These are representative sample records from related to your search topic.
For comprehensive and current results, perform a real-time search at

Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.  


This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products. PMID:24551829

Park, Junghyun; Kim, Myunghee



Fate of mesophilic aerobic bacteria and Salmonella enterica on the surface of eggs as affected by chicken feces, storage temperature, and relative humidity.  


We compared the microbiological quality of chicken eggshells obtained from a traditional wholesale market and a modern supermarket. We also determined the survival and growth characteristics of naturally occurring mesophilic aerobic bacteria (MAB) and artificially inoculated Salmonella enterica on eggshells under various environmental conditions (presence of chicken feces, temperature [4, 12, or 25 °C], and relative humidity [RH; 43 or 85%]). The populations of MAB, coliforms, and molds and yeasts on eggshells purchased from a traditional wholesale market were significantly (P ? 0.05) higher than those from a modern supermarket. In the second study, when we stored uninoculated eggs under various storage conditions, the population of MAB on eggshells (4.7-4.9 log CFU/egg) remained constant for 21 days, regardless of storage conditions. However, when eggshells were inoculated with S. enterica and stored under the same conditions, populations of the pathogen decreased significantly (P ? 0.05) under all tested conditions. Survival of S. enterica increased significantly (P ? 0.05) in the presence of feces, at low temperatures, and at low RH. These observations will be of value when predicting the behavior of microorganisms on eggshells and selecting storage conditions that reduce the populations of S. enterica on eggshells during distribution. PMID:25791009

Park, Sunhyung; Choi, Seonyeong; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-Sam; Beuchat, Larry R; Ryu, Jee-Hoon



Aerobic Anoxygenic Phototrophic Bacteria  

PubMed Central

The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the ?-1, ?-3, and ?-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

Yurkov, Vladimir V.; Beatty, J. Thomas



The Phylogenetic Diversity of Aerobic Organotrophic Bacteria from the Dagang High-Temperature Oil Field  

Microsoft Academic Search

The distribution and species diversity of aerobic organotrophic bacteria in the Dagang high-temperature oil field (China), which is exploited with water-flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature,

T. N. Nazina; D. Sh. Sokolova; N. M. Shestakova; A. A. Grigoryan; E. M. Mikhailova; T. L. Babich; A. M. Lysenko; T. P. Tourova; A. B. Poltaraus; Qingxian Feng; Fangtian Ni; S. S. Belyaev



Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.  


A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G



Filamentous bacteria existence in aerobic granular reactors.  


Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater. PMID:25533039

Figueroa, M; Val Del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A




EPA Science Inventory

In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...


Salmonella enteritidis and aerobic mesophiles in inoculated poultry sausages manufactured with high-pressure processing.  


Salmonella enteritidis-inoculated poultry sausages were pressurized at 500 MPa by combining different times (10 and 30 min) and temperatures (50, 60 and 70 degrees C) or heat treated with the same temperature-time combinations and a standard cooking (75 degrees C for 30 min). Counts of Salm. enteritidis and mesophilic bacteria were determined. Most pressure treatments generated statistically higher reductions than the corresponding heat treatments alone. Lethalities of about 7.5 and 6.5 log cfu g(-1) for Salm. enteritidis and mesophiles, respectively, were found in pressurized sausages. There was no significant difference in counts between pressurization at 60 degrees C for 30 min or at 70 degrees C and the standard cooking. High-pressure processing is a suitable alternative method in poultry sausage manufacture. PMID:11069640

Yuste, J; Pla, R; Mor-Mur, M



[The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].  


The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated. PMID:16119855

Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikha?lova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S



Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria.  


Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ?16% of the total genes and ?35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla. PMID:25314320

Caro-Quintero, Alejandro; Konstantinidis, Konstantinos T



Escherichia coli persistence kinetics in dairy manure at moderate, mesophilic, and thermophilic temperatures under aerobic and anaerobic environments.  


To assess Escherichia coli (E. coli) persistence in dairy manure, bench scale experiments were conducted under aerobic and anaerobic environments. The changes in E. coli levels in dairy manure were assessed at moderate (25 °C), mesophilic (37 °C), and thermophilic (52.5 °C) temperatures. The inactivation of E. coli at moderate, mesophilic, and thermophilic temperatures were described by linear regression equations. Subsequently, double-exponential kinetic models were developed to describe the E. coli decay curves under aerobic and anaerobic environments. The kinetics models were used to estimate E. coli log reductions at various temperatures. Results showed that the double-exponential kinetic models performed well while calculating E. coli reductions in dairy manure over the incubation period. In addition, we evaluated digestate to compare the changes in total solids and volatile solids, total organic carbon, total nitrogen, pH, and oxygen reduction potential levels in aerobic and anaerobic conditions under various temperatures. We anticipate that the results presented here will be useful for enhancing the understanding of pathogen reduction in anaerobic and aerobic processes during dairy manure treatment. PMID:25248871

Pandey, Pramod K; Biswas, Sagor; Vaddella, Venkata K; Soupir, Michelle L



Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.  


Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products. PMID:23743474

Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S



Biology of Moderately Halophilic Aerobic Bacteria  

PubMed Central

The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon



Iron demand by thermophilic and mesophilic bacteria isolated from an antarctic geothermal soil.  


The thermophilic bacterial strain MP 4 assigned to a new species, likely of the genus Alicyclobacillus, was isolated from geothermal soils on the NW slope of Mount Melbourne, Antarctica. These soils have high iron concentrations and the strain MP 4 requires iron additions for growth. Four mesophilic bacterial strains Paenibacillus validus MP 5, MP 8, and MP 10, and P. apiarius MP 7, isolated from the same site, need iron supply for growth depending on the medium. Growth temperature of thermophilic strain ranges from 42 to 70 degrees C, and that one of mesophiles from 25 to 44 degrees C. Thermophilic and mesophilic strains shared microenvironments with temperature of 42-44 degrees C and showed optima of pH values ranging from 5.5 to 6.0. The thermophilic strain MP 4 reached values of 10(6) CFU ml(-1) in aqueous soil extract from the NW slope of Mt. Melbourne, and 10(5) CFU ml(-1) in water extracts from other geothermal Antarctic areas (Mt. Rittmann and Cryptogam Ridge). Growth of thermophilic bacteria in aqueous extracts of the NW slope of Mount Melbourne soils caused a reduction of 50% of soluble iron content, which was recovered in bacterial biomass. These results suggest a possible involvement of the thermophilic strain MP 4 in iron bioavailability in these geothermal soils. PMID:16333753

Pepi, Milva; Agnorelli, Chiara; Bargagli, Roberto



Metabolic and Genetic Diversity of Mesophilic and Thermophilic Bacteria Isolated from Composted Municipal Sludge on Poly-?-caprolactones  

Microsoft Academic Search

Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-?-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to

Igor Tiago; Isabel Teixeira; Paula Chung; António Veríssimo; Célia M. Manaia



Combined mesophilic anaerobic and thermophilic aerobic digestion process: effect on sludge degradation and variation of sludge property.  


One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification. PMID:23996119

Cheng, Jiehong; Ji, Yuehong; Kong, Feng; Chen, Xian



Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.  


Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. PMID:23643091

Pervin, Hasina M; Batstone, Damien J; Bond, Philip L



Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.  


The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods. PMID:24672871

Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer




Microsoft Academic Search

During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive spe- cies of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were

Joel M. Montgomery; Don Gillespie; Putra Sastrawan; Terry M. Fredeking; George L. Stewart



Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef  

Microsoft Academic Search

Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC\\/MS). Fifty mesophilic and twenty- nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA

Danilo Ercolini; Federica Russo; Antonella Nasi; Pasquale Ferranti; Francesco Villani



Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-epsilon-caprolactones.  


Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-epsilon-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process. PMID:15696616

Tiago, Igor; Teixeira, Isabel; Silva, Sílvia; Chung, Paula; Veríssimo, António; Manaia, Célia M



Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.  


Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus groups, were strongly proteolytic, whereas thermophilic strains displayed generally a low enzymatic activity and thus spoilage potential. Cytotoxicity was only detected in B. cereus, suggesting that the risk of food poisoning by aerobic, thermoresistant spore-formers outside of the B. cereus group is rather low. PMID:23973839

Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika



Halophilic and Haloalkaliphilic, Aerobic Endospore-forming Bacteria in Soil  

Microsoft Academic Search

\\u000a This chapter reviews the aerobic, endospore-forming moderately halophilic and haloalkaliphilic (and some halotolerant) bacteria\\u000a that have been reported to be isolated from saline soils or sediment samples. These species belong to the family Bacillaceae, within the phylum Firmicutes, and are included in the following genera: Alkalibacillus, Bacillus, Filobacillus, Gracilibacillus, Halalkalibacillus, Halobacillus, Lentibacillus, Ornithinibacillus, Paraliobacillus, Salirhabdus, Salsuginibacillus, Tenuibacillus, Terribacillus, Thalassobacillus and

M. Carmen Márquez; Cristina Sánchez-Porro; Antonio Ventosa


Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria  

PubMed Central

The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic protein degradation (24% of total protein) took place almost exclusively during the initial 24 h of starvation. Metabolized carbon was recovered mainly as CO(inf2) during aerobic starvation. In contrast, cell biomass decreased by only 2.4% during anaerobic starvation, and metabolized carbon was recovered mainly as organic solutes in the starvation medium. During anaerobic starvation, only the concentration of intracellular low-molecular-weight compounds decreased, whereas no significant changes were measured for cellular protein, lipids, polysaccharides, and nucleic acids. Strain WP 12 was also capable of a limited anaerobic glucose metabolism in the absence of added electron acceptors. Small amounts of CO(inf2) and organic acids, including acetate, were produced from exogenous glucose under anoxic conditions. Addition of potential anaerobic electron acceptors (fumarate, nitrate, nitrite, or sulfate) to starved cultures of the methanotrophs Methylobacter albus BG8, Methylosinus trichosporium OB3b, and strain WP 12 did not stimulate anaerobic survival. However, anaerobic starvation of these bacteria generally resulted in better survival than did aerobic starvation. The results suggest that methanotrophic bacteria can enter a state of anaerobic dormancy accompanied by a severe attenuation of endogenous metabolism. In this state, maintenance requirements are presumably provided for by fermentation of certain endogenous substrates. In addition, low-level catabolism of exogenous substrates may support long-term anaerobic survival of some methanotrophic bacteria. PMID:16535004

Roslev, P.; King, G. M.



Studying Denitrification by Aerobic Endospore-forming Bacteria in Soil  

Microsoft Academic Search

\\u000a As part of the aerobic endospore-forming bacteria in soil, members of the genus Bacillus sensu stricto and related species are involved in denitrification – one of the main processes in the global nitrogen cycle. So far, only\\u000a limited information on the denitrification abilities and the distribution of the key denitrification genes in these organisms\\u000a is available. This chapter provides a

Ines Verbaendert; Paul De Vos


Biodegradation of Asphalt Cement-20 by Aerobic Bacteria  

PubMed Central

Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

Pendrys, John P.



Aerobic methanotrophic bacteria of cold ecosystems.  


This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods. PMID:16329925

Trotsenko, Yuri A; Khmelenina, Valentina N



[Identification of aerobic and facultatively anaerobic sporulating bacteria isolated during the primary milk collection].  


Aerobic and/or facultatively anaerobic sporulating Gram-positive bacteria of the genus Bacillus influence nutritive and sensory properties of pasteurized milk by their proteolytic and lipolytic activity. Since particularly raw milk is a source of pasteurized milk contamination by spore-producing bacteria, our investigations were focused on identification of bacilli from operations of milk agricultural primary production. The species B. licheniformis and B. cereus (Crielly et al., 1994) are the most frequently isolated ones in the process of milk production. While B. licheniformis as well as B. subtilis and B. pumilus are mesophilic species, B. cereus is rather psychrotrophic, and as to their health impacts they cause diseases from foods (Griffiths, 1990; Christiansson, 1992; Becker et al., 1994). Sixty-six strains were isolated and identified from operations of milk agricultural primary production (Tab. I). B. licheniformis occurrence (58 strains) was most frequent in the set of samples, followed by B. subtilis (5 strains), B. pumilus (one strain) and B. cereus (one strain), i.e. these are species classified to morphological group I (oval, cell-nonswelling spores). Only one strain Paenibacillus amylolyticus (formerly Bacillus amylolyticus) was isolated from morphological group II (oval, cell-swelling spores). Species representation of isolated strains is in agreement with literacy data (Phillips and Griffiths, 1986; Sutherland and Murdock, 1994; Crielly et al., 1994;). Our results did not confirm the seasonal occurrence (winter-summer) of mesophilic and psychrotrophic bacilli species as reported in literature (McKinnon and Pettipher, 1983; Sutherland and Murdock, 1994; Crielly et al., 1994). Biochemical and physiological characteristics of 66 isolates (Tab. I) are in agreement with literary data (Gordon et al., 1973; Parry et al., 1983; Priest et al., Ash et al., 1993). Strong proteolytic, amylolytic or lipolytic activities of the tested strains could influence the nutritive value of milk as a raw material. Taking into account the dominant representation of bacilli of morphological group I in raw and pasteurized milk (Sutherland and Murdock, 1994; Crielly et al., 1994) their review with basic phenotypic characteristics is shown in Tab. II. As follows from our results mesophilic species from so called "B. subtilis group" (96.9%) were isolated from agricultural primary production of milk most frequently. This is the reason why in addition to B. cereus it is also necessary to identify these species: seven tests shown in Tab III are recommended for their rapid differentiation. PMID:8619278

Pácová, Z; Vyhnálková; Lukásová, J; Holec, J



Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk.  


Anaerobic digestion is considered as a promising method to manage animal waste with antibiotic-resistant bacteria. Current research was conducted to investigate the survival of multidrug-resistant bacteria (MDRB) resistant to three groups of antibiotics: (i) cefazolin, neomycin, vancomycin, kanamycin (group 1); (ii) penicillin, oxytetracycline, ampicillin, streptomycin (group 2); and (iii) cefazolin, neomycin, vancomycin, kanamycin, penicillin, oxytetracycline, ampicillin, streptomycin (group 3), in anaerobic digestion of dairy manure and co-digestion of dairy manure and waste milk at 37°C and 55°C for 22 days, respectively. The population densities of three groups of MDRB on peptone, tryptone, yeast and glucose agar plates incubated at 30°C for 7 days before and after digestion showed 100% destruction in both digestates at thermophilic temperature. Overall reduction of more than 90% of three groups of MDRB was observed in mesophilic digestion with no significant differences (P?>?0.05) between manure and milk mixture. Co-digestion of dairy manure and waste milk always produced significantly (P?mesophilic digestion. The results demonstrate that thermophilic co-digestion of dairy manure and waste milk offers more benefits in terms of the environment and economy. PMID:23607603

Beneragama, Nilmini; Iwasaki, Masahiro; Lateef, Suraju A; Yamashiro, Takaki; Ihara, Ikko; Umetsu, Kazutaka



Phylogenetic Diversity of Aerobic Saprotrophic Bacteria Isolated from the Daqing Oil Field  

Microsoft Academic Search

A diverse and active microbial community in the stratal waters of the Daqing oil field (China), which is exploited with the use of water-flooding, was found to contain aerobic chemoheterotrophic bacteria (including hydrocarbon-oxidizing ones) and anaerobic fermentative, sulfate-reducing, and methanogenic bacteria. The aerobic bacteria were most abundant in the near-bottom zones of injection wells. Twenty pure cultures of aerobic saprotrophic

T. N. Nazina; A. A. Grigor'yan; Yan-Fen Xue; D. Sh. Sokolova; E. V. Novikova; T. P. Tourova; A. B. Poltaraus; S. S. Belyaev; M. V. Ivanov



Iron Demand by Thermophilic and Mesophilic Bacteria Isolated from an Antarctic Geothermal Soil  

Microsoft Academic Search

The thermophilic bacterial strain MP4 assigned to a new species, likely of the genus Alicyclobacillus, was isolated from geothermal soils on the NW slope of Mount Melbourne, Antarctica. These soils have high iron concentrations\\u000a and the strain MP4 requires iron additions for growth. Four mesophilic bacterial strains Paenibacillus validus MP5, MP8, and MP10, and P. apiarius MP7, isolated from the

Milva Pepi; Chiara Agnorelli; Roberto Bargagli



The survival of cefazolin-resistant bacteria in mesophilic co-digestion of dairy manure and waste milk.  


The use of cefazolin to treat mastitic cows leads to cefazolin residues in milk and manure. This is responsible for the high occurrence of cefazolin resistant bacteria (CRB) in waste and the environment. Anaerobic digestion is considered to have the potential to reduce antibiotic-resistant bacteria present in waste that results from concentrated animal feeding operations. Thus, the objective of this study was to investigate the survival of CRB and the digester performance in mesophilic co-digestion of dairy manure and waste milk. The experiment was carried out using three digester compositions: 100% slurry (slurry), 50% slurry + 50% manure (manure mixture) and 50% slurry + 45% manure + 5% waste milk (milk mixture) in batch digesters of 1 l with a working volume of 800 ml in triplicate at 37°C for 34 days. The daily biogas production in each digester, and methane (CH4) and carbon dioxide compositions in the gas were determined. The population densities of total culturable bacteria (TCB) and CRB were determined by plate counts on agar media at day 0, 10, 20 and 34 of digestion. Milk mixture produced the highest (P < 0.05) daily and cumulative total and CH4 gas. The maximum percentage reductions of TCB and CRB in manure and milk mixture was observed at day 20, the values being 96.2%, 96.0% and 99.8% and 99.8% respectively. Final volatile fatty acids (VFA) and pH values of the digesters confirmed the digester stability. Based on the findings, mesophilic anaerobic digestion can be considered a potent method to avoid the dissemination of CRB in nature. PMID:23512952

Beneragama, Nilmini; Moriya, Yusuke; Yamashiro, Takaki; Iwasaki, Masahiro; Lateef, Suraju A; Ying, Chun; Umetsu, Kazutaka



Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.  


This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite. PMID:11257551

Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F



Aerobic salivary bacteria in wild and captive Komodo dragons.  


During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals. PMID:12238371

Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L



Precipitation of Dolomite in Aerobic Culture Experiments Using Halophilic Bacteria  

NASA Astrophysics Data System (ADS)

The study of carbonate biomineralization in hypersaline environments provides information about the key role microorganisms have played in global carbon cycling, especially in the Precambrian. Recently, a microbial dolomite model was proposed based on the study of a hypersaline coastal lagoon, Lagoa Vermelha, Rio de Janeiro (Brazil). This model suggests that sulfate-reducing bacteria mediate dolomite precipitation by increasing pH and removing the sulfate inhibitor. The anoxic conditions of this system may not, however, apply to all ancient dolomite formation. Dolomite is an abundant carbonate mineral found widespread in the geological record in a variety of environmental settings. Thus, a single microbial dolomite model probably cannot explain its widespread distribution and a broad spectrum of conditions may be linked with its formation. In contrast to Lagoa Vermelha, Brejo do Espinho, a shallow hypersaline lagoon located in the same region, is a dolomite-forming environment with oxic bottom conditions. The sediment comprises primarily high Mg-calcite and Ca-dolomite. Heterotrophic microorganisms have been isolated from algal mats growing in Brejo do Espinho, and biomineralization experiments have been conducted at variable temperatures (15, 20, 25, 30, 35 and 40° C) and salinities (sea water and 2x seawater) to simulate the natural environmental conditions. After a 20-day incubation period, several aerobic culture experiments have crystal growth of Ca-dolomite and high Mg-calcite. Our study demonstrates that, under aerobic conditions, heterotrophic microorganisms can mediate dolomite precipitation. These results indicate that microbial dolomite precipitation is not necessarily linked to any particular group of organisms or specific metabolic processes or even a specific environment, i.e., it is not exclusively an anoxic mineral but can be precipitated in the presence of oxygen. This has implications for the distribution of dolomite in the geologic record.

Roman, M. S.; Vasconcelos, C.; McKenzie, J. A.



Effect of temperature on the efficiency of the thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)  

Microsoft Academic Search

The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65°C with the pH of 7. Only at

Ma?gorzata Krzywonos; Edmund Cibis; Tadeusz Mi?kiewicz; Chris A. Kent



Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.  


In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon



Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real-Time PCR and Flow Cytometry-Fluorescence In Situ Hybridization  

Microsoft Academic Search

Nucleic acid-based assays were developed to enumerate members of the three taxa Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis, and Leuconostoc spp. in mesophilic starter cultures. To our knowledge the present is the first study to present a multiplex quantitative PCR (qPCR) strategy for the relative enumeration of bacteria. The multiplex qPCR strategy was designed to quantify the target

Udo Friedrich; Jan Lenke



Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota.  


A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76(T), was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6-0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76(T) had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76(T) had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76(T) is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85% 16S rRNA gene sequence identity with the closest cultivated relative 'Candidatus Nitrosopumilus maritimus' SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. 'Korarchaeota' and 'Aigarchaeota'). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76(T). The type strain of Nitrososphaera viennensis is strain EN76(T) (?=?DSM 26422(T)?=?JMC 19564(T)). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J E; Rittmann, Simon K-M R; Melcher, Michael; Leisch, Nikolaus; Schleper, Christa



Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota  

PubMed Central

A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85?% 16S rRNA gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’ SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81?% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of Nitrososphaera viennensis is strain EN76T (?=?DSM 26422T?=?JMC 19564T). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J. E.; Rittmann, Simon K.-M. R.; Melcher, Michael; Leisch, Nikolaus



Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.  


In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production. PMID:24759540

Jang, H M; Park, S K; Ha, J H; Park, J M



An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.  


Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. PMID:23968913

Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon




Microsoft Academic Search

Several halotolerant bacteria were isolated from brine samples from Semangkok oil reservoir. Biochemical and morphological characterization of the bacteria were carried out. These bacteria are gram positive spore formers and have been identified as belonging to the genus Bacillus. Most of the isolates could grow in medium containing kerosene as sole carbon source and energy and tolerate NaCl concentration up



Developments in the Taxonomy of Aerobic, Endospore-forming Bacteria  

Microsoft Academic Search

\\u000a \\u000a Bacillus holds an important place in the history of bacteriology. With observations upon Bacillus subtilis and its spores Cohn discredited the theory of spontaneous generation, and with his demonstration of the life history of B. anthracis in 1876 Robert Koch proved the germ theory of disease and founded medical bacteriology. Later, Bacillus became defined as a genus of aerobic, endospore-forming

Niall A. Logan; Gillian Halket


Heterotrophic nitrification–aerobic denitrification by novel isolated bacteria  

Microsoft Academic Search

Three novel strains capable of heterotrophic nitrification–aerobic denitrification were isolated from the landfill leachate\\u000a treatment system. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as Agrobacterium sp. LAD9, Achromobacter sp. GAD3 and Comamonas sp. GAD4, respectively. Batch tests were carried out to evaluate the growth and the ammonia removal patterns. The maximum\\u000a growth rates as determined from

Qian Chen; Jinren Ni


Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria  

Microsoft Academic Search

Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the

S. Kanazawa; Y. Ishikawa; K. Tomita-Yokotani; H. Hashimoto; Y. Kitaya; M. Yamashita; M. Nagatomo; T. Oshima; H. Wada



Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.  


Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L



Bacteria-mediated aerobic degradation of hexacosane in vitro conditions.  


In vitro degradation of hexacosane (C26H54), a HMW n-alkane, was studied in MSM by two bacterial strains i.e., Pseudomonas sp. BP10 and Stenotrophomonas nitritireducens E9, isolated from petroleum sludge, in isolation and combination. The results revealed that both the strains were able to metabolize hexacosane by 82% in isolation and 98% in their consortium after 7days. An enhancement of 16% in hexacosane degradation by the consortium indicated an additive action of bacterial strains. However, in control, a degradation of 21% was attributed to abiotic factors. During incubation with hexacosane, both the bacteria continued to multiply in isolation and consortium, which reflected that hexacosane was utilized by bacteria as a carbon and energy source. Activities of alkane hydroxylase and alcohol dehydrogenase were differentially expressed in isolation and combination, indicating their involvement in hexacosane degradation. Enhanced cell surface hydrophobicity and emulsification index and reduced surface tension also supported the degradation process. PMID:25125193

Jauhari, Nitanshi; Mishra, Shweta; Kumari, Babita; Singh, S N



Effect of temperature on the efficiency of the thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage).  


The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration. PMID:18329266

Krzywonos, Ma?gorzata; Cibis, Edmund; Mi?kiewicz, Tadeusz; Kent, Chris A



Aerobic biodegradation of propylene glycol by soil bacteria.  


Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile. PMID:23187798

Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido



Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised  

NASA Technical Reports Server (NTRS)

The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.



First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents  

Microsoft Academic Search

Thermophilic aerobic non-sporulating heterotrophic bacteria were isolated for the first time from deep-sea hydrothermal vents. Samples were taken at Snakepit (Mid-Atlantic Ridge) and Guaymas Basin (Gulf of California). Isolates consisting of pleomorphic rods, single cells or pairs, formed filaments of variable length, and grew at 70°C or some up to 80°C. They were halotolerant and unable to grow anaerobically, except

ViggóThór Marteinsson; Jean-Louis Birrien; Jakob K. Kristjánsson; Daniel Prieur



Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?  


Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. PMID:25681301

Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E



Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis  

PubMed Central

Methods are described for the isolation and identification of aerobic bacteria occurring naturally in the hind-gut of the cockroach Blatta orientalis captured from a number of wild sources, to establish whether or not human pathogens occurred naturally within the gut. During the investigation an organism was frequently found which could not be classified in any described species, and for which we propose the name Escherichia blattae. PMID:4571611

Burgess, N. R. H.; McDermott, S. N.; Whiting, J.



Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis.  


Methods are described for the isolation and identification of aerobic bacteria occurring naturally in the hind-gut of the cockroach Blatta orientalis captured from a number of wild sources, to establish whether or not human pathogens occurred naturally within the gut. During the investigation an organism was frequently found which could not be classified in any described species, and for which we propose the name Escherichia blattae. PMID:4571611

Burgess, N R; McDermott, S N; Whiting, J



Biodegradation of nonlignocellulosic substances I: system for complete decomposition of garbage using sawdust and aerobic soil bacteria  

Microsoft Academic Search

A system for effective garbage decomposition using sawdust and aerobic soil bacteria was examined. The machinery used in this\\u000a process, the garbage automatic decomposer-extinguisher (GADS), is composed of a container with an automatic mechanical mixer\\u000a and a drain for liquid formed by the decomposition of garbage. The aerobic soil bacteria, cultivated in sawdust, degrades\\u000a garbage within the container. The GADE

Minoru Terazawa; Sakae Horisawa; Yutaka Tamai; Kenzo Yamashita



High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean?  

PubMed Central

Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml?1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10?3 ?g liter?1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock. PMID:17496136

Lami, Raphaël; Cottrell, Matthew T.; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L.; Lebaron, Philippe



High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems.  


Three new bacteria HS-03, HS-043 and HS-047 isolated from different ecosystems were found capable of aerobic denitrification. The potential application of these strains in wastewater treatment under aerobic conditions was investigated. These three bacteria all presented high nitrogen removal from wastewater that more than 98% of 10 mmol/L nitrate could be removed in 12-24 h by adding cheap external carbon source and low concentration of iron as well as molybdate. The mechanism at molecular level was analyzed. The success of this aerobic denitrification applied to wastewater treatment may serve as an alternative to enhance the practical nitrogen removal from wastewater. Main biochemical and physiological features of these strains were characterized. The 16S rDNA sequences were compared with the published data in GenBank by using BLAST. The results of phenotype and genotype proved that strain HS-03 and HS-047 belonged to Pseudomonas stutzeri and Pseudomonas pseudoalcaligenes respectively. Strain HS-043 was identified as Delftia acidovorans of which denitrifying activity has not previously been explored. PMID:17294651

Ping, Li; De-Li, Li; Nahimana, Liberat; Chen, Shu-Li; Yang, Xi; Zhao, Li



Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina  

Microsoft Academic Search

The aerobic, chemoheterotrophic bacteria indigenous to deep aquifers and other subsurface sediments (depths to 265 m) at a site in South Carolina were characterized by direct microscopy, enumeration of viable cells, analysis of colony morphologies on plates, and analysis of cell morphologies of isolated strains. Substantial numbers of viable bacteria (1010\\/g) were present in all transmissive, aquifer sediments, and their

David L. Balkwill



The effect of bacteria, enzymes and inulin on fermentation and aerobic stability of corn silage  

PubMed Central

Background and Objectives Ensiling is a conservation method for forage crops. It is based on the fact that anaerobe lactic acid bacteria (LAB) convert watersoluble carbohydrates into organic acids. Therefore, pH decreases and the forage is preserved. The aim of this study was to isolate special kinds of lactic acid bacteria from silage and to study the effect of bacteria, inulin and enzymes as silage additives on the fermentation and aerobic stability of the silage. Materials and Methods The heterofermentative LAB were isolated from corn silages in Broujerd, Iran and biochemically characterized. Acid tolerance was studied by exposure to acidic PBS and growth in bile salt was measured by the spectrophotometric method. Results The results of molecular analysis using 16SrDNA sequences showed that the isolates belonged to Lactobacillus and Enterococcus genera. To enhance stability in acidic environment and against bile salts, microencapsulation with Alginate and Chitosan was used. The Lactobacillus plantarum strains were used as control. The inoculants (1 × 107 cfu/g) alone or in combination with inulin or in combination with enzymes were added to chopped forages and ensiled in 1.5-L anaerobic jars. Conclusion Combination of the isolates Lactobacillus and Enterococcus with inulin and enzymes can improve the aerobic stability of corn silage. PMID:23205249

Peymanfar, S; Kermanshahi, RK



Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.  


Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps. Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil. PMID:23647951

Pepe, Olimpia; Ventorino, Valeria; Blaiotta, Giuseppe



Temporal Variations in Heterotrophic Mesophilic Bacteria from a Marine Shallow Hydrothermal Vent off the Island of Vulcano (Eolian Islands, Italy)  

Microsoft Academic Search

The fluctuations of the total microbial abundance, the culturable heterotrophic bacterial population, and the composition\\u000a of heterotrophic bacteria were investigated in relation to environmental parameters in a shallow, marine hydrothermal vent\\u000a off the Island of Vulcano (Eolian Islands, Italy). Standing stock dynamics were studied by measuring the total population\\u000a of picoplankton by direct count and the population of viable heterotrophic

C. Gugliandolo; T. L. Maugeri



Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.  


A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw



Quantification of syntrophic fatty acid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization  

Microsoft Academic Search

Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA




Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T.  


Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803(T) grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803(T). Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana



Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean  

PubMed Central

Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

Ritchie, Anna E.



Purple Sulfur Bacteria Control the Growth of Aerobic Heterotrophic Bacterioplankton in a Meromictic Salt Lake  

PubMed Central

In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters. PMID:16535399

Overmann, J.; Beatty, J. T.; Hall, K. J.



Increased salinity improves the thermotolerance of mesophilic nitrification.  


Nitrification is a well-studied and established process to treat ammonia in wastewater. Although thermophilic nitrification could avoid cooling costs for the treatment of warm wastewaters, applications above 40 °C remain a significant challenge. This study tested the effect of salinity on the thermotolerance of mesophilic nitrifying sludge (34 °C). In batch tests, 5 g NaCl L(-1) increased the activity of aerobic ammonia-oxidizing bacteria (AerAOB) by 20-21 % at 40 and 45 °C. For nitrite-oxidizing bacteria (NOB), the activity remained unaltered at 40 °C, yet decreased by 83 % at 45 °C. In a subsequent long-term continuous reactor test, temperature was increased from 34 to 40, 42.5, 45, 47.5 and 50 °C. The AerAOB activity showed 65 and 37 % higher immediate resilience in the salt reactor (7.5 g NaCl L(-1)) for the first two temperature transitions and lost activity from 45 °C onwards. NOB activity, in contrast to the batch tests, was 37 and 21 % more resilient in the salt reactor for the first two transitions, while no difference was observed for the third temperature transition. The control reactor lost NOB activity at 47.5 °C, while the salt reactor only lost activity at 50 °C. Overall, this study demonstrates salt amendment as a tool for a more efficient temperature transition for mesophilic sludge (34 °C) and eventually higher nitrification temperatures. PMID:24526362

Courtens, Emilie N P; Boon, Nico; De Schryver, Peter; Vlaeminck, Siegfried E



Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean.  


Aerobic anoxygenic phototrophic (AAP) bacteria are found in a range of aquatic and terrestrial environments, potentially playing unique roles in biogeochemical cycles. Although known to occur in the Arctic Ocean, their ecology and the factors that govern their community structure and distribution in this extreme environment are poorly understood. Here, we examined summer AAP abundance and diversity in the North East Pacific and the Arctic Ocean with emphasis on the southern Beaufort Sea. AAP bacteria comprised up to 10 and 14% of the prokaryotic community in the bottom nepheloid layer and surface waters of the Mackenzie plume, respectively. However, relative AAP abundances were low in offshore waters. Environmental pufM clone libraries revealed that AAP bacteria in the Alphaproteobacteria and Betaproteobacteria classes dominated in offshore and in river-influenced surface waters, respectively. The most frequent AAP group was a new uncultivated betaproteobacterial clade whose abundance decreased along the salinity gradient of the Mackenzie plume even though its photosynthetic genes were actively expressed in offshore waters. Our data indicate that AAP bacterial assemblages represented a mixture of freshwater and marine taxa mostly restricted to the Arctic Ocean and highlight the substantial influence of riverine inputs on their distribution in coastal environments. PMID:23560623

Boeuf, Dominique; Cottrell, Matthew T; Kirchman, David L; Lebaron, Philippe; Jeanthon, Christian



Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste  

Microsoft Academic Search

The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated\\u000a animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on\\u000a anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations\\u000a enumerated in the swine waste at 25°C and 37°C, resistant

Martin R. Chénier; Pierre Juteau



Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.  


Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens. PMID:24339348

Hernández, Noemi; Escudero, José A; Millán, Álvaro San; González-Zorn, Bruno; Lobo, Jorge M; Verdú, José R; Suárez, Mónica



Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.  


Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (? 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (? 10 mM) in an enriched activated sludge culture. PMID:25259503

Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu



Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of No-treatment, Water, and three sanitizers. Sanitizers were Hydrogen ...


Comparison between Rinse and Crush-and-Rub Sampling for Aerobic Bacteria Recovery from Hatching Eggs after Sanitization  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatments with sanitizers. Eggs were arranged into 5 treatments consisting of three sanitizers, Water, and No-treatment. Sanitizers were Hydrogen...


Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron  

PubMed Central

The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

Back, Alexandre; Irlinger, Françoise



Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.  


In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid. PMID:25416587

Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai



Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).  


Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

Damaré, J M; Hussong, D; Weiner, R M; Colwell, R R



Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).  

PubMed Central

Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

Damaré, J M; Hussong, D; Weiner, R M; Colwell, R R



Rapid High-Throughput Assessment of Aerobic Bacteria in Complex Samples by Fluorescence-Based Oxygen Respirometry  

PubMed Central

A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given. PMID:16461677

O'Mahony, Fiach C.; Papkovsky, Dmitri B.



Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria  

NASA Astrophysics Data System (ADS)

The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.



Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas  

Microsoft Academic Search

Gundruk, sinki and khalpi are lactic-fermented vegetable products of Sikkim in India, and inziangsang is a fermented leafy vegetable product of Nagaland and Manipur in India. A total of 65 samples of gundruk (25), sinki (12), khalpi (25) and inziangsang (3) were analysed for microbial counts. The population of lactic acid bacteria (LAB) as well as aerobic mesophilic counts were

Jyoti P. Tamang; Buddhiman Tamang; Ulrich Schillinger; Charles M. A. P. Franz; Michael Gores; Wilhelm H. Holzapfel



Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa



Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere  

PubMed Central

In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

Stiefel, Philipp; Zambelli, Tomaso



Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere.  


In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

Stiefel, Philipp; Zambelli, Tomaso; Vorholt, Julia A



Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds  


This paper describes the production of isoprenoid wax esters during the aerobic degradation of 6,10,14-trimethylpentadecan-2-one and phytol by four bacteria (Acinetobacter sp. strain PHY9, Pseudomonas nautica [IP85/617], Marinobacter sp. strain CAB [DSMZ 11874], and Marinobacter hydrocarbonoclasticus [ATCC 49840]) isolated from the marine environment. Different pathways are proposed to explain the formation of these compounds. In the case of 6,10, 14-trimethylpentadecan-2-one, these esters result from the condensation of some acidic and alcoholic metabolites produced during the biodegradation, while phytol constitutes the alcohol moiety of most of the esters produced during growth on this isoprenoid alcohol. The amount of these esters formed increased considerably in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. Although conflicting evidence exists regarding the stability of these esters in sediments, it seems likely that, under some conditions, bacterial esterification can enhance the preservation potential of labile compounds such as phytol. PMID:9872783

Rontani; Bonin; Volkman



Production of Wax Esters during Aerobic Growth of Marine Bacteria on Isoprenoid Compounds  

PubMed Central

This paper describes the production of isoprenoid wax esters during the aerobic degradation of 6,10,14-trimethylpentadecan-2-one and phytol by four bacteria (Acinetobacter sp. strain PHY9, Pseudomonas nautica [IP85/617], Marinobacter sp. strain CAB [DSMZ 11874], and Marinobacter hydrocarbonoclasticus [ATCC 49840]) isolated from the marine environment. Different pathways are proposed to explain the formation of these compounds. In the case of 6,10,14-trimethylpentadecan-2-one, these esters result from the condensation of some acidic and alcoholic metabolites produced during the biodegradation, while phytol constitutes the alcohol moiety of most of the esters produced during growth on this isoprenoid alcohol. The amount of these esters formed increased considerably in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. Although conflicting evidence exists regarding the stability of these esters in sediments, it seems likely that, under some conditions, bacterial esterification can enhance the preservation potential of labile compounds such as phytol. PMID:9872783

Rontani, Jean-Francois; Bonin, Patricia C.; Volkman, John K.



Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat.  

PubMed Central

The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities. PMID:8899976

Nold, S C; Kopczynski, E D; Ward, D M



Effects of Inoculants Containing Propionic Acid Bacteria on Fermentation and Aerobic Stability of Corn Silage[1] and [2  

Microsoft Academic Search

The effects of microbial inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage were examined. Whole-plant corn was ensiled for 3, 21, and 90 d in 5- to 7-kg capacity polyethylene bags, and six treatments were compared: no additive, Pediococcus cerevisiae at 3 × 105 cfu\\/g of fresh forage plus Lactobacillus planta- rum at 1.5 ×

G. E. Higginbotham; S. C. Mueller; K. K. Bolsen; E. J. DePeters



Detection and Quantification of Bacteria Involved in Aerobic and Anaerobic Ammonium Oxidation in an Ammonium-Contaminated Aquifer  

Microsoft Academic Search

The aerobic and anaerobic ammonium-oxidizing bacterial guilds were studied from two multilevel samplers in an ammonium-contaminated aquifer in the UK. By end point polymerase chain reaction (PCR), the presence of betaproteobacterial ammonium-oxidizing bacteria and anaerobic ammonium-oxidizing (anammox) planctomycetes was demonstrated. The sequences of cloned anammox-specific PCR fragments had close relationships with known anammox strains. Real-time PCR was subsequently used to

Theo H. M. Smits; Arne Hüttmann; David N. Lerner; Christof Holliger



Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste.  


Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria grown at 25 degrees C, 37 degrees C, and 60 degrees C decreased after treatment, but they were still abundant (10(2) to 10(8) most probable number ml(-1)) in the treated swine waste. The presence of 14 genes conferring resistance to tylosin and chlortetracycline was assessed by polymerase chain reaction in bacterial populations grown at 25 degrees C, 37 degrees C, and 60 degrees C, with or without antibiotics. In 22 cases, genes were detected before but not after treatment. The overall gene diversity was wider before [tet(BLMOSY), erm(AB)] than after [tet(LMOS), erm(B)] treatment. Analysis by denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA (rDNA) fragments generally showed a reduction of the bacterial diversity, except for total populations grown at 60 degrees C and for tylosin-resistant populations grown at 37 degrees C. The latter were further investigated by cloning and sequencing their 16S rDNA. Phylotypes found before treatment were all closely related to Enterococcus hirae, whereas six different phylotypes, related to Pseudomonas, Alcaligenes, and Pusillimonas, were found after treatment. This work demonstrated that the aerobic thermophilic biotreatment cannot be considered as a means for preventing the dissemination of aerobic antibiotic-resistant bacteria and their resistance genes to the environment. However, since pathogens do not survive the biotreatment, the effluent does not represent an immediate threat to animal or human health. PMID:19125305

Chénier, Martin R; Juteau, Pierre



Isolation, characterization and identification of lactic acid bacteria involved in traditional fermentation of borde, an Ethiopian cereal beverage  

Microsoft Academic Search

Changes in pH, titratable acidity, Enterobacteriaceae, aerobic mesophiles, lactic acid bacteria (LAB) and yeast counts were investigated during borde fermentation. A rapid decrease in pH was associated with accelerated growth rate of LAB and inhibition of Enterobacteriaceae. Wide diversities of LAB strains were present at early stage of borde fermentation. The number of species reduced as the fermentation progressed. Representatives

Kebede Abegaz


Induction of bphA, Encoding Biphenyl Dioxygenase, in Two Polychlorinated Biphenyl-Degrading Bacteria, Psychrotolerant Pseudomonas Strain Cam1 and Mesophilic Burkholderia Strain LB400  

Microsoft Academic Search

We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gmr fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1,




Natural Transformation in Mesophilic and Thermophilic Bacteria: Identification and Characterization of Novel, Closely Related Competence Genes in Acinetobacter sp. Strain BD413 and Thermus thermophilus HB27  

Microsoft Academic Search

The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent




Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria.  

PubMed Central

Strains of aerobic, microaerobic, nonsymbiotic, and symbiotic dinitrogen-fixing bacteria were screened for the presence of alternative nitrogenase (N2ase) genes by DNA hybridization between genomic DNA and DNA encoding structural genes for components 1 of three different enzymes. A nifDK gene probe was used as a control to test for the presence of the commonly occurring Mo-Fe N2ase, a vnfDGK gene probe was used to show the presence of V-Fe N2ase, and an anfDGK probe was used to detect Fe N2ase. Hitherto, all three enzymes have been identified in Azotobacter vinelandii OP, and all but the Fe N2ase are present in Azotobacter chroococcum ATCC 4412 (MCD1). Mo-Fe N2ase and V-Fe N2ase structural genes only were confirmed in this strain and in two other strains of A. chroococcum (ATCC 480 and ATCC 9043). A similar pattern was observed with Azotobacter beijerinckii ATCC 19360 and Azotobacter nigricans ATCC 35009. Genes for all three systems are apparently present in two strains of Azotobacter paspali (ATCC 23367 and ATCC 23833) and also in Azomonas agilis ATCC 7494. There was no good evidence for the existence of any genes other than Mo-Fe N2ase structural genes in several Rhizobium meliloti strains, cowpea Rhizobium strain 32H1, or Bradyrhizobium japonicum. Nitrogenase and nitrogenase genes in Azorhizobium caulinodans behaved in an intermediate fashion, showing (i) the formation of ethane from acetylene under Mo starvation, a characteristic of alternative nitrogenases, and (ii) a surprising degree of cross-hybridization to the vnfDGK, but not the anfDGK, probe. vnfDGK- and anfDGK-like sequences were not detected in two saccharolytic Pseudomonas species or Azospirillum brasilense Sp7. The occurrence of alternative N2ases seems restricted to members of the family Azotobacteraceae among the aerobic and microaerobic diazotrophs tested, suggesting that an ability to cope with O2 when fixing N2 may be an important factor influencing the distribution of alternative nitrogenases. Images PMID:1987127

Fallik, E; Chan, Y K; Robson, R L



Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization.  


This study compared surface and deep eggshell aerobic bacteria recovered by the rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of no treatment, water, and 3 sanitizers. The sanitizers were H(2)O(2), phenol, and Q(4)B (a compound chemical containing 4 quaternary ammoniums and 1 biguanide moiety). Eggs were sprayed according to treatment and allowed to dry for 1 h before sampling. To collect samples for the eggshell rinse, each egg was massaged in a plastic bag with 20 mL of saline. Eggshells were then aseptically opened and their contents were discarded before being individually crushed into 50-mL centrifuge tubes containing 20 mL of saline. Aerobic bacteria were enumerated on Petrifilm after 48 h of incubation at 37°C. Aerobic bacteria recovered (log(10) cfu/mL) from the eggshell rinse were highest and similar for the no-treatment (4.0) and water (3.7) groups, lower for the phenol (3.2) and H(2)O(2) (3.1) groups, and lowest for the Q(4)B (2.4) group. Aerobic bacteria levels with the crush-and-rub method were similar for the no-treatment (2.5) and water (2.3) groups, lower for the phenol (1.6) group, intermediate for the H(2)O(2) (1.2) group, and lowest for the Q(4)B (0.9) group. The overall correlation between the rinse and crush-and-rub sampling methods for individual egg aerobic bacteria counts was r = 0.71. The correlation within each treatment revealed the following r values: no treatment, 0.55; water, 0.72; H(2)O(2), 0.67; phenol, 0.73; and Q(4)B, 0.38. A second experiment was designed to further examine the lower aerobic bacterial levels recovered by the crush-and-rub method (for previously rinsed eggs) than the levels recovered in the initial eggshell rinse sample. Eggs were either rinsed and then crushed and rubbed, or they were only crushed and rubbed without a prior rinse. Results confirmed a significant decrease (1.5 log(10) cfu/mL) in bacteria levels between the initial rinse (4.4) and the subsequent crush and rub (2.9) for the same eggshell. For the crush-and-rub eggs with no previous rinsing, the bacteria recovery level (3.9) was not significantly different from levels for the rinse method. Therefore, either the rinse or crush-and-rub sampling methods can be used to recover similar levels of eggshell aerobic bacteria. PMID:21673179

Spickler, J L; Buhr, R J; Cox, N A; Bourassa, D V; Rigsby, L L



Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products.  


The microbial quality and safety of surimi seafood products was assessed by studying the prevalence and biodiversity of aerobic spore-forming bacteria at the beginning and end of shelf life in 100 surimi samples. Low levels of total flora and sporulated flora were numerated at the beginning of storage, however, residual spores were detected in the majority of samples during storage. Furthermore, for 34 samples, total flora counts>10(4) CFU/g were observed at the end of shelf life which could lead to non-compliance with good practice recommendations or product spoilage. In total, 460 strains were isolated, fingerprinted by M13-PCR and grouped into 98 different clusters. Representative strains were then identified at the species level via 16S rRNA gene sequencing. Overall, dominant species belonged to Bacillus simplex, Bacillus subtilis and Bacillus licheniformis; while B. simplex, B. subtilis as well as Sporosarcina aquimarina were clearly the dominant species found in samples with higher total flora counts. Amylolytic and proteolytic activities were very frequent amongst tested strains (80 and 92.5%, respectively). Heat resistance parameters of 4 strains in a surimi-based medium were determined. B. simplex and B. subtilis strains were the most heat resistant (?(96 °C)= 27.6 and 23.3 min and z(T)=8.6 and 7.9, respectively) which can explain their dominance in surimi samples exhibiting higher microbial counts. The heat resistance data obtained can now be used to model thermal destruction of strains using predictive microbiology tools (Sym'Previus). PMID:21315981

Coton, M; Denis, C; Cadot, P; Coton, E



Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment  

SciTech Connect

The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, California, an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress. 33 refs., 5 figs., 2 tabs.

Ciulla, R.A.; Roberts, M.F. [Boston College, Chestnut Hill, MA (United States); Diaz, M.R.; Taylor, B.F. [Univ. of Miami, FL (United States)



Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice  

PubMed Central

A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30?mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20?mM along with PSB16 significantly increased soluble soil P (28.39?mg kg?1), plant P uptake (0.78?P pot?1), and plant biomass (33.26?mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10?cfu g?1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail



Evidence for propagation of aerobic bacteria in particles suspended in gaseous atmospheres. [Terrestrial microorganism contamination of Jupiter atmosphere  

NASA Technical Reports Server (NTRS)

One factor involved in the possibility that airborne microbes might contaminate the Jovian atmosphere is whether microbes have the capacity to propagate in air. Prior to these studies, the evidence was that the airborne state was lethal to microbes. An aerosol of aerobic bacteria was mixed with another containing C-14-glucose, and the presence of C-14-CO2 was subsequently detected, which indicates that the airborne cells were metabolically active. In the same type of experiment, it was shown that thymidine was incorporated into the acid-insoluble fraction of samples, indicating the formation of DNA. It was also shown, both by an increase in the numbers of viable cells and a parallel increase in particle numbers, that at least two new generations of cells could occur. Evidence for propagation of anaerobic bacteria has so far been negative.

Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.; Straat, P.



Impact of an aerobic thermophilic sequencing batch reactor on antibiotic-resistant anaerobic bacteria in swine waste.  


The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25 degrees C and 37 degrees C, resistant populations remained significant (10(4) to 10(5) most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37 degrees C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes. PMID:19562247

Chénier, Martin R; Juteau, Pierre



Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria  

E-print Network

-oxidizing bacteria Karen L. Casciotti *,1 , Bess B. Ward Department of Geosciences, Princeton University, Princeton) are climatically important trace gases that are produced by both nitrifying and den- itrifying bacteria-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both b- and c-Proteobacterial ammonia

Ward, Bess


Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR.  


PCN bacteria capable of heterotrophic-aerobic nitrogen removal was successfully applied for bioaugmented treatment of municipal wastewater in a pilot-scale SBR. At an appropriate COD/N ratio of 8, the bioaugmentation system exhibited stable and excellent carbon and nutrients removal, the averaged effluent concentrations of COD, NH4(+)-N, TN and TP were 20.6, 0.69, 14.1 and 0.40mg/L, respectively, which could meet the first class requirement of the National Municipal Wastewater Discharge Standards of China (COD<50mg/L, TN<15mg/L, TP<0.5mg/L). Clone library and real-time PCR analysis revealed that the introduced bacteria greatly improved the structure of original microbial community and facilitated their aerobic nutrients removal capacities. The proposed emerging technology was shown to be an alternative technology to establish new wastewater treatment systems and upgrade or retrofit conventional systems from secondary-level to tertiary-level. PMID:25710680

Chen, Qian; Ni, Jinren; Ma, Tao; Liu, Tang; Zheng, Maosheng



Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria  

PubMed Central

Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.



A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts.  


Phototrophic microorganisms are critical to the carbon cycling and productivity of biological soil crusts, which enhance water content, nutrient relations and mechanical stability of arid soils. Only oxygen-producing phototrophs, including cyanobacteria and algae, are known from soil crusts, but Earth's second major branch of photosynthetic organisms, the evolutionarily earlier anoxygenic phototrophs, is unreported. We announce the discovery of aerobic anoxygenic phototrophs in three Canadian soil crust communities. We found in a culture-based study that they comprised 0.1-5.9% of the cultivable bacterial community in moss-, lichen- and cyanobacteria-dominated crust from sand dunes and sandy soils. Comparable in density to aerobic phototrophs in other habitats, the bacteriochlorophyll a-possessing pink and orange isolates were related to species of Methylobacterium (99.0-99.5%), Belnapia (97.4-98.8%), Muricoccus (94.4%) and Sphingomonas (96.6-98.5%), based on 16S rRNA gene sequences. Our results demonstrate that proteobacterial anoxygenic phototrophs may be found in dry soil environments, implying desiccation resistance as yet unreported for this group. By utilizing sunlight for part of their energy needs, aerobic phototrophs can accelerate organic carbon cycling in nutrient-poor arid soils. Their effects will be especially important as global climate change enhances soil erosion and consequent nutrient loss. PMID:23766251

Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir



Natural Transformation in Mesophilic and Thermophilic Bacteria: Identification and Characterization of Novel, Closely Related Competence Genes in Acinetobacter sp. Strain BD413 and Thermus thermophilus HB27  

PubMed Central

The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent transcriptional regulation of the recently identified pilin-like factors of the transformation machinery. This finding strongly suggests that comA is part of a competence regulon. Examination of the genome sequence of T. thermophilus HB27 led to detection of a comA/comEC-like open reading frame (ORF) which is flanked by an ORF whose product shows significant similarities to the Bacillus subtilis competence protein ComEA. To examine whether these two ORFs, designated comEC and comEA, are implicated in natural transformation of T. thermophilus HB27, both were disrupted by using a thermostable kanamycin resistance marker. Natural transformation in comEC mutants was reduced 1,000-fold, whereas in comEA mutants the natural transformation phenotype was completely eliminated. These results strongly suggest that both genes, comEC and comEA, are required for natural transformation in T. thermophilus HB27. Several transmembrane ?-helices are predicted based on the amino acid sequences of ComA in Acinetobacter sp. strain BD413 and ComEC in T. thermophilus HB27, which suggests that ComA and ComEC are located in the inner membrane and function in DNA transport through the cytoplasmic membrane. PMID:11425734

Friedrich, Alexandra; Hartsch, Thomas; Averhoff, Beate



Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27.  


The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent transcriptional regulation of the recently identified pilin-like factors of the transformation machinery. This finding strongly suggests that comA is part of a competence regulon. Examination of the genome sequence of T. thermophilus HB27 led to detection of a comA/comEC-like open reading frame (ORF) which is flanked by an ORF whose product shows significant similarities to the Bacillus subtilis competence protein ComEA. To examine whether these two ORFs, designated comEC and comEA, are implicated in natural transformation of T. thermophilus HB27, both were disrupted by using a thermostable kanamycin resistance marker. Natural transformation in comEC mutants was reduced 1,000-fold, whereas in comEA mutants the natural transformation phenotype was completely eliminated. These results strongly suggest that both genes, comEC and comEA, are required for natural transformation in T. thermophilus HB27. Several transmembrane alpha-helices are predicted based on the amino acid sequences of ComA in Acinetobacter sp. strain BD413 and ComEC in T. thermophilus HB27, which suggests that ComA and ComEC are located in the inner membrane and function in DNA transport through the cytoplasmic membrane. PMID:11425734

Friedrich, A; Hartsch, T; Averhoff, B



Aerobic andFacultatively Anaerobic Bacteria Associated with theGutofCanadaGeese(Branta canadensis) andWhistling Swans(Cygnus columbianus columbianus)  

Microsoft Academic Search

Aerobic andfacultatively anaerobic bacteria fromtheintestinal tracts ofswans andgeesewereisolated andcharacterized aspartofa larger studyofthe microbiological effects ofmigratory waterfowl onwaterquality. A total of356 isolates wereidentified byusing rapididentification methodsandclassified by using numerical taxonomy. A diverse population ofbacteria wasrecovered from thewaterfowl, andrepresentative strains couldbeclassified into21phena. The majority oftheaerobic, heterotrophic bacteria foundinthegutofthewaterfowl werespecies ofEnterobacteriaceae, Streptococcus, Lactobacillus, andBacillus. Unfortunately, thebirds thatwereexamined didnotharborsignificant numbers ofanywaterfowl-specific bacterial species. Thus,itmaynotbepossible




Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.  


In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M



Colonization by aerobic bacteria in karst: Laboratory and in situ experiments  

USGS Publications Warehouse

Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.



Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean  

Microsoft Academic Search

The vertical distribution of bacteriochlorophyll a, the numbers of infrared fluorescent cells, and the variable fluorescence signal at 880 nanometers wave- length, all indicate that photosynthetically competent anoxygenic phototrophic bacteria are abundant in the upper open ocean and comprise at least 11% of the total microbial community. These organisms are facultative photohetero- trophs, metabolizing organic carbon when available, but are

Zbigniew S. Kolber; F. Gerald Plumley; Andrew S. Lang; J. Thomas Beatty; Robert E. Blankenship; Cindy L. VanDover; Costantino Vetriani; Michal Koblizek; Christopher Rathgeber; Paul G. Falkowski



Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments  

Microsoft Academic Search

The distribution of microorganisms in deep subsurface profiles was determined at three sites at the Savannah River Plant, Aiken, South Carolina. Acridine orange direct counts (AODC) of bacteria were highest in surface soil samples and declined to the 10 to 10 per gram range in the subsurface, but then did not decline further with depth. In the subsurface, AODC values

J. L. Sinclair; W. C. Ghiorse



Diversity and activity of cultivable aerobic planktonic bacteria of a saline Lake located in Sovata, Romania.  


Aerobic bacterial strains from the salt water of Lake Red (Sovata, Romania) were cultivated. More than half of the 80 strains were G(-) and formed motile straight rods. Only a few strains produced acid from D-glucose and reduced nitrate to nitrite. Optimum NaCl concentration for growth varied between 5 and 15 % in the majority of the strains, so the isolates were regarded moderately halophilic. On the basis of the 16S rRNA gene sequence similarity almost half of the strains were identified as members of genus Halomonas. Other strains belonged to genera Marinobacter, Psychrobacter, Serratia, Morganella (?-Proteobacteria), Bacillus, Exiguobacterium, Planococcus (Firmicutes), and Arthrobacter, Micrococcus, Microbacterium, and Nesterenkonia (Actinobacteria). PMID:20941581

Borsodi, A K; Kiss, R I; Cech, G; Vajna, B; Tóth, E M; Márialigeti, K



Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep?sea hydrothermal vents  

Microsoft Academic Search

Aerobic mesophilic sulfur?oxidizing bacteria were tested for their ability to utilize a variety of natural and commercial polymetal sulfides as energy sources at near neutral pH. Substantial fixation of CO2 by natural microbial populations covering polymetal sulfide deposits was observed in in situ experiments conducted from DSV ALVIN at the Mid?Atlantic Ridge hydrothermal vent sites at a depth of 3600

Carolyn Eberhard; Carl O. Wirsen; Holger W. Jannasch



Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.  


It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection. PMID:23805543

Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G



Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer.  

PubMed Central

The bacterial abundance, distribution, and degradation potential (in terms of degradation versus lack of degradation) for four xenobiotic compounds in an aerobic aquifer sediment have been examined in laboratory and field experiments. The xenobiotic compounds studied were benzene, toluene, o-xylene, and naphthalene (all at concentrations of approximately 120 micrograms/liter). The aerobic degradation experiments ran for approximately 90 days at 10 degrees C, which corresponded to the groundwater temperature. At the end of the experiment, the major part of the microbial biomass, quantified as acridine orange direct counts, was attached to the groundwater sediment (18 x 10(6) to 25 x 10(6) cells per g [dry weight], and only a minor part was unattached in the groundwater (0.6 x 10(6) to 5.5 x 10(6) cells per ml). Experiments involving aquifer sediment suspensions showed identical degradation potentials in the laboratory and in the field. However, laboratory experiments involving only groundwater (excluding aquifer sediment) showed less degradation potential than in situ experiments involving only groundwater, indicating that the manipulation or approach of the laboratory experiments could affect the determination of the degradation potentials. No differences were observed between the groundwater-only and the sediment compartments in the in situ experiments in the ability to degrade the compounds, but the maximum degradation rates were substantially lower in the groundwater-only compartment. Preparations used in laboratory experiments for studying the degradation potential for xenobiotic organic contaminants should contain sediment to obtain the highest numbers of bacteria as well as the broadest and most stable degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1444415

Holm, P E; Nielsen, P H; Albrechtsen, H J; Christensen, T H



Mechanisms regulating the reduction of selenite by aerobic gram (+) and ({minus}) bacteria  

SciTech Connect

Toxic species of selenium are pollutants found in agricultural and oil refinery wastestreams. Selenium contamination is particularly problematic in areas that have seleniferous subsurface geology, such as the central valley of California. The authors are developed a bacterial treatment system to mitigate selenium-contaminated wastestreams using Bacillus subtilis and Pseudomonas fluorescens, respectively, as model gram (+) and ({minus}) soil bacteria. They have found that, during growth, both organisms reduce selenite, a major soluble toxic species, to red elemental selenium--an insoluble product generally regarded as nontoxic. In both cases, reduction depended on growth substrate and was effected by an inducible system that effectively removed selenite at concentrations typical of polluted sites--i.e., 50 to 300 {micro}g/L. The bacteria studied differed in one respect: when grown in medium supplemented with nitrate or sulfate, the ability of P. fluorescens to remediate selenite was enhanced, whereas that of B. subtilis was unchanged. Current efforts are being directed toward understanding the biochemical mechanism(s) of detoxification and determining whether bacteria occurring in polluted environments such as soils and sludge systems are capable of selenite remediation.

Garbisu, C.; Ishii, Takahisa; Yee, B.C.; Carlson, D.E.; Buchanan, B.B.; Leighton, T. [Univ. of California, Berkeley, CA (United States); Smith, N.R. [California State Univ., Hayward, CA (United States). Dept. of Biological Sciences; Yee, A. [Lawrence Berkeley Lab., CA (United States). Div. of Earth Sciences



Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.  


A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes. PMID:12675610

Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia



Effect of a preparation containing lactic fermentation bacteria on the hygienic status and aerobic stability of silages.  


The objective of this study was to determine the influence of biological silage additive (Bonsilage) on the hygiene quality and nutritive value of maize and grass-legume silages. The experiments were conducted on FAO 240 maize (Zea mays L.) and a mixture of italian ryegrass (Lolium multiflorum L.), 50% with alfalfa (Medicago media Pers.), 50%. Group 1 was a control and comprised silage without any additives, group 2 was ensiled with the addition of 4 cm3 kg(-1) biological silage additive. After 60 days of silage process individual silages were subjected to microbiological composition, and chemical analyses of silages were also determined. Similar analyses were repeated at day 7 following exposure to oxygen. The applied biological silage additive was found to reduce (P<0.05) numbers of Clostridium, Enterobacteriaceae, yeasts and mold fungi cells, and increase (P<0.05) the number of LAB (lactic acid bacteria) in comparison with the control in both silages. Chemical analysis of the maize silage showed that the biological additive caused an increase (P<0.05) in DM (dry matter), CP (crude protein), WSC (water soluble carbohydrates), LA (lactic acid), AA (acetic acid), ethanol, and a decrease (P<0.05) in the concentration of BA (butyric acid), N-NH3 and pH value in comparison with the control. Chemical analysis of silage samples from the grass-legume mixture showed that the additive caused an increase (P<0.05) in the content of DM, CP, WSC, LA and AA in comparison with the control. Samples of silage with the addition of an inoculant were characterized by a lower (P<0.05) content of BA, N-NH3, ethanol and pH value. The biological additive impoved the aerobic stability of silages in the aerobic phase. PMID:18540206

Selwet, M



Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09  

SciTech Connect

Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

Boden, Rich [University of Warwick, UK; Cunliffe, Michael [University of Warwick, UK; Scanlan, Julie [University of Warwick, UK; Moussard, Helene [University of Warwick, UK; Kits, K. Dimitri [University of Alberta, Edmondton, Canada; Klotz, Martin G [University of Louisville, Louisville; Jetten, MSM [Radboud University Nijmegen, The Netherlands; Vuilleumier, Stephane [University of Strasbourg; Han, James [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Stein, Lisa Y. [University of Alberta, Edmondton, Canada; Murrell, Collin [University of Warwick, UK



Distribution of Heterotrophic Bacteria in Lake Shira  

Microsoft Academic Search

A study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in

T. I. Lobova; L. V. Listova; L. Yu. Popova



Population Changes in Enteric Bacteria and Other Microorganisms During Aerobic Thermophilic Windrow Composting1  

PubMed Central

Composting of wastes from swine feeding operations was studied. The effects of the frequency of turning the wastes and addition of straw to improve the physical structure were studied to determine the most effective technique to rapidly increase the temperature and, consequently, destroy coliforms and Salmonella. Four different treatments were studied; the results showed that, with addition of 5% (wt/wt) straw and mechanical turning of the compost 20 times per week, the temperature reached 60 C within 3 days and enteric bacteria were destroyed within 14 days. Images PMID:4203338

Savage, Jacob; Chase, Theodore; Macmillan, James D.



Aminopeptidase activity by spoilage bacteria and its relationship to microbial load and sensory attributes of poultry legs during aerobic cold storage.  


The shelf life of poultry legs stored aerobically and the possible role of the aminopeptidase activity of gram-negative bacteria (p-nitroaniline test) as a predictor of poultry spoilage were evaluated on the basis of microbiological and sensory parameters. Chicken legs (n = 30) obtained immediately after evisceration in a local poultry processing plant were kept under aerobic refrigeration (4 +/- 1 degrees C) for 7 days. Microbiological (counts of aerobic bacteria and psychrotrophs) and sensory (odor, color, and general acceptability on a hedonic scale of 1 to 9) parameters and aminopeptidase activity (absorbance at 390 nm [A(390)]) determinations were performed after 0, 1, 3, 5, and 7 days of storage. Aerobic plate counts of 7 log CFU/g and a score of 6 for general acceptability were used as indicators of the end point of shelf life. Strong correlations (r > or = 0.76; P < 0.001) were obtained between bacterial counts, hedonic scores, and A(390) values. Samples were judged as unacceptable (shelf-life end point) after 2 and 4 days on the basis of sensory and microbiological analyses, respectively. A(390) values of 0.52 and 0.89 (corresponding to p-nitroaniline concentrations of 6.25 and 10.7 microg/ml, respectively) are proposed as the upper limits for acceptability on the basis of sensory and microbiological determinations, respectively. However, these recommendations are based on a small set of samples, and their general application is yet to be verified. PMID:20132678

Guevara-Franco, José Alfredo; Alonso-Calleja, Carlos; Capita, Rosa



Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.  


Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, ?-d-glucosidase, cellobiohydrolase, ?-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated ?-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. PMID:24238986

Woo, Hannah L; Hazen, Terry C; Simmons, Blake A; DeAngelis, Kristen M



The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions  

NASA Astrophysics Data System (ADS)

M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for understanding natural mechanisms in soil and will be useful for the development of new soil models in laboratory. Thus, by means of «cascade filtration» method there've been made some results on true size, quantity and biomass of bacteria. Development of a bacteria in various soil horizons and their layers in aerobic and anaerobic conditions and calculations of biomass of bacteria in upper layer horizon A and lower layer horizon B have also become the subjects of the studies. It was identified that the quantity of bacteria in aerobic conditions increase during the microbial succession while bacteria sized 230 and 380 nm were dominating. In anaerobic conditions the process of connecting cells sized 170 nm and bacteria is observed. Biomass of bacteria is higher in anaerobic conditions in upper layer horizon A because of elevated variety of bacteria. In horizon B in anaerobic conditions it is of maximum because of anaerobic situation in situ. Thus, distribution of bacteria's size depends on aeration of soil. That helps to acknowledge the receipt of theory of a great number of researchers about that fact that the size of bacteria in the soil in anaerobic conditions decrease under stress-factors. This work touches upon such a poorly investigated subject as nanobacteria in the soil. But this knowledge plays a significant role in land reclamation oil-cut and prognostication pollution of the soil by pathogenic bacteria.

Gorbacheva, M.



Comparison of the BACTEC MYCO\\/F Lytic Bottle to the Isolator Tube, BACTEC Plus Aerobic F\\/Bottle, and BACTEC Anaerobic Lytic\\/10 Bottle and Comparison of the BACTEC Plus Aerobic F\\/Bottle to the Isolator Tube for Recovery of Bacteria, Mycobacteria, and Fungi from Blood  

Microsoft Academic Search

The BACTEC MYCO\\/F Lytic blood culture bottle (Becton Dickinson Diagnostic Instrument Systems, Sparks, Md.) is designed to optimize the recovery of fungi and mycobacteria; however, this bottle also supports the growth of most aerobic bacteria. We compared the MYCO\\/F Lytic bottle with two other BACTEC bottles and the Isolator system for the recovery of bacteria as well as fungi and

E. Vetter; C. Torgerson; A. Feuker; J. Hughes; S. Harmsen; C. Schleck; C. Horstmeier; G. Roberts; F. Cockerill



[Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].  


Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest. PMID:25844460

Kalashnikov, A M; Ga?sin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M



Effect of Applying Lactic Acid Bacteria Isolated from Forage Crops on Fermentation Characteristics and Aerobic Deterioration of Silage  

Microsoft Academic Search

Two selected strains, Lactobacillus casei FG 1 and Lactobacillus plantarum FG 10 that were isolated from forage crops were used as additives at 1.0 × 105 cfu\\/g of fresh matter to alfalfa, Italian ryegrass, and sorghum, and their effect on fermentation charac- teristics and aerobic deterioration of silage was studied. The three silages treated with strains FG 1 or FG

Yimin Cai; Y. Benno; M. Ogawa; S. Kumai



Microbial diversity of aerobic heterotrophic bacteria inside the foregut of two tyrphophilous water beetle species (Coleoptera: Dytiscidae)  

Microsoft Academic Search

Using nutrient-rich and poor media 30 eutrophic or facultatively oligotrophic bacterial strains were isolated in a microbiological study of the aerobic, heterotrophic bacterial flora inside the foregut of the water beetle species Agabus affinis (Payk.) and Hydroporus melanarius Strm., 41 strains were isolated from the aquatic habitat of both beetles. A comparison is made between bacterial communities inside the beetles'

O. Schaaf; K. Dettner



Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms  

Microsoft Academic Search

Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples

An Coorevits; Valerie De Jonghe; Joachim Vandroemme; Rieka Reekmans; Jeroen Heyrman; Winy Messens; Paul De Vos; Marc Heyndrickx



Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage.  


Two selected strains, Lactobacillus casei FG 1 and Lactobacillus plantarum FG 10 that were isolated from forage crops were used as additives at 1.0 x 10(5) cfu/g of fresh matter to alfalfa, Italian ryegrass, and sorghum, and their effect on fermentation characteristics and aerobic deterioration of silage was studied. The three silages treated with strains FG 1 or FG 10 were well preserved; had significantly lower pH values, butyric acid, propionic acid, and ammonia N concentrations, gas production, and dry matter losses; and had significantly higher contents of residual water-soluble carbohydrates and lactic acid than did the respective control silages. Yeast counts were high in all treated silages and increased rapidly during aerobic exposure. As a result, treated silages spoiled faster upon aerobic exposure than did the respective control silages. Most yeasts isolated from deteriorated silages showed high tolerance to lactic acid but low tolerance to butyric acid, and they were able to grow at low pH conditions and assimilate lactic acid. The results confirmed that L. casei and L. plantarum improved fermentation quality but did not inhibit the growth of silage yeast or aerobic deterioration of the silage. PMID:10194670

Cai, Y; Benno, Y; Ogawa, M; Kumai, S



Specialized cell surface structures in cellulolytic bacteria.  

PubMed Central

The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A



The Aerobic and Anaerobic Microbiology of Pustular Acne Lesions  

Microsoft Academic Search

Specimens from 32 pustular acne lesions that were inoculated on media supportive for the growth of aerobic and anaerobic bacteria showed bacterial growth. Only aerobic or facultative bacteria were recovered in 15 (47%) specimens, only anaerobic bacteria in 11 (34%) specimens, and mixed aerobic and anaerobic bacteria in 6 (18%) specimens. A total of 57 isolates, 31 anaerobes (1.0 per

Itzhak Brook; Edith H. Frazier; Michael E. Cox; Josef K. Yeager



Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.  


BackgroundSelenium and Tellurium have many common chemical properties as both belong to group 16 of the periodic table. High toxicities of Se and Te oxyanions cause environmental problems in contaminated soils and waters. Three strains (C4, C6 and C7) of selenite reducing and nanoparticle forming aerobic bacteria which were isolated from agricultural soils of India containing high concentrations of Se were investigated after 3.5 months of freeze-storage for their resistance against the toxic oxyanion tellurite and its reduction to non toxic elemental form Te0 as well as nanoparticles formation.ResultsStrains C4, C6 and C7 reduced tellurite at maximum reduction rates of 2.3, 1.5 and 2.1 mg Te (IV)/L/d, respectively and produced extracellular Te0 nanospheres as revealed from SEM-EDX analysis. Production of extracellular Te nanospheres has been described seldom. Further, concurrent reduction of both selenite and tellurite by bacteria was examined as these toxic oxyanions are often present together in natural environments, mine tailings or wastewater from copper refining. Interestingly, bioreduction of 100 mg/L selenite in shake flasks was not much affected by the presence of 10 mg/L tellurite but tellurite reduction rate increased 13 fold with selenite in the medium. The concurrent reduction of these oxyanions resulted in rarely described bioformation of extracellular nanoparticles composed of both Se and Te, reported first time for aerobically growing heterotrophic non-halophilic bacterial cultures. Duganella violacienigra, the closely related strain to C4 was also found to be resistant to oxyanions of Se and Te.ConclusionsSelenite reducing heterotrophic non-halophilic aerobic bacteria revived from 3.5 months freeze storage could successfully reduce toxic tellurite to non toxic elemental form and produced extracellular nanospheres during detoxification. Presence of relatively less toxic selenite in the medium triggers bioreduction of more toxic tellurite leading to formation of extracellular SeTe nanospheres which are sought by solar and optical recording media industry because of their excellent photovoltaic and optical properties. The bacterial cultures investigated in this study could be exploited commercially to remediate not only selenite and tellurite-contaminated soil and water but also for green synthesis of extracellular Se, Te and Se¿+¿Te nanospheres. PMID:25425453

Bajaj, Mini; Winter, Josef



Isolation of aerobic, gliding, xylanolytic and laminarinolytic bacteria from acidic Sphagnum peatlands and emended description of Chitinophaga arvensicola Kampfer et al. 2006.  


Four aerobic, heterotrophic, yellow-pigmented and flexirubin-producing bacterial strains with gliding motility were isolated from acidic Sphagnum-dominated wetlands of Northern Russia. These bacteria are capable of degrading xylan, laminarin and some other polysaccharides, but not cellulose, pectin or chitin. The four strains possess almost identical 16S rRNA gene sequences and are most closely related (98.9-99.5 % sequence similarity) to the recently reclassified species of the phylum Bacteroidetes, Chitinophaga arvensicola Kämpfer et al. 2006, formerly known as [Cytophaga] arvensicola Oyaizu et al. 1983. However, the novel isolates from Sphagnum peat differed from C. arvensicola DSM 3695(T) in their ability to degrade xylan and starch, by greater tolerance of acidic pH and by their inability to reduce nitrate. An emended description of this species is proposed. PMID:17158974

Pankratov, Timofei A; Kulichevskaya, Irina S; Liesack, Werner; Dedysh, Svetlana N



Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria  

PubMed Central

Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.



Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River site, South Carolina.  


(129)I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (?16 million years). The aim of this study was to determine if bacteria from a (129)I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 ?M I(-)). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 ?M), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H(2)O(2), was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I(-) concentration (up to 10 ?M I(-)), and increased at pH values of <6. Overall, the data indicate that I(-) accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of (129)I and to the biogeochemical cycling of iodine over geologic time. PMID:21278282

Li, Hsiu-Ping; Brinkmeyer, Robin; Jones, Whitney L; Zhang, Saijin; Xu, Chen; Schwehr, Kathy A; Santschi, Peter H; Kaplan, Daniel I; Yeager, Chris M



Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.  


The in vitro activities of LFF571, a novel analog of GE2270A that inhibits bacterial growth by binding with high affinity for protein synthesis elongation factor Tu, fidaxomicin, and 10 other antimicrobial agents were determined against 50 strains of Clostridium difficile and 630 other anaerobic and aerobic organisms of intestinal origin. LFF571 possesses potent activity against C. difficile and most other Gram-positive anaerobes (MIC(90), ? 0.25 ?g/ml), with the exception of bifidobacteria and lactobacilli. The MIC(90)s for aerobes, including enterococci, Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA] isolates), Streptococcus pyogenes, and other streptococci were 0.06, 0.125, 2, and 8 ?g/ml, respectively. Comparatively, fidaxomicin showed variable activity against Gram-positive organisms: MIC(90)s against C. difficile, Clostridium perfringens, and Bifidobacterium spp. were 0.5, ? 0.015, and 0.125 ?g/ml, respectively, but >32 ?g/ml against Clostridium ramosum and Clostridium innocuum. MIC(90) for S. pyogenes and other streptococci was 16 and >32 ?g/ml, respectively. LFF571 and fidaxomicin were generally less active against Gram-negative anaerobes. PMID:22290948

Citron, Diane M; Tyrrell, Kerin L; Merriam, C Vreni; Goldstein, Ellie J C




EPA Science Inventory

The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...


Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.  


Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. PMID:21868146

Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S



Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats  

PubMed Central

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert



Comparative in vitro activity of meropenem versus other routinely used antimicrobials against 18632 aerobic bacteria tested in 92 German centers.  


The in vitro antibacterial activity of meropenem and up to 26 other antibiotics was compared under routine conditions at 92 German centers from March to June 1995 with use of the agar diffusion method against 18632 recent isolates from ICU--hemato-oncology--and pediatric patients. Overall, meropenem was the most active drug exhibiting a higher activity against gram-negative aerobes than imipenem, but somewhat less active against staphylococci and enterocooci. The overall resistance rates of most antibiotics tested was higher compared to the recently published surveillance data of the Paul-Ehrlich-Society in Germany. The main reason for this discrepancy is the higher percentage of test strains which were recovered from intensive care unit patients in the present study. These data confirm similar results from the USA and underscore the pressing need for the implementation of a nationwide antimicrobial surveillance system which is risk-stratified by hospital size, ICU- versus non-ICU-patients, and body site from which the isolates are recovered. PMID:9832285

Geiss, H K; Beck, G



Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).  


The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

Piterina, Anna V; Bartlett, John; Pembroke, Tony J



Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites.  


The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential. PMID:11722940

Kane, S R; Beller, H R; Legler, T C; Koester, C J; Pinkart, H C; Halden, R U; Happel, A M



Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature.  


Nitrogen removal in wastewater treatment plants is usually severely inhibited under cold temperature. The present study proposes bioaugmentation using psychrotolerant heterotrophic nitrification-aerobic denitrification consortium to enhance nitrogen removal at low temperature. A functional consortium has been successfully enriched by stepped increase in DO concentration. Using this consortium, the specific removal rates of ammonia and nitrate at 10 °C reached as high as 3.1 mg N/(gSSh) and 9.6 mg N/(gSSh), respectively. PCR-DGGE and clone library analysis both indicated a significant reduction in bacterial diversity during enrichment. Phylogenetic analysis based on nearly full-length 16S rRNA genes showed that Alphaproteobacteria, Deltaproteobacteria and particularly Bacteroidetes declined while Gammaproteobacteria (all clustered into Pseudomonas sp.) and Betaproteobacteria (mainly Rhodoferax ferrireducens) became dominant in the enriched consortium. It is likely that Pseudomonas spp. played a major role in nitrification and denitrification, while R. ferrireducens and its relatives utilized nitrate as both electron acceptor and nitrogen source. PMID:23131636

Yao, Shuo; Ni, Jinren; Chen, Qian; Borthwick, Alistair G L



Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.  


A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37 degrees C and 24 h in Rappaport Vassiliadis medium at 43 degrees C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples that tested positive when classical isolation procedures were followed. The study shows that selective two-step enrichment is useful when very low numbers of bacterial pathogens must be detected in organic waste materials, such as biosolids. There were no false-positive results derived from DNA of dead cells in the waste sample, suggesting that it is not necessary to perform RT-PCR analyses when PCR is combined with selective enrichment. Large numbers of added nontarget bacteria did not affect detection of Salmonella spp., L. monocytogenes, and Y. enterocolitica but increased the detection limit of Staphylococcus aureus from <10 to 10(4) CFU/g of organic waste. Overall, the detection methods developed using seeded organic waste samples from one waste treatment facility (WTF) needed to be modified for satisfactory detection of pathogens in samples from other WTFs, emphasizing the need for extensive field testing of laboratory-derived PCR protocols. A survey of 13 WTFs in Germany revealed that all facilities complied with the German Biowaste Ordinance, which mandates that the end product after anaerobic digestion or aerobic composting be free of Salmonella In addition, all biosolids were free of L. monocytogenes, Staphylococcus aureus, and Y. enterocolitica, as evidenced by both classical and PCR-based detection methods. PMID:12902250

Burtscher, Carola; Wuertz, Stefan



Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching from Aerobic Respiration to Denitrification  

PubMed Central

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e?-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (, h?1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With ?=?0.005 h?1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting (fraction of the cells recruited to denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’: switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a ‘false alarm’. PMID:25375393

Hassan, Junaid; Bergaust, Linda L.; Wheat, I. David; Bakken, Lars R.



Characterization of subterranean bacteria in the Hungarian Upper Permian Siltstone (Aleurolite) Formation.  


The main purpose of this work was to study the microbiology of the Hungarian Upper Permian Siltstone (Aleurolite) Formation, to assess the safety of future underground repositories for nuclear waste. Sixty-seven air, groundwater, technical water, rock, and surface samples were collected aseptically from different depths. The number of aerobic and anaerobic isolates was 277. The mesophilic minimum and maximum CFU counts of the air samples were 1.07-5.84 x 10(2).mL-1 (aerobic) and 0.22-1.04 x 10(2).mL-1 (anaerobic), respectively; those of the water samples were 0.39-1.25 x 10(5).mL-1 (aerobic) and 0.36-3.9 x 10(3).mL-1 (anaerobic); those of the technical water samples were 0.27-5.03 x 10(6).mL-1 (aerobic) and 4 x 10(5)-->10(6).mL-1 (anaerobic); and those of the aleurolite samples were 2.32 x 10(2)-2.47 x 10(5).g-1 (aerobic) and 0.45-9.5 x 10(2).g-1 (anaerobic). In the groundwater, the thermophilic aerobic bacteria count was 0-2.4 x 10(2).mL-1 and the thermophilic anaerobic bacteria count was 0.43-4.6 x 10(4).mL-1. The gases produced by the 16 gas-forming isolates were CO2 (aerobic isolates), and CO2 and H2 (anaerobic isolates). About 20% of the aerobic isolates produced siderophores. The proportions of organic acid producers were lowest in aerobic and anaerobic isolates from the aleurolite, 13% and 14%, respectively. The highest proportions of acid producers in the aerobic and anaerobic isolates from the air samples were 63% and 54%. Altogether 160 of the aerobic isolates and 52 of the anaerobic isolates were spore formers. The radiosensitivity of the aerobic isolates was also determined; the D10 values of the sporeformers ranged between 0.8-2.44 kGy. Our results indicate that the sulfate-reducing bacteria and the production of complexing agents (siderophores) may contribute to the mobilization of radionuclides from underground repositories. As well, microbial gas production can influence the environmental conditions. The variability in bacterial radiotolerance indicates the biodiversity at this potential disposal site. These facts must be considered during the planning of a nuclear waste repository. PMID:10913978

Farkas, G; Gazsó, L G; Diósi, G



Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula.  


The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 10(6) cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24h, the net energy for lactation (NE(L)), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NE(L), and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24h, the NE(L), and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at opening. In the sorghum silages, the milk yield, after 14 d of air exposure, decreased to 1,226, 1,278, and 1,250 kg/Mg of DM for C, LB, and LP, respectively. When the estimated milk yield per megagram of harvested DM of corn and sorghum silage were related to mold count, it was shown that the loss of potential milk production occurred when the mold count exceeded 4 log cfu/g of silage, and it was almost halved when the mold count reached values greater than 8 log cfu/g of silage. Inoculation with L. buchneri, at a rate of 1 × 10(6) cfu/g of fresh forage, enhanced the stability of the silage after exposure to air, and, consequently, contributed to maintaining the nutritional value of the harvested forage over time, for air exposure up to 7 d. PMID:21338806

Tabacco, E; Righi, F; Quarantelli, A; Borreani, G



Aerobic Metabolism 1 AEROBIC RESPIRATION  

E-print Network

Aerobic Metabolism 1 AEROBIC RESPIRATION 1 Review; In the last set of notes we learned some of the basic types of reactions involved in cellular work and energy conservation. Recall that we focused on it aerobic respiration. In these notes we will consider the specific processes that use O2 plus high

Prestwich, Ken


Ulcerative enteritis in Homarus americanus: case report and molecular characterization of intestinal aerobic bacteria of apparently healthy lobsters in live storage.  


An intermoult male American lobster, Homarus americanus, with severe intestinal lesions was encountered while collecting samples of aerobic intestinal bacteria from lobsters held in an artificial sea-water recirculation aquarium system. Grossly, the intestine was firm, thickened, and white. Histologic examination revealed a severe, diffuse, ulcerative enteritis which spared the chitin-lined colon, somewhat similar to hemocytic enteritis of shrimp. The bacterial isolates from this lobster were compared to 11 other lobsters lacking gross intestinal lesions. Two organisms, one identified as Vibrio sp. and another most similar to an uncultured proteobacterium (98.9%), clustering with Rhanella and Serratia species using 16S rDNA PCR, were isolated from the intestines of the 11, grossly normal, lobsters and the affected lobster. An additional two intestinal isolates were cultured only from the lobster with ulcerative enteritis. One, a Flavobacterium, similar to Lutibacter litoralis (99.3%), possibly represented a previously described commensal of the distal intestine. The second, a Vibrio sp., was unique to the affected animal. While the etiology of the ulcerative enteritis remains undetermined, this report represents the first description of gross and histologic findings in H. americanus of a condition which has morphologic similarities to hemocytic enteritis of shrimp. An additional observation was a decrease in the number of intestinal isolates recovered from the 11 apparently healthy lobsters compared to that previously reported for recently harvested lobster. More comprehensive studies of the relationship between the health of lobsters, gut microbial flora and the husbandry and environment maintained within holding units are warranted. PMID:18640120

Battison, Andrea L; Després, Béatrice M; Greenwood, Spencer J



Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.  


In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. PMID:20627391

Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N



Assessing the Fate of Ascaris suum Ova during Mesophilic Anaerobic Digestion.  


There is limited knowledge about the survival of geohelminths, which are soil-transmitted human pathogens, in mesophilic anaerobic digestion processes. This study examined the fate of embryonated and unembryonated Ascaris suum ova in six laboratory-scale mesophilic (35 °C) anaerobic digesters processing swine manure to identify their survival strategies and investigate potential mechanisms to enhance their destruction. There was no significant difference in inactivation of Ascaris suum ova in digesters operated at different solids residence times (SRT) or feeding frequencies. Ova exposed to an anaerobic environment became dormant, or remained unembryonated throughout their residence in the reactors. Approximately 65% of ova were able to retain their viability for up to 16 days, after which the rate of inactivation increased until nearly all ova were nonviable by day 24. In contrast, ova exposed to aerobic conditions did not become dormant and progressed through several developmental stages until day 16, after which nearly all ova were observed to be nonviable. In addition, only 35% of fully developed ova exposed to the anaerobic environment retained their viability by day 16 compared to 65% for dormant ova. Results suggest that some ova are physically destroyed during digestion and ova can be inactivated faster if their development cycle is aerobically triggered before entering the anaerobic digestion process. Results also suggest that transfer of resource recovery technologies such as mesophilic anaerobic digestion to developing world settings must account for local climatic and health conditions so mutually beneficial outcomes can be attained. PMID:25679819

Manser, Nathan D; Wald, Ileana; Ergas, Sarina J; Izurieta, Ricardo; Mihelcic, James R



Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line.  


A food processing plant producing pasteurized purées and its zucchini purée processing line were examined for contamination with aerobic and facultative anaerobic bacterial spores during a day's operation. Multiplication of spores was also monitored in the product stored under different conditions. High concentrations of Bacillus cereus spores were found in the soil in which the zucchinis were grown (4.6+/-0.3 log CFU/g), with a background spore population of 6.1+/-0.2 log CFU/g. In the processing plant, no B. cereus or psychrotrophic bacterial spores were detected on equipment. B. cereus and psychrotrophic bacterial spores were detected after enrichment in all samples of raw zucchinis, washed zucchinis, of two ingredients (starch and milk proteins) and in processed purée at each processing step. Steam cooking of raw zucchinis and pasteurization of purée in the final package significantly reduced spore numbers to 0.5+/-0.3 log CFU/g in the processed food. During storage, numbers of spore-forming bacteria increased up to 7.8+/-0.1 log CFU/g in purée after 5 days at 20-25 degrees C, 7.5+/-0.3 log CFU/g after 21 days at 10 degrees C and 3.8+/-1.1 log CFU/g after 21 days at 4 degrees C. B. cereus counts reached 6.4+/-0.5 log CFU/g at 20-25 degrees C, 4.6+/-1.9 log CFU/g at 10 degrees C, and remained below the detection threshold (1.7 log CFU/g) at 4 degrees C. Our findings indicate that raw vegetables and texturing agents such as milk proteins and starch, in spite of their low levels of contamination with bacterial spores and the heat treatments they undergo, may significantly contribute to the final contamination of cooked chilled foods. This contamination resulted in growth of B. cereus and psychrotrophic bacterial spores during storage of vegetable purée. Ways to eliminate such contamination in the processing line are discussed. PMID:12593925

Guinebretiere, M H; Girardin, H; Dargaignaratz, C; Carlin, F; Nguyen-The, C



Heteropolysaccharides from lactic acid bacteria  

Microsoft Academic Search

Microbial exopolysaccharides are biothickeners that can be added to a wide variety of food products, where they serve as viscosifying, stabilizing, emulsifying or gelling agents. Numerous exopolysaccharides with different composition, size and structure are synthesized by lactic acid bacteria. The heteropolysaccharides from both mesophilic and thermophilic lactic acid bacteria have received renewed interest recently. Structural analysis combined with rheological studies

Luc De Vuyst; Bart Degeest



Thermophilic bacteria from wool  

Microsoft Academic Search

Twenty-one samples of wool removed from pelts either by the “pie” or “slipemaster” process were obtained from meat works throughout New Zealand. The number of mesophilic and thermophilic bacteria on the samples was determined by the plate count method. The numbers of thermophiles varied from less than 102 to 1.9 × 10\\/g. Six isolates were obtained for final study; these

A. P. Mulcock; Philippa E. Horn



Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.  


The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria. PMID:22876480

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn



Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line  

Microsoft Academic Search

A food processing plant producing pasteurized purées and its zucchini purée processing line were examined for contamination with aerobic and facultative anaerobic bacterial spores during a day's operation. Multiplication of spores was also monitored in the product stored under different conditions. High concentrations of Bacillus cereus spores were found in the soil in which the zucchinis were grown (4.6±0.3 log

M. H Guinebretiere; H Girardin; C Dargaignaratz; F Carlin; C Nguyen-The



Aerobic denitrification — old wine in new bottles?  

Microsoft Academic Search

The evidence concerning aerobic denitrification over the past 100 years has been reviewed and the conclusion reached that\\u000a the denitrification systems of some bacteria are inhibited by oxygen, other species are capable of aerobic denitrification,\\u000a or co-respiration of nitrate and oxygen. Possible mechanisms and ecological implications are discussed.

L. A. Robertson; J. G. Kuenen



Searching for Mesophilic Thermotogales Bacteria: “Mesotogas” in the Wild? †  

PubMed Central

All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias. PMID:20495053

Nesbø, Camilla L.; Kumaraswamy, Rajkumari; Dlutek, Marlena; Doolittle, W. Ford; Foght, Julia



Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage.  


This study determined how the fermentation and aerobic stability of corn silage are affected by treatment with molasses or 2 dual-purpose inoculants applied at or above the recommended rate. Corn forage (DeKalb 69-70) was harvested at 39% dry matter (DM) and ensiled after treatment with no additives (control, CON), molasses (MOL), Buchneri 500 inoculant, or Pioneer 11C33 inoculant. Molasses was applied at 3% of forage DM. Buchneri 500 was applied at the recommended rate of 8 mg/kg fresh forage to supply 1 x 10(5) cfu/g of Pediococcus pentosaceus 12455 and 4 x 10(5) cfu/g of Lactobacillus buchneri 40788 (BB) or at twice the recommended rate (DBB). Pioneer 11C33 inoculant was applied at the recommended rate of 1.1 mg/kg fresh forage to supply 1 x 10(5) cfu/g of a mixture of Lactobacillus plantarum, L. buchneri, and Enteroccocus faecium (PN) or at twice the recommended rate (DPN). Each treatment was applied in quadruplicate and the treated forages were ensiled within 20-L mini silos for 135 d at 18 to 35 degrees C. Molasses-treated silages had greater ash and starch concentrations than CON silages and greater lactate and ethanol concentrations than other silages. Like CON silages, MOL silages had high yeast counts (>10(5) cfu/g); consequently, they deteriorated within 30 h as shown by temperature increase. Inoculant-treated silages had lower lactate to acetate ratios than CON or MOL silages largely because they had greater acetate concentrations. Consequently, all inoculant-treated silages had fewer yeasts (<10(5) cfu/g) and were more stable (>30 h) than CON and MOL silages. When applied at recommended rates, PN and BB had similar effects on silage chemical composition, fermentation, fungal counts, and aerobic stability, except for a lower lactate concentration in PN silages. Concentrations of VFA, and NH(3)-N, pH, and extent of aerobic stability were similar for PN, DPN, BB, and DBB silages. However, lactate concentration was greater in DPN than in PN. In conclusion, MOL application increased ethanol and lactate concentration and did not improve aerobic stability. Both dual-purpose inoculants made the fermentation more heterolactic and thereby improved the aerobic stability of corn silage. Doubling the rate of application of either inoculant did not further improve fermentation or aerobic stability. PMID:19164681

Huisden, C M; Adesogan, A T; Kim, S C; Ososanya, T



Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.  


This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. PMID:22595101

Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald



Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.  


This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. PMID:17252607

Mohammad, Balsam T; Veiga, María C; Kennes, Christian



Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.  


Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 ?g/mL, and for enterococci was 1 ?g/mL. The MIC90s for enteric Gram-negative rods was 0.125 ?g/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 ?g/mL and for clostridia 1 ?g/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 ?g/mL and for Prevotella spp. from >32 to 1 ?g/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L



Evaluation of the Use of PCR and Reverse Transcriptase PCR for Detection of Pathogenic Bacteria in Biosolids from Anaerobic Digestors and Aerobic Composters  

Microsoft Academic Search

A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and

Carola Burtscher; Stefan Wuertz



Effect of sand and shaking duration on the recovery of aerobic bacteria, coliforms, and Escherichia coli from prechill broiler whole carcass rinsates.  

Technology Transfer Automated Retrieval System (TEKTRAN)

An experiment was conducted to determine the effect of added sand and shaking duration on the recovery of bacteria from broiler carcasses using the whole carcass rinse (WCR) method. In each of 4 replications, 12 eviscerated broiler carcasses were obtained from a commercial processing plant prior to ...


Antibacterial action of essential oils of Artemisia as an ecological factor. I. Antibacterial action of the volatile oils of Artemisia tridentata and Artemisia nova on aerobic bacteria.  


Bacterial response to increasing amounts of the volatile oils varies significantly according to species of bacteria tested. Among the four species examined, Escherichia coli was the most resistant to the oils, followed by Neisseria sicca, Bacillus subtilis, and Staphylococcus aureus. The oils of Artemisia tridentata seem to have the same degree of antibacterial action as oils obtained from A. nova. PMID:4963443

Nagy, J G; Tengerdy, R P



Clostridium ultunense sp. nov., a Mesophilic Bacterium Oxidizing Acetate in Syntrophic Association with a Hydrogenotrophic Met hanogenic Bacterium  

Microsoft Academic Search

A syntrophic acetate-oxidizing bacterium, strain BST (T = type strain), was isolated from a previously described mesophilic triculture that was able to syntrophically oxidize acetate and form methane in stoichi- ometric amounts. Strain BST was isolated with substrates typically utilized by homoacetogenic bacteria. Strain BST was a spore-forming, gram-positive, rod-shaped organism which utilized formate, glucose, ethylene glycol, cysteine, betaine, and



Prevalence of bacteria and absence of anisakid parasites in raw and prepared fish and seafood dishes in spanish restaurants.  


This study evaluated the presence of bacteria and anisakid parasites in 45 samples of raw anchovies in vinegar, a dish widely eaten in Spain, and in 227 samples of cooked fish and cephalopods served in Spanish food service establishments. Our analysis showed that, according to European and Spanish regulation, 14 to 30% of the prepared fish and cephalopod dishes exceeded the maximum allowable level for mesophilic aerobic counts, and 10 to 40% of these samples exceeded the allowable levels for Enterobacteriaceae. None of the studied samples showed evidence of anisakid parasites, Escherichia coli, Staphylococcus aureus, Salmonella, or Listeria monocytogenes. These results indicate that application of hazard analysis and critical control points, food safety training courses, and routine inspections in compliance with current European and Spanish legislation help protect consumer health. PMID:25719890

Sospedra, I; Rubert, J; Soriano, J M; Mañes, J; Fuentes, M V



Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov.†  

PubMed Central

Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass. PMID:11722910

Chung, W. K.; King, G. M.



Growth Requirements of some Thermophilic and Mesophilic Bacilli  

Microsoft Academic Search

SUMMARY: To approach reproducibility of mass cultures as sources of enzymes, the growth requirements of two mesophils belonging to BaciUus lichenifmis and B. Circulans, and three thermophils belonging to B. liehenifomis, B. circulans and B. steuro~hemmphilus, were determined in metal-buffered media. The mesophilic B. lichenifmis required glycerol or glucose, also alanine, aspartate, glycine, glutamate, arginine, histidine and lysine. Cytidylic acid

H. Baker; H. Sobotka; S. H. Hutner



Biodegradation of synthetic and naturally occuring mixtures of mono-cyclic aromatic compounds present in olive mill wastewaters by two aerobic bacteria.  


Two bacterial strains, Ralstonia sp. LD35 and Pseudomonas putida DSM 1868, were assayed for their ability to degrade the monocyclic aromatic compounds commonly found in olive mill wastewaters (OMWs). The goal was to study the possibility of employing the two strains in the removal of these recalcitrant and toxic compounds from the effluents of anaerobic treatment plants fed with OMWs. At first, the two strains were separately assayed for their ability to degrade a synthetic mixture of nine aromatic acids present in OMWs, both in growing- and resting-cell conditions. Then, due to the complementary activity exhibited by the two strains, a co-culture of the two bacteria was tested under growing-cell conditions for degradation of the same synthetic mixture. Finally, the degradation activity of the co-culture on two fractions was studied. Both fractions one deriving from natural OMWs through reverse osmosis treatment and containing low-molecular weight organic molecules, and the other obtained from an anaerobic lab-scale treatment plant fed with OMWs, were rich in monocyclic aromatic compounds. The co-culture of the two strains was able to biodegrade seven of the nine components of the tested synthetic mix (2, 6-dihydroxybenzoic acid and 3, 4, 5-trimethoxybenzoic acid were the two undegraded compounds). In addition, an efficient biodegrading activity towards several aromatic molecules present in the two natural fractions was demonstrated. PMID:11414330

Di Gioia, D; Fava, F; Bertin, L; Marchetti, L



Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria.  


In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa. PMID:19663984

Hernández-Díaz, R; Pimentel-González, D J; Figueira, A C; Viniegra-González, G; Campos-Montiel, R G



Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions  

SciTech Connect

This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)



Aerobic and Anaerobic Bacteriology of Cervical Adenitis in Children  

Microsoft Academic Search

Needle aspirates from 53 inflamed cervical lymph glands were studied for aerobic and anaerobic bacteria and mycobacteria. Bacterial growth was achieved in 45 patients (85%). Sixty-six bacterial isolates were recovered, aver aging 1.5 isolates per specimen (0.8 aerobes and 0.7 anaerobes), with as many as 4 isolates in some specimens. Aerobic organisms alone were recovered in 27 aspirates (60%) of

Itzhak Brook



Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.  


Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics ?-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V



Thermophilic and mesophilic enzymes from B. caldotenax and B. stearothermophilus: properties, relationships and formation.  


1) The adaptive system of thermophilic bacteria, as demonstrated with B. caldotenax, seems to be suitable to produce thermophilic and mesophilic enzymes for comparative studies. 2) If it may be assumed that the extensive homologies in the N-terminal sequences of the LDHs also extend over the entire polypeptide chain, comparison of these sequences together with investigation on the 3-dimensional structure offer the possibility of elucidating those structural details which may be responsible for thermostability and the other thermophilic properties. However, the difficulty still remains that the latter may be obscured by differences not related to thermostability etc. Neverthless it may be hoped that comparison of the full sequences of not only the LDHs but also of a sufficient number of other enzymes of the same system will yield such details. 3) A further interesting goal with respect to the mechanism of enzyme adaptation would be reached if the differences in amino acid sequence of thermophilic and mesophilic LDH enzymes would throw light on the type of the amino acids always being exchanged. Here from the very hypothetical point of view the question arises as to whether the bacterial cell during the metabolic adaptation process or even by mutation/selection is able to modify just those few amino acid residues thermodynamically important for thermostability. Alternatively: does there exist a "rule" by which certain amino acid residues are invariably exchanged on a change for thermophilic to mesophilic enzymes? 4) Problems not mentioned here arise with B. stearothermophilus, which can be adapted poorly via the spores or on intermediate temperatures. Of great importance, but also a special problem in these studies on thermophilic and mesophilic enzymes produced by the same bacterium are a) the characterization of the thermophilic (70 degrees or 55 degrees) and mesophilic (37 degrees) bacterial variants (in respect to type), b) the control of homogeneity of the bacterial culture (contamination, mixed population), c) proof of the genetic identity of the 70 degrees- (55 degrees-) and 37 degrees -variant of B. caldotenax and B. stearothermophilus, which differ greatly in their phenotypes, for example in their metabolism, cell- or colony merphology. The taxonomical-biochemical identity or also the identity of morphology of the sporangia, since this should be an expression of the temperature dependent phenotype, cannot be used unconditionally as criteria of identity. Criteria such as the presence of identical enzymes in both variants or the identity of the genome (use of genetic markers, anlaysis of the DNA) are more reliable. Experiments with both variants of B. caldotenax demonstrated an identically high content of cytosine plus guanine in their DNA: 62.2% in the thermophilic DNA and 66.8% in the mesophilic DNA. In the thermophilic B. stearothermophilus the C+G content of the DNA was 56.5% and in the mesophilic variant 57.1%... PMID:939279

Frank, G; Haberstich, H U; Schaer, H P; Tratschin, J D; Zuber, H



Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species.  


The properties of enzymes involved in energy transduction from a mesophilic (Bacillus subtilis) and a thermophilic (B. stearothermophilus) bacterium were compared. Membrane preparations of the two organisms contained dehydrogenases for NADH, succinate, L-alpha-glycerophosphate, and L-lactate. Maximum NADH and cytochrome c oxidation rates were obtained at the respective growth temperatures of the two bacteria. The enzymes involved in the oxidation reactions in membranes of the thermophilic species were more thermostable than those of the mesophilic species. The apparent microviscosities of the two membrane preparations were studied at different temperatures. At the respective optimal growth temperatures, the apparent microviscosities of the membranes of the two organisms were remarkably similar. The transition from the gel to the liquid-crystalline state occurred at different temperatures in the two species. In the two species, the oxidation of physiological (NADH) and nonphysiological (N,N,N',N'-tetramethyl-p-phenylenediamine or phenazine methosulfate) electron donors led to generation of a proton motive force which varied strongly with temperature. At increasing temperatures, the efficiency of energy transduction declined because of increasing H+ permeability. At the growth temperature, the efficiency of energy transduction was lower in B. stearothermophilus than in the mesophilic species. Extremely high respiratory activities enabled B. stearothermophilus to maintain a high proton motive force at elevated temperatures. The pH dependence of proton motive force generation appeared to be similar in the two membrane preparations. The highest proton motive forces were generated at low external pH, mainly because of a high pH gradient. At increasing external pH, the proton motive force declined. PMID:2834342

De Vrij, W; Bulthuis, R A; Konings, W N



Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species.  

PubMed Central

The properties of enzymes involved in energy transduction from a mesophilic (Bacillus subtilis) and a thermophilic (B. stearothermophilus) bacterium were compared. Membrane preparations of the two organisms contained dehydrogenases for NADH, succinate, L-alpha-glycerophosphate, and L-lactate. Maximum NADH and cytochrome c oxidation rates were obtained at the respective growth temperatures of the two bacteria. The enzymes involved in the oxidation reactions in membranes of the thermophilic species were more thermostable than those of the mesophilic species. The apparent microviscosities of the two membrane preparations were studied at different temperatures. At the respective optimal growth temperatures, the apparent microviscosities of the membranes of the two organisms were remarkably similar. The transition from the gel to the liquid-crystalline state occurred at different temperatures in the two species. In the two species, the oxidation of physiological (NADH) and nonphysiological (N,N,N',N'-tetramethyl-p-phenylenediamine or phenazine methosulfate) electron donors led to generation of a proton motive force which varied strongly with temperature. At increasing temperatures, the efficiency of energy transduction declined because of increasing H+ permeability. At the growth temperature, the efficiency of energy transduction was lower in B. stearothermophilus than in the mesophilic species. Extremely high respiratory activities enabled B. stearothermophilus to maintain a high proton motive force at elevated temperatures. The pH dependence of proton motive force generation appeared to be similar in the two membrane preparations. The highest proton motive forces were generated at low external pH, mainly because of a high pH gradient. At increasing external pH, the proton motive force declined. PMID:2834342

De Vrij, W; Bulthuis, R A; Konings, W N



Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.  


Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in temperature and perform AD effectively. The studies of this microbial group could be a step forward in developing more efficient anaerobic digestion technology. PMID:25218710

Ziembi?ska-Buczy?ska, A; Banach, A; Bacza, T; Pieczykolan, M



Mesophilic aerobic degradation of a metal lubricant by a biological consortium  

Microsoft Academic Search

The metal-forming industries require the use of greases to lubricate metal surfaces during manufacturing operations, and the residues of these lubricants must be removed prior to finishing processes to protect and improve the appearance of the final product. An aqueous, biological metal-cleaning process operating under mild conditions (pH 9, 42°C) eliminates the use of environmentally unfriendly cleaning materials such as

Sachiyo Iwashita; Timothy P. Callahan; Juan Haydu; Thomas K. Wood



Teaching Aerobic Fitness Concepts.  

ERIC Educational Resources Information Center

Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

Sander, Allan N.; Ratliffe, Tom



Megaplasmids of Aerobic Hydrogenotrophic and Carboxidotrophic Bacteria  

Microsoft Academic Search

\\u000a The hydrogen-oxidizing bacterium Ralstonia eutropha H16 and the carbon monoxide-oxidizing bacterium Oligotropha carboxidovorans OM5 carry key genetic determinants for their respective forms of lithoautotrophic metabolism on megaplasmids. In R. eutropha H16 genetic information for the H2-oxidizing system and for CO2 fixation via the Calvin—Benson—Bassham cycle is located on the 452-kb megaplasmid pHG1. In addition, pHG1 harbors clusters\\u000a of genes for

Edward Schwartz


Geographical and seasonal distribution of multiple antibiotic resistance of heterotrophic bacteria of Lake Shira  

Microsoft Academic Search

From 1996 to 1999 heterotrophic bacteria of the brackish-water Lake Shira (Republic of Khakasia, Russia) were studied to understand the seasonal dynamics of their antibiotic resistance. During the winter, these bacteria were represented primarily by forms that could not be cultured and were psychrotolerant. In the summer period, heterotrophic, mesophilic bacteria increased in number. The percentages of isolates with multiple,

T. I. Lobova; E. Ye. Maksimova; L. Yu Popova; N. S. Pechurkin



Aerobic and anaerobic microbiology of infection after trauma  

Microsoft Academic Search

Clinical and laboratory data from 1973 to 1988 were retrospectively reviewed to study the microbiology of infection following trauma. A total of 368 specimens obtained from 340 trauma patients showed bacterial growth. The traumas included lacerations (163), blunt trauma (76), penetrating trauma (65), bites (20), and open fractures (10). Anaerobic bacteria only were isolated in 119 (32%) specimens, aerobic bacteria

Itzhak Brook; Edith H Frazier



Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z  

NASA Astrophysics Data System (ADS)

Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been observed in freshwater and marine ciliates (such as Tetrahymena thermophila) and two bacteria unrelated to aerobic methanotrophs, Rhodopseudomonas and Bradyrhizobium. Utilizing comparative genomics we identified the oxidosqualene cyclase gene required for sterol biosynthesis as well as two copies of the squalene hopene cyclase gene necessary for hopanoid biosynthesis in the M. alcaliphilum genome. To determine if one or both copies of the squalene hopene cyclase gene were necessary for aminohopanoid or tetrahymanol production, shc gene deletions were constructed and the subsequent mutants were analyzed for impaired hopanoid production. The occurrence of sterols, hopanoids and gammacerane lipids in one bacterium not only provides a unique system in which to study the biosynthesis and function of each lipid class but also to investigate any potential functional and evolutionary relationship these three lipid classes may share. In turn, these studies provide information necessary to properly interpret the occurrence of these molecules in the rock record.

Welander, P. V.; Summons, R. E.



What Is Aerobic Dancing?  


... see a doctor of podiatric medicine specializing in sports medicine before beginning an aerobics regimen. The podiatrist will ... toes and nails. The American Academy of Podiatric Sports Medicine has long held the position that sports specific ...


Aerobic Conditioning Class.  

ERIC Educational Resources Information Center

An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

Johnson, Neil R.



Effect of high pressure on mesophilic lactic fermentation streptococci  

NASA Astrophysics Data System (ADS)

The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

Reps, A.; Ku?micka, M.; Wi?niewska, K.



Resistance Versus Aerobic Exercise  

PubMed Central

OBJECTIVE In type 1 diabetes, small studies have found that resistance exercise (weight lifting) reduces HbA1c. In the current study, we examined the acute impacts of resistance exercise on glycemia during exercise and in the subsequent 24 h compared with aerobic exercise and no exercise. RESEARCH DESIGN AND METHODS Twelve physically active individuals with type 1 diabetes (HbA1c 7.1 ± 1.0%) performed 45 min of resistance exercise (three sets of seven exercises at eight repetitions maximum), 45 min of aerobic exercise (running at 60% of Vo2max), or no exercise on separate days. Plasma glucose was measured during and for 60 min after exercise. Interstitial glucose was measured by continuous glucose monitoring 24 h before, during, and 24 h after exercise. RESULTS Treatment-by-time interactions (P < 0.001) were found for changes in plasma glucose during and after exercise. Plasma glucose decreased from 8.4 ± 2.7 to 6.8 ± 2.3 mmol/L (P = 0.008) during resistance exercise and from 9.2 ± 3.4 to 5.8 ± 2.0 mmol/L (P = 0.001) during aerobic exercise. No significant changes were seen during the no-exercise control session. During recovery, glucose levels did not change significantly after resistance exercise but increased by 2.2 ± 0.6 mmol/L (P = 0.023) after aerobic exercise. Mean interstitial glucose from 4.5 to 6.0 h postexercise was significantly lower after resistance exercise versus aerobic exercise. CONCLUSIONS Resistance exercise causes less initial decline in blood glucose during the activity but is associated with more prolonged reductions in postexercise glycemia than aerobic exercise. This might account for HbA1c reductions found in studies of resistance exercise but not aerobic exercise in type 1 diabetes. PMID:23172972

Yardley, Jane E.; Kenny, Glen P.; Perkins, Bruce A.; Riddell, Michael C.; Balaa, Nadia; Malcolm, Janine; Boulay, Pierre; Khandwala, Farah; Sigal, Ronald J.



UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.  


The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn



Reactive Blue 4 decolorization under mesophilic and thermophilic anaerobic treatments.  


Anaerobic decolorization of anthraquinone dye represented by Reactive Blue 4 (RB4) was studied to evaluate the factors involved in dye-reducing behaviors such as dye concentration, co-substrate, treatment temperature, salt content, and dye-reducing microbial consortia. The experiment was conducted using digested sludge treated under mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions. The results indicated that the thermophilic treatment gave higher potential for this dye decolorization compared with the mesophilic one. A reduced form of RB4 did not show an auto-oxidizing reaction but treated RB4 dye was shown in light yellow color, the intensity of which was related to the initial concentration of the dye used in the treatments. Starch, which showed similar decolorizing efficiency under thermophilic conditions, could be used as a co-substrate instead of glucose for the purpose of operating cost reduction. Due to the high content of salt contained in dye wastewater, the effect of salt (NaCl) was investigated. Results showed that decolorization could be accelerated with a concentration of NaCl lower than 200 mM, but the decolorization was inhibited by high concentrations of salt. The presence of RB4 inhibited methane productivity, while total organic carbon (TOC) reduction was similar to control, without dye addition. Increasing the temperature accelerated the decolorizing potential and TOC reduction. The evaluation of dye-reducing microbial consortia was done with acidogen and methanogen inhibitors which acidogenesis microorganism was dominant in RB4 decolorization. PMID:18543115

Boonyakamol, A; Imai, T; Chairattanamanokorn, P; Higuchi, T; Sekine, M; Ukita, M



Acetic Acid Increases Stability of Silage under Aerobic Conditions  

PubMed Central

The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.



Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)  

PubMed Central

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael



[A new, sporulating, denitrifying, mesophilic bacterium: Bacillus azotoformans N. SP. (author's transl)].  


The described bacterium was isolated by enrichment culture in peptone broth inoculated with garden soil, pasteurized and then put to incubate under N2O at 32 degrees. It is a Gram-negative rod, motile with peritrichous flagella, and producing oval spores without exosporium in swollen sporangia. However, cells have the thick walls, mesosomes and persistant septa characteristic of Gram-positive bacteria. It lacks fermentative activity, does not attack carbohydrates, has complex growth requirements, and will grow anaerobically only if one of the following electron acceptors is present: NO3, NO2, N2O, S4O6, and fumarate. Nitrate, nitrite, and nitrous oxide are denitrified with production of N2. The microorganism is mesophilic, gives a positive oxidase reaction, synthesizes a type of c cytochrome, and does not hydrolyse gelatin, starch nor "Tween 80". The following enzymes are present: nitrate reductase A, respiratory nitrite reductase, tetrathionate and fumarate reductases, L-glutamate dehydrogenase, and superoxide dismutase. The following enzymes are absent: thiosulfate reductase, urease, lecithinase, arginine dihydrolase, L-alanine dehydrogenase, phenylalanine desaminase, and catalase. The GC% of its DNA is 39. The bacterium described can be considered to be a new species. We propose the name Bacillus azotoformans n. sp. PMID:1020872

Pichinoty, F; de Berjac, H; Mandel, M; Greenway, B; Garcia, J L



Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.  


Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. PMID:24656488

Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia



A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.  


Thermophilic and mesophilic anaerobic digestion reactors (TR and MR) using food waste as substrate were compared with emphasis on microbial responses to increasing organic loading rate (OLR). At OLR ranging from 1.0 to 2.5 g VS L(-1) d(-1), MR exhibited more stable performance compared to TR in terms of methane yield. Amplicons pyrosequencing results revealed the distinct microbial dynamics in the two reactors. Primarily, MR had greater richness and evenness of bacteria species. With OLR elevated, larger shifts of bacterial phylogeny were observed in MR; Methanosaeta dominated in archaeal community in MR while Methanothermobacter and Methanoculleus were favored in TR. The high functional redundancy in bacterial community integrated with acetoclastic methanogenesis in MR resulted in its better performance; whereas delicate interactions between hydrogen-producer and hydrogenotrophic methanogens in TR were much more prone to disruption. These results are conductive to understanding the microbial mechanisms of low methane yield during food waste anaerobic digestion. PMID:24316484

Guo, Xiaohui; Wang, Cheng; Sun, Faqian; Zhu, Weijing; Wu, Weixiang



Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io  

NASA Technical Reports Server (NTRS)

Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)



Dance--Aerobic and Anaerobic.  

ERIC Educational Resources Information Center

This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

Cohen, Arlette



[Continuous bio-hydrogen production by mesophilic and thermophilic cultures].  


Anaerobic biological hydrogen productions were achieved successfully in two lab-scale anaerobic hydrogen production reactors under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions, respectively. The mesophilic reactor, a CSTR, was operated over 4 months by seeding with river sediments and feeding with glucose solution, in which the highest hydrogen production rate was 8.6 L/(L x d) and the substrate hydrogen production molar ratio (H2/glucose) was 1.98. After seeded with anaerobic methanogenic granules, a UASB reactor was thermophilically operated by feeding with sucrose solution and during its steady operation period, the hydrogen production rate was 6.8 L/(L x d) and the substrate hydrogen production molar ratio (H2/sucrose) was 3.6. Within the produced gas, the H2 percentages were about 43% and others were CO2, no methane could be detected. Thermophilic hydrogen-producing granules were successfully cultivated in the UASB reactor, which were grey-white in color, the diameters were about 0.8 - 1.2 mm, and typical settling velocities were about 30 - 40 m/h. Through SEM a great number of bacilli could be found on the surface of the granules which made the surface rough. Total DNA of these two hydrogen production sludges were extracted and purified, and the PCR and DGGE process were conducted, the results indicate that most of the eubacteria in two sludges are the same, but the dominant species are obviously different with each other. PMID:16599122

Zhang, Wei; Zuo, Jian-E; Cui, Long-Tao; Xing, Wei; Yang, Yang



Autoheated thermophilic aerobic digestion  

Microsoft Academic Search

Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD

K. Deeny; H. Hahn; D. Leonhard; J. Heidman



Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution.  


Extensive use and inadequate disposal of chloroethenes have led to prevalent groundwater contamination worldwide. The occurrence of the lesser chlorinated ethenes [i.e. vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE)] in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (tetrachloroethene and trichloroethene). VC and cDCE are toxic and VC is a known human carcinogen. Therefore, their presence in groundwater is undesirable. In situ cleanup of VC- and cDCE-contaminated groundwater via oxidation by aerobic microorganisms is an attractive and potentially cost-effective alternative to physical and chemical approaches. Of particular interest are aerobic bacteria that use VC or cDCE as growth substrates (known as the VC- and cDCE-assimilating bacteria). Bacteria that grow on VC are readily isolated from contaminated and uncontaminated environments, suggesting that they are widespread and influential in aerobic natural attenuation of VC. In contrast, only one cDCE-assimilating strain has been isolated, suggesting that their environmental occurrence is rare. In this review, we will summarize the current knowledge of the physiology, biodegradation pathways, genetics, ecology, and evolution of VC- and cDCE-assimilating bacteria. Techniques (e.g. PCR, proteomics, and compound-specific isotope analysis) that aim to determine the presence, numbers, and activity of these bacteria in the environment will also be discussed. PMID:20146755

Mattes, Timothy E; Alexander, Anne K; Coleman, Nicholas V



Lactic acid bacteria of meat and meat products  

Microsoft Academic Search

When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When

Aubrey F. Egan



Taxonomy of aerobic marine eubacteria.  


Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are discussed. PMID:4552999

Baumann, L; Baumann, P; Mandel, M; Allen, R D



Aerobic thermophile biodegradation of BTEX  

SciTech Connect

In the aftermath of heat-driven subsurface remediation efforts such as steam stripping or Joule heating for cleaning up fuel spills, there will be a time during which the entire underground environment remains at temperatures significantly higher than ambient. The possible use of thermophilic bacteria capable of degrading select fuel hydrocarbons would take advantage of these higher underground temperatures to enhance the removal of low levels of residual regulated fuel contaminants. Twenty six thermophilic bacteria strains from the American Type Culture Collection were screened and two aerobes, Thermus aquaticus (ATCC 25104) and Thermus sp. (ATCC 27978), were found to degrade BTEX (benzene, toluene, ethylbenzene, and xylenes), common contaminants from gasoline storage-tank leakages. T. aquaticus and Thermus sp. were grown in a modified ATCC medium at 70{degrees}C and 61{degrees}C, respectively, and resting cell suspensions were used to study BTEX biodegradation at the same corresponding temperatures. The degradation of BTEX by these cell suspensions in sealed culture bottles was measured against controls that also displayed significant abiotic removals of BTEX under such high temperature conditions. Raising the BTEX concentration lowered the extent of biodegradation. The biodegradations of both benzene and toluene were enhanced when T. aquaticus and Thermus sp. were pregrown on catechol and o-cresol, respectively, as carbon sources. Use of [U-{sup 14}C]benzene and [U-{sup 14}C]toluene verified that a small fraction of these two compounds were metabolized to water-soluble products and CO{sup 2} by these non-growing cell suspensions within 7 days. This study represents the first time members of the naturally occurring, common thermophilic genus Thermus have been shown to have a co-metabolic potential for contaminant VOC degradation.

Chen, C.I.; Taylor, R.T. [Lawrence Livermore National Lab., CA (United States)



Autoheated thermophilic aerobic digestion  

SciTech Connect

Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature. Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.

Deeny, K. (Junkins Engineering, Morgantown, PA (United States)); Hahn, H.; Leonhard, D. (Univ. Karlsruhe (West Germany)); Heidman, J. (Environmental Protection Agency, Cincinnati, OH (United States))



Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering.  


We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering. PMID:25367089

Frappier, Vincent; Najmanovich, Rafael



Antimicrobial susceptibility and extended-spectrum beta-lactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends (SMART 2009-2011).  


Treatment options for multidrug-resistant pathogens remain problematic in many regions and individual countries, warranting ongoing surveillance and analysis. Limited antimicrobial susceptibility information is available for pathogens from Vietnam. This study determined the bacterial susceptibility of aerobic gram-negative pathogens of intra-abdominal infections among patients in Vietnam during 2009-2011. A total of 905 isolates were collected from 4 medical centers in this investigation as part of the Study for Monitoring Antimicrobial Resistance Trends. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL) rates among the appropriate species were determined by a central laboratory using Clinical and Laboratory Standards Institute methods. Among the species collected, Escherichia coli (48.1% ESBL-positive) and Klebsiella pneumoniae (39.5% ESBL-positive) represented the majority (46.4%) of the isolates submitted for this study. Ertapenem MIC90 values were lowest for these 2 species at 0.12 and 0.25?g/mL and remained unchanged for ESBL-positive isolates. Imipenem MIC90 values were also the same for all isolates and ESBL-positive strains at 0.25 and 0.5?g/mL, respectively. Ertapenem MIC90 values for additional species with sufficient numbers for analysis, including Enterobacter cloacae, Proteus mirabilis, Acinetobacter baumannii, and Pseudomonas aeruginosa, were 1, 0.06, >4, and >4?g/mL, respectively. Analysis of beta-lactamases in a subset of 132 phenotypically ESBL-positive Enterobacteriaceae demonstrated that CTX-M variants, particularly CTX-M-27 and CTX-M-15, were the predominant enzymes. High resistance rates in Vietnam hospitals dictate continuous monitoring as antimicrobial inactivating enzymes continue to spread throughout Asia and globally. PMID:24923210

Biedenbach, Douglas J; Bouchillon, Samuel K; Hoban, Daryl J; Hackel, Meredith; Phuong, Doan Mai; Nga, Tran Thi Thanh; Phuong, Nguyen Tran My; Phuong, Tran Thi Lan; Badal, Robert E



Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases.  


We report here solvent kinetic isotope effects for two dihydrofolate reductases, namely the monomeric, mesophilic enzyme from E. coli (EcDHFR) and the dimeric, thermophilic enzyme from Thermotoga maritima (TmDHFR). Multiple isotope effects reveal mechanistic differences between the two enzymes. EcDHFR follows a stepwise mechanism in which proton transfer precedes hydride transfer, whereas the two steps are concerted in TmDHFR. At elevated pH, EcDHFR also follows a concerted reaction pathway. TmDHFR at pH 7 behaves more like EcDHFR at elevated pH suggesting that the restricted motions of TmDHFR resulting from dimerization preclude it from modulating the pK(a) of its substrate as efficiently as EcDHFR. The reduced reaction rates of TmDHFR therefore appear to be a consequence of its quaternary structure, which is required for increased thermostability but which also prevents active modulation of the reactivity of the active site bound substrate observed in EcDHFR. PMID:19419144

Loveridge, E Joel; Behiry, Enas M; Swanwick, Richard S; Allemann, Rudolf K




NSDL National Science Digital Library

Here are some websites to get you started... Just click on the links and start searching! microbe world- bacteria Bacteria Rule Quiz! Bacteria.... Harmful Bacteria Bacteria Museum Bacteria! Microbes- all sorts of info... When you are finished looking at the sites or when you have enough information concerning bacteria, ask Mrs. Deaton for some books that can give you even more DETAIL!!! *Don\\'t forget to keep track of your information on your I-CHARTS... ...

Mrs. Deaton



An ancient divergence among the bacteria. [methanogenic phylogeny  

NASA Technical Reports Server (NTRS)

The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.



Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters.  


While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a "core" group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate. PMID:24085391

St-Pierre, Benoit; Wright, André-Denis G




Microsoft Academic Search

The pipelines plugging, souring oil and corrosion by microorganisms are a big problem in the oil industry. The pipelines plugging is produced by bacterial consortium that can produce biofilms. In these attached microbial populations, aerobes bacteria growth in the superficial layers, and, anaerobes bacteria (fermenters, sulfate-reducing bacteria, tiosulfate-reducing bacteria, methanogen growth adhered to metal. In industrial areas, surfactants, emulsifiers and


Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor.  


A mesophilic anaerobic moving bed biofilm reactor (MBBR) was operated to evaluate the effect of sulfate addition on methane production and sulfate reduction using acetate as the sole carbon source. The results show that at the organic loading rate of 4.0 g TOC/L/day, the TOC removal efficiencies and the biogas production rates achieved over 95 % and 7000 mL/L/day without sulfate, respectively, and slightly decreased with sulfate addition (500-800 mg/L). Methane production capacities were not influenced significantly with the addition of sulfate, while sulfate reduction efficiencies were not stable with 23-87 % in the acetate-fed reactor. Fluorescent in situ hybridization (FISH) was used to analyze the functional microbial compositions of acetate-degrading methane-producing bacteria (MPB) and sulfate-reducing bacteria (SRB) in the reactor. The results found that as the increase of sulfate concentration, the proportion of Methanomicrobiales increased up to 58?±?2 %, while Methanosaeta and Methanosarcina decreased. The dominant methanogens shifted into hydrogenotrophic methanogens from even distribution of acetoclastic and hydrogenotrophic methanogens. When hydrogenotrophic methanogens were dominant, sulfate reduction efficiency was high, while sulfate reduction efficiency was low as acetoclastic methanogens were dominant. PMID:25427678

Yang, Sen-Lin; Tang, Yue-Qin; Gou, Min; Jiang, Xia



Aerobic landfill bioreactor  


The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between F. and F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)



Aerobic waste treatment package  

SciTech Connect

An improved aerobic waste treatment package which both simplifies maintenance of the system and increases the interval between necessary maintenance through the use of a removable surge bowl which forms part of a centrally disposed, large capacity, surge chamber positioned above the waste treatment holding tank. The package also simplifies maintenance by permitting removal of the surge bowl without disconnecting the electrical connections to the package and through the use of a simplified system for suspending porous filter bags from a hanger plate extending across the top of the holding tank.

Khera, A.S.; Krebs, J.R.



Aerobic landfill bioreactor  


The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between F. and F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)



The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis  

PubMed Central

The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some ?-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated. PMID:24214943

Wagley, Sariqa; Hemsley, Claudia; Thomas, Rachael; Moule, Madeleine G.; Vanaporn, Muthita; Andreae, Clio; Robinson, Matthew; Goldman, Stan; Wren, Brendan W.; Butler, Clive S.



The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds  

Microsoft Academic Search

The bacteria associated with the surface of fronds of the sublittoral brown alga Laminaria longicruris were investigated over a 13-month period on the coast of Nova Scotia (Canada). A psychrophilic population was found to be associated with the frond during the winter and a mesophilic population with the decaying frond during the summer. Numbers of psychrophiles varied inversely with ambient

R. A. Laycock



Competitive Oxidation of Volatile Fatty Acids by Sulfate and Nitrate-Reducing Bacteria from an Oil Field in Argentina  

Microsoft Academic Search

Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquen Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3

Aleksandr A. Grigoryan; Sabrina L. Cornish; Brenton Buziak; Shiping Lin; Adriana Cavallaro; Joseph J. Arensdorf; Gerrit Voordouw



Aerobic and anaerobic bacteriology of chronic adenoid disease in children.  


Bacterial cultures from nasopharyngeal swabs of children after adenoidectomy and from the removed adenoid tissue in the same patient group were compared. At the same time, the colony-forming unit, as a measure of viable bacterial cells and the composition of isolated bacteria were also determined in the case of adenoid tissue. Our findings showed that the culture results of nasopharyngeal swabs and inner part of the adenoid tissue are in close correlation. Polymicrobial aerobic-anaerobic flora was present in all instances. The predominant aerobic isolates in all two groups were S. pneumoniae, H. influenzae and M. catarrhalis. Anaerobic bacteria most commonly recovered in the adenoid were Peptostreptococcus spp., Prevotella spp., and Fusobacterium spp. PMID:20810172

Fekete-Szabo, Gabriella; Berenyi, Imre; Gabriella, Kecskes; Urban, Edit; Nagy, Elisabeth



Exercise, Animal Aerobics, and Interpretation?  

ERIC Educational Resources Information Center

Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

Oliver, Valerie



Fermentation of Wood-dust by Cellulose Bacteria  

Microsoft Academic Search

IN this laboratory, fermentation of birch, aspen and pine-dusts has been investigated by enrichment cultures of thermophilic1, and recently also of mesophilic2, cellulose bacteria. he Tfiner the wood was ground, the more of the cellulose was fermented. In the best cases, a fermentation of about 70 per cent of cellulose in wood was obtained with the leaf-tree dust at 60°

Artturi I. Virtanen



Aerobic granulation: advances and challenges.  


Aerobic granulation was developed in overcoming the problem of biomass washout often encountered in activated sludge processes. The novel approach to developing fluffy biosolids into dense and compact granules offers a new dimension for wastewater treatment. Compared with conventional biological flocs, aerobic granules are characterized by well-defined shape and compact buildup, superior biomass retention, enhanced microbial functions, and resilient to toxicity and shock loading. This review provides an up-to-date account on development in aerobic granulation and its applications. Granule characterization, factors affecting granulation, and response of granules to various environmental and operating conditions are discussed. Maintaining granule of adequate structural stability is one of the main challenges for practical applications of aerobic granulation. This paper also reviews recent advances in addressing granule stability and storage for use as inoculums, and as biomass supplement to enhance treatment efficiency. Challenges and future work of aerobic granulation are also outlined. PMID:22383048

Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa



Biological Control of Phytopathogenic Fungi by Aerobic Endospore-Formers  

Microsoft Academic Search

\\u000a Biological control is an environmentally friendly alternative to using fungicides for the control of phytopathogenic fungi,\\u000a and it is likely to gain wider use in the future. The use of aerobic endospore-forming bacteria as biocontrol agents for fungal\\u000a plant diseases is increasing throughout the world, as this control strategy gradually gains acceptance. Various free-living\\u000a and endophytic Bacillus species have been

Alejandro Pérez-García; Diego Romero; Houda Zeriouh; Antonio de Vicente


Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential  

Microsoft Academic Search

The potential of the environment to yield organisms that can produce functional bionanominerals is demonstrated by selenium-tolerant,\\u000a aerobic bacteria isolated from a seleniferous rhizosphere soil. An isolate, NS3, was identified as a Bacillus species (EU573774.1) based on morphological and 16S rRNA characterization. This strain reduced Se(IV) under aerobic conditions\\u000a to produce amorphous ? Se(0) nanospheres. A room-temperature washing treatment was

N. Tejo Prakash; Neetu Sharma; Ranjana Prakash; Kuldeep K. Raina; Jonathan Fellowes; Carolyn I. Pearce; Jonathan R. Lloyd; Richard A. D. Pattrick



[The aerobic air microflora in airplanes on various international routes].  


Aerobic microflora (bacteria, fungi), in the cock pits of the TAROM company (Boeing 707 and Il 62 M) airships flying on various international routes and airports was studied during November 1988-January 1989. 157-8,800 bacteria and 78-1,336 fungi per m3 air were recorded. Except for Staphylococcus aureus (hemolytic and non hemolytic) the greatest part of the isolated microorganisms was nonpathogenic for man: Bacillus, Corynebacterium, Neisseria, Staphylococcus epidermidis, Sarcina, Aspergillus, Penicillium etc. Several airships on the Asian airports contained a higher amount of bacteria and fungi but not higher than in the living rooms. Likewise, in high altitude flights, the microorganism amount was less than on the ground. The taxonomic spectrum of the bacteria and fungi isolated was almost identical on all the 9 international airports, thus suggesting the homogeneous and international character of saprophyte and pathogenic air microflora by means of the passenger and goods air flights. PMID:2616999

N?stoiu, I; R?duic?, C; Soitu, V; Gavril?, I



Clinical microbiology of coryneform bacteria.  

PubMed Central

Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A



Use of mild irradiation doses to control pathogenic bacteria on meat trimmings for production of patties aiming at provoking minimal changes in quality attributes.  


The objectives of the present work were to assess the use of moderate doses of gamma irradiation (2 to 5 kGy) and to reduce the risk of pathogen presence without altering the quality attributes of bovine trimmings and of patties made of irradiated trimmings. Microbiological indicators (coliforms, Pseudomonas spp and mesophilic aerobic counts), physicochemical indicators (pH, color and tiobarbituric acid) and sensory changes were evaluated during storage. 5 kGy irradiation doses slightly increased off flavors in patties. Two pathogenic markers (Listeria monocytogenes and Escherichia coli O157:H7) were inoculated at high or low loads to trimming samples which were subsequently irradiated and lethality curves were obtained. Provided that using irradiation doses ?2.5 kGy are used, reductions of 2 log CFU/g of L. monocytogenes and 5 log CFU/g of E. coli O157:H7 are expected. It seems reasonable to suppose that irradiation can be successfully employed to improve the safety of frozen trimmings when initial pathogenic bacteria burdens are not extremely high. PMID:25042241

Xavier, Ma de la Paz; Dauber, Cecilia; Mussio, Paula; Delgado, Enrique; Maquieira, Ana; Soria, Alejandra; Curuchet, Ana; Márquez, Rosa; Méndez, Carlos; López, Tomás



Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.  


Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. PMID:24291796

Suhartini, Sri; Heaven, Sonia; Banks, Charles J



Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken  

NASA Astrophysics Data System (ADS)

Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad



Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.  


Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor. PMID:25267355

Sharma, Naresh K; Philip, Ligy



Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter.  


Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25 degrees C) and thermophilic (50 degrees C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m(-3) h(-1) and retention time ranges of 0.5-3.0 min and 0.6-3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene > o-xylene > m-xylene > p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene > o-xylene >ethylbenzene > m-xylene > p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions. PMID:14666388

Strauss, J M; Riedel, K J; Du Plessis, C A



Trade-off between mesophilic and thermophilic denitrification: rates vs. sludge production, settleability and stability.  


The development of thermophilic nitrogen removal strategies will facilitate sustainable biological treatment of warm nitrogenous wastewaters. Thermophilic denitrification was extensively compared to mesophilic denitrification for the first time in this study. Two sequential batch reactors (SBR) at 34 °C and 55 °C were inoculated with mesophilic activated sludge (26 °C), fed with synthetic influent in a first phase. Subsequently, the carbon source was switched from acetate to molasses, whereas in a third phase, the nitrate source was fertilizer industry wastewater. The denitrifying sludge maintained its activity at 55 °C, resulting in an immediate process start-up, obtaining nitrogen removal rates higher than 500 mg N g(-1) VSS d(-1) in less than one week. Although the mesophilic SBR showed twice as high specific nitrogen removal rates, the maximum thermophilic denitrifying activity in this study was nearly 10 times higher than the activities reported thus far. The thermophilic SBR moreover had a 73% lower sludge volume index, a 45% lower sludge production and a higher resilience towards a change in carbon source compared with the mesophilic SBR. The higher resilience was potentially related to a higher microbial diversity and evenness of the thermophilic community at the end of the synthetic feeding period. The thermophilic microbial community showed a higher similarity over the different feeding periods implying a more stable community. Overall, this study showed the capability of mesophilic denitrifiers to maintain their activity after a large temperature increase. Existing mesophilic process systems with cooling for the treatment of warm wastewaters could thus efficiently be converted to thermophilic systems with low sludge production and good settling properties. PMID:25007305

Courtens, Emilie N P; Vlaeminck, Siegfried E; Vilchez-Vargas, Ramiro; Verliefde, Arne; Jauregui, Ruy; Pieper, Dietmar H; Boon, Nico



Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor  

NASA Astrophysics Data System (ADS)

Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.



Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor  

NASA Technical Reports Server (NTRS)

Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.



Petrifilm plates for enumeration of bacteria counts in goat milk  

Technology Transfer Automated Retrieval System (TEKTRAN)

PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...


Bacteria Museum  

NSDL National Science Digital Library

Who knew that bacteria had their own virtual museum? Here, visitors will "learn that not all bacteria are harmful, how they are used in industry, that they belong to the oldest living creatures on Earth", and many more interesting facts to discover about the diverse world of bacteria. The "Bacterial Species Files" tab at the top of the page, allows visitors to look up information on 40 different specific bacteria, from Anthrax to Yersinia enterocolitica. The information provided for each bacterium includes photographs, consumer guides, fact sheets, and scientific links. Visitors will find that the "Main Exhibits" tab addresses the basics about bacteria, as well as "Pathogenic Bacteria", "Evolution", "How We Fight Bacteria", and "Food and Water Safety". Visitors will surely enjoy the "Good Bacteria in Food" link found in the Food and Water Safety section, as it explains how some foods benefit from good bacteria, such as Swiss cheese, sausage, sauerkraut, chocolate, and coffee.


Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis  

PubMed Central

The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

Jin, Jingwei; Dai, Xiaohu




EPA Science Inventory

A study of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions was conducted. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...



EPA Science Inventory

A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...


Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment  

E-print Network

Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0 of anaerobic digestion (AD) as an integrated (or even a core) part of a variety of waste treatment systems has

Angenent, Lars T.



EPA Science Inventory

As part of a larger study on the comparison between mesophilic and thermophilic anaerobic digestion, a study of the operation of anaerobic systems under temperature transition was conducted. Systems seeded with domestic sewage sludge, but subsequently fed a chemically defined com...


Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.  


This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. PMID:25534040

Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You



Mesophilic biogas production from fruit and vegetable waste in a tubular digester  

Microsoft Academic Search

A semi-continuously mixed mesophilic tubular anaerobic digester was tested for the conversion of fruit and vegetable waste (FVW) into biogas. The effect of hydraulic retention time (HRT) and the feed concentration on the extent of the degradation of the waste was examined. Varying the HRT between 12 and 20 days had no effect on the fermentation stability and pH remained

H Bouallagui; R Ben Cheikh; L Marouani; M Hamdi



Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.  


Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions. PMID:24697502

Mallik, Saurav; Kundu, Sudip



Distribution of thermophilic aerobic sporeforming bacteria in food ingredients.  


Samples of sugar, starch, spices, and miscellaneous products were tested for thermophilic sporeformers of Bacillus to determine the dominant species present. Surface colonies selected at random were identified. Six species of Bacillus were isolated: B. stearothermophilus, B. coagulans, B. licheniformis, B. subtilis, B. circulans, and B. pumilus. Samples of starch and pepper were tested for thermophilic sporeformers of Bacillus to determine the distribution of rough and smooth variants. Colonies were classified as rough or smooth variants by colonial characteristics. The distribution of variant forms in these two products was significantly different. Starch samples showed predominantly rough variants; pepper samples showed predominantly smooth variants. PMID:4959078

Richmond, B; Fields, M L



Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-print Network

Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

Lesikar, Bruce J.



Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions  

Microsoft Academic Search

Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore

Harry R. Beller; Tracy E. Letain; Anu Chakicherla; Staci R. Kane; Tina C. Legler; Matthew A. Coleman



Species Diversity and Substrate Utilization Patterns of Thermophilic Bacterial Communities in Hot Aerobic Poultry and Cattle Manure Composts  

Microsoft Academic Search

This study investigated the species diversity and substrate utilization patterns of culturable thermophilic bacterial communities\\u000a in hot aerobic poultry and cattle manure composts by coupling 16S rDNA analysis with Biolog data. Based on the phylogenetic\\u000a relationships of 16S rDNA sequences, 34 thermophilic (grown at 60°C) bacteria isolated during aerobic composting of poultry\\u000a manure and cattle manure were classified as Bacillus

Chao-Min Wang; Ching-Lin Shyu; Shu-Peng Ho; Shiow-Her Chiou



Mass culture of magnetic bacteria and their application to flow type immunoassays  

Microsoft Academic Search

Isolated helical magnetotactic bacteria were cultured in a medium containing succinate, nitrate, and ferric malate as carbon, nitrogen, and iron sources, respectively. The magnetotactic bacteria could grow aerobically. The cells which grew aerobically had oxidase activity. An initial inoculum of 105 cells\\/ml was used. Stationary phase was reached 1.4×109 cells\\/ml after 4-5 days growth. When the cells were disrupted using

T. Matsunaga; F. Tadokoro; N. Nakamura



An Aerobic Scope Model for Estimating  

E-print Network

) #12;Slide 4/12 #12;Key assumptions 1.Central limitation of aerobic capacity (Bassett and Howley 1999An Aerobic Scope Model for Estimating Limits of Yellowfin Tuna Habitat Gen Del Raye, Kevin Weng adaptation Slide 1/12 #12;Model concept Semi-empirical model of aerobic scope Slide 2/12 Temperature (°C

Hawai'i at Manoa, University of


Membrane thickening aerobic digestion processes.  


Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization. PMID:24718344

Woo, Bryen



Soccer specific aerobic endurance training  

Microsoft Academic Search

Background: In professional soccer, a significant amount of training time is used to improve players' aerobic capacity. However, it is not known whether soccer specific training fulfils the criterion of effective endurance training to improve maximal oxygen uptake, namely an exercise intensity of 90–95% of maximal heart rate in periods of three to eight minutes.Objective: To determine whether ball dribbling

J Hoff; U Wisløff; L C Engen; O J Kemi; J Helgerud



Aerobic denitrification: a controversy revived  

Microsoft Academic Search

During studies on the denitrifying mixotroph, Thiosphaera pantotropha, it has been found that this organism is capable of simultaneously utilizing nitrate and oxygen as terminal electron acceptors in respiration. This phenomenon, termed aerobic denitrification, has been found in cultures maintained at dissolved oxygen concentrations up to 90% of air saturation.

Lesley A. Robertson; J. Gijs Kuenen



Isolation of Thermophilic Mutants of Bacillus subtilis and Bacillus pumilus and Transformation of the Thermophilic Trait to Mesophilic Strains  

Microsoft Academic Search

~~ Thermophilic mutants were isolated from mesophilic Bacillus subtilis and Bacillus pumilus by plating large numbers of cells and incubating them for several days at a temperature about 10 \\




Aerobic microbial metabolism of some alkylthiophenes found in petroleum  

Microsoft Academic Search

Six alkylthiophenes, 2-hexadecyl-5-methylthiophene (I), 2-methyl-5-tridecylthiophene (II) and 2-butyl-5-tridecylthiophene (III), 2-(3,7-dimethyloctyl)-5-methylthiophene (IV), 2-methyl-5-(3,7,11,15-tetramethyl-hexadecyl)thiophene (V) and 2-ethyl-5-(3,7,11,15-tetramethylhexadecyl)thiophene (VI) were synthesized and used as substrates in biodegradation studies. The products of their aerobic metabolism by pure bacterial cultures were identified. In most cases, the long alkyl chains of these thiophenes were preferentially attacked and in pure cultures of alkane-degrading bacteria, the major metabolites

Phillip M. Fedorak; Torren M. Peakman



Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.  

PubMed Central

Molecular dynamics simulations in solution are performed for a rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus (RdPf) and one from the mesophilic organism Desulfovibrio vulgaris (RdDv). The two proteins are simulated at four temperatures: 300 K, 373 K, 473 K (two sets), and 500 K; the various simulations extended from 200 ps to 1,020 ps. At room temperature, the two proteins are stable, remain close to the crystal structure, and exhibit similar dynamic behavior; the RMS residue fluctuations are slightly smaller in the hyperthermophilic protein. An analysis of the average energy contributions in the two proteins is made; the results suggest that the intraprotein energy stabilizes RdPf relative to RdDv. At 373 K, the mesophilic protein unfolds rapidly (it begins to unfold at 300 ps), whereas the hyperthermophilic does not unfold over the simulation of 600 ps. This is in accord with the expected stability of the two proteins. At 473 K, where both proteins are expected to be unstable, unfolding behavior is observed within 200 ps and the mesophilic protein unfolds faster than the hyperthermophilic one. At 500 K, both proteins unfold; the hyperthermophilic protein does so faster than the mesophilic protein. The unfolding behavior for the two proteins is found to be very similar. Although the exact order of events differs from one trajectory to another, both proteins unfold first by opening of the loop region to expose the hydrophobic core. This is followed by unzipping of the beta-sheet. The results obtained in the simulation are discussed in terms of the factors involved in flexibility and thermostability. PMID:9416608

Lazaridis, T.; Lee, I.; Karplus, M.



Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes  

Microsoft Academic Search

Co-digestion of rendering and slaughterhouse wastes was studied in laboratory scale semi-continuously fed continuously stirred tank reactors (CSTRs) at 35 and 55°C. All in all, 10 different rendering plant and slaughterhouse waste fractions were characterised showing high contents of lipids and proteins, and methane potentials of 262–572dm3CH4\\/kg volatile solids(VS)added. In mesophilic CSTR methane yields of ca 720dm3CH4\\/kgVSfed were obtained with

Suvi Bayr; Marianne Rantanen; Prasad Kaparaju; Jukka Rintala


Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter  

Microsoft Academic Search

Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m -3 h -1 and retention time ranges of 0.5–3.0 min

J. M. Strauss; K. J. Riedel; C. A. du Plessis



Thermophilic adaptation of a mesophilic anaerobic sludge for food waste treatment.  


As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed. PMID:17900789

Ortega, Luis; Barrington, Suzelle; Guiot, Serge R



Bacteria Transformation  

NSDL National Science Digital Library

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.



Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

Zaccardi, Margot J.; Mannweiler, Olga [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Boehr, David D., E-mail: [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)



A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants  

E-print Network

in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007, 23:2231-2238. 38. Haney PJ, Stees M, Konisky J: Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus...:1513-1526. 49. Goihberg E, Dym O, Tel-Or S, Levin I, Peretz M, Burstein Y: A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins 2007, 66:196-204. 50. Frank Eisenhaber PA: Improved...

Li, Yunqi; Middaugh, C. Russell; Fang, Jianwen



Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate  

NASA Astrophysics Data System (ADS)

Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was differentially regulated. With perchlorate as the sole terminal electron acceptor, cbbM was expressed under autotrophic growth with hydrogen as the electron donor but not during heterotrophic growth on acetate, indicating a putative carbon-fixation pathway. Similarly, Ferrutens uranioxidens strain 2002 was also capable of autotrophic growth during nitrate-dependent iron oxidation, although the carbon fixation pathway has yet to be identified. Anoxic XPRD analysis of the biogenic end products of nitrate-dependent Fe(II) oxidation by Diaphorobacter sp. strain TPSY and strain 2002 indicated the gradual appearance of green rust (GR II) with cacoxenite and lepidocrocite from the precursor vivianite over 81 days. SEM and TEM showed the presence of hexagonal plate like crystals surrounding the bacterial cells whose morphology closely resembled GR II, indicating a very low redox potential and a weakly acidic to weakly basic pH. Mixotrophic growth incubations of strain TPSY with 1, 5 and 10 mM Fe(II) showed markedly different end products. The identity of the mineral phases and the reason behind this difference is currently under investigation.

Bose, S.; Thrash, J. C.; Coates, J. D.



Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species  

NASA Technical Reports Server (NTRS)

The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.



A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding.  


The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate "cradle" for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original "prebiotic" set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a "primitive" designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)-having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a "primitive" polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation-identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael



Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.  


The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang



Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes.  


Co-digestion of rendering and slaughterhouse wastes was studied in laboratory scale semi-continuously fed continuously stirred tank reactors (CSTRs) at 35 and 55 °C. All in all, 10 different rendering plant and slaughterhouse waste fractions were characterised showing high contents of lipids and proteins, and methane potentials of 262-572 dm(3)CH(4)/kg volatile solids(VS)(added). In mesophilic CSTR methane yields of ca 720 dm(3) CH(4)/kg VS(fed) were obtained with organic loading rates (OLR) of 1.0 and 1.5 kg VS/m(3) d, and hydraulic retention time (HRT) of 50 d. For thermophilic process, the lowest studied OLR of 1.5 kg VS/m(3) d, turned to be unstable after operation of 1.5 HRT, due to accumulating ammonia, volatile fatty acids (VFAs) and probably also long chain fatty acids (LCFAs). In conclusion, mesophilic process was found to be more feasible for co-digestion than thermophilic process, methane yields being higher and process more stable in mesophilic conditions. PMID:22074907

Bayr, Suvi; Rantanen, Marianne; Kaparaju, Prasad; Rintala, Jukka



A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.  


A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

Zheng, Meiru; Liao, B Q



Efficacy of a novel biofilter in hatchery sanitation: I. Removal of airborne bacteria, dust and endotoxin.  


A novel biofilter containing organic, bentonite and halloysite media was applied for elimination of microbial pollutants from the air of an industrial hatchery. The concentrations of total mesophilic bacteria, Gram-negative bacteria, thermophilic actinomycetes, dust and bacterial endotoxin were determined in the air of hatchery during 2 months before installation of the biofilter, and during 6 months after installation of the biofilter, at the inlet and outlet ducts from each medium. Before installation of the biofilter, the concentrations of total mesophilic bacteria, Gram-negative bacteria, thermophilic actinomycetes, dust and endotoxin in the air were within the ranges of 0.97-131.2x10(3) cfu/m3, 0.0-34.4x10(3) cfu/m3, 0.0-0.02x10(3) cfu/m3, 0.37-4.53 mg/m3, and 50.9-520,450.4 ng/m3, respectively. Enterococcus faecalis and Gram-negative bacteria (Acinetobacter spp., Escherichia coli, Enterobacter cloacae, and other species) prevailed among bacterial species recovered from the air of the hatchery. A total of 56 species or genera of bacteria were identified in the air samples taken in the examined hatchery; of these, 11, 11 and 6 species or genera respectively were reported as having allergenic, immunotoxic and/or infectious properties The concentrations of total mesophilic bacteria, Gram-negative bacteria, Enterococcus faecalis and endotoxin found at the inlet duct of the biofilter after its installation were significantly smaller compared to those recorded before its installation (p<0.05). The concentrations of Gram-negative bacteria, Enterococcus faecalis and dust found at the outlet ducts of biofilter after its installation were significantly smaller compared to those recorded at the inlet duct of the biofilter (p<0.01). The concentrations of total meso-philic bacteria were also smaller at the outlet ducts of the biofilter compared to that at the inlet duct; however, the difference was not significant because of the massive growth of Streptomyces species in the biofilter's media which contaminated the outcoming air. In conclusion, the applied biofilter proved to be effective in the elimination of potentially pathogenic bacteria, dust and endotoxin from the air of the hatchery. The efficacy of the biofilter could be improved by the inhibition of the Streptomyces growth in the media of the biofilter. PMID:17655192

Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Skórska, Czes?awa; Sitkowska, Jolanta; Cholewa, Grazyna; Dutkiewicz, Jacek



Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.  

PubMed Central

New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T



Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions  

SciTech Connect

Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup ?1} d{sup ?1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup ?1} d{sup ?1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup ?1} d{sup ?1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup ?1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup ?1} COD{sub removed})

Guo, Jianbin, E-mail: [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China); Dong, Renjie [College of Engineering, China Agricultural University, P.O. Box 184, Beijing 100083 (China); Clemens, Joachim [Institute of Crop Science and Resource Reservation (INRES), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn (Germany); Wang, Wei [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China)



Relationship between phosphatase active bacteria and phosphatase activities in forest soils  

Microsoft Academic Search

Acid phosphatase and alkaline phosphatase active colonies of bacteria, isolated from forest soils, were stained. The activity\\u000a of acid and alkaline phosphatase and other soil properties (the number of aerobic bacteria, basal respiration, the level of\\u000a ammonification, the number of bacteria active in ammonification, the level of nitrification, the number of micromycetes) were\\u000a compared with the number of bacteria belonging

J. Hy´sek



Development of microorganisms in the chernozem under aerobic and anaerobic conditions  

NASA Astrophysics Data System (ADS)

A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.



[The aerobic bacterial intestinal flora of various wintering geese species].  


The aerobic fecal flora of wintering Brent Goos (Branta bernicla), Barnacle Goose (Branta leucopsis), Greylag Goose (Anser anser), White-fronted Goose (Anser albifrons), Pink-footed Goose (Anser brachyrhynchus), and Bean Goose (Anser fabalis) was studied. There were no specific differences between the various geese. Bacterial counts were in the range of 10(5)-10(7) CPU per gram of feces. Neither pathogenic bacteria nor rotavirus could be detected in the fecal samples of the wintering geese, so that a contamination of the environment with those pathogenic organisms could be excluded. The majority of the isolated bacteria belonged to the genera Bacillus and Pseudomonas; enterobacteria and streptococci were less common. The observations are discussed regarding their epidemiological and ecological significance. PMID:7136353

Holländer, R



Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria  

PubMed Central

Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil. PMID:23028421

Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong



Calcium precipitate induced aerobic granulation.  


Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules. PMID:25460981

Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang



Lipolytic Bacteria in the Ottawa River  

PubMed Central

Lipolytic bacteria were isolated from two stations on Brewery Creek, an arm of the Ottawa River, during the winter of 1971-72. Total counts were approximately sevenfold higher at the more polluted downstream station, whereas lipolytic counts were about 100-fold higher. At this station, significantly more lipolytic bacteria grew on plates incubated at 20 C than at 4 C, suggesting that the population was comprised of both mesophiles and psychrophiles. However, at the upstream station, approximately the same number were obtained at both temperatures. A total of 434 isolates, mainly from the downstream station, were tentatively classified. The major groups were Pseudomonas, Acinetobacter-Moraxella, and Aeromonas. Though the total number of lipolytic bacteria was fairly constant throughout the winter, the relative abundance of the acinetobacters dropped from approximately 90% in November to less than 10% in March, and then increased. The aeromonads and pseudomonads showed the opposite trend. Most of the bacteria, though isolated at 4 C, also grew at 30 C. Lipolysis, however, was generally strongest at 20 C or below. PMID:4762394

Blaise, Christian R.; Armstrong, John B.



Toxic effects of butyl elastomers on aerobic methane oxidation  

NASA Astrophysics Data System (ADS)

Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina



Reduction of trichloroethylene in a model aquifer with methanotrophic bacteria  

E-print Network

for Methane Mineralization by Methanotrophic Bacteria ? Enzyme Reactions are a) Methane Monooxygenase, b) Methanol Dehydrogenase, c) Formaldehyde Dehydrogenase, d) Formate Dchydrogenase (Adapted From Dalton and Leak, 1985) . . . . . 9 FIG. 4 Proposed... was found. Apparently, reductive dechlorinazation by anaerobic bacteria was converting PCE and TCE to more hazardous chemicals in a natural environment. Purely aerobic methods appeared to require an aromatic compound such as phenol to oxidize low...

Hicks, Duane Dee



Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.  

PubMed Central

This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported. PMID:9327550

Moran, B N; Hickey, W J



Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.  


The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against improving the pathogen quality of biosolids. PMID:21764416

Ziemba, Christopher; Peccia, Jordan



Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability?  


A long-term comparative study using continuously-stirred anaerobic digesters (CSADs) operated at mesophilic and thermophilic temperatures was conducted to evaluate the influence of the organic loading rate (OLR) and chemical composition on process performance and stability. Cow manure was co-digested with dog food, a model substrate to simulate a generic, multi-component food-like waste and to produce non-substrate specific, composition-based results. Cow manure and dog food were mixed at a lower - and an upper co-digestion ratio to produce a low-fiber, high-strength substrate, and a more recalcitrant, lower-strength substrate, respectively. Three increasing OLRs were evaluated by decreasing the CSADs hydraulic retention time (HRT) from 20 to 10 days. At longer HRTs and lower manure-to-dog food ratio, the thermophilic CSAD was not stable and eventually failed as a result of long-chain fatty acid (LCFA) accumulation/degradation, which was triggered by the compounded effects of temperature on reaction rates, mixing intensity, and physical state of LCFAs. At shorter HRTs and upper manure-to-dog food ratio, the thermophilic CSAD marginally outperformed the biomethane production rates and substrate stabilization of the mesophilic CSAD. The increased fiber content relative to lipids at upper manure-to-dog food ratios improved the stability and performance of the thermophilic process by decreasing the concentration of LCFAs in solution, likely adsorbed onto the manure fibers. Overall, results of this study show that stability of the thermophilic co-digestion process is highly dependent on the influent substrate composition, and particularly for this study, on the proportion of manure to lipids in the influent stream. In contrast, mesophilic co-digestion provided a more robust and stable process regardless of the influent composition, only with marginally lower biomethane production rates (i.e., 7%) for HRTs as short as 10 days (OLR = 3 g VS/L-d). PMID:24530545

Labatut, Rodrigo A; Angenent, Largus T; Scott, Norman R



Seasonal occurrence of psychrotrophic Bacillus species in raw milk, and studies on the interactions with mesophilic Bacillus sp.  


Mesophilic and psychrotrophic isolates of Bacillus species displayed seasonal incidences in raw and pasteurised milk. The incidence of mesophilic isolates was highest in the winter and lowest in the summer/autumn while pschrotroph incidence was conversely lowest in the winter and highest in the late summer/autumn. Spores of Bacillus sp. were isolated from raw milk taken from farm milk machines and bulk tanks, milk tankers, diary silos and pasteurised milk. A consistent seasonal fluctuation in incidence throughout these samples suggested that spores of Bacillus sp. derived from the farm environment survived as important contaminants right through the milk chain to the pasteurised product. Up to seven mesophilic Bacillus sp. were isolated from a single sample with three species commonly occurring in most samples. The predominant mesophilic species isolated were B. pumilus, B. licheniformis and B. subtilis. The dominant psychrotrophic isolate was B. cereus. Selected mesophilic isolates were examined for possible antagonistic effects on the growth of psychrotropic B. cereus and B. pumilus isolates. Bacillus subtilis and B. licheniformis were found to produce antagonistic factors. It was considered that these factors may influence the incidence and growth of psychrotrophic isolates in the farm environment or in milk but the factors are not yet fully characterised or identified. PMID:8043347

Sutherland, A D; Murdoch, R



Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics  

NASA Astrophysics Data System (ADS)

Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

Saravanan, D.



Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions  

Microsoft Academic Search

Summary Composting was investigated as a bioremediation technology for clean-up of sediments contaminated with explosives and propellants. Two field demonstrations were conducted, the first using 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and N-methyl-N,2,4,6-tetranitroaniline (tetryl) contaminated sediment, and the second using nitrocellulose (NC) contaminated soil. Tests were conducted in thermophilic and mesophilic aerated static piles. Extractable TNT was reduced from 11840

Richard T. Williams; P. Scott Ziegenfuss; Wayne E. Sisk



Microbial Composition and Structure of Aerobic Granular Sewage Biofilms?  

PubMed Central

Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J.



Biodegradation of BTEX by bacteria on powdered activated carbon  

Microsoft Academic Search

Aerobic degradation of a mixture of benzene, toluene, ethylbenzene and the mixed xylenes (BTEX) by a mixed bacterial population was studied in a continuously fed, completely mixed bioreactor in the presence of powdered activated carbon (PAC). Adsorption was characterized in the presence and in the absence of bacteria on PAC, and the affinity of virgin PAC to individual BTEX components

C. A. Mason; G. Ward; K. Abu-Salah; O. Keren; C. G. Dosoretz



Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria  

Microsoft Academic Search

SUMMARY More than IOO Gram-negative, strictly aerobic, methane-utilizing bacteria were isolated. All used only methane and methanol of the substrates tested for growth. The organisms were classified into five groups on the basis of mor- phology, fine structure, and type of resting stage formed (exospores and different types of cysts) and into subgroups on other properties. Methods of enrichment, isolation

R. Whittenbury; K. C. Phillips; J. F. Wilkinson



Parasitic Bacteria  

E-print Network

species and 2 varieties of bacteria parasitic on plants in Ohio. Bacterial plant diseases in Ohio, such as alfalfa wilt, cucurbit wilt, corn leaf blight and wilt (Stewart's disease), fire blight of apple and pear, FIGURE 1. Bacterial wilt of carnation. crown gall, soft rot of many vegetables, and

Ellett C. Wayne; C. W. Ellett; C. W. Ellett; Plate I


Magnetotactic Bacteria  

Microsoft Academic Search

Bacteria with motility directed by the local geomagnetic field have been observed in marine sediments. These magnetotactic microorganisms possess flagella and contain novel structured particles, rich in iron, within intracytoplasmic membrane vesicles. Conceivably these particles impart to cells a magnetic moment. This could explain the observed migration of these organisms in fields as weak as 0.5 gauss.

Richard Blakemore




Microsoft Academic Search

Aerobic bacterial flora in rainbow trout egg, Oncorhynchus mykiss, Walbaum 1792, and the hatchery water were analyzed. It was determined that the number of bacteria varied between 10 3 -10 4 cfu g -1 in disinfected eggs and 10 6 -10 7 cfu g -1 in undisinfected eggs. The total bacterial count was 5.7x 102 cfu ml-1 in the spring

Soner Altun


Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites  

Technology Transfer Automated Retrieval System (TEKTRAN)

Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...


Temperature Adaptation at Homologous Sites in Proteins from Nine Thermophile–Mesophile Species Pairs  

PubMed Central

Whether particular amino acids are favored by selection at high temperatures over others has long been an open question in protein evolution. One way to approach this question is to compare homologous sites in proteins from one thermophile and a closely related mesophile; asymmetrical substitution patterns have been taken as evidence for selection favoring certain amino acids over others. However, most pairs of prokaryotic species that differ in optimum temperature also differ in genome-wide GC content, and amino acid content is known to be associated with GC content. Here, I compare homologous sites in nine thermophilic prokaryotes and their mesophilic relatives, all with complete published genome sequences. After adjusting for the effects of differing GC content with logistic regression, 139 of the 190 pairs of amino acids show significant substitutional asymmetry, evidence of widespread adaptive amino acid substitution. The patterns are fairly consistent across the nine pairs of species (after taking the effects of differing GC content into account), suggesting that much of the asymmetry results from adaptation to temperature. Some amino acids in some species pairs deviate from the overall pattern in ways indicating that adaptation to other environmental or physiological differences between the species may also play a role. The property that is best correlated with the patterns of substitutional asymmetry is transfer free energy, a measure of hydrophobicity, with more hydrophobic amino acids favored at higher temperatures. The correlation of asymmetry and hydrophobicity is fairly weak, suggesting that other properties may also be important. PMID:20624731

McDonald, John H.



Study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate  

SciTech Connect

The cellulases that strains of Streptomyces albogrisolus, S. nitrosporeus, and Micromonospora melanosporea produce when grown on untreated ballmilled bagasse were investigated. Optimum conditions for extracellular cellulase production and activity were determined to be growth at pH 6.7-7.4 and 25-35 degrees C for 4-5 days and assay at pH 5.0-6.0 and 45-55 degrees C, respectively. The endoglucanases were thermally stable at 50 degrees C, but the Avicelases had a half-life of approximately 24 hours at this temperature. Nearly half of the endoglucanases and almost all of the Avicelases were absorbed on ballmilled bagasse after 15 minutes incubation at 50 degrees C. The ..beta..-glucosidases were found to be mainly intracellular or cell wall bound. These mesophilic actinomycetes concomitantly produced xylanases and ..beta..-xylosidases with cellulases that, apart from cellobiose and glucose, also release xylose from bagasse. This feature may be advantageous in the commercial application of the enzymes of mesophilic actinomycetes for the saccharification of natural cellulosic substrates.

Van Zyl, W.H.



Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge.  


In local cities, many small sewage and waste treatment facilities are operated independently. To encourage processing by anaerobic digestion at a centralized sewage treatment plant (STP), high-solid sewage sludge is helpful because it reduces the energy and cost required for transporting the sludge from other STPs. Mesophilic and thermophilic anaerobic digestion of sewage sludge at total solids concentrations (TS) of 7.5% and 10% were evaluated using laboratory-scale continuous reactors. Under the mesophilic condition, sewage sludge of 10% TS was successfully treated. Under the thermophilic condition, sewage sludge of 7.5% TS was not successfully treated when the total ammonia concentration was over 2000 mg N/L. Batch experiments showed that it takes a few weeks for the methane fermentation activity to recover after being inhibited. The effectiveness of adding easily biodegradable organic matter was confirmed. These results show that high-solid sewage sludge is suitable for small facilities by controlling the operating conditions. PMID:24096284

Hidaka, Taira; Wang, Feng; Togari, Taketo; Uchida, Tsutomu; Suzuki, Yutaka



Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium  

PubMed Central

Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43°C but only at elevated CO2 (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated QA??QB electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO2 concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant PMID:22216094

Dinamarca, Jorge; Shlyk-Kerner, Oksana; Kaftan, David; Goldberg, Eran; Dulebo, Alexander; Gidekel, Manuel; Gutierrez, Ana; Scherz, Avigdor



Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.  


The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young



Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor.  


A novel anaerobic, mesophilic, hydrogen-producing bacterium, designated strain M2/40(T), was isolated from a mesophilic, two-phase, laboratory-scale biogas reactor fed continuously with maize silage supplemented with 5% wheat straw. 16S rRNA gene sequence comparison revealed an affiliation to the genus Clostridium sensu stricto (cluster I of the clostridia), with Clostridium cellulovorans as the closest characterized species, showing 93.8% sequence similarity to the type strain. Cells of strain M2/40(T) were rods to elongated filamentous rods that showed variable Gram staining. Optimal growth occurred at 35 °C and at pH 7. Grown on glucose, the main fermentation products were H2, CO2, formate, lactate and propionate. The DNA G+C content was 29.6 mol%. The major fatty acids (>10?%) were C(16?:?0), summed feature 10 (C(18?:?1)?11c/?9t/?6t and/or unknown ECL 17.834) and C(18?:?1)?11c dimethylacetal. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain M2/40(T) represents a novel species within the genus Clostridium, for which we propose the name Clostridium bornimense sp. nov. The type strain is M2/40(T) (?=?DSM 25664(T)?=?CECT 8097(T)). PMID:24860110

Hahnke, Sarah; Striesow, Jutta; Elvert, Marcus; Mollar, Xavier Prieto; Klocke, Michael



Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the Ural saline environments.  


Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2(T) and SK12(T)) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-?-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3-5% NaCl. The major cellular fatty acids are C18:1?7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4(+) by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G+C contents of strains C2(T) and SK12(T) are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA-DNA relatedness (53%) between the strains C2(T) and SK12(T) indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2(T) (=VKM B-2706(T)=CCUG 61687(T)=DSM 25045(T)) and the type strain of Methyloligella solikamskensis is SK12(T) (=VKM B-2707(T)=CCUG 61697(T)=DSM 25212(T)). PMID:23351489

Doronina, Nina V; Poroshina, Maria N; Kaparullina, Elena N; Ezhov, Vladimir A; Trotsenko, Yuri A



An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia  

PubMed Central

Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.



Measuring aerobic fitness in divers.  


The editorial by Bosco, Paoli and Camporesi in the last issue of this journal provides an interesting overview of some of the factors that are either known or suspected to be important in the physiological health of divers. The part pertinent to our paper concerns the meaning and use of metabolic equivalents (MET). Our goal was to estimate the metabolic effort required for a substantial sample of recreational dives. Computing MET values based on an assumed resting oxygen consumption rate of 3.5 millilitres of oxygen per kilogram body mass per minute is well established. Most pointedly, MET is used in the Recreational Scuba Training Council (RSTC) Guidelines for Recreational Scuba Diver's Physical Examination found in the Medical Statement documentation. Given the increasingly widespread use of the RSTC assessment, it makes the most sense to be consistent. Concerns over whether or not a more appropriate index value could be used are moot. Anyone wishing to compute a different base for 1.0 MET can simply crossmultiply and divide. The question to be answered is not what level of aerobic capacity is desirable for divers, the answer to that is the higher the better. The critical question is what constitutes a reasonable minimum threshold aerobic capacity consistent with operational safety. The authors mention the often invoked 13 MET capacity identified as a threshold for US Navy divers. What is typically ignored, however, is the fact that the Navy has far more applicants for dive school than posts to be filled, making very stringent selection standards feasible even if not truly operationally necessary. It is not at all clear that this is a reasonable threshold for the broader diving community. Despite this, the RSTC documentation adheres to the traditional position. "Formalized stress testing is encouraged if there is any doubt regarding physical performance capability. The suggested minimum criteria for stress testing in such cases is at least 13 METS [sic]. Failure to meet the exercise criteria would be of significant concern." This is contrary to the available data. A review of 14 studies in which the aerobic capacity of divers was measured found that mean aerobic fitness ranged from 37-57 mL?kg?¹?min?¹ (10.6-16.3 MET). The lowest individual scores were below 5.0 MET. The threshold of 13 MET was exceeded by the group mean in only six of the 14 studies described. This certainly does not support 13 MET as a meaningful threshold for participation. Our current work was intended as a simple effort to begin to assess the aerobic demands of recreational diving. It is our hope to promote discussion that is willing to risk the heresy of challenging conventional wisdom and to stimulate additional research. We certainly agree with the authors and feel strongly that enhanced in-water evaluation of physical fitness is desirable to establish diver readiness. We would not, however, refer to this as a "medical examination" since it is likely that it will largely be dive professionals and not clinicians that conduct the evaluations. PMID:25311329

Pollock, Neal W; Buzzacott, Peter



Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common  

PubMed Central

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694



Therapeutic aspects of aerobic dance participation  

Microsoft Academic Search

An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind?body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants’ experiences are reported to illustrate how cognitive experience and self?esteem may be influenced. Interviews revealed that some participants achieved a

Marjorie Estivill



Aerobic Dancing--A Rhythmic Sport.  

ERIC Educational Resources Information Center

Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

Sorensen, Jacki


Aerobic Fitness for the Moderately Retarded.  

ERIC Educational Resources Information Center

Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

Bauer, Dan



Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?  

PubMed Central

Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374



Isolation and characterization of medically important aerobic actinomycetes in soil of iran (2006 - 2007).  


The aerobic actinomycetes are a large group of soil-inhabiting bacteria that occur worldwide. Some of them are the main cause of two important diseases, nocardiosis and actinomycetoma. To identify the prevalence and geographic distribution of aerobic actinomycetes in soil of Qazvin province, a study was carried out during 2006-2007. In this study, the incidence and diversity of medically important aerobic actinomycetes was determined in 300 soil samples of different parts of Qazvin. The suspensions of superficial soil samples were prepared by adding of normal saline, streptomycin and chloramphenicol and the supernatants were cultured on brain-heart infusion agar and Sabouraud's dextrose agar contain cycloheximide. The isolated microorganisms were examined by Gram and acid-fast stains and were identified biochemically and morphologically. Of 96 aerobic actinomycetes isolates identified, Actinomadura madurae and Streptomyces somaliensis were the most frequently isolated species each representing 19.8% of isolates, followed by Nocardia asteroides (15.6%), N. otitidiscaviarum (9.4%), N. brasiliensis (7.3%), A. peletieri, S. griseus, and Nocardia spp. (each 5.2%), and N. transvalensis, Nocardiopsis dassonvillei, Actinomadura spp. and Streptomyces spp. (each 3.1%). To the best of our knowledge, this is the first report on epidemiological investigation of medically important aerobic actinomycetes in soil samples from Iran. In recent years, mycetoma and nocardiosis have been increasingly reported in Iran. The results showed that medically important actinomycetes occur in the environment of Iran and soil could be potential source of actinomycotic infections. PMID:19440253

Aghamirian, Mohammad Reza; Ghiasian, Seyed Amir



Effect of aerobic and anaerobic growth on the cell wall of Staphylococcus aureus  

Microsoft Academic Search

Electron micrographs ofStaphylococcus aureus 7167 which had been grown anaerobically showed that the cell wall was approximately 5 times thicker than the wall of bacteria after aerobic growth. Cell walls prepared from anaerobically grownS. aureus were more sensitive to the bacteriolytic enzymes: lysostaphin, lysozyme, and the wall-associated autolytic enzyme ofB. subtilis 168 I?. Our findings are interpreted as evidence that

T. C. O'Brien; E. R. Kennedy



Petroleum degradation by aerobic microbiota from the Pampo Sul Oil Field, Campos Basin, Brazil  

Microsoft Academic Search

Aerobic degradation of a crude oil (sample P1), collected from a deep water reservoir from the Pampo Sul Field (Campos Basin, RJ) at 82°C and 2405–2588m, by indigenous bacteria in the oil and formation water was monitored for 60 days. Degradation parameters, measured using gas chromatography–mass spectrometry (GC–MS) of the crude oil degraded in the laboratory for periods of 0,

Georgiana F. da Cruz; Eugênio V. dos Santos Neto; Anita J. Marsaioli



Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production  

Microsoft Academic Search

Unsaturated fatty acids (UFAs) play a pivotal role in maintaining a functional cellular membrane in response to changes in\\u000a environmental factors. Unlike in other gram-negative bacteria, in Pseudomonas aeruginosa, UFA synthesis is governed by 2 pathways: (1) the anaerobic FabAB-mediated pathway and (2) the aerobic inducible DesA\\/DesB\\u000a desaturase pathway. Although fatty acids are functional constituents of several known virulence factors,

Herbert P. Schweizer; Kyoung-Hee Choi



In Vitro Activity of Ceftobiprole against Aerobic and Anaerobic Strains Isolated from Diabetic Foot Infections  

Microsoft Academic Search

Against 443 aerobic and anaerobic bacteria isolated from diabetic foot infections, ceftobiprole MICs (g\\/ml) at which 90% of the isolates tested were inhibited were as follows: methicillin-resistant Staphylococcus aureus, 1; methicillin-susceptible S. aureus and Staphylococcus lugdunensis, 0.5; Anaerococcus prevotii, 0.125; Finegoldia magna, 0.5; Peptoniphilus asaccharolyticus ,1 ;Peptostreptococcus anaerobius ,4 ;Escherichia coli and Enterobacter species, 0.125; Klebsiella species, 2; and Pseudomonas

Ellie J. C. Goldstein; Diane M. Citron; C. Vreni Merriam; Yumi A. Warren; Kerin L. Tyrrell; Helen T. Fernandez



High rate aerobic treatment of brewery wastewater using the jet loop reactor  

Microsoft Academic Search

An aerobic Jet Loop Reactor (JLR) activated sludge process of 541. volume was used to investigate its suitability for the treatment of industrial wastewaters, specifically brewery wastewater. A loading rate of 50 kg COD\\/m3·d was achieved with 97% COD removal for a period of 5 weeks and although the settleability was found to be acceptable non-flocculating motile bacteria caused the

James C. Bloor; G. K. Anderson; A. R. Willey



Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date  

PubMed Central

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell–cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene—a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed. PMID:22798451

Zhaxybayeva, Olga; Swithers, Kristen S.; Foght, Julia; Green, Anna G.; Bruce, David; Detter, Chris; Han, Shunsheng; Teshima, Hazuki; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Ivanova, Natalia; Pati, Amrita; Land, Miriam L.; Dlutek, Marlena; Doolittle, W. Ford; Noll, Kenneth M.; Nesbø, Camilla L.



Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.  


We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health. PMID:25380369

Nowakiewicz, Aneta; Zió?kowska, Gra?yna; Zi?ba, Przemys?aw; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna



The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, western Siberia, and Vietnam  

Microsoft Academic Search

Eleven strains of hydrocarbon-oxidizing bacteria, isolated from oilfields and representing the genera Rhodococcus, Gordonia, Dietzia, and Pseudomonas, were characterized as mesophiles and neutrophiles. Rhodococci were halotolerant microorganisms growing in a media containing\\u000a up to 15% NaCl. All the strains oxidized n-alkanes of crude oil. An influence of the cultivation temperatures (28 or 45C) and organic supplements on the degradation\\u000a of

I. A. Borzenkov; E. I. Milekhina; M. T. Gotoeva; E. P. Rozanova; S. S. Belyaev



Prevalence of toxicogenic bacteria in some foods and detection of Bacillus cereus and Staphylococcus aureus enterotoxin genes using multiplex PCR  

Microsoft Academic Search

Thirty-three food samples representing seven different food products were collected from the market in Sharkia Governorate\\u000a (Egypt) and analyzed for their bacterial burden, including total mesophilic bacteria, spore formers, Staphylococcus aureus, and Bacillus cereus, using specific and selective nutrient media. The identified strains were screened for their virulence factors using the\\u000a agar diffusion method. B. cereus strains CH, GT1, LB3,

Mohamed A. Abdou; Nadia Mohammed Awny; Azza Abl-Elaziz M. Abozeid


Seven N-terminal Residues of a Thermophilic Xylanase Are Sufficient to Confer Hyperthermostability on Its Mesophilic Counterpart  

PubMed Central

Xylanases, and especially thermostable xylanases, are increasingly of interest for the deconstruction of lignocellulosic biomass. In this paper, the termini of a pair of xylanases, mesophilic SoxB and thermophilic TfxA, were studied. Two regions in the N-terminus of TfxA were discovered to be potentially important for the thermostability. By focusing on Region 4, it was demonstrated that only two mutations, N32G and S33P cooperated to improve the thermostability of mesophilic SoxB. By introducing two potential regions into SoxB in combination, the most thermostable mutant, M2-N32G-S33P, was obtained. The M2-N32G-S33P had a melting temperature (Tm) that was 25.6°C higher than the Tm of SoxB. Moreover, M2-N32G-S33P was even three-fold more stable than TfxA and had a Tm value that was 9°C higher than the Tm of TfxA. Thus, for the first time, the mesophilic SoxB “pupil” outperformed its thermophilic TfxA “master” and acquired hyperthermostability simply by introducing seven thermostabilizing residues from the extreme N-terminus of TfxA. This work suggested that mutations in the extreme N-terminus were sufficient for the mesophilic xylanase SoxB to acquire hyperthermostability. PMID:24498158

Zhang, Shan; He, Yongzhi; Yu, Haiying; Dong, Zhiyang



A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants  

Microsoft Academic Search

Background: The ability to design thermostable proteins is theoretically important and practically useful. Robust and accurate algorithms, however, remain elusive. One critical problem is the lack of reliable methods to estimate the relative thermostability of possible mutants. Results: We report a novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting the relative thermostability of protein mutants.

Yunqi Li; C. Russell Middaugh; Jianwen Fang



Comparative genomics of the mesophilic cellulosome?producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing  

Microsoft Academic Search

Clostridium cellulovorans is an anaerobic, mesophilic bacterium that efficiently degrades native substrates in soft biomass such as corn fibre and rice straw by producing an extracellular enzyme complex called the cellulosomes. By examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Recently, we reported

Yutaka Tamaru; Hideo Miyake; Kouichi Kuroda; Mitsuyoshi Ueda; Roy H. Doi



Seven N-terminal residues of a thermophilic xylanase are sufficient to confer hyperthermostability on its mesophilic counterpart.  


Xylanases, and especially thermostable xylanases, are increasingly of interest for the deconstruction of lignocellulosic biomass. In this paper, the termini of a pair of xylanases, mesophilic SoxB and thermophilic TfxA, were studied. Two regions in the N-terminus of TfxA were discovered to be potentially important for the thermostability. By focusing on Region 4, it was demonstrated that only two mutations, N32G and S33P cooperated to improve the thermostability of mesophilic SoxB. By introducing two potential regions into SoxB in combination, the most thermostable mutant, M2-N32G-S33P, was obtained. The M2-N32G-S33P had a melting temperature (Tm) that was 25.6°C higher than the Tm of SoxB. Moreover, M2-N32G-S33P was even three-fold more stable than TfxA and had a Tm value that was 9°C higher than the Tm of TfxA. Thus, for the first time, the mesophilic SoxB "pupil" outperformed its thermophilic TfxA "master" and acquired hyperthermostability simply by introducing seven thermostabilizing residues from the extreme N-terminus of TfxA. This work suggested that mutations in the extreme N-terminus were sufficient for the mesophilic xylanase SoxB to acquire hyperthermostability. PMID:24498158

Zhang, Shan; He, Yongzhi; Yu, Haiying; Dong, Zhiyang



Mesophilic and Thermophilic Conditions Select for Unique but Highly Parallel Microbial Communities to Perform Carboxylate Platform Biomass Conversion  

Microsoft Academic Search

The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic

Emily B. Hollister; Andrea K. Forrest; Heather H. Wilkinson; Daniel J. Ebbole; Susannah G. Tringe; Stephanie A. Malfatti; Mark T. Holtzapple; Terry J. Gentry



Ethylene Dibromide Mineralization in Soils under Aerobic Conditions  

PubMed Central

1,2-Dibromoethane (EDB), which is a groundwater contaminant in areas where it was once used as a soil fumigant, was shown to be degraded aerobically by microorganisms in two types of surface soils from an EDB-contaminated groundwater discharge area. At initial concentrations of 6 to 8 ?g/liter, EDB was degraded in a few days to near or below the detection limit of 0.02 ?g/liter. At 15 to 18 mg/liter, degradation was slower. Bromide ion release at the higher concentrations was 1.4 ± 0.3 and 2.1 ± 0.2 molar equivalents for the two soils. Experiments with [14C]EDB showed that EDB was converted to approximately equal amounts of CO2 and apparent cellular carbon; only small amounts of added 14C were not attributable to these products or unreacted EDB. These results are encouraging, because they indicate that groundwater bacteria may hasten the removal of EDB from contaminated aerobic groundwater supplies. This report also provides evidence for soil-mediated chemical transformations of EDB. PMID:16347020

Pignatello, Joseph J.



Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1.  


Using Bacillus stearothermophilus AB-1 isolated from air, the production of lipase was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, xylose, tryptophan, alanine, phenylalanine and potassium nitrate were found to be the best. During cultivation, the strain secreted most of its lipase content after 48 h. In particular, the lipase produced in the culture broth showed 300 U mL(-1) when cultivated at optimal temperature and pH of 35 degrees C and 7.5, respectively. The enzyme was purified using 60% ammonium sulfate precipitation and sephadex G200 column chromatography. The enzyme was stable up to 40 degrees C and in the range of pH 7-8. This research reports for the first time the characterization of mesophilic lipase from Bacillus stearothermophilus AB-1 isolated from air. PMID:18819547

Abada, Emad Abd El-Moniem



Evaluation of the anaerobic co-digestion of sewage sludge and tomato waste at mesophilic temperature.  


Sewage sludge is a hazardous waste, which must be managed adequately. Mesophilic anaerobic digestion is a widely employed treatment for sewage sludge involving several disadvantages such as low methane yield, poor biodegradability, and nutrient imbalance. Tomato waste was proposed as an easily biodegradable co-substrate to increase the viability of the process in a centralized system. The mixture proportion of sewage sludge and tomato waste evaluated was 95:5 (wet weight), respectively. The stability was maintained within correct parameters in an organic loading rate from 0.4 to 2.2 kg total volatile solids (VS)/m(3) day. Moreover, the methane yield coefficient was 159 l/kg VS (0 °C, 1 atm), and the studied mixture showed a high anaerobic biodegradability of 95 % (in VS). Although the ammonia concentration increased until 1,864 ± 23 mg/l, no inhibition phenomenon was determined in the stability variables, methane yield, or kinetics parameters studied. PMID:24682875

Belhadj, Siham; Joute, Yassine; El Bari, Hassan; Serrano, Antonio; Gil, Aida; Siles, José A; Chica, Arturo F; Martín, M Angeles



Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.  


Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon. PMID:24645472

Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan



Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.  


Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz



In silico approach to study adaptive divergence in nucleotide composition of the 16S rRNA gene among bacteria thriving under different temperature regimes.  


Bacteria exist in a wide range of habitats ranging from psychrophilic through mesophilic to thermophilic. These different habitats have distinct environmental restriction for their existence. These microorganisms evolve themselves to survive in a specific habitat through the phenotypic and genotypic changes. In the bacterial domain, in silico analysis of 16S rRNA gene sequences using Mega 5.2 software by computing nucleotide composition, and evaluating their significance by statistical analysis using analysis of variance through Statistical Package for the Social Sciences (SPSS) version 16.0, revealed the habitat-specific bias in the occurrence of four types of nucleosides (A, T, C, and G) in the 16S rRNA gene. This hypothesis is also supported by Duncan's multiple range significance test at p=0.05 and also by the clustering of bacterial species of the same habitat group in the neighbor-joining tree of 150 different bacterial species of different psychrophilic, mesophilic, and thermophilic habitats (50 from each). The results on the probability of substitution (transition and transversion) in 16S rRNA gene sequences suggest that there is a habitat-specific selection pressure that possibly happens at the level of replication and repair process that results in a decreasing frequency of occurrence of adenine and thymine in the order psychrophilic>mesophilic>thermophilic species, and in an increasing frequency of occurrence of cytosine and guanine in the order psychrophilic<mesophilicbacteria. PMID:25147925

Ram, Hari; Kumar, Alok; Thomas, Lebin; Singh, Ved Pal



Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.  


This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors. PMID:24326212

Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang



Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau.  


Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) bacteria can play an important role in mitigating the methane emission produced in anoxic sediment layers to the atmosphere. However, the environmental factors regulating the distribution of these methane-oxidizing microorganisms in lacustrine ecosystems remain essentially unclear. The present study investigated the distribution of aerobic MOB and n-damo bacteria in sediments of various freshwater lakes on the Yunnan Plateau (China). Quantitative PCR assay and clone library analysis illustrated the spatial variations in the abundances and structures of aerobic MOB and n-damo bacterial communities. Type I MOB (Methylosoma and Methylobacter) and type II MOB (Methylocystis) were detected, while type I MOB was more abundant than type II MOB. Lake sediments n-damo bacterial communities were composed of novel Methylomirabilis oxyfera-like pmoA genes. Lake sediments in the same geographic region could share a relatively similar aerobic MOB community structure. Moreover, Pearson's correlation analysis indicated that n-damo pmoA gene diversity showed a positive correlation with the ratio of organic matter to total nitrogen in lake sediment. PMID:25698510

Liu, Yong; Zhang, Jingxu; Zhao, Lei; Li, Yuzhao; Yang, Yuyin; Xie, Shuguang



Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.  


Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

Gobi, K; Vadivelu, V M



Influence of aerobic exercise on depression  

Microsoft Academic Search

43 depressed undergraduate women were randomly assigned to either an aerobic exercise treatment condition in which they participated in strenuous exercise, a placebo treatment condition in which they practiced relaxation exercises, or a no-treatment condition. Aerobic capacity was assessed before and after a 10-wk treatment period. Self-reported depression was assessed before, during, and after the treatment period. Results show that

I. Lisa McCann; David S. Holmes



Aerobic endurance training improves soccer performance  

Microsoft Academic Search

HELGERUD, J., L. C. ENGEN, U. WISLØFF, and J. HOFF. Aerobic endurance training improves soccer performance.Med. Sci. Sports Exerc., Vol. 33, No. 11, 2001, pp. 1925-1931. Purpose: The aim of the present study was to study the effects of aerobic training on performance during soccer match and soccer specific tests. Methods: Nineteen male elite junior soccer players, age 18.1 0.8




Modelling of the acid base properties of two thermophilic bacteria at different growth times  

NASA Astrophysics Data System (ADS)

Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.



Nitrate?reducing and ammonium?oxidizing bacteria in the vadose zone of the chalk aquifer of England  

Microsoft Academic Search

The vadose zone of the Chalk aquifer from two sites of different land use was found to contain large numbers of nitrate?reducing and ammonium?oxidizing bacteria. Relationships between the type of bacteria and nitrogen compounds produced showed that denitrification was occurring beneath the permanent grassland site, whereas the vadose zone beneath the fertilized arable site was essentially aerobic and little attenuation

K. Whitelaw; J. F. Rees



The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer\\  

Microsoft Academic Search

Epidemiological evidence is presented to relate the amount of dietary meat to the risk of large bowel cancer; it has been suggested that this may be due to the production of cocarcino- genic volatile phenols by intestinal bacteria from tyrosine. This paper describes preliminary experi- ments to test this suggestion. In vitro, aerobic bacteria tended to produce phenol from tyrosine

Elizabeth Bone; Agu Tamm; Michael Hill


Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).  


Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (?(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. PMID:23026327

Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim



Anaerobic utilization of aromatic carboxylates by bacteria  

SciTech Connect

Very large quantities of compounds containing aromatic nuclei are produced annually from natural and industrial sources. A substantial portion of these materials accumulates in anaerobic environments, and since some of these are known or potential carcinogens, there has been growing interest in understanding how aromatics are degraded in the absence of molecular oxygen, an essential substrate in the aerobic catabolism of benzene rings. The microbiology and biochemistry involved in the degradation of natural products, mostly those derived from lignin, is considered in this chapter, with special emphasis on the role and contribution of studies with phototrophic bacteria to current understanding of these processes.

Gibson, J.; Harwood, C.S.



Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.  


A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a ?-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit. PMID:21236663

Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong



Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.  

ERIC Educational Resources Information Center

The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

Idaho Univ., Moscow.


Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.  


Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms. PMID:20922382

Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong



Evaluation of performance in a combined UASB and aerobic contact oxidation process treating acrylic wastewater.  


The lab-scale and full-scale performance of a combined mesophilic up-flow anaerobic sludge blanket (UASB) and aerobic contact oxidation (ACO) process for treating acrylic wastewater was studied. During lab-scale experiment, the overwhelmed volumetric load for UASB was above 6?kg chemical oxygen demand (COD) ·(m(-3)·d(-1)) since COD removal efficiency dropped dramatically from 73% at 6?kg COD·(m(-3)·d(-1)) to 61% at 7?kg COD·(m(-3)·d(-1)) and 53% at 8?kg COD·(m(-3)·d(-1)). Further results showed that an up-flow fluid velocity of 0.5?m?h(-1) for UASB obtained a highest COD removal efficiency of 75%, and the optimum COD volumetric load for the corresponding ACO was 1.00?kg COD·(m(-3)·d(-1)). Based on the configuration of the lab-scale experiment, a full-scale application with an acrylic wastewater treatment capacity of 8?m(3)?h(-1) was constructed and operated at a volumetric load of 5.5?kg COD·(m(-3)·d(-1)), an up-flow fluid velocity of 0.5?m?h(-1) for UASB and a volumetric load of 0.9?kg COD·(m(-3)·d(-1)) for ACO; and the final effluent COD was around 740?mg?L(-1). The results suggest that a combined UASB-ACO process is promising for treating acrylic wastewater. PMID:25204720

Li, Anfeng; Dong, Na; He, Manni; Pan, Tao



Occurrence and reactivation of viable but non-culturable E. coli in sewage sludge after mesophilic and thermophilic anaerobic digestion.  


The occurrence and reactivation of viable but non-culturable (VBNC) Escherichia coli after different anaerobic digestions and the subsequent dewatering and storage were evaluated and compared. Culturable E. coli in digested sludge increased by two to four orders of magnitudes immediately after dewatering. However, counts of both the total and viable E. coli indicated that the increase of E. coli was attributed to its reactivation from the VBNC state to the culturable state. The VBNC pathogen incidences of thermophilic digestion were two to three orders of magnitude higher than those of mesophilic digestion. Accordingly, culturable E. coli in thermophilic, digested sludge after storage were one order of magnitude higher than mesophilic digestion. Anaerobic digestion thus mainly alters the culturable state of pathogens rather than killing them; therefore the biological safety of digested sludge, especially temperature-phased anaerobic digestion, should be carefully assessed. PMID:24101245

Fu, Bo; Jiang, Qian; Liu, Hongbo; Liu, He



Electron microscopy of the K2 killer effect of Saccharomyces cerevisiae T206 on a mesophilic wine yeast  

Microsoft Academic Search

A mesophilic wine yeast, Saccharomyces cerevisiae CSIR Y217 K-R- was subjected to the K2 killer effect of Saccharomyces cerevisiae T206 K+R+ in a liquid grape medium. The lethal effect of the K2 mycoviral toxin was confirmed by methylene blue staining. Scanning electron microscopy of cells from challenge experiments revealed rippled cell surfaces, accompanied by cracks and pores, while those unaffected

A. S. Vadasz; D. B. Jagganath; I. S. Pretorius; A. S. Gupthar



Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling  

Microsoft Academic Search

Summary Mesophilic crenarchaeota are frequently found in ter- restrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43 kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b

Alexander H. Treusch; Sven Leininger; Arnulf Kletzin; Stephan C. Schuster; Christa Schleper



Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.  


Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers. PMID:16153731

Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A



Magnetic bacteria against MIC  

SciTech Connect

In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

Javaherdashti, R. [I.D.R.O.-IR, Tehran (Iran, Islamic Republic of)



Back To Bacteria.  

ERIC Educational Resources Information Center

Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

Flannery, Maura C.



Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.  


Clostridium cellulovorans is an anaerobic, mesophilic bacterium that efficiently degrades native substrates in soft biomass such as corn fibre and rice straw by producing an extracellular enzyme complex called the cellulosomes. By examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Recently, we reported the whole genome sequence of C. cellulovorans. A total of 57 cellulosomal genes were found in the C. cellulovorans genome and coded for not only carbohydrate-active enzymes but also lipase, peptidase and proteinase inhibitors, in addition to two novel genes encoding scaffolding proteins CbpB and CbpC. Interestingly, the genome size of C. cellulovorans was about 1 Mbp larger than that of other cellulosome-producing clostridia: mesophilic C. cellulolyticum and thermophilic C. thermocellum. Since the C. cellulovorans genome included not only cellulosomal genes but also a large number of genes encoding non-cellulosomal enzymes, the genome expansion of C. cellulovorans included genes more related to degradation of polysaccharides, such as hemicelluloses and pectins, than to cellulose. In this review, we propose a strategy for industrial applications such as biofuel production using enhanced mesophilic cellulosome- and solvent-producing clostridia. PMID:20662379

Tamaru, Yutaka; Miyake, Hideo; Kuroda, Kouichi; Ueda, Mitsuyoshi; Doi, Roy H



Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass.  


Switchgrass is an attractive feedstock for biogas production via anaerobic digestion (AD). Many studies have used switchgrass for liquid anaerobic digestion (L-AD), but few have used switchgrass for solid-state anaerobic digestion (SS-AD). Limited air exposure to the reactor headspace has been adopted in commercial scale anaerobic digesters for different applications. However, little research has examined the effect of limited air exposure on biogas production during SS-AD. In this study, the effects of air exposure and total solids (TS) content on SS-AD performance were evaluated under mesophilic (36±1°C) and thermophilic (55±0.3°C) conditions. Limited air exposure did not significantly influence the methane yield during SS-AD. Thermophilic SS-AD had greater methane yields (102-145LCH4kg(-1)VSadded) than mesophilic SS-AD (88-113LCH4kg(-1)VSadded). Both mesophilic SS-AD (73-136GJ) and thermophilic SS-AD (2-95GJ) produced positive net energy based on a theoretical 'garage-type' SS-AD digester operating in a temperate climate. PMID:25618499

Sheets, Johnathon P; Ge, Xumeng; Li, Yebo



Dispersal of non-sporeforming anaerobic bacteria from the skin.  


Dispersal of non-sporeforming anaerobic bacteria was studied. Skin samples were taken from the subjects, and dispersed from different parts of the body was examined. The number of anaerobic bacteria dispersed was not correlated to their density on the surface of skin area exposed. The highest density of anaerobic bacteria on the skin was found in the face and upper trunk, but the highest yield of anaerobic bacteria dispersed came from the lower trunk. The dominant anaerobic bacteria dispersed were Propionibacterium acnes, but Propionibacterium avidum, Propionibacterium granulosum and Gram-positive cocci were also isolated from the dispersal samples. Peptococcus magnus was the most common coccus isolated. For the less frequently isolated bacteria, the best correlation was found between the perineal flora and airborne bacteria. A comparison was also made of bacterial dispersal by naked and dressed subjects. The dispersal of both aerobic and anaerobic bacteria was higher when the subjects were dressed in conventional operating theatre cotton clothing than when they were naked. The increased dispersal of anaerobic bacteria when the subjects were dressed was mainly due to increased dispersal of Propionibacterium sp. PMID:6806353

Benediktsdóttir, E; Hambraeus, A



New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verification.  


This paper presents a new mathematical model developed to reproduce the performance of a generic sludge digester working either under aerobic or anaerobic operational conditions. The digester has been modelled as two completely mixed tanks associated with gaseous and liquid volumes. The conversion model has been developed based on a plant wide modelling methodology (PWM) and comprises biochemical transformations, physicochemical reactions and thermodynamic considerations. The model predicts the reactor temperature and the temporary evolution of an extensive vector of model components which are completely defined in terms of elemental mass fractions (C, H, O, N and P) and charge density. Thus, the comprehensive definition of the model components guarantees the continuity of elemental mass and charge in all the model transformations and between any two systems defined by the model. The aim of the generic digester model is to overcome the problems that arise when trying to connect aerobic and anaerobic digestion processes working in series or to connect water and sludge lines in a WWTP. The modelling methodology used has allowed the systematic construction of the biochemical model which acts as an initial illustrative example of an application that has been experimentally verified. The variation of the temperature is also predicted based on a thermal dynamic model. Real data from four different facilities and a straightforward calibration have been used to successfully verify the model predictions in the cases of mesophilic and thermophilic anaerobic digestion as well as autothermal thermophilic aerobic digestion (ATAD). The large amount of data from the full scale ATAD and the anaerobic digestion pilot plants, all of them working under different conditions, has allowed the validation of the model for that case study. PMID:19720390

de Gracia, M; Grau, P; Huete, E; Gómez, J; García-Heras, J L; Ayesa, E



Bacteria that masquerade as fungi: actinomycosis/nocardia.  


The order Actinomycetales includes phylogenetically diverse but morphologically similar aerobic and anaerobic bacteria that exhibit filamentous branching structures which fragment into bacillary or coccoid forms. The aerobic actinomyces are a large, diverse group of gram-positive bacteria including Nocardia, Gordona, Tsukamurella, Streptomyces, Rhodococcus, Streptomycetes, Mycobacteria, and Corynebacteria. The anaerobic genera of medical importance include Actinomyces, Arachnia, Rothia, and Bifidobacterium. Both Actinomyces and Nocardia cause similar clinical syndromes involving the lung, bone and joint, soft tissue, and the central nervous system. The medically important Actinomyces organisms cause infections characterized by chronic progression, abscess formation with fistulous tracts and draining sinuses. Called "great masqueraders," diagnosis of actinomycosis and nocardiosis is often delayed. Once recognized, treatment of these infections requires long courses of parenteral and oral therapy. This review will compare and contrast infections due to Actinomyces and Nocardia. PMID:20463251

Sullivan, Donna C; Chapman, Stanley W



Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology.  


Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. PMID:21481437

Dolan, T; Cook, M B; Angus, A J



Halomonas sp. nov., an EPA-producing mesophilic marine isolate from the Indian Ocean.  


Marine samples from the Indian Ocean were used to isolate and characterize the organisms with respect to their fatty acid profiles. Six mesophilic isolates (MBRI 6, MBRI 8, MBRI 9, MBRI 10, MBRI 12 and MBRI 13) were obtained from three different water samples. They were i) Gram-negative, ii) catalase positive, iii) produced acid from glucose and maltose, iv) tolerated 5 to 15% NaCI v) except MBRI 9, showed pH tolerance in the range of 5.0 to 9.0 with optimum pH 7.0 to 8.0 v) grew well at 30 degrees C and were able to grow in the range of 15 to 45 degrees C. EPA, an essential omega-3 fatty acid, was produced by these isolates in the range of 12 to 60% at 30 degrees C. MBRI 12 was found to be a potential source as it produced 60% EPA. This isolate was further identified by partial 16S rDNA sequencing and phylogenetic analysis revealed that the strain belonged to Gammaproteobacteria and was closely related to Halomonas bolviensis (96% sequence similarity, 570 bp). Thus a new genus of Halomonas may be included in earlier reported EPA- producing prokaryotic genera affiliated to the Gammaproteobacteria. PMID:21630577

Salunkhe, Dipti; Tiwari, Neha; Walujkar, Sandeep; Bhadekar, Rama



The Sulfur Oxygenase Reductase from the Mesophilic Bacterium Halothiobacillus neapolitanus Is a Highly Active Thermozyme  

PubMed Central

A biochemical, biophysical, and phylogenetic study of the sulfur oxygenase reductase (SOR) from the mesophilic gammaproteobacterium Halothiobacillus neapolitanus (HnSOR) was performed in order to determine the structural and biochemical properties of the enzyme. SOR proteins from 14 predominantly chemolithoautotrophic bacterial and archaeal species are currently available in public databases. Sequence alignment and phylogenetic analysis showed that they form a coherent protein family. The HnSOR purified from Escherichia coli after heterologous gene expression had a temperature range of activity of 10 to 99°C with an optimum at 80°C (42 U/mg protein). Sulfite, thiosulfate, and hydrogen sulfide were formed at various stoichiometries in a range between pH 5.4 and 11 (optimum pH 8.4). Circular dichroism (CD) spectroscopy and dynamic light scattering showed that the HnSOR adopts secondary and quaternary structures similar to those of the 24-subunit enzyme from the hyperthermophile Acidianus ambivalens (AaSOR). The melting point of the HnSOR was ?20°C lower than that of the AaSOR, when analyzed with CD-monitored thermal unfolding. Homology modeling showed that the secondary structure elements of single subunits are conserved. Subtle changes in the pores of the outer shell and increased flexibility might contribute to activity at low temperature. We concluded that the thermostability was the result of a rigid protein core together with the stabilizing effect of the 24-subunit hollow sphere. PMID:22139503

Veith, Andreas; Botelho, Hugo M.; Kindinger, Florian; Gomes, Cláudio M.



Producing high-strength liquor from mesophilic batch acidification of chicken manure.  


This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10?gVS?L(-1) and 20?gVS?L(-1); the pH value remained high (pH?6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10?gVS?L(-1) there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. PMID:25672618

Abendroth, Christian; Wünsche, Erik; Luschnig, Olaf; Bürger, Christoph; Günther, Thomas



Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development  

PubMed Central

Background Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. Results Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. Conclusion We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants. PMID:23587418



Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.  


A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65 %, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30 %. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline. PMID:25384695

Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan



Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions.  


The effects of chitosan addition on treatment of palm oil mill effluent were investigated using two lab-scale upflow anaerobic sludge bed (UASB) reactors: (1) with chitosan addition at the dosage of 2 mg chitosan per g volatile suspended solids on the first day of the operation (R1), (2) without chitosan addition (the control, R2). The reactors were inoculated with mesophilic anaerobic sludge which was acclimatized to a thermophilic condition with a stepwise temperature increase of 5 °C from 37 to 57 °C. The OLR ranged from 2.23 to 9.47 kg COD m(-3) day(-1). The difference in biogas production rate increased from non-significant to 18% different. The effluent volatile suspended solids of R1 was 65 mg l(-1) lower than that of R2 on Day 123. 16S rRNA targeted denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial community indicated that some methanogens in the genus Methanosaeta can be detected in R1 but not in R2. PMID:21316949

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn



Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.  


Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman



Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils  

NASA Astrophysics Data System (ADS)

The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ?70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

Sahin, Nurettin



Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment.  


Effects of single and dual stage (acidogenic-methanogenic) mesophilic anaerobic digestion (AD) of kitchen waste (KW) was evaluated at hydraulic retention times (HRTs) of 20, 15, 12 and 9 d with and without thermal microwave (MW) pretreatment (145 °C). Anaerobic acidification in terms of acid accumulation was superior compared to microaerophilic acidification. Maximum anaerobic acidification of KW was determined to occur with an HRT of 2 d which was then selected for the acidification stage. The dual stage AD system fed with untreated KW produced the maximum biogas and volatile solids (VS) stabilization efficiencies at the shortest HRT of 9 d. Conversely, for free liquid resulting from MW pretreatment of KW the two stage reactor at 20 d HRT produced three fold more methane compared with the untreated free liquid control. However, MW pretreatment and AD of the free liquid fraction only, was not a sustainable treatment option. For KW, staging of the AD process had a greater positive impact on waste stabilization and methane yield compared to single stage reactors or MW pretreatment. KW can be characterized as being a readily biodegradable solid waste; concomitantly it is recommended that digester staging without MW pretreatment be employed to maximize methane yield and production. PMID:23648266

Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin



Disintegration of aerobic granules: role of second messenger cyclic di-GMP.  


Loss of structural stability of aerobic granular process is the challenge for its field applications to treat wastewaters. The second messenger, cyclic diguanylate (c-di-GMP), is widely used by bacteria to regulate the synthesis of exopolysaccharide. This study for the first time confirmed the correlation between concentration of intracellular c-di-GMP and the granular stability under sequencing batch reactor (MBR) mode. In the presence of manganese ions (Mn(2+)), the concentrations of intracellular c-di-GMP and of extracellular polysaccharides and proteins in granules were declined. Clone library study revealed that the polysaccharide producers. Acinetobacter sp., Thauera sp., Bdellovibrio sp. and Paracoccus sp. were lost after Mn(2+) addition. The findings reported herein confirmed that the c-di-GMP is a key chemical factor epistatic to quorum sensing to determine granular stability. Stimulation of synthesis of intracellular c-di-GMP presents a potential way to enhance long-term stability of aerobic granules. PMID:23948271

Wan, Chunli; Zhang, Peng; Lee, Duu-Jong; Yang, Xue; Liu, Xiang; Sun, Supu; Pan, Xiangliang



Comparative study of normal and sensitive skin aerobic bacterial populations.  


The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J



Comparative study of normal and sensitive skin aerobic bacterial populations  

PubMed Central

The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J



Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside  

Microsoft Academic Search

Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these

Thomas Clavel; Ramona Lippman; Françoise Gavini; Joël Doré; Michael Blaut



Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions  

NASA Astrophysics Data System (ADS)

Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental parameters acted to generally increase the inhibitory nature of the low-pressure conditions on growth and replication of the seven Bacillus spp. tested.

Schuerger, Andrew C.; Nicholson, Wayne L.



Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil?†  

PubMed Central

Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [13C]bicarbonate assimilation assay showed stoichiometric incorporation of 13C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to “Candidatus Nitrosopumilus maritimus” revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N2O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated “Candidatus Nitrosoarchaeum koreensis.” PMID:22003023

Jung, Man-Young; Park, Soo-Je; Min, Deullae; Kim, Jin-Seog; Rijpstra, W. Irene C.; Sinninghe Damsté, Jaap S.; Kim, Geun-Joong; Madsen, Eugene L.; Rhee, Sung-Keun



Enjoyment perception during exercise with aerobic machines.  


This study investigated enjoyment and naturalness of movement perceived during short bouts of exercise with three aerobic machines: treadmill, elliptical crosstrainer, and Vario. The participants were 72 experienced and 60 inexperienced users. Immediately after the exercise with each machine, they filled in a 12-item form of the Physical Activity Enjoyment Scale (PACES) and a Visual Analogue Scales (VAS) about naturalness of movement. Results showed significant within-subjects differences on all scales; exercise with the treadmill and Vario were perceived to be similarly enjoyable and more enjoyable and natural in comparison with the elliptical crosstrainer. Differences in naturalness ratings between experienced and inexperienced users were observed. Exercise was not equally enjoyable when performed with different aerobic machines, and this should be considered by professionals when prescribing aerobic training to enhance motivation and adherence. PMID:25153745

Carraro, Attilio; Gobbi, Erica; Ferri, Ilaria; Benvenuti, Paolo; Zanuso, Silvano



[Phylogenetic analysis of bacteria of extreme ecosystems].  


Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses. PMID:25007437

Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A



Anaerobic degradation of hydroaromatic compounds by newly isolated fermenting bacteria  

Microsoft Academic Search

Aerobic organisms degrade hydroaromatic compounds via the hydroaromatic pathway yielding protocatechuic acid which is further metabolized by oxygenase-mediated ring fission in the 3-oxoadipate pathway. No information exists on anaerobic degradation of hydroaromatics so far. We enriched and isolated from various sources of anoxic sediments several strains of rapidly growing gram-negative bacteria fermenting quinic (1,3,4,5-tetrahydroxy-cyclohexane-1-carboxylic acid) and shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid)

Andreas Brune; Berhard Schink



alk B homologs in thermophilic bacteria of the genus Geobacillus  

Microsoft Academic Search

Screening for alkane hydroxylase genes (alkB) was performed in thermophilic aerobic bacteria of the genus Geobacillus. Total DNAs were isolated from the biomass of 11 strains grown on a mixture of saturated C10–C20 hydrocarbons. Fragments of alkB genes were amplified by PCR with degenerate oligonucleotide primers, and the PCR products were cloned and sequenced. For\\u000a the first time, a set

T. P. Tourova; T. N. Nazina; E. M. Mikhailova; T. A. Rodionova; A. N. Ekimov; A. V. Mashukova; A. B. Poltaraus



Aerobic degradation of phthalic acid by Comamonas acidovoran Fy1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations  

Microsoft Academic Search

Microbial degradation of phthalic acid (PA) and dimethyl phthalate ester (DMPE) under aerobic conditions was investigated using a pure species of bacteria and two consortia from sewage sludge. Five morphologically distinct microorganisms were obtained in pure culture and identified, and tested for the capability of degrading phthalate and DMPE. Comamonas acidovorans strain Fy-1 showed the highest ability to degrade high

Yingying Wang; Yanzhen Fan; Ji-Dong Gu



Aerobic stability and in vitro fiber digestibility of microbially inoculated corn and sorghum silages.  


Silage deteriorates readily when exposed to air, resulting in DM losses. Inoculation of silage with lactic acid bacteria may aid fermentation, but effects on aerobic stability are unclear. Two experiments were conducted to determine the effect of commercial bacterial inoculants on aerobic stability and in vitro fiber digestibility of silage. Corn (Zea mays L.; Exp. 1) or sorghum (Sorghum bicolor [L.] Moench; Exp. 2) forage (30% DM) was inoculated (1.1 x 10(5) colony forming units/g of fresh forage) with lactic acid bacteria (Pioneer brand 1174 on corn, Pioneer brand 1129 on sorghum) or bacterial inoculant plus an antifungal agent (potassium sorbate at .5 mg/g of fresh forage) and ensiled in 19-L microsilos. Corn was ensiled for 40 or 186 d and sorghum was ensiled for 30 or 160 d (five microsilos per treatment per ensiling time combination). Silages were exposed to air for 7 to 9 d after opening, and temperature was monitored daily. Water-soluble carbohydrates, pH, NDF, ADF, and in vitro digestibility of NDF and ADF were determined before and after ensiling and on exposed silages. Inoculation reduced (P < .05) silage pH in both corn and sorghum but did not prevent aerobic deterioration of the silages. Temperatures during aerobic exposure of silages did not differ (P > .05) between uninoculated and inoculated silages. Inoculant treatment did not affect (P > .05) concentrations or digestibility of NDF in corn; however, NDF and ADF concentration and in vitro digestibility of NDF increased (P < .05) with time of ensiling in sorghum silage, and in vitro ADF digestibility increased (P < .05) with time of ensiling in corn silage. PMID:8382675

Sanderson, M A



Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring.  


A strain EG19(T) of aerobic bacteria able to form pleomorphic cells was isolated from a brine spring runoff stream in the west central region of the province of Manitoba, Canada. The pale pinkish purple strain contained bacteriochlorophyll a incorporated into light-harvesting I and reaction center complexes. Its inability to grow under anaerobic illuminated conditions prompted designation as a member of the functional group known as aerobic anoxygenic phototrophic bacteria. Phylogenetic analysis of the 16S rRNA gene sequence revealed that it belonged to the Gammaproteobacteria, forming a distinct branch of phototrophs distantly related to most described aerobic anoxygenic phototrophs, quite marginally related (95.6%) both to the only other described gammaproteobacterial aerobic phototroph, Congregibacter litoralis, and also to nonphototrophs in the genus Haliea (95.1-96.1%). Physiological tests demonstrated tolerance profiles to salinity (0-18% NaCl), pH (7-12), and temperature (7-40°C) consistent with survival in a shallow hypersaline stream on the exposed, vegetation-depleted salt playa of its native East German Creek. Phylogenetic data and phenotypic properties such as pigment composition, morphology, and physiology support the proposal of the novel genus and species Chromocurvus halotolerans gen. nov., sp. nov., with EG19(T) (=DSM 23344(T), =VKM B-2659(T)) as the type strain. PMID:21479531

Csotonyi, J T; Stackebrandt, E; Swiderski, J; Schumann, P; Yurkov, V



Ecophysiological Characteristics of Obligate Methanotrophic Bacteria and Methane Oxidation In Situ  

NASA Technical Reports Server (NTRS)

Most of the obligate methane-oxidizing bacteria (MOB) described to date are neutrophilic mesophiles that grow optimally in dilute media. Kinetic analyses generally indicate that bacterial methane uptake occurs by transport systems with a K(sub m) greater than l micronM. These and other properties of MOB are inconsistent with characteristics of methane oxidation in situ. The inconsistencies indicate a need for greater attention to the ecophysiological characteristics of isolates and the design of enrichment and isolation schemes which emphasize ecologically relevant parameters (e.g., low temperature, limited and diverse substrate availability, low water potential).

King, Gary M.



Peroxide-Sensing Transcriptional Regulators in Bacteria  

PubMed Central

The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H2O2, while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H2O2 via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins. PMID:22797754

Mongkolsuk, Skorn



Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor.  


Sulfur-oxidizing bacteria (SOB) are the main microorganisms that participate in the natural sulfur cycle. To obtain SOB with high sulfur-oxidizing ability under aerobic or anaerobic conditions, aerobic and anaerobic enrichments were carried out. Denaturing gradient gel electrophoresis (DGGE) profiles showed that the microbial community changed according to the thiosulfate utilization during enrichments, and Rhodopseudomonas and Halothiobacillus were the predominant bacteria in anaerobic enrichment and aerobic enrichment, respectively, which mainly contributed to the thiosulfate oxidization in the enrichments. Based on the enriched cultures, six isolates were isolated from the aerobic enrichment and four isolates were obtained from the anaerobic enrichment. Phylogenetic analysis suggested the 16S rRNA gene of isolates belonged to the genus Acinetobacter, Rhodopseudomonas, Pseudomonas, Halothiobacillus, Ochrobactrum, Paracoccus, Thiobacillus, and Alcaligenes, respectively. The tests suggested isolates related to Halothiobacillus and Rhodopseudomonas had the highest thiosulfate oxidizing ability under aerobic or anaerobic conditions, respectively; Paracoccus and Alcaligenes could aerobically and anaerobically oxidize thiosulfate. Based on the DGGE and thiosulfate oxidizing ability analysis, Rhodopseudomonas and Halothiobacillus were found to be the main SOB in the sulfide-removing reactor, and were responsible for the sulfur-oxidizing in the treatment system. PMID:24218852

Luo, Jianfei; Tian, Guoliang; Lin, Weitie



Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.  


The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy. PMID:23361646

Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia



Influence of hydraulic retention time on partial nitrification of continuous-flow aerobic granular-sludge reactor.  


This study investigated the effects of hydraulic retention time (HRT) at 12 h, 7.2 h and 2.4 h on partial nitrification efficiency of continuous-flow aerobic granular reactors (CFAGRs) with mature aerobic granules (500 +/- 20mg l-1). At HRT 12 h and 7.2h, the removal efficiency of both ammonia-nitrogen (NH4+ - N) and nitrite accumulation rate were exceeding 90%. At HRT 2.4 h, NH4+ - N removal efficiency was reduced but most of the conversion efficiency to nitrite was only slightly reduced. At HRT < 2.4 h, washout of aerobic granules occurred. In all tests conducted herein, the chemical oxygen demand removal efficiencies exceeded 90%. The clone library results noted the presence of ammonia-oxidizing bacteria belonged to beta-Proteobacteria subclass, including 94% of Nitrosomonas europaea and 6% of Nitrosomonas sp. The polymerase chain reaction and denaturing gradient gel electrophoresis results suggested that Alpha proteobacterium, Pseudoxanthomonas mexicana strain, Sphaerotilus natans and Uncultured gamma proteobacterium were responsible for the aerobic granular stability and processing performance. The present CFAGR successfully implemented continuous partial nitrification using aerobic granules at low HRT. PMID:24956768

Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Sun, Supu; Liu, Xiang; Zhang, Peng



Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.  


The performance and microbial community of an aerobic granular sequencing batch reactor (GSBR) were investigated at different hexavalent chromium (Cr(VI)) concentrations. The COD and NH4 (+)-N removal efficiencies decreased with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific oxygen utilization rate (SOUR) decreased from 34.86 to 12.18 mg/(g mixed liquor suspended sludge (MLSS)·h) with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) decreased with the increase in Cr(VI) concentration, whereas the SNRR was always higher than the sum of SAOR and SNOR at 0-30 mg/L Cr(VI). The scanning electron micrographs (SEM) showed some undefined particles on the surface of filamentous bacteria that might be the chelation of chromium and macromolecular organics at 30 mg/L Cr(VI). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that some microorganisms adapting to high Cr(VI) concentration gradually became the predominant bacteria, while others without Cr(VI)-tolerance capacity tended to deplete or weaken. Some bacteria could tolerate the toxicity of high Cr(VI) concentration in the aerobic GSBR, such as Propionibacteriaceae bacterium, Ochrobactrum anthropi, and Micropruina glycogenica. PMID:25318421

Wang, Zichao; Gao, Mengchun; She, Zonglian; Jin, Chunji; Zhao, Yangguo; Yang, Shiying; Guo, Liang; Wang, Sen



On-Site Wastewater Treatment Systems: Aerobic Treatment Unit (Spanish)  

E-print Network

Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

Lesikar, Bruce J.; Enciso, Juan




EPA Science Inventory

Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...


Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal  

Microsoft Academic Search

The presence of a glycogen accumulating population and its abilities of substrate uptake and storage in anaerobic-aerobic activated sludge fed with mainly acetate were investigated. Because a low phosphorus\\/carbon feeding ratio (2\\/100, wt\\/wt) was used to suppress the growth of polyphosphate-accumulating bacteria, the sludge exhibited no biological phosphorus removal activity. Still, under anaerobic conditions, acetate, propionate, butyrate, valerate, pyruvate, lactate,

Wen-Tso Liu; Takashi Mino; Kazunori Nakamura; Tomonori Matsuo



Microbial decolorization of reactive black-5 in a two-stage anaerobic–aerobic reactor using acclimatized activated textile sludge  

Microsoft Academic Search

A two-stage anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l?1. The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by

Sagarika Mohanty; Nishant Dafale; Nageswara Neti Rao



The rate of turnover of the adenosine triphosphate pool of Escherichia coli growing aerobically in simple defined media  

Microsoft Academic Search

1.Methods are described for measuring the ATP pool in batch cultures of bacteria and of computing the rate of ATP synthesis from the rates of oxygen consumption and substrate utilisation.2.The ATP pool of Escherichia coli (ML 308) growing aerobically at the expense of a variety of single carbon sources falls within the range 4.5–7.5 µmoles\\/g dry wt of cells. On

W. H. Holms; I. D. Hamilton; A. G. Robertson



The Museum of Bacteria  

NSDL National Science Digital Library

The Museum of Bacteria serves as a clearinghouse of Web links on bacteria and bacteriology and also provides "crystal-clear information about many aspects of bacteria." The Museum of Bacteria is provided by the Foundation of Bacteria, a non-profit organization dedicated to promoting the field of bacteriology. Links are selected for a general audience, although one section is geared toward professionals in the field. Some of the latest features of the Museum are an "exhibit" on the good bacteria found in food and a Student Hall where students can present their own bacteria-related projects.


Effect of temperature on mineralization by heterotrophic bacteria  

SciTech Connect

When pure cultures of the bacteria Pseudomonas fluorescens (a psychrotroph), Escherichia coli (a mesophile), and SRL 261 (a thermophile) were shifted away from temperatures to which they were adapted, the percentage of substrate mineralized increased (percent mineralized = (substrate respired to CO/sub 2/)/(substrate respired to CO/sub 2/ + substrate incorporated into biomass) x 100). The increase in the percent mineralized was larger for larger temperature shifts. Similar responses were observed when natural heterotrophic bacterial populations from sediments of Lake George, N.Y., and a thermophilic algal-bacterial mat community at the Savannah River Plant, Aiken, S.C., were subjected to temperature shifts. These results suggest that an increase in the percent mineralized may be an indication of thermal stress in bacterial populations.

Tison, D.L.; Pope, D.H.



Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India  

Microsoft Academic Search

Antibiotic resistant bacteria from the commercial marine catch of the pelagic fishes in the Bay of Bengal at Digha coast (21°37?N,\\u000a 87°33?E), West Bengal, India were evaluated. Aerobic heterotrophic and gram negative, along with the enteric bacteria were\\u000a enumerated from gill and intestinal homogenates. Media supplemented with the antibiotics were used to evaluate the antibiotic\\u000a resistant bacterial load. Viable counts

Koushik Ghosh; Sudipta Mandal



Ventilation and Speech Characteristics during Submaximal Aerobic Exercise  

ERIC Educational Resources Information Center

Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

Baker, Susan E.; Hipp, Jenny; Alessio, Helaine



Adolescents' Interest and Performances in Aerobic Fitness Testing  

ERIC Educational Resources Information Center

This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

Zhu, Xihe; Chen, Senlin; Parrott, James



The aerobic capacity of tunas: Adaptation for multiple metabolic demands  

Microsoft Academic Search

Tunas are pelagic, continuous swimmers, with numerous specializations for achieving a high aerobic scope. Tunas must maintain a high rate of energy turnover, and therefore require elevated levels of aerobic performance in multiple physiological functions simultaneously. Based on a model of oxygen demand and delivery to the swimming musculature, the yellowfin's total oxygen consumption at the predicted maximum sustainable (aerobic)

K. E. Korsmeyer; H. Dewar; N. C. Lai; J. B. Graham



A proposed aerobic granules size development scheme for aerobic granulation process.  


Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini



Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7).  

PubMed Central

An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants. Images PMID:2376560

Cavedon, K; Leschine, S B; Canale-Parola, E



Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols.  


Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes. PMID:24910337

Chong, Barrie Fong; Harrison, Mark D; O'Hara, Ian M



Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.  


Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. PMID:23116231

Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J



Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir.  


A mesophilic, anaerobic, fermentative bacterium, strain BN3(T), was isolated from a producing well of a biodegraded oil reservoir in Canada. Cells were Gram-negative, non-motile rods that did not form spores. The temperature range for growth was 15-40 degrees C, with optimum growth at 37-40 degrees C. The strain grew with up 4 % NaCl, with optimum growth in the absence of NaCl. Tryptone was required for growth. Yeast extract and elemental sulfur stimulated growth. Growth was also enhanced during fermentation of glucose, arabinose, galactose, maltose, mannose, rhamnose, lactose, ribose, fructose, sucrose, cellobiose, lactate, mannitol and glycerol. Acetate, hydrogen and CO(2) were produced during glucose fermentation. Elemental sulfur and nitrate were used as electron acceptors and were reduced to sulfide and ammonium, respectively. The G + C content of the genomic DNA was 40.8 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was a member of the phylum 'Bacteroidetes', distantly related to the genera Bacteroides and Tannerella (similarity values of less than 90 %). The chemotaxonomic data (fatty acids, polar lipids and quinones composition) also indicated that strain BN3(T) could be clearly distinguished from its closest cultivated relatives. This novel organism possesses phenotypic, chemotaxonomic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, Petrimonas gen. nov., of which Petrimonas sulfuriphila sp. nov. is the type species. The type strain is BN3(T) (= DSM 16547(T) = JCM 12565(T)). PMID:15879242

Grabowski, Agnès; Tindall, Brian J; Bardin, Véronique; Blanchet, Denis; Jeanthon, Christian



Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.  


A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. PMID:25079418

Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern



Reflections on Psychotherapy and Aerobic Exercise.  

ERIC Educational Resources Information Center

This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

Silverman, Wade


Response of aerobic rice to Piriformospora indica.  


Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K



Aerobic Exercise Prescription for Rheumatoid Arthritics.  

ERIC Educational Resources Information Center

The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

Evans, Blanche W.; Williams, Hilda L.



E-print Network

#12;AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER DOE FRAP 1997-15 Prepared for in both domestic and industrial wastewater. The release of these compounds during wastewater treatment to predict the mass of the VOCs in the wastewater treated by biotransformation and the mass stripped


RBC characteristics for nejayote aerobic treatment  

Microsoft Academic Search

Corn processing effluents, known as nejáyote , were aerobically treated in a lab scale rotating biological contactor. Effluents organic compounds removal was monitored, evaluating them as chemical oxygen demand and reducing sugars. Results showed selective elimination of organic compounds along the cascade by microorganisms, corroborating previous hypothesis on staged removal of maize wastes pollutants by adapted biocommunities.

R. Pedroza de Brenes; C. Durán de Bazúa




EPA Science Inventory

In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...


Selecting anti-microbial treatment of aerobic vaginitis.  


Aerobic vaginitis (AV) is a vaginal infectious condition which is often confused with bacterial vaginosis (BV) or with the intermediate microflora as diagnosed by Nugent's method to detect BV on Gram-stained specimens. However, although both conditions reflect a state of lactobacillary disruption in the vagina, leading to an increase in pH, BV and AV differ profoundly. While BV is a noninflammatory condition composed of a multiplex array of different anaerobic bacteria in high quantities, AV is rather sparely populated by one or two enteric commensal flora bacteria, like Streptococcus agalactiae, Staphylocuccus aureus, or Escherichia coli. AV is typically marked by either an increased inflammatory response or by prominent signs of epithelial atrophy or both. The latter condition, if severe, is also called desquamative inflammatory vaginitis. As AV is per exclusionem diagnosed by wet mount microscopy, it is a mistake to treat just vaginal culture results. Vaginal cultures only serve as follow-up data in clinical research projects and are at most used in clinical practice to confirm the diagnosis or exclude Candida infection. AV requires treatment based on microscopy findings and a combined local treatment with any of the following which may yield the best results: antibiotic (infectious component), steroids (inflammatory component), and/or estrogen (atrophy component). In cases with Candida present on microscopy or culture, antifungals must be tried first in order to see if other treatment is still needed. Vaginal rinsing with povidone iodine can provide rapid relief of symptoms but does not provide long-term reduction of bacterial loads. Local antibiotics most suitable are preferably non-absorbed and broad spectrum, especially those covering enteric gram-positive and gram-negative aerobes, like kanamycin. To achieve rapid and short-term improvement of severe symptoms, oral therapy with amoxyclav or moxifloxacin can be used, especially in deep dermal vulvitis and colpitis infections with group B streptococci or (methicillin resistant) Staphylococcus aureus. Since the latter colonizations are frequent, but seldom inflammatory infections, we in general discourage the use of oral antibiotics in women with AV. In cases with a severe atrophy component (more than 10 % of epithelial cells are of the parabasal type), local estrogens can be used; and in postmenopausal or breast cancer patients with a contraindication for estrogens, even a combination of probiotics with an ultra-low dose of local estriol may be considered. PMID:25896749

Donders, Gilbert G G; Ruban, Katerina; Bellen, Gert



Responses of Blood Lipids to Aerobic, Resistance, and Combined Aerobic With Resistance Exercise Training: A Systematic Review of Current Evidence  

Microsoft Academic Search

This review considers the effectiveness of aerobic exercise training with different intensities (moderate and high) as well as the type of exercise (aerobic, resistance, and combined aerobic with resistance) in altering the blood lipids. We reviewed various trials via a systematic search of PubMed, published reviews, and references from original articles. We selected studies that involved aerobic and\\/or resistance and\\/or

Konstantinos Tambalis; Demosthenes B. Panagiotakos; Stavros A. Kavouras; Labros S. Sidossis



Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia  

Microsoft Academic Search

The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors

M. Venkateswar Reddy; S. Venkata Mohan


In Vitro Activities of OPT-80 and Comparator Drugs against Intestinal Bacteria  

PubMed Central

The activities of OPT-80 against 453 intestinal bacteria were compared with those of seven other drugs. OPT-80 showed good activity against most clostridia, staphylococci, and enterococci, but streptococci, aerobic and facultative gram-negative rods, anaerobic gram-negative rods, and Clostridium ramosum were resistant. Poor activity against anaerobic gram-negative rods may maintain colonization resistance. PMID:15561877

Finegold, Sydney M.; Molitoris, Denise; Vaisanen, Marja-Liisa; Song, Yuli; Liu, Chengxu; Bolaños, Mauricio



Qualitative and Quantitative Changes in Cutaneous Bacteria Associated with Systemic Isotretinoin Therapy for Acne Conglobata  

Microsoft Academic Search

Quantitative cultures in 40 patients treated with systemic isotretinoin demonstrated a significant reduction in the anaerobic diphtheroid, Propionibacterium acnes within one month of therapy and a continued suppression during 5 months of treatment. This reduction persisted after discontinuation of isotretinoin therapy despite a return of sebum excretion to pretreatment levels. Surface aerobic bacteria showed a significant reduction in the total

James J. Leyden; Kenneth J. McGinley; Arlene N. Foglia




Technology Transfer Automated Retrieval System (TEKTRAN)

We previously reported an increase in the numbers of total aerobic bacteria, coliforms, and E. coli recovered from broiler carcass respiratory tracts following commercial scalding. To determine if this increase during immersion scalding (presumed to be induced by changes in internal and external ca...


Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.  


Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. PMID:25682559

Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique



Is it possible to stabilize a thermophilic protein further using sequences and structures of mesophilic proteins: a theoretical case study concerning DgAS  

PubMed Central

Incorporating structural elements of thermostable homologs can greatly improve the thermostability of a mesophilic protein. Despite the effectiveness of this method, applying it is often hampered. First, it requires alignment of the target mesophilic protein sequence with those of thermophilic homologs, but not every mesophilic protein has a thermophilic homolog. Second, not all favorable features of a thermophilic protein can be incorporated into the structure of a mesophilic protein. Furthermore, even the most stable native protein is not sufficiently stable for industrial applications. Therefore, creating an industrially applicable protein on the basis of the thermophilic protein could prove advantageous. Amylosucrase (AS) can catalyze the synthesis of an amylose-like polysaccharide composed of only ?-1,4-linkages using sucrose as the lone energy source. However, industrial development of AS has been hampered owing to its low thermostability. To facilitate potential industrial applications, the aim of the current study was to improve the thermostability of Deinococcus geothermalis amylosucrase (DgAS) further; this is the most stable AS discovered to date. By integrating ideas from mesophilic AS with well-established protein design protocols, three useful design protocols are proposed, and several promising substitutions were identified using these protocols. The successful application of this hybrid design method indicates that it is possible to stabilize a thermostable protein further by incorporating structural elements of less-stable homologs. PMID:23575217



Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring  

Microsoft Academic Search

An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring

Mostafa S. Elshahed; John M. Senko; Fares Z. Najar; Stephen M. Kenton; Bruce A. Roe; Thomas A. Dewers; John R. Spear; Lee R. Krumholz



Crowding Induces Differences in the Diffusion of Thermophilic and Mesophilic Proteins: A New Look at Neutron Scattering Results  

PubMed Central

The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior. PMID:22261067

Marcos, Enrique; Mestres, Pau; Crehuet, Ramon



High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

Bolzonella, David, E-mail: [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Cavinato, Cristina, E-mail: [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Fatone, Francesco, E-mail: [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Pavan, Paolo, E-mail: [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Cecchi, Franco, E-mail: [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy)



Crowding induces differences in the diffusion of thermophilic and mesophilic proteins: a new look at neutron scattering results.  


The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior. PMID:22261067

Marcos, Enrique; Mestres, Pau; Crehuet, Ramon



Bacteria isolated from amoebae/bacteria consortium  


New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

Tyndall, R.L.



Bacteria isolated from amoebae/bacteria consortium  


New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

Tyndall, Richard L. (Clinton, TN)



Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films.  


The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage microorganisms by delaying the onset of aerobic deterioration. PMID:23769373

Borreani, Giorgio; Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca