Use Changes, and Forests (LULUCEF). Determination of changes in land use patterns is used to determine the effects of greenhouse gas emissions and to reduce adverse effects in subsequent processes. This process, which requires the investigation and control of quite large areas, has undoubtedly increased the importance of technological tools and equipment. The use of carrier platforms and commercially cheaper various sensors have become widespread. In this study, multispectral camera was used to determine the land use pattern with high sensitivity. Unmanned aerial flights were carried out in the research fields of Kahramanmaras Sutcu Imam University campus area. Unmanned aerial vehicle (UAV) (multi-propeller hexacopter) was used as a carrier platform for aerial photographs. Within the scope of this study, multispectral cameras were used to determine the land use pattern with high sensitivity.

  10. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  11. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  12. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable. 32.2421 Section 32.2421 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2421 Aerial cable. (a...

  13. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  14. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.

    PubMed

    Bhatt, Kunj; Pourmand, Ali; Sikka, Neal

    2018-02-28

    Advances in technology have revolutionized the medical field and changed the way healthcare is delivered. Unmanned aerial vehicles (UAVs) are the next wave of technological advancements that have the potential to make a huge splash in clinical medicine. UAVs, originally developed for military use, are making their way into the public and private sector. Because they can be flown autonomously and can reach almost any geographical location, the significance of UAVs are becoming increasingly apparent in the medical field. We conducted a comprehensive review of the English language literature via the PubMed and Google Scholar databases using search terms "unmanned aerial vehicles," "UAVs," and "drone." Preference was given to clinical trials and review articles that addressed the keywords and clinical medicine. Potential applications of UAVs in medicine are broad. Based on articles identified, we grouped UAV application in medicine into three categories: (1) Prehospital Emergency Care; (2) Expediting Laboratory Diagnostic Testing; and (3) Surveillance. Currently, UAVs have been shown to deliver vaccines, automated external defibrillators, and hematological products. In addition, they are also being studied in the identification of mosquito habitats as well as drowning victims at beaches as a public health surveillance modality. These preliminary studies shine light on the possibility that UAVs may help to increase access to healthcare for patients who may be otherwise restricted from proper care due to cost, distance, or infrastructure. As with any emerging technology and due to the highly regulated healthcare environment, the safety and effectiveness of this technology need to be thoroughly discussed. Despite the many questions that need to be answered, the application of drones in medicine appears to be promising and can both increase the quality and accessibility of healthcare.

  15. Use of 35-mm color aerial photography to acquire mallard sex ratio data

    USGS Publications Warehouse

    Ferguson, Edgar L.; Jorde, Dennis G.; Sease, John L.

    1981-01-01

    A conventional 35-mm camera equipped with an f2.8 135-mm lens and ASA 64 color film was used to acquire sex ratio data on mallards (Anas platyrhynchos) wintering in the Platte River Valley of south-central Nebraska. Prelight focusing for a distance of 30.5 metres and setting of shutter speed at 1/2000 of a second eliminated focusing and reduced image motion problems and resulted in high-resolution, large-scale aerial photography of small targets. This technique has broad application to the problem of determining sex ratios of various species of waterfowl concentrated on wintering and staging areas. The aerial photographic method was cheaper than the ground ocular method when costs were compared on a per-100 bird basis.

  16. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  17. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  18. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  19. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  20. Ultrasound and other imaging technologies in the intensive care unit.

    PubMed

    Lee, S Y; Frankel, H L

    2000-06-01

    As technology advances, more imaging and procedures are performed at the bedside on critically ill patients in ICUs, thereby eliminating the risks of transporting patients. These imaging techniques can serve as diagnostic and therapeutic tools in treating the acute and chronic consequences of injured, critically ill patients. One area of growth is ultrasonography. Critical care applications of ultrasonography are expanding, and the learning curve of surgeons and intensivists performing some of these studies is improving. Ultrasonography can supplement physical examination and provide useful "real-time" information on nearly every body cavity. Other imaging technology is also available in a portable form, enabling imaging directly at the bedside. Images are now becoming readily and easily available with the advancement of teleradiology. Some of the imaging modalities are still in development, and their clinical effectiveness is being studied. In the future, more uses of these various imaging technologies may become evident and cost-effective.

  1. Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm

  2. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  3. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology.

    PubMed

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.

  4. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  5. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  6. Aerial thermography for energy efficiency of buildings: the ChoT project

    NASA Astrophysics Data System (ADS)

    Mandanici, Emanuele; Conte, Paolo

    2016-10-01

    The ChoT project aims at analysing the potential of aerial thermal imagery to produce large scale datasets for energetic efficiency analyses and policies in urban environments. It is funded by the Italian Ministry of Education, University and Research (MIUR) in the framework of the SIR 2014 (Scientific Independence of young Researchers) programme. The city of Bologna (Italy) was chosen as the case study. The acquisition of thermal infrared images at different times by multiple aerial flights is one of the main tasks of the project. The present paper provides an overview of the ChoT project, but it delves into some specific aspects of the data processing chain: the computing of the radiometric quantities of the atmosphere, the estimation of surface emissivity (through an object-oriented classification applied on a very high resolution multispectral image, to distinguish among the major roofing materials) and sky-view factor (by means of a digital surface model). To collect ground truth data, the surface temperature of roofs and road pavings was measured at several locations at the same time as the aircraft acquired the thermal images. Furthermore, the emissivity of some roofing materials was estimated by means of a thermal camera and a contact probe. All the surveys were georeferenced by GPS. The results of the first surveying campaign demonstrate the high sensitivity of the model to the variability of the surface emissivity and the atmospheric parameters.

  7. Aerial Refueling Boom/Receptacle Guide

    DTIC Science & Technology

    2017-07-28

    Alleviation System; AR – Aerial Refueling; IDS – Independent Disconnect System; PDL – Pilot Director Lights; PSIG – Pounds per square inch gauge; TMF...proprietary, sensitive, classified or otherwise restricted information. ARSAG documents, as prepared, are not DOD, MOD or NATO standards, but provide...Boom Nozzle Disconnect Provisions, Aerial Refueling Fuel System and Tanker Aids and Cues for the Receiver Aircraft. Also included are Receiver

  8. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images

    PubMed Central

    Ortega-Terol, Damian; Ballesteros, Rocio

    2017-01-01

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology. PMID:29036930

  9. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.

    PubMed

    Ortega-Terol, Damian; Hernandez-Lopez, David; Ballesteros, Rocio; Gonzalez-Aguilera, Diego

    2017-10-15

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.

  10. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  11. Fusion of monocular cues to detect man-made structures in aerial imagery

    NASA Technical Reports Server (NTRS)

    Shufelt, Jefferey; Mckeown, David M.

    1991-01-01

    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.

  12. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this

  13. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  14. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  15. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  16. New technology of functional infrared imaging and its clinical applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi

    2006-01-01

    With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.

  17. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  18. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Severalmore » field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.« less

  19. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  20. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  1. Classification and printability of EUV mask defects from SEM images

    NASA Astrophysics Data System (ADS)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM-to-Aerial

  2. Ground and Aerial Digital Documentation of Cultural Heritage: Providing Tools for 3d Exploitation of Archaeological Data

    NASA Astrophysics Data System (ADS)

    Cantoro, G.

    2017-02-01

    Archaeology is by its nature strictly connected with the physical landscape and as such it explores the inter-relations of individuals with places in which they leave and the nature that surrounds them. Since its earliest stages, archaeology demonstrated its permeability to scientific methods and innovative techniques or technologies. Archaeologists were indeed between the first to adopt GIS platforms (since already almost three decades) on large scale and are now between the most demanding customers for emerging technologies such as digital photogrammetry and drone-aided aerial photography. This paper aims at presenting case studies where the "3D approach" can be critically analysed and compared with more traditional means of documentation. Spot-light is directed towards the benefits of a specifically designed platform for user to access the 3D point-clouds and explore their characteristics. Beside simple measuring and editing tools, models are presented in their actual context and location, with historical and archaeological information provided on the side. As final step of a parallel project on geo-referencing and making available a large archive of aerial photographs, 3D models derived from photogrammetric processing of images have been uploaded and linked to photo-footprints polygons. Of great importance in such context is the possibility to interchange the point-cloud colours with satellite imagery from OpenLayers. This approach makes it possible to explore different landscape configurations due to time-changes with simple clicks. In these cases, photogrammetry or 3D laser scanning replaced, sided or integrated legacy documentation, creating at once a new set of information for forthcoming research and ideally new discoveries.

  3. The Bonn Agreement Aerial Surveillance programme: trends in North Sea oil pollution 1986-2004.

    PubMed

    Carpenter, Angela

    2007-02-01

    This paper examines the use of aerial surveillance activities conducted in the North Sea region of Europe since 1986 to assess trends in levels of oil inputs into the marine environment, both across the whole region and within the waters of the different coastal states. It makes use of data collected under the aegis of the 1969 Bonn Agreement through its Annual Reports on Aerial Surveillance and examines developments in surveillance methods and technology which have led to improvements in the detection of oil spills, even during the hours of darkness. The paper then examines country specific data for the eight North Sea contracting parties to the Agreement to assess trends in oil spills in the region.

  4. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  5. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  6. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  7. Image registration: enabling technology for image guided surgery and therapy.

    PubMed

    Sauer, Frank

    2005-01-01

    Imaging looks inside the patient's body, exposing the patient's anatomy beyond what is visible on the surface. Medical imaging has a very successful history for medical diagnosis. It also plays an increasingly important role as enabling technology for minimally invasive procedures. Interventional procedures (e.g. catheter based cardiac interventions) are traditionally supported by intra-procedure imaging (X-ray fluoro, ultrasound). There is realtime feedback, but the images provide limited information. Surgical procedures are traditionally supported with pre-operative images (CT, MR). The image quality can be very good; however, the link between images and patient has been lost. For both cases, image registration can play an essential role -augmenting intra-op images with pre-op images, and mapping pre-op images to the patient's body. We will present examples of both approaches from an application oriented perspective, covering electrophysiology, radiation therapy, and neuro-surgery. Ultimately, as the boundaries between interventional radiology and surgery are becoming blurry, also the different methods for image guidance will merge. Image guidance will draw upon a combination of pre-op and intra-op imaging together with magnetic or optical tracking systems, and enable precise minimally invasive procedures. The information is registered into a common coordinate system, and allows advanced methods for visualization such as augmented reality or advanced methods for therapy delivery such as robotics.

  8. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.

    2015-12-01

    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  9. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  10. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  11. Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.

    2012-01-01

    As imagery is collected from an airborne platform, an individual viewing the images wants to know from where on the Earth the images were collected. To do this, some information about the camera needs to be known, such as its position and orientation relative to the Earth. This can be provided by common inertial navigation systems (INS). Once the location of the camera is known, it is useful to project an image onto some representation of the Earth. Due to the non-smooth terrain of the Earth (mountains, valleys, etc.), this projection is highly non-linear. Thus, to ensure accurate projection, one needs to project onto a digital elevation map (DEM). This allows one to view the images overlaid onto a representation of the Earth. A code has been developed that takes an image, a model of the camera used to acquire that image, the pose of the camera during acquisition (as provided by an INS), and a DEM, and outputs an image that has been geo-rectified. The world coordinate of the bounds of the image are provided for viewing purposes. The code finds a mapping from points on the ground (DEM) to pixels in the image. By performing this process for all points on the ground, one can "paint" the ground with the image, effectively performing a projection of the image onto the ground. In order to make this process efficient, a method was developed for finding a region of interest (ROI) on the ground to where the image will project. This code is useful in any scenario involving an aerial imaging platform that moves and rotates over time. Many other applications are possible in processing aerial and satellite imagery.

  12. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.

    PubMed

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.

  13. Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems

    PubMed Central

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006. PMID:22163958

  14. Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views

    DTIC Science & Technology

    2014-11-10

    collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video

  15. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  16. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  17. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  18. Sapc - Application for Adapting Scanned Analogue Photographs to Use Them in Structure from Motion Technology

    NASA Astrophysics Data System (ADS)

    Salach, A.

    2017-05-01

    The documentary value of analogue scanned photographs is invaluable. A large and rich collection of archival photographs is often the only source of information about past of the selected area. This paper presents a method of adaptation of scanned, analogue photographs to suitable form allowing to use them in Structure from Motion technology. For this purpose, an automatic algorithm, implemented in the application called SAPC (Scanned Aerial Photographs Correction), which transforms scans to a form, which characteristic similar to the images captured by a digital camera, was invented. Images, which are created in the applied program as output data, are characterized by the same principal point position in each photo and the same resolution through cutting out the black photo frame. Additionally, SAPC generates a binary image file, which can mask areas of fiducial marks. In the experimental section, scanned, analogue photographs of Warsaw, which had been captured in 1986, were used in two variants: unprocessed and processed in SAPC application. An insightful analysis was conducted on the influence of transformation in SAPC on quality of spatial orientation of photographs. Block adjustment through aerial triangulation was calculated using two SfM software products: Agisoft PhotoScan and Pix4d and their results were compared with results obtained from professional photogrammetric software - Trimble Inpho. The author concluded that pre-processing in SAPC application had a positive impact on a quality of block orientation of scanned, analogue photographs, using SfM technology.

  19. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  20. Overview of recent endeavors on personal aerial vehicles: A focus on the US and Europe led research activities

    NASA Astrophysics Data System (ADS)

    Liu, Yaolong; Kreimeier, Michael; Stumpf, Eike; Zhou, Yaoming; Liu, Hu

    2017-05-01

    Personal aerial vehicles, an innovative transport mode to bridge the niche between scheduled airliners and ground transport, are seen by aviation researchers and engineers as a solution to provide fast urban on-demand mobility. This paper reviews recent research efforts on the personal aerial vehicle (PAV), with a focus on the US and Europe led research activities. As an extension of the programmatic level overview, several enabling technologies, such as vertical/short take-off and landing (V/STOL), automation, distributed electric propulsion, which might promote the deployment of PAVs, are introduced and discussed. Despite the dramatic innovation in PAV concept development and related technologies, some challenging issues remain, especially safety, infrastructure and public acceptance. As such, further efforts by many stakeholders are required to enable the real implementation and application of PAVs.

  1. Near real-time shadow detection and removal in aerial motion imagery application

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme F.; Carneiro, Grace B.; Doth, Ricardo; Amaral, Leonardo A.; Azevedo, Dario F. G. de

    2018-06-01

    This work presents a method to automatically detect and remove shadows in urban aerial images and its application in an aerospace remote monitoring system requiring near real-time processing. Our detection method generates shadow masks and is accelerated by GPU programming. To obtain the shadow masks, we converted images from RGB to CIELCh model, calculated a modified Specthem ratio, and applied multilevel thresholding. Morphological operations were used to reduce shadow mask noise. The shadow masks are used in the process of removing shadows from the original images using the illumination ratio of the shadow/non-shadow regions. We obtained shadow detection accuracy of around 93% and shadow removal results comparable to the state-of-the-art while maintaining execution time under real-time constraints.

  2. A new concept for medical imaging centered on cellular phone technology.

    PubMed

    Granot, Yair; Ivorra, Antoni; Rubinsky, Boris

    2008-04-30

    According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a) a data acquisition device (DAD) at a remote patient site that is simple, with limited controls and no image display capability and b) an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site). The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.

  3. The Proliferation of Unmanned Aerial Vehicles: Terrorist Use, Capability, and Strategic Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Ryan Jokl

    There has been unparalleled proliferation and technological advancement of consumer unmanned aerial vehicles (UAVs) across the globe in the past several years. As witnessed over the course of insurgency tactics, it is difficult to restrict terrorists from using widely available technology they perceive as advantageous to their overall strategy. Through a review of the characteristics, consumer market landscape, tactics, and countertactics, as well as operational use of consumer-grade UAVs, this open-source report seeks to provide an introductory understanding of the terrorist-UAV landscape, as well as insights into present and future capabilities. The caveat is evaluating a developing technology haphazardly usedmore » by terrorists in asymmetric conflicts.« less

  4. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  5. Employing unmanned aerial vehicle to monitor the health condition of wind turbines

    NASA Astrophysics Data System (ADS)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2018-04-01

    Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.

  6. Unmanned Aerial Systems in Occupational Hygiene-Learning from Allied Disciplines.

    PubMed

    Eninger, Robert M; Johnson, Robert L

    2015-10-01

    Unmanned Aerial System (UAS) technologies are rapidly developing, lowering cost, and technology barriers for their use in numerous applications. This review and commentary summarizes relevant literature in allied fields and evaluates potential application and utility of UAS technology in the discipline of occupational hygiene. Disciplines closely related to occupational hygiene are moving to investigate potential uses--and in some cases--already employing this technology for research or commercial purposes. The literature was reviewed to formulate a cross-sectional picture of how UAS technology is being used in these closely allied disciplines which could inform or guide potential use in occupational hygiene. Discussed are UAS applications in environmental monitoring, emergency response, epidemiology, safety, and process optimization. A rapidly developing state of the art indicates that there is potential utility for this technology in occupational hygiene. Benefits may include cost savings, time savings, and averting hazardous environments via remote sensing. The occupational hygiene community can look to allied fields to garner lessons and possible applications to their own practice. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.

  7. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    PubMed

    Abdelaziz, Marwa; Krejci, Ivo

    2015-01-01

    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice.

  8. Precision wildlife monitoring using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  9. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    NASA Astrophysics Data System (ADS)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional

  10. Identification of irrigated crop types from ERTS-1 density contour maps and color infrared aerial photography. [Wyoming

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Evans, M. A.

    1974-01-01

    The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.

  11. Novel imaging technologies for characterization of microbial extracellular polysaccharides.

    PubMed

    Lilledahl, Magnus B; Stokke, Bjørn T

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.

  12. Automatic mission planning algorithms for aerial collection of imaging-specific tasks

    NASA Astrophysics Data System (ADS)

    Sponagle, Paul; Salvaggio, Carl

    2017-05-01

    The rapid advancement and availability of small unmanned aircraft systems (sUAS) has led to many novel exploitation tasks utilizing that utilize this unique aerial imagery data. Collection of this unique data requires novel flight planning to accomplish the task at hand. This work describes novel flight planning to better support structure-from-motion missions to minimize occlusions, autonomous and periodic overflight of reflectance calibration panels to permit more efficient and accurate data collection under varying illumination conditions, and the collection of imagery data to study optical properties such as the bidirectional reflectance distribution function without disturbing the target in sensitive or remote areas of interest. These novel mission planning algorithms will provide scientists with additional tools to meet their future data collection needs.

  13. Comparison of Aerial and Terrestrial Remote Sensing Techniques for Quantifying Forest Canopy Structural Complexity and Estimating Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Fahey, R. T.; Tallant, J.; Gough, C. M.; Hardiman, B. S.; Atkins, J.; Scheuermann, C. M.

    2016-12-01

    Canopy structure can be an important driver of forest ecosystem functioning - affecting factors such as radiative transfer and light use efficiency, and consequently net primary production (NPP). Both above- (aerial) and below-canopy (terrestrial) remote sensing techniques are used to assess canopy structure and each has advantages and disadvantages. Aerial techniques can cover large geographical areas and provide detailed information on canopy surface and canopy height, but are generally unable to quantitatively assess interior canopy structure. Terrestrial methods provide high resolution information on interior canopy structure and can be cost-effectively repeated, but are limited to very small footprints. Although these methods are often utilized to derive similar metrics (e.g., rugosity, LAI) and to address equivalent ecological questions and relationships (e.g., link between LAI and productivity), rarely are inter-comparisons made between techniques. Our objective is to compare methods for deriving canopy structural complexity (CSC) metrics and to assess the capacity of commonly available aerial remote sensing products (and combinations) to match terrestrially-sensed data. We also assess the potential to combine CSC metrics with image-based analysis to predict plot-based NPP measurements in forests of different ages and different levels of complexity. We use combinations of data from drone-based imagery (RGB, NIR, Red Edge), aerial LiDAR (commonly available medium-density leaf-off), terrestrial scanning LiDAR, portable canopy LiDAR, and a permanent plot network - all collected at the University of Michigan Biological Station. Our results will highlight the potential for deriving functionally meaningful CSC metrics from aerial imagery, LiDAR, and combinations of data sources. We will also present results of modeling focused on predicting plot-level NPP from combinations of image-based vegetation indices (e.g., NDVI, EVI) with LiDAR- or image-derived metrics of

  14. "Seeing is believing": perspectives of applying imaging technology in discovery toxicology.

    PubMed

    Xu, Jinghai James; Dunn, Margaret Condon; Smith, Arthur Russell

    2009-11-01

    Efficiency and accuracy in addressing drug safety issues proactively are critical in minimizing late-stage drug attritions. Discovery toxicology has become a specialty subdivision of toxicology seeking to effectively provide early predictions and safety assessment in the drug discovery process. Among the many technologies utilized to select safer compounds for further development, in vitro imaging technology is one of the best characterized and validated to provide translatable biomarkers towards clinically-relevant outcomes of drug safety. By carefully applying imaging technologies in genetic, hepatic, and cardiac toxicology, and integrating them with the rest of the drug discovery processes, it was possible to demonstrate significant impact of imaging technology on drug research and development and substantial returns on investment.

  15. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  16. Semantic Segmentation and Unregistered Building Detection from Uav Images Using a Deconvolutional Network

    NASA Astrophysics Data System (ADS)

    Ham, S.; Oh, Y.; Choi, K.; Lee, I.

    2018-05-01

    Detecting unregistered buildings from aerial images is an important task for urban management such as inspection of illegal buildings in green belt or update of GIS database. Moreover, the data acquisition platform of photogrammetry is evolving from manned aircraft to UAVs (Unmanned Aerial Vehicles). However, it is very costly and time-consuming to detect unregistered buildings from UAV images since the interpretation of aerial images still relies on manual efforts. To overcome this problem, we propose a system which automatically detects unregistered buildings from UAV images based on deep learning methods. Specifically, we train a deconvolutional network with publicly opened geospatial data, semantically segment a given UAV image into a building probability map and compare the building map with existing GIS data. Through this procedure, we could detect unregistered buildings from UAV images automatically and efficiently. We expect that the proposed system can be applied for various urban management tasks such as monitoring illegal buildings or illegal land-use change.

  17. Monitoring and Estimation of Soil Losses from Ephemeral Gully Erosion in Mediterranean Region Using Low Altitude Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Gündoğan, R.; Alma, V.; Dindaroğlu, T.; Günal, H.; Yakupoğlu, T.; Susam, T.; Saltalı, K.

    2017-11-01

    Calculation of gullies by remote sensing images obtained from satellite or aerial platforms is often not possible because gullies in agricultural fields, defined as the temporary gullies are filled in a very short time with tillage operations. Therefore, fast and accurate estimation of sediment loss with the temporary gully erosion is of great importance. In this study, it is aimed to monitor and calculate soil losses caused by the gully erosion that occurs in agricultural areas with low altitude unmanned aerial vehicles. According to the calculation with Pix4D, gully volume was estimated to be 10.41 m3 and total loss of soil was estimated to be 14.47 Mg. The RMSE value of estimations was found to be 0.89. The results indicated that unmanned aerial vehicles could be used in predicting temporary gully erosion and losses of soil.

  18. Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI

    NASA Astrophysics Data System (ADS)

    Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia

    MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.

  19. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  20. Wireless Command-and-Control of UAV-Based Imaging LANs

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.

    2006-01-01

    Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.

  1. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  2. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-06

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  3. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio

    2014-12-01

    We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.

  4. Shadow detection and removal in RGB VHR images for land use unsupervised classification

    NASA Astrophysics Data System (ADS)

    Movia, A.; Beinat, A.; Crosilla, F.

    2016-09-01

    Nowadays, high resolution aerial images are widely available thanks to the diffusion of advanced technologies such as UAVs (Unmanned Aerial Vehicles) and new satellite missions. Although these developments offer new opportunities for accurate land use analysis and change detection, cloud and terrain shadows actually limit benefits and possibilities of modern sensors. Focusing on the problem of shadow detection and removal in VHR color images, the paper proposes new solutions and analyses how they can enhance common unsupervised classification procedures for identifying land use classes related to the CO2 absorption. To this aim, an improved fully automatic procedure has been developed for detecting image shadows using exclusively RGB color information, and avoiding user interaction. Results show a significant accuracy enhancement with respect to similar methods using RGB based indexes. Furthermore, novel solutions derived from Procrustes analysis have been applied to remove shadows and restore brightness in the images. In particular, two methods implementing the so called "anisotropic Procrustes" and the "not-centered oblique Procrustes" algorithms have been developed and compared with the linear correlation correction method based on the Cholesky decomposition. To assess how shadow removal can enhance unsupervised classifications, results obtained with classical methods such as k-means, maximum likelihood, and self-organizing maps, have been compared to each other and with a supervised clustering procedure.

  5. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  6. Coma measurement by transmission image sensor with a PSM

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2005-01-01

    As feature size decreases, especially with the use of resolution enhancement technique such as off axis illumination and phase shifting mask, fast and accurate in-situ measurement of coma has become very important in improving the performance of modern lithographic tools. The measurement of coma can be achieved by the transmission image sensor, which is an aerial image measurement device. The coma can be determined by measuring the positions of the aerial image at multiple illumination settings. In the present paper, we improve the measurement accuracy of the above technique with an alternating phase shifting mask. Using the scalar diffraction theory, we analyze the effect of coma on the aerial image. To analyze the effect of the alternating phase shifting mask, we compare the pupil filling of the mark used in the above technique with that of the phase-shifted mark used in the new technique. We calculate the coma-induced image displacements of the marks at multiple partial coherence and NA settings, using the PROLITH simulation program. The simulation results show that the accuracy of coma measurement can increase approximately 20 percent using the alternating phase shifting mask.

  7. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  8. Conducting a Southern Pine Beetle Survey Using Digital Aerial Sketchmapping (DASM) - An Overview

    Treesearch

    Chris A. Steiner

    2011-01-01

    This is an overview on conducting a southern pine beetle (SPB) survey using Digital Aerial Sketchmapping (DASM); for a detailed treatment of DASM visit the following Web site: http://www.fs.fed.us/foresthealth/ technology/dasm.shtml. Sketchmapping – “A remote sensing technique of observing forest change events from an aircraft and documenting them manually on a map” (...

  9. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  10. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  11. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  12. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  13. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  14. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  15. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  16. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Red-blue glasses are required to see the 3-D effect. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from two datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data and U. S. Geological Survey digital aerial photography provided the image detail. The Jet Propulsion Laboratory is the cluster of large buildings left of center, at the base of the mountains. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires can strip the mountains of vegetation, increasing the hazards from flooding and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  17. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  18. The combined use of Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies for the 3D illustration of the progress of works in infrastructure construction projects

    NASA Astrophysics Data System (ADS)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2016-08-01

    Building Information Modelling (BIM) technology is already part of the construction industry and is considered by professionals as a very useful tool for all phases of a construction project. BIM technology, with the particularly useful 3D illustrations which it provides, can be used to illustrate and monitor the progress of works effectively through the entire lifetime of the project. Unmanned Aerial Vehicles (UAVs) have undergone significant advances in equipment capabilities and now have the capacity to acquire high resolution imagery from different angles in a cost effective and efficient manner. By using photogrammetry, characteristics such as distances, areas, volumes, elevations, object sizes, and object shape can be determined within overlapping areas. This paper explores the combined use of BIM and UAV technologies in order to achieve efficient and accurate as-built data collection and 3D illustrations of the works progress during an infrastructure construction project.

  19. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    PubMed

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  20. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  1. DoD Comprehensive Military Unmanned Aerial Vehicle Smart Device Ground Control Station Threat Model

    DTIC Science & Technology

    2015-04-01

    design , imple- mentation, and test evaluation were interviewed to evaluate the existing gaps in the DoD processes for cybersecurity. This group exposed...such as antenna design and signal reception have made satellite communication networks a viable solution for smart devices on the battlefield...DoD Comprehensive Military Unmanned AERIAL VEHICLE SMART DEVICE GROUND CONTROL STATION THREAT MODEL  Image designed by Diane Fleischer Report

  2. Using hyperspectral imaging technology to identify diseased tomato leaves

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei

    2016-11-01

    In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.

  3. Raman chemical imaging technology for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  4. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  5. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  6. The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique

    PubMed Central

    Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its

  7. The smart aerial release machine, a universal system for applying the sterile insect technique.

    PubMed

    Leal Mubarqui, Ruben; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600,000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.

  8. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  9. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  10. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  11. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  12. 24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION IN 1974. BY 1968, BUILDING 771 WAS OUTMODED AND NEW TECHNOLOGIES HAD BEEN DEVELOPED FOR PLUTONIUM RECOVERY. AS A RESULT, A NEW RECOVERY BUILDING, BUILDING 371 WAS PLANNED. BUILDING 371 SUFFERED FROM VARIOUS DESIGN PROBLEMS, WHICH PREVENTED ITS OPENING UNTIL 1981 AND CAUSED TERMINATION OF RECOVERY OPERATIONS IN 1986. IT NEVER BECAME FULLY OPERATIONAL. TO THE EAST OF BUILDING 371, IS THE 700 BUILDING COMPLEX (4/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  13. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  14. Georeferencing the Large-Scale Aerial Photographs of a Great Lakes Coastal Wetland: A Modified Photogrammetric Method

    USGS Publications Warehouse

    Murphy, Marilyn K.; Kowalski, Kurt P.; Grapentine, Joel L.

    2010-01-01

    The geocontrol template method was developed to georeference multiple, overlapping analog aerial photographs without reliance upon conventionally obtained horizontal ground control. The method was tested as part of a long-term wetland habitat restoration project at a Lake Erie coastal wetland complex in the U.S. Fish and Wildlife Service Ottawa National Wildlife Refuge. As in most coastal wetlands, annually identifiable ground-control features required to georeference photo-interpreted data are difficult to find. The geocontrol template method relies on the following four components: (a) an uncontrolled aerial photo mosaic of the study area, (b) global positioning system (GPS) derived horizontal coordinates of each photo’s principal point, (c) a geocontrol template created by the transfer of fiducial markings and calculated principal points to clear acetate from individual photographs arranged in a mosaic, and (d) the root-mean-square-error testing of the system to ensure an acceptable level of planimetric accuracy. Once created for a study area, the geocontrol template can be registered in geographic information system (GIS) software to facilitate interpretation of multiple images without individual image registration. The geocontrol template enables precise georeferencing of single images within larger blocks of photographs using a repeatable and consistent method.

  15. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing

    PubMed Central

    Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu

    2017-01-01

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%. PMID:28880254

  16. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    PubMed

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  17. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  18. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  19. [Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].

    PubMed

    Zhu, Xinjian; He, Xuan; Wang, Pin; Gao, Dandan; Qiu, Yan; He, Qinghua; Wu, Baoming

    2016-02-01

    Terahertz waves have unique properties and advantages, which makes it gain increasing attention and applications in the biomedical field. Burns is a common clinical trauma. Since the water-sensitive and non-destructive characteristics of terahertz, terahertz imaging techniques can be used to detect burns. So far, terahertz imaging technology in the assessment of burn injuries has been developed from ex vivo to in vivo, and high-resolution images can be obtained through the gauzes and plasters. In this paper, we mainly introduces the application of terahertz imaging technology and development in the assessment of burn injuries.

  20. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U. S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory, is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene.

    This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation

  1. Landscape Change Detected Over A 60 Year Period In The Arctic National Wildlife Refuge, Alaska, Using High Resolution Aerial Photographs And Satellite Images

    NASA Astrophysics Data System (ADS)

    Jorgenson, J. C.; Jorgenson, M. T.; Boldenow, M.; Orndahl, K. M.

    2016-12-01

    We documented landscape change over a 60 year period in the Arctic National Wildlife Refuge in northeastern Alaska using aerial photographs and satellite images. We used a stratified random sample to allow inference to the whole refuge (78,050 km2), with five random sites in each of seven ecoregions. Each site (2 km2) had a systematic grid of 100 points for a total of 3500 points. We chose study sites in the overlap area covered by acceptable imagery in three time periods: aerial photographs from 1947 - 1955 and 1978 - 1988, Quick Bird and IKONOS satellite images from 2000 - 2007.At each point a 10 meter radius circle was visually evaluated in ARC-MAP for each time period for vegetation type, disturbance, presence of ice wedge polygon microtopography and surface water. A landscape change category was assigned to each point based on differences detected between the three periods. Change types were assigned for time interval 1, interval 2 and overall. Additional explanatory variables included elevation, slope, aspect, geology, physiography and temperature. Overall, 23% of points changed over the study period. Fire was the most common change agent, affecting 28% of the Boreal Forest points. The next most common change was degradation of soil ice wedges (thermokarst), detected at 12% of the points on the North Slope Tundra. The other most common changes included increase in cover of trees or shrubs (7% of Boreal Forest and Brooks Range points) and erosion or deposition on river floodplains and at the Beaufort Sea coast. Changes on the North Slope Tundra tended to be related to landscape wetting, mainly thermokarst. Changes in the Boreal Forest tended to involve landscape drying, including fire, reduced area of lakes and tree increase on wet sites. The second time interval coincided with a shift towards a warmer climate and had greater change in several categories including thermokarst, lake changes and tree and shrub increase.

  2. An application of digital network technology to medical image management.

    PubMed

    Chu, W K; Smith, C L; Wobig, R K; Hahn, F A

    1997-01-01

    With the advent of network technology, there is considerable interest within the medical community to manage the storage and distribution of medical images by digital means. Higher workflow efficiency leading to better patient care is one of the commonly cited outcomes [1,2]. However, due to the size of medical image files and the unique requirements in detail and resolution, medical image management poses special challenges. Storage requirements are usually large, which implies expenses or investment costs make digital networking projects financially out of reach for many clinical institutions. New advances in network technology and telecommunication, in conjunction with the decreasing cost in computer devices, have made digital image management achievable. In our institution, we have recently completed a pilot project to distribute medical images both within the physical confines of the clinical enterprise as well as outside the medical center campus. The design concept and the configuration of a comprehensive digital image network is described in this report.

  3. Effects of pesticides aerial applications on rice quality

    USDA-ARS?s Scientific Manuscript database

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  4. International-Aerial Measuring System (I-AMS) Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, andmore » provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.« less

  5. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing

  6. Unmanned aerial vehicles in construction and worker safety.

    PubMed

    Howard, John; Murashov, Vladimir; Branche, Christine M

    2018-01-01

    Applications of unmanned aerial vehicles (UAVs) for military, recreational, public, and commercial uses have expanded significantly in recent years. In the construction industry, UAVs are used primarily for monitoring of construction workflow and job site logistics, inspecting construction sites to assess structural integrity, and for maintenance assessments. As is the case with other emerging technologies, occupational safety assessments of UAVs lag behind technological advancements. UAVs may create new workplace hazards that need to be evaluated and managed to ensure their safe operation around human workers. At the same time, UAVs can perform dangerous tasks, thereby improving workplace safety. This paper describes the four major uses of UAVs, including their use in construction, the potential risks of their use to workers, approaches for risk mitigation, and the important role that safety and health professionals can play in ensuring safe approaches to the their use in the workplace. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. The Use of Small Scale Aerial Photography in a Regional Agricultural Survey

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1971-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography has been investigated. Results to date are encouraging on two counts: (1) the questions posed initially are being answered, and (2) it would seem that a fully operational agricultural inventory using very small scale photography is not beyond the scope of present technology. The biggest problems to be faced in establishing a functional inventory system are those concerning logistics and data handling.

  8. Metric Aspects of Digital Images and Digital Image Processing.

    DTIC Science & Technology

    1984-09-01

    produced in a reconstructed digital image. Synthesized aerial photographs were formed by processing a combined elevation and orthophoto data base. These...brightness values h1 and Iion b) a line equation whose two parameters are calculated h12, along with tile borderline that separates the two intensity

  9. Career Profile- Jim Ross, Aerial Photographer

    NASA Image and Video Library

    2016-12-21

    Check out what it takes to “capture the moment” at Mach speeds. The stunning aerial imagery of NASA Armstrong Flight Research Center comes from well-skilled photographers like Jim Ross, Photo Lead. This career profile video highlights Jim’s job responsibilities in documenting aircraft hardware installations, aerial research, and mission work that happens both on center and around the world. During Jim’s 27-year career, he has logged over 800 flight hours in twelve different types of aircraft.

  10. Roadside IED detection using subsurface imaging radar and rotary UAV

    NASA Astrophysics Data System (ADS)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  11. Arachnid aloft: directed aerial descent in neotropical canopy spiders.

    PubMed

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2015-09-06

    The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. © 2015 The Author(s).

  12. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    NASA Astrophysics Data System (ADS)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  13. Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.

    2015-12-01

    High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.

  14. Famous head injuries of the first aerial war: deaths of the "Knights of the Air".

    PubMed

    Koul, Prateeka; Mau, Christine; Sabourin, Victor M; Gandhi, Chirag D; Prestigiacomo, Charles J

    2015-07-01

    World War I advanced the development of aviation from the concept of flight to the use of aircraft on the battlefield. Fighter planes advanced technologically as the war progressed. Fighter pilot aces Francesco Baracca and Manfred von Richthofen (the Red Baron) were two of the most famous pilots of this time period. These courageous fighter aces skillfully maneuvered their SPAD and Albatros planes, respectively, while battling enemies and scoring aerial victories that contributed to the course of the war. The media thrilled the public with their depictions of the heroic feats of fighter pilots such as Baracca and the Red Baron. Despite their aerial prowess, both pilots would eventually be shot down in combat. Although the accounts of their deaths are debated, it is undeniable that both were victims of traumatic head injury.

  15. Quantum image processing: A review of advances in its security technologies

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.

    In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.

  16. Use of aerial photographs for assessment of soil organic carbon and delineation of agricultural management zones.

    NASA Astrophysics Data System (ADS)

    Bartholomeus, H.; Kooistra, L.

    2012-04-01

    For quantitative estimation of soil properties by means of remote sensing, often hyperspectral data are used. But these data are scarce and expensive, which prohibits wider implementation of the developed techniques in agricultural management. For precision agriculture, observations at a high spatial resolution are required. Colour aerial photographs at this scale are widely available, and can be acquired at no of very low costs. Therefore, we investigated whether publically available aerial photographs can be used to a) automatically delineate management zones and b) estimate levels of organic carbon spatially. We selected three study areas within the Netherlands that cover a large variance in soil type (peat, sand, and clay). For the fields of interest, RGB aerial photographs with a spatial resolution of 50 cm were extracted from a publically available data provider. Further pre-processing exists of geo-referencing only. Since the images originate from different sources and are potentially acquired under unknown illumination conditions, the exact radiometric properties of the data are unknown. Therefore, we used spectral indices to emphasize the differences in reflectance and normalize for differences in radiometry. To delineate management zones we used image segmentation techniques, using the derived indices as input. Comparison with management zone maps as used by the farmers shows that there is good correspondence. Regression analysis between a number of soil properties and the derived indices shows that organic carbon is the major explanatory variable for differences in index values within the fields. However, relations do not hold for large regions, indicating that local models will have to be used, which is a problem that is also still relevant for hyperspectral remote sensing data. With this research, we show that low-cost aerial photographs can be a valuable tool for quantitative analysis of organic carbon and automatic delineation of management zones

  17. Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data.

    PubMed

    Kim, So-Ra; Kwak, Doo-Ahn; Lee, Woo-Kyun; oLee, Woo-Kyun; Son, Yowhan; Bae, Sang-Won; Kim, Choonsig; Yoo, Seongjin

    2010-07-01

    The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.

  18. Mapping of forested wetland: use of Seasat radar images to complement conventional sources ( USA).

    USGS Publications Warehouse

    Place, J.L.

    1985-01-01

    Distinguishing forested wetland from dry forest using aerial photographs is handicapped because photographs often do not reveal the presence of water below tree canopies. Radar images obtained by the Seasat satellite reveal forested wetland as highly reflective patterns on the coastal plain between Maryland and Florida. Seasat radar images may complement aerial photographs for compiling maps of wetland. A test with experienced photointerpreters revealed that interpretation accuracy was significantly higher when using Seasat radar images than when using only conventional sources.-Author

  19. Technology Required to Image and Characterize an exo-Earth from Space

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2018-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of Sun-like stars with future space observatories. Here we present the 2018 ExEP Technology Gap List, an annual update to ExEP's list of technologies, to be advanced in the next 1-5 years. Key technology gaps are starlight suppression with a coronagraph (internal occulters) or a starshade (external occulters), enabling imaging at extreme contrast (more than 10 billion) by blocking on-axis starlight, while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast coronagraph in space. A starshade has never been used in a space mission and requires new capabilities in precision deployment of large structures, starlight suppression, and in formation sensing and control. We review the current state-of-the-art in coronagraph and starshade technology and the performance level that must be achieved to discover and characterize Earth analogs.

  20. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  1. FluidCam 1&2 - UAV-Based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2015-12-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  2. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  3. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  4. Resource understanding: a challenge to aerial methods

    USGS Publications Warehouse

    Udall, Stewart L.

    1965-01-01

    Aerial survey methods are speeding acquisition of survey data needed to provide and manage the nation's resources. These methods have been applied to topographic mapping for a number of years and the record clearly shows their advantages in terms of cost and speed in contrast to the ground methods that have been historically employed. Limited use is now being made of aerial methods to assist cadastral surveys, in location, acquisition and development of National Parks, in mapping the geology of the nation, in locating and developing water resources, and in surveys of the oceans. It is the purpose of this paper to call attention to these uses and to encourage the scientific community to further refine aerial methods so that their use may be increased and the veracity of data improved.

  5. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Gao, Junfeng; Liao, Wenzhi; Nuyttens, David; Lootens, Peter; Vangeyte, Jürgen; Pižurica, Aleksandra; He, Yong; Pieters, Jan G.

    2018-05-01

    The developments in the use of unmanned aerial vehicles (UAVs) and advanced imaging sensors provide new opportunities for ultra-high resolution (e.g., less than a 10 cm ground sampling distance (GSD)) crop field monitoring and mapping in precision agriculture applications. In this study, we developed a strategy for inter- and intra-row weed detection in early season maize fields from aerial visual imagery. More specifically, the Hough transform algorithm (HT) was applied to the orthomosaicked images for inter-row weed detection. A semi-automatic Object-Based Image Analysis (OBIA) procedure was developed with Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize. Furthermore, the two binary weed masks generated from HT and OBIA were fused for accurate binary weed image. The developed RF classifier was evaluated by 5-fold cross validation, and it obtained an overall accuracy of 0.945, and Kappa value of 0.912. Finally, the relationship of detected weeds and their ground truth densities was quantified by a fitted linear model with a coefficient of determination of 0.895 and a root mean square error of 0.026. Besides, the importance of input features was evaluated, and it was found that the ratio of vegetation length and width was the most significant feature for the classification model. Overall, our approach can yield a satisfactory weed map, and we expect that the obtained accurate and timely weed map from UAV imagery will be applicable to realize site-specific weed management (SSWM) in early season crop fields for reducing spraying non-selective herbicides and costs.

  6. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1966-07-01

    S66-42379 (1966) --- Aerial view of construction progress at the Manned Spacecraft Center, Houston, Texas. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  7. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  8. Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Sohrabi, H.

    2012-07-01

    In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.

  9. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  10. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  11. Technology and Technique Standards for Camera-Acquired Digital Dermatologic Images: A Systematic Review.

    PubMed

    Quigley, Elizabeth A; Tokay, Barbara A; Jewell, Sarah T; Marchetti, Michael A; Halpern, Allan C

    2015-08-01

    Photographs are invaluable dermatologic diagnostic, management, research, teaching, and documentation tools. Digital Imaging and Communications in Medicine (DICOM) standards exist for many types of digital medical images, but there are no DICOM standards for camera-acquired dermatologic images to date. To identify and describe existing or proposed technology and technique standards for camera-acquired dermatologic images in the scientific literature. Systematic searches of the PubMed, EMBASE, and Cochrane databases were performed in January 2013 using photography and digital imaging, standardization, and medical specialty and medical illustration search terms and augmented by a gray literature search of 14 websites using Google. Two reviewers independently screened titles of 7371 unique publications, followed by 3 sequential full-text reviews, leading to the selection of 49 publications with the most recent (1985-2013) or detailed description of technology or technique standards related to the acquisition or use of images of skin disease (or related conditions). No universally accepted existing technology or technique standards for camera-based digital images in dermatology were identified. Recommendations are summarized for technology imaging standards, including spatial resolution, color resolution, reproduction (magnification) ratios, postacquisition image processing, color calibration, compression, output, archiving and storage, and security during storage and transmission. Recommendations are also summarized for technique imaging standards, including environmental conditions (lighting, background, and camera position), patient pose and standard view sets, and patient consent, privacy, and confidentiality. Proposed standards for specific-use cases in total body photography, teledermatology, and dermoscopy are described. The literature is replete with descriptions of obtaining photographs of skin disease, but universal imaging standards have not been developed

  12. Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience

    NASA Astrophysics Data System (ADS)

    Zakaria, Ahamad

    2018-05-01

    The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.

  13. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests

    NASA Astrophysics Data System (ADS)

    Vogels, M. F. A.; de Jong, S. M.; Sterk, G.; Addink, E. A.

    2017-02-01

    Land-use and land-cover (LULC) conversions have an important impact on land degradation, erosion and water availability. Information on historical land cover (change) is crucial for studying and modelling land- and ecosystem degradation. During the past decades major LULC conversions occurred in Africa, Southeast Asia and South America as a consequence of a growing population and economy. Most distinct is the conversion of natural vegetation into cropland. Historical LULC information can be derived from satellite imagery, but these only date back until approximately 1972. Before the emergence of satellite imagery, landscapes were monitored by black-and-white (B&W) aerial photography. This photography is often visually interpreted, which is a very time-consuming approach. This study presents an innovative, semi-automated method to map cropland acreage from B&W photography. Cropland acreage was mapped on two study sites in Ethiopia and in The Netherlands. For this purpose we used Geographic Object-Based Image Analysis (GEOBIA) and a Random Forest classification on a set of variables comprising texture, shape, slope, neighbour and spectral information. Overall mapping accuracies attained are 90% and 96% for the two study areas respectively. This mapping method increases the timeline at which historical cropland expansion can be mapped purely from brightness information in B&W photography up to the 1930s, which is beneficial for regions where historical land-use statistics are mostly absent.

  14. Development of 3D microwave imaging technology for damage assessment of concrete bridge.

    DOT National Transportation Integrated Search

    2003-11-01

    An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...

  15. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1965-08-01

    S65-51530 (September 1965) --- Aerial view of Manned Spacecraft Center, Site 1, Houston, Texas, looking north. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  16. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  17. Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment

    NASA Astrophysics Data System (ADS)

    Cusicanqui, Johnny; Kerle, Norman; Nex, Francesco

    2018-06-01

    Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of spaceborne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with unmanned aerial vehicles and derived dense color 3-D models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, which is typically acquired and shared by civil protection institutions or news media and which tends to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3-D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects, were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video- and photo-based 3-D point clouds. Despite the low video resolution, the usability of these data was compensated for by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data-related factors, such as changes in the scene, lack of

  18. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  19. Technologies Required to Image Earth 2.0 with a Space Coronagraph

    NASA Astrophysics Data System (ADS)

    Siegler, Nicholas

    2017-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of their stars for future space observatories. Here we present the coronagraph portion of the 2017 ExEP Technology Gap List, an annual update to ExEP's list of of technologies, to be advanced in the next 1-5 years. A coronagraph is an internal occulter that allows a space telescope to achieve exo-Earth imaging contrast requirements (more than 10 billion) by blocking on-axis starlight while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast conronagraph in space. We review the current state-of-the-art performance of space coronagraphs and the performance level that must be achieved for a coronagraph..

  20. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.