These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Effect of chlorine, sodium chloride, trisodium phosphate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface.  

PubMed

Eggshell sanitizing practices are necessary to improve microbiological safety of fresh hen eggs and their products. In this work, the effects of 100 mg/liter free chlorine (chl), 3% sodium chloride (NaCl), 1, 5, and 12% trisodium phosphate (TSP) in wash solutions, and UVR (ultraviolet radiation; 4.573 microW/cm2) were studied at different times on uninoculated and Yersinia enterocolitica-inoculated eggs. On uninoculated eggs, the best results were obtained with 100 mg/liter chlorine and UV exposure for >25 min, with reductions of 1.28 and 1.60 log cycles, respectively, compared to the average bacterial count (4.55 log CFU/egg) on the control (untreated eggs). On Y. enterocolitica-inoculated eggs, highest reductions of the average bacterial count (7.35 log CFU/egg) were obtained with 5 and 12% TSP and 100 mg/liter chl. The decrease obtained with 12% TSP (3.74-log reduction) was significantly higher (P < 0.05) than those obtained with the remaining treatments. Y. enterocolitica was more resistant to UVR than the eggshell natural mesophilic aerobic microflora, except when low inoculum (4.39 log CFU/egg) was assayed. Changes in eggshell microstructure were measured by the blue lake staining method. The presence of Yersinia and Salmonella in eggshell natural flora was also investigated. PMID:11601717

Favier, G L; Escudero, M E; de Guzman, A M

2001-10-01

2

DESTRUCTION BY ANAEROBIC MESOPHILIC AND THERMOPHILIC DIGESTION OF VIRUSES AND INDICATOR BACTERIA INDIGENOUS TO DOMESTIC SLUDGES  

EPA Science Inventory

In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...

3

Conversion of cellulose to ethanol by mesophilic bacteria. Progress report and third year budget  

Microsoft Academic Search

Much of our research has dealt with eight strains of obligately anaerobic bacteria that we isolated from various natural environments as described in last year's progress report. These eight strains (referred to as C strains) are strains of mesophilic, spore-forming, rod-shaped bacteria that ferment cellulose with production of ethanol. We determined quantitatively the fermentation products formed by C strains from

Canale-Parola

1982-01-01

4

[The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].  

PubMed

The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated. PMID:16119855

Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikha?lova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S

2005-01-01

5

Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.  

PubMed

An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

2013-10-01

6

Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.  

PubMed

Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. PMID:23685650

Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

2013-07-01

7

Total mesophilic counts underestimate in many cases the contamination levels of psychrotrophic lactic acid bacteria (LAB) in chilled-stored food products at the end of their shelf-life.  

PubMed

The major objective of this study was to determine the role of psychrotrophic lactic acid bacteria (LAB) in spoilage-associated phenomena at the end of the shelf-life of 86 various packaged (air, vacuum, modified-atmosphere) chilled-stored retail food products. The current microbiological standards, which are largely based on the total viable mesophilic counts lack discriminatory capacity to detect psychrotrophic LAB. A comparison between the total viable counts on plates incubated at 30 °C (representing the mesophiles) and at 22 °C (indicating the psychrotrophs) for 86 food samples covering a wide range - ready-to-eat vegetable salads, fresh raw meat, cooked meat products and composite food - showed that a consistent underestimation of the microbial load occurs when the total aerobic mesophilic counts are used as a shelf-life parameter. In 38% of the samples, the psychrotrophic counts had significantly higher values (+0.5-3 log CFU/g) than the corresponding total aerobic mesophilic counts. A total of 154 lactic acid bacteria, which were unable to proliferate at 30 °C were isolated. In addition, a further 43 with a poor recovery at this temperature were also isolated. This study highlights the potential fallacy of the total aerobic mesophilic count as a reference shelf-life parameter for chilled food products as it can often underestimate the contamination levels at the end of the shelf-life. PMID:22986212

Pothakos, Vasileios; Samapundo, Simbarashe; Devlieghere, Frank

2012-12-01

8

Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.  

PubMed

Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products. PMID:23743474

Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S

2013-07-15

9

Phylogenetic and physiological characterization of mesophilic and thermophilic bacteria from a sewage sludge composting process in Sapporo, Japan  

Microsoft Academic Search

The phylogenetic and physiological characteristics of mesophilic and thermophilic bacteria isolated from a field-scale sewage\\u000a sludge composter were determined by 16S rDNA and phenotype analyses. Of the 34 mesophilic isolates, 5 (15%), 16 (47%), and\\u000a 3 (9%) displayed amylase, protease, and lipase activities, respectively. Among these isolates, the following species were\\u000a identified based on their 16S rRNA gene sequences: Aneurinibacillus

Akihiro Ohnishi; Akihiro Nagano; Naoshi Fujimoto; Masaharu Suzuki

2011-01-01

10

Biology of Moderately Halophilic Aerobic Bacteria  

PubMed Central

The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

Ventosa, Antonio; Nieto, Joaquin J.; Oren, Aharon

1998-01-01

11

Conversion of cellulose to ethanol by mesophilic bacteria. Progress report and third year budget  

SciTech Connect

Much of our research has dealt with eight strains of obligately anaerobic bacteria that we isolated from various natural environments as described in last year's progress report. These eight strains (referred to as C strains) are strains of mesophilic, spore-forming, rod-shaped bacteria that ferment cellulose with production of ethanol. We determined quantitatively the fermentation products formed by C strains from cellulose and various other carbohydrates. In all cases ethanol was produced, as well as acetate, CO/sub 2/ and H/sub 2/. The C strains utilized, for ethanol production and growth, a variety of cellulosic substrates ranging from paper to alpha-cellulose. Enzymatic assays and growth studies showed that C strains possessed a celluloase system consisting of endoglucanase, exoglucanase, and cellobiase components. Studies indicated that growth substrates have a regulatory effect(s) on components of the cellulase system of the C strains. another experimental approach is aimed at cloning cellobiase, endoglucanase and exoglucanase genes from the C strains into a suitable vector plasmid and, eventually, at introducing the plasmid into cells of Zymomonas mobilis. The objective of this part of our research is to obtain a Z. mobilis strain capable of fermenting cellobiose and/or cellulose. Plasmids that contained DNA inserts were used to transform E. coli C600 recA. E. coli transformants that had acquired the cellobiase gene were obtained by this procedure. At present, we are attempting to introduce into Z. mobilis cells the vector plasmid purified from the E. coli transformants. In another series of experiments, we have used a new selective procedure to isolate four additional strains of mesophilic, obligately anaerobic, cellulolytic bacteria from natural environments.

Canale-Parola, E.

1982-11-24

12

Simplified technique for identification of the aerobic spore-forming bacteria by phenotype.  

PubMed

The use of modern research approaches of genetics, biochemistry and molecular biology has led to progress in bacterial taxonomy. Systematic study of the aerobic spore-forming bacteria has resulted in the realignment of the genus Bacillus into several new genera. In the meantime, the identification process has become more difficult for the non-specialist in Bacillus taxonomy. This paper presents a key for the simplified phenotypic identification of the mesophilic, aerobic, spore-forming bacteria belonging to the genera Bacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Geobacillus and Virgibacillus. A total of 81 species were included and 115 morphological and physiological tests were analysed for their discriminative efficiency. This key is practical for rough but quick identification of aerobic spore-forming bacteria isolated from nature. Such preliminary identification will be helpful for the selection of reference strains and methods for more precise identification using the newest techniques. The reliability of the proposed identification key was tested on 100 cultures from the Ukrainian Collection of Microorganisms. The developed identification key is represented in interactive mode on a website (http://www/imv.kiev.ua/key/). PMID:11491334

Reva, O N; Sorokulova, I B; Smirnov, V V

2001-07-01

13

Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems  

Microsoft Academic Search

Aerobic anoxygenic phototrophic bacteria (AAPB) are characterized by the following physiological and ecological features. A mother AAPB cell can unusually di- vide into 3 daughter cells and looks like a \\

Nianzhi JIAO; Michael E. Sieracki; Yao Zhang; Hailian Du

2003-01-01

14

Soil and Sediment Bacteria Capable of Aerobic Nitrate Respiration  

Microsoft Academic Search

Several laboratory strains of gram-negative bacteria are known to be able to respire nitrate in the presence ofoxygen,althoughthephysiologicaladvantagegainedfromthisprocessisnotentirelyclear.Thecontribution that aerobic nitrate respiration makes to the environmental nitrogen cycle has not been studied. As afirst step in addressing this question, a strategy which allows for the isolation of organisms capable of reducing nitrate to nitrite following aerobic growth has been developed.

JON P. CARTER; YA HSIN HSIAO; STEPHEN SPIRO; ANDDAVID J. RICHARDSON

1995-01-01

15

Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.  

PubMed

The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods. PMID:24672871

Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer

2014-01-01

16

Aerobic Respiration in the Gram-Positive Bacteria  

Microsoft Academic Search

The group of Gram-positive bacteria is a major phylum of prokaryotes, including several typical saprophytic aerobes. Their\\u000a respiratory chains are apparently similar to those of eukaryotic mitochondria, but in several points are different from them.\\u000a The respiratory chain of Gram-positives, like many bacteria, contains branched electron transfer pathways, usually 1-3 heme-Cu\\u000a oxidases, but SoxB-type cytochrome c oxidases (cytochrome b(a\\/o)3) are

Nobhuito Sone; Cecilia Hagerhall; Junshi Sakamoto

17

Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.  

PubMed

The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed. PMID:25170152

Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

2014-08-29

18

Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef ?  

PubMed Central

Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC/MS). Fifty mesophilic and twenty-nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA gene sequencing. Carnobacterium maltaromaticum and C. divergens were the species most frequently found in both mesophilic and psychrotrophic populations. Acinetobacter baumannii, Buttiauxella spp. and Serratia spp. were identified among the mesophilic isolates, while Pseudomonas spp. were commonly identified among the psychrotrophs. The isolates were further characterized for their growth at different temperatures and their proteolytic activity in vitro on meat proteins extracts at 7°C. Selected proteolytic strains of Serratia proteamaculans, Pseudomonas fragi, and C. maltaromaticum were used to examine their spoilage potential in situ. Single strains of these species and mixtures of these strains were used to contaminate beef chops that were packed and stored at 7°C. At time intervals up to 1 month, viable counts were determined, and VOC were identified by GC/MS. Generally, the VOC concentrations went to increase during the storage of the contaminated meats, and the profiles of the analyzed meat changed dramatically depending on the contaminating microbial species. About 100 volatiles were identified in the different contaminated samples. Among the detected volatiles, some specific molecules were identified only when the meat was contaminated by a specific microbial species. Compounds such as 2-ethyl-1-hexanol, 2-buten-1-ol, 2-hexyl-1-octanol, 2-nonanone, and 2-ethylhexanal were detectable only for C. maltaromaticum, which also produced the highest number of aldehydes, lactones, and sulfur compounds. The highest number of alcohols and ketons were detected in the headspace of meat samples contaminated by P. fragi, whereas the highest concentrations of some alcohols, such as 1-octen-3-ol, and some esters, such as isoamyl acetate, were produced by S. proteamaculans. In conclusion, different microbial species can contribute to meat spoilage with release of different volatile compounds that concur to the overall quality decrease of spoiling meat. PMID:19201980

Ercolini, Danilo; Russo, Federica; Nasi, Antonella; Ferranti, Pasquale; Villani, Francesco

2009-01-01

19

Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria  

PubMed Central

The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called ‘L12 stalk’ on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the ‘L12 stalk’. The ‘L12 stalk’ plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L124 complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent. PMID:17053098

Shcherbakov, D.; Dontsova, M.; Tribus, M.; Garber, M.; Piendl, W.

2006-01-01

20

Evaluation of Cathra system for identifying gram negative aerobic bacteria.  

PubMed Central

The Cathra system is a commercial multipoint inoculation method for the identification of aerobic Gram negative bacteria. The system uses a replicator technique in which 21 different agar media can be inoculated simultaneously with 36 organisms. Identifications are made by use of a special computer database. The performance of this system was compared with that of the API 20E for the identification of 372 clinical isolates of Enterobacteriaceae and 133 miscellaneous Gram negative bacteria. For enterobacteria, the Cathra system was in 97% agreement with API 20E at species level and 98% at genus level. For miscellaneous Gram negative strains the two systems were in 59% agreement at species level and 77% at genus level. The Cathra system is suitable for use in diagnostic laboratories, especially those with a heavy workload and a wish to use break-point sensitivity testing. The identification database for miscellaneous Gram negative organisms, however, needs to be expanded. PMID:2199538

Ling, J M; Zhang, L C; Hui, Y W; French, G L

1990-01-01

21

Aerobic salivary bacteria in wild and captive Komodo dragons.  

PubMed

During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals. PMID:12238371

Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

2002-07-01

22

Precipitation of Dolomite in Aerobic Culture Experiments Using Halophilic Bacteria  

NASA Astrophysics Data System (ADS)

The study of carbonate biomineralization in hypersaline environments provides information about the key role microorganisms have played in global carbon cycling, especially in the Precambrian. Recently, a microbial dolomite model was proposed based on the study of a hypersaline coastal lagoon, Lagoa Vermelha, Rio de Janeiro (Brazil). This model suggests that sulfate-reducing bacteria mediate dolomite precipitation by increasing pH and removing the sulfate inhibitor. The anoxic conditions of this system may not, however, apply to all ancient dolomite formation. Dolomite is an abundant carbonate mineral found widespread in the geological record in a variety of environmental settings. Thus, a single microbial dolomite model probably cannot explain its widespread distribution and a broad spectrum of conditions may be linked with its formation. In contrast to Lagoa Vermelha, Brejo do Espinho, a shallow hypersaline lagoon located in the same region, is a dolomite-forming environment with oxic bottom conditions. The sediment comprises primarily high Mg-calcite and Ca-dolomite. Heterotrophic microorganisms have been isolated from algal mats growing in Brejo do Espinho, and biomineralization experiments have been conducted at variable temperatures (15, 20, 25, 30, 35 and 40° C) and salinities (sea water and 2x seawater) to simulate the natural environmental conditions. After a 20-day incubation period, several aerobic culture experiments have crystal growth of Ca-dolomite and high Mg-calcite. Our study demonstrates that, under aerobic conditions, heterotrophic microorganisms can mediate dolomite precipitation. These results indicate that microbial dolomite precipitation is not necessarily linked to any particular group of organisms or specific metabolic processes or even a specific environment, i.e., it is not exclusively an anoxic mineral but can be precipitated in the presence of oxygen. This has implications for the distribution of dolomite in the geologic record.

Roman, M. S.; Vasconcelos, C.; McKenzie, J. A.

2003-12-01

23

[Novel NADPH-dependent L-aspartate dehydrogenases from the mesophilic nitrogen-fixing bacteria Rhodopseudomonas palustris and Bradyrhizobium japonicum].  

PubMed

The genes encoding putative L-aspartate dehydrogenases (EC 1.4.1.21, ADH) from the mesophilic nitrogen-fixing bacteria Rhodopseudomonas palustris and Bradyrhizobium japonicum were cloned and expressed in Escherichia coli. The respective enzymes in the form of hybrid proteins with N-terminal hexahistidine tags were purified to apparent homogeneity. Both enzymes catalyzed in vitro the reductive amination of oxaloacetate to L-aspartate by an order faster than the reverse reaction at a respective pH optimum of 8.0-9.0 and 9.8; also, the enzymes only catalyzed amination under physiological conditions (pH 7.0-8.0). Their specificity to NADPH was higher by 1-2 orders of magnitude than that to NADH. The apparent KM values of ADHs from R. palustris for oxaloacetate, ammonium, and NADPH at pH 9.0 were 9.2, 11.3, and 0.21 mM, respectively, and the corresponding KM values of ADH from B. japonicum were 21, 4.3, and 0.032 mM, respectively. The amination activity of novel ADHs may be important for the fixation of inorganic nitrogen in vivo and used for the construction of a bacterial strain-producer of L-aspartate by metabolic engineering methods. PMID:23795474

Kuvaeva, T M; Katashkina, Zh I; Kivero, A D; Smirnov, S V

2013-01-01

24

High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean  

Microsoft Academic Search

Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as

Raphael Lami; Matthew T. Cottrell; Josephine Ras; Osvaldo Ulloa; Ingrid Obernosterer; H. Claustre; D. L. Kirchman; P. Lebaron

2007-01-01

25

Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota.  

PubMed

A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76(T), was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6-0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76(T) had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76(T) had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76(T) is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85% 16S rRNA gene sequence identity with the closest cultivated relative 'Candidatus Nitrosopumilus maritimus' SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. 'Korarchaeota' and 'Aigarchaeota'). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76(T). The type strain of Nitrososphaera viennensis is strain EN76(T) (?=?DSM 26422(T)?=?JMC 19564(T)). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J E; Rittmann, Simon K-M R; Melcher, Michael; Leisch, Nikolaus; Schleper, Christa

2014-08-01

26

The catalytic mechanism for aerobic formation of methane by bacteria.  

PubMed

Methane is a potent greenhouse gas that is produced in significant quantities by aerobic marine organisms. These bacteria apparently catalyse the formation of methane through the cleavage of the highly unreactive carbon-phosphorus bond in methyl phosphonate (MPn), but the biological or terrestrial source of this compound is unclear. However, the ocean-dwelling bacterium Nitrosopumilus maritimus catalyses the biosynthesis of MPn from 2-hydroxyethyl phosphonate and the bacterial C-P lyase complex is known to convert MPn to methane. In addition to MPn, the bacterial C-P lyase complex catalyses C-P bond cleavage of many alkyl phosphonates when the environmental concentration of phosphate is low. PhnJ from the C-P lyase complex catalyses an unprecedented C-P bond cleavage reaction of ribose-1-phosphonate-5-phosphate to methane and ribose-1,2-cyclic-phosphate-5-phosphate. This reaction requires a redox-active [4Fe-4S]-cluster and S-adenosyl-L-methionine, which is reductively cleaved to L-methionine and 5'-deoxyadenosine. Here we show that PhnJ is a novel radical S-adenosyl-L-methionine enzyme that catalyses C-P bond cleavage through the initial formation of a 5'-deoxyadenosyl radical and two protein-based radicals localized at Gly?32 and Cys?272. During this transformation, the pro-R hydrogen from Gly?32 is transferred to the 5'-deoxyadenosyl radical to form 5'-deoxyadenosine and the pro-S hydrogen is transferred to the radical intermediate that ultimately generates methane. A comprehensive reaction mechanism is proposed for cleavage of the C-P bond by the C-P lyase complex that uses a covalent thiophosphate intermediate for methane and phosphate formation. PMID:23615610

Kamat, Siddhesh S; Williams, Howard J; Dangott, Lawrence J; Chakrabarti, Mrinmoy; Raushel, Frank M

2013-05-01

27

Mesophilic xylanases  

US Patent & Trademark Office Database

Mesophilic xylanases derived from Acremonium cellulolyticus. A mesophilic xylanase I, derived from the mold Acremonium cellulolyticus, capable of non-specifically hydrolyzing xylan mainly into xylose, xylobiose and xylotriose, having an optimal pH at 3.5 and an optimal temperature for action at 55.degree. C. as determined by saccharifying activity for soluble xylan as a substrate and a molecular weight of 30,000 as determined by SDS-polyacrylamide gel electrophoresis. A mesophilic xylanase II having an optimal pH a 3.8, an optimal temperature for action at 55.degree. C. and a molecular weight of 25,500. A mesophilic xylanase III having an optimal pH at 3.5, an optimal temperature for action at 50.degree. C. and a molecular weight of 33,500.

2000-10-31

28

Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat  

NASA Astrophysics Data System (ADS)

Data have been collected on the abundance of obligately aerobic, bacteriochlorophyll- a-containing bacteria in a marine microbial mat on the West Frisian Island of Texel, The Netherlands. Plate counts on media rich in organic matter revealed average numbers of 3 ?10 5·cm -3 sediment in the top 10 mm of the mat; the number of purple non-sulphur bacteria was of the same magnitude. Due to the relatively small dimensions of obligately aerobic anoxygenic phototrophic bacteria and purple non-sulphur bacteria, compared to those of purple sulphur bacteria, the contributions of either of the two former groups to the biomass of Bchl- a-containing organisms was approximately 3%. The specific Bchl- a-content of the isolated obligately aerobic phototrophs was very low (0.8 to 1.0 ?g·mg -1 protein) compared to that of purple non-sulphur bacteria (16 to 20 ?g·mg -1 protein), and purple sulphur bacteria (27 to 30 ?g·mg -1). As a consequence, the relative contribution to the total Bchl a concentration of the two former groups (0.1% and 2.1%, respectively) was negligible, compared to that of the purple sulphur bacteria (97.8%). Salinities <50 had little effect on growth rate and yield of isolates; at salinities between 50 and 100 the doubling time increased progressively with a concomitant decrease in yield; no growth occurred at salinities > 140.

Yurkov, Vladimir V.; Van Gemerden, Hans

29

Distribution, diversity and ecology of aerobic CO-oxidizing bacteria  

Microsoft Academic Search

Numerous studies indicate that carbon monoxide (CO) participates in a broader range of processes than any other single molecule, ranging from subcellular to planetary scales. Despite its toxicity to many organisms, a diverse group of bacteria that span multiple phylogenetic lineages metabolize CO. These bacteria are globally distributed and include pathogens, plant symbionts and biogeochemically important lineages in soils and

Carolyn F. Weber; Gary M. King

2007-01-01

30

Lactic acid bacteria isolated from a hand-made blue cheese  

Microsoft Academic Search

Nearly 500 strains isolated from different media used to study the aerobic mesophilic and lactic acid flora of Valdeón cheese (a Spanish hand-made blue cheese) have been identified. Nearly 95% of aerobic mesophiles were lactic acid bacteria (LAB). From these, Enterococcus (40·4%) and Lactococcus (42·2%) were the dominant genera, with Lactobacillus (4·1%) and Leuconostoc (5·0%) being also found. The selectivity

T. M López-D??az; C Alonso; C Román; M. L Garc??a-López; B Moreno

2000-01-01

31

Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations  

Microsoft Academic Search

In natural and man-made ecosystems nitrifying bacteria experience frequent exposure to oxygen-limited conditions and thus\\u000a have to compete for oxygen. In several reactor systems (retentostat, chemostat and sequencing batch reactors) it was possible\\u000a to establish co-cultures of aerobic ammonium- and nitrite-oxidizing bacteria at very low oxygen concentrations (2–8 ?M) provided\\u000a that ammonium was the limiting N compound. When ammonia was in

A. Olav Sliekers; Suzanne C. M. Haaijer; Marit H. Stafsnes; J. Gijs Kuenen; Mike S. M. Jetten

2005-01-01

32

CHARACTERISTICS OF ALDEHYDE DEHYDROGENASES OF CERTAIN AEROBIC BACTERIA REPRESENTING HUMAN COLONIC FLORA  

Microsoft Academic Search

We have proposed the existence of a bacteriocolonic pathway for ethanol oxidation resulting in high intracolonic levels of toxic and carcinogenic acetaldehyde. This study was aimed at determining the ability of the aldehyde dehydrogenases (ALDH) of aerobic bacteria representing human colonic flora to metabolize intracolonically derived acetaldehyde. The apparent Michaelis constant (Km) values for acetaldehyde were determined in crude extracts

T. NOSOVA; K. JOKELAINEN; P. KAIHOVAARA; R. HEINE; H. JOUSIMIES-SOMER; M. SALASPURO

1998-01-01

33

Velvet pad surface sampling of anaerobic and aerobic bacteria: an in vitro laboratory model  

Microsoft Academic Search

Velvet pads have been evaluated in an experimental, laboratory model, simulating intraoperative sampling of Staphylococcus epidermis, Escherichia coli and Bacteroides fragilis. After sampling, the pad was placed in a transport medium and kept in an anaerobic atmosphere, before being shaken and rinsed, followed by anaerobic and aerobic culture. This technique permitted quantitatively high recoveries of the test bacteria. Velvet pad

D Raahave; A Friis-Møller

1982-01-01

34

Aerobic Anoxygenic Photosynthesis in Roseobacter Clade Bacteria from Diverse Marine Habitats  

Microsoft Academic Search

The marine Roseobacter clade comprises several genera of marine bacteria related to the uncultured SAR83 cluster, the second most abundant marine picoplankton lineage. Cultivated representatives of this clade are physiologically heterogeneous, and only some have the capability for aerobic anoxygenic photosynthesis, a process of potentially great ecological importance in the world's oceans. In an attempt to correlate phylogeny with ecology,

Martin Allgaier; Heike Uphoff; Andreas Felske; Irene Wagner-Dobler

2003-01-01

35

Fate of Chlortetracycline and Tylosin-Resistant Bacteria in an Aerobic Thermophilic Sequencing Batch Reactor Treating Swine Waste  

Microsoft Academic Search

Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir\\u000a of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment\\u000a on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria\\u000a grown at 25°C, 37°C, and 60°C decreased after treatment, but

Martin R. Chénier; Pierre Juteau

2009-01-01

36

Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.  

PubMed

Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

2014-11-01

37

Aerobic biodegradation of propylene glycol by soil bacteria.  

PubMed

Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile. PMID:23187798

Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

2013-09-01

38

Diversity Surveys and Evolutionary Relationships of aoxB Genes in Aerobic Arsenite-Oxidizing Bacteria  

Microsoft Academic Search

A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar

Marianne Quemeneur; Audrey Heinrich-Salmeron; Daniel Muller; Didier Lievremont; Michel Jauzein; Philippe N. Bertin; Francis Garrido; Catherine Joulian

2008-01-01

39

Occurrence of the thiosulphate sulphurtransferase producers in the population of mesophilic heterotrophic bacteria and microfungi of spruce humus  

Microsoft Academic Search

The activity of thiosulphate sulphurtransferase (rhodanese, EC 2.8.1.1) in randomly isolated bacteria and mieromycetes of\\u000a the humus horizon in a spruce forest was followed. Bacteria isolated on soil extract agar (70 cultures) did not yield unambiguous\\u000a results due to poor growth of the cultures. Of 63 bacterial cultures on meat-peptone agar almost 80 % of the isolates produced\\u000a the enzyme.

A. Lettl

1983-01-01

40

Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization  

SciTech Connect

Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

Hansen, K.H.; Ahring, B.K.; Raskin, L.

1999-11-01

41

Growth potential of cottonseed culture media for various clinically significant aerobic bacteria.  

PubMed Central

Enzymatic hydrolysates of various cottonseed flours were prepared with the proteolytic enzymes bromelain, HT-200, Pronase, and trypsin. The growth of various aerobic bacteria of clinical significance in these hydrolysates was compared to that obtained with a standard casein-soybean peptone culture medium, Trypticase soy. The generation times of the majority of bacteria grown in the bromelain cottonseed flour hydrolysate were shorter than that obtained with the standard control broth. A bromelain cottonseed flour hydrolysate agar preparation supported the growth of the bacteria comparably to that of the casein-soybean agar substrate. All the bacterial colonies were larger on the bromelain cottonseed flour hydrolysate blood agar medium than those grown on the control agar. The peptones derived from the enzymatic hydrolysis of cottonseed flour are sufficient to promote the rapid and luxuriant growth of a wide spectrum of aerobic bacteria without the addition of peptone from other sources. It is suggested that cottonseed flour peptones be utilized as a nutrient source in general-purpose media for the clinical microbiology laboratory. PMID:1100668

Slifkin, M; Pouchet, G

1975-01-01

42

Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.  

PubMed

Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps. Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil. PMID:23647951

Pepe, Olimpia; Ventorino, Valeria; Blaiotta, Giuseppe

2013-07-01

43

Quantification of syntrophic fatty acid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization  

Microsoft Academic Search

Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA

KAARE H. HANSEN; BIRGITTE K. AHRING; LUTGARDE RASKIN

1999-01-01

44

Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice  

SciTech Connect

The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

Brook, I.; Walker, R.I.; MacVittie, T.J.

1986-01-01

45

Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites  

PubMed Central

Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day?1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day?1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 ?M, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

2002-01-01

46

Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria  

PubMed Central

Background Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. Methodology/Principal Findings Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. Conclusions/Significance Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria. PMID:21949847

Zheng, Qiang; Zhang, Rui; Koblizek, Michal; Boldareva, Ekaterina N.; Yurkov, Vladimir; Yan, Shi; Jiao, Nianzhi

2011-01-01

47

Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean.  

PubMed

Aerobic anoxygenic phototrophic (AAP) bacteria are found in a range of aquatic and terrestrial environments, potentially playing unique roles in biogeochemical cycles. Although known to occur in the Arctic Ocean, their ecology and the factors that govern their community structure and distribution in this extreme environment are poorly understood. Here, we examined summer AAP abundance and diversity in the North East Pacific and the Arctic Ocean with emphasis on the southern Beaufort Sea. AAP bacteria comprised up to 10 and 14% of the prokaryotic community in the bottom nepheloid layer and surface waters of the Mackenzie plume, respectively. However, relative AAP abundances were low in offshore waters. Environmental pufM clone libraries revealed that AAP bacteria in the Alphaproteobacteria and Betaproteobacteria classes dominated in offshore and in river-influenced surface waters, respectively. The most frequent AAP group was a new uncultivated betaproteobacterial clade whose abundance decreased along the salinity gradient of the Mackenzie plume even though its photosynthetic genes were actively expressed in offshore waters. Our data indicate that AAP bacterial assemblages represented a mixture of freshwater and marine taxa mostly restricted to the Arctic Ocean and highlight the substantial influence of riverine inputs on their distribution in coastal environments. PMID:23560623

Boeuf, Dominique; Cottrell, Matthew T; Kirchman, David L; Lebaron, Philippe; Jeanthon, Christian

2013-09-01

48

Characterisation of aerobically grown non-spore-forming bacteria from paper mill pulps containing recycled fibres.  

PubMed

A total of 179 non-spore-forming bacteria aerobically growing on Nutrient Agar, Plate Count Agar or in specific enrichment conditions for salmonella, campylobacteria, listeria, yersinia or staphylococci, were isolated from 16 untreated paper mill pulps. After phenotypical screening the isolates were characterised by automated ribotyping and partial sequencing of the 16S rRNA gene. They could be divided into seven taxonomical classes representing 63 taxa (species): actinobacteria (11 species), bacilli (7), flavobacteria (3) alphaproteobacteria (10), betaproteobacteria (5), gammaproteobacteria (25) and sphingobacteria (2). Most of the gammaproteobacteria were enterobacteria, mainly species of the genera Enterobacter (7 species, 7 samples/3 mills) and Klebsiella (5 species, 6 samples/3 mills). Other commonly occurring bacteria were most closely related to Microbacterium barkeri (7 samples/3 mills), Cloacibacterium normanense (6 samples/2 mills), Pseudoxanthomonas taiwanensis (5 samples/2 mills) and Sphingobacterium composti (5 samples/1 mill). Sporadic isolates of Listeria innocua, L. monocytogenes, Enterococcus casseliflavus and Staphylococcus warneri were detected, from which only L. monocytogenes is considered to be a food pathogen. No isolates of the genera Campylobacter, Salmonella or Yersinia were detected. The detected bacteria may be harmful in process control, but the load of food pathogens with recycled fibres to paper machines is insignificant. Faecal contamination of the pulp samples was not indicated. PMID:18820960

Suihko, Maija-Liisa; Skyttä, Eija

2009-01-01

49

Increase of antimicrobial resistance of faecal aerobic gram-negative bacteria in a geriatric hospital.  

PubMed

Antimicrobial resistance of faecal aerobic Gram-negative bacteria to eight different antimicrobials was determined by a velvet replica-plating method in 1988 and 1933. Faecal samples were taken from 131 geriatric inpatients in the Turku City Hospital with a hospitalization of more than 7 days. From 1987 to 1992 the use of first and second generation cephalosporins and ciprofloxacin increased from 3.32 defined daily doses (DDD) per bed to 24.25 DDD/bed and from 0.63 DDD/Bed to 28.11 DDD/bed, respectively. A statistically significant increase was observed in the frequency of samples resistant (with >= 1% of resistant colonies) to cefuroxime (p = 0.0004) and ceftazidime (p = 0.037) in patients who received antimicrobial therapy and to ampicillin (p = 0.046) in patients who had not received antimicrobial therapy. In addition, despite the decreased use of sulphonamides and trimethoprim (from 17.11 DDD/bed to 5.54 DDD/bed) no significant changes in the frequency of resistant faecal samples were observed. Use of ciprofloxacin has been found to cure resistance plasmids from bacteria in vitro. However, despite the increased use of ciprofloxacin, no decrease in faecal bacteria resistant to any of the other antimicrobials (i.e. trimethoprim) studied was observed. PMID:8670551

Leistevuo, T; Osterblad, M; Toivonen, P; Kuistila, M; Huovinen, S; Heikkilä, E; Kahra, A; Lehtonen, A; Huovinen, P

1996-05-01

50

New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov.  

PubMed

The genus Ammoniphilus is proposed for aerobic endospore-forming Gram-variable rod-shaped bacteria, which are ammonium-dependent, obligately oxalotrophic and haloalkalitolerant, oxidase- and catalase-positive, mesophilic and motile by peritrichous flagella. Cell wall contained two electron-dense layers. The external layer consists of a chain of electron-dense granules morphologically resembling the cellulosomes of Clostridium thermocellum. Two species are described, Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. The type strains of these species are strains RAOx-1 (= DSM 11538) and RAOx-FS (= DSM 11537), respectively. Ammoniphilus strains were isolated from the rhizosphere of sorrel (Rumex acetosa) and from decaying wood. The strains require a high concentration of ammonium ions and use oxalate as the sole organic source of carbon and energy for growth; no growth factors were required. Growth occurred at pH 6.8-9.5. The optimum temperature and pH for growth were 28-30 degrees C and 8.0-8.5. All strains grew in a saturated solution of ammonium oxalate, and tolerated 3% NaCl. Whole-cell hydrolysates contain meso-diaminopimelic acid and glucose. The menaquinone of the strains was MK 7, and the major cellular fatty acids were 12-methyl tetradecanoic, cis-hexadec-9-enoic and hexadecanoic acids. The G + C content of the DNA was 45-46 mol% for A. oxalaticus and 42 mol% for A. oxalivorans. The almost complete 16S rDNA sequence of three strains of the two species of Ammoniphilus shows that the genus falls into the radiation of the Clostridium-Bacillus subphylum of Gram-positive bacteria. The closest phylogenetic neighbour of Ammoniphilus is Oxalophagus oxalicus. The DNA-DNA hybridization value between strains RAOx-1 and RAOx-FS was 39.7%. PMID:9542085

Zaitsev, G M; Tsitko, I V; Rainey, F A; Trotsenko, Y A; Uotila, J S; Stackebrandt, E; Salkinoja-Salonen, M S

1998-01-01

51

Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste  

Microsoft Academic Search

The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated\\u000a animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on\\u000a anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations\\u000a enumerated in the swine waste at 25°C and 37°C, resistant

Martin R. Chénier; Pierre Juteau

2009-01-01

52

Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms  

SciTech Connect

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O{sub 2}, H{sub 2}S, NO{sub 2}{minus}, NH{sub 2}{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells were evenly distributed throughout the biofilm, even in the toxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations. The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 {micro}m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S{degree}) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms, which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-11-01

53

Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator  

PubMed Central

In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen?nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated). PMID:19601655

2009-01-01

54

Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).  

PubMed Central

Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

Damare, J M; Hussong, D; Weiner, R M; Colwell, R R

1979-01-01

55

Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).  

PubMed

Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

Damaré, J M; Hussong, D; Weiner, R M; Colwell, R R

1979-08-01

56

Rapid high-throughput assessment of aerobic bacteria in complex samples by fluorescence-based oxygen respirometry.  

PubMed

A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given. PMID:16461677

O'Mahony, Fiach C; Papkovsky, Dmitri B

2006-02-01

57

Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms  

PubMed Central

The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2?, NO3?, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 ?m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 ?m), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

1999-01-01

58

Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas  

Microsoft Academic Search

Gundruk, sinki and khalpi are lactic-fermented vegetable products of Sikkim in India, and inziangsang is a fermented leafy vegetable product of Nagaland and Manipur in India. A total of 65 samples of gundruk (25), sinki (12), khalpi (25) and inziangsang (3) were analysed for microbial counts. The population of lactic acid bacteria (LAB) as well as aerobic mesophilic counts were

Jyoti P. Tamang; Buddhiman Tamang; Ulrich Schillinger; Charles M. A. P. Franz; Michael Gores; Wilhelm H. Holzapfel

2005-01-01

59

Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria  

NASA Astrophysics Data System (ADS)

Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

60

Production of Wax Esters during Aerobic Growth of Marine Bacteria on Isoprenoid Compounds  

PubMed Central

This paper describes the production of isoprenoid wax esters during the aerobic degradation of 6,10,14-trimethylpentadecan-2-one and phytol by four bacteria (Acinetobacter sp. strain PHY9, Pseudomonas nautica [IP85/617], Marinobacter sp. strain CAB [DSMZ 11874], and Marinobacter hydrocarbonoclasticus [ATCC 49840]) isolated from the marine environment. Different pathways are proposed to explain the formation of these compounds. In the case of 6,10,14-trimethylpentadecan-2-one, these esters result from the condensation of some acidic and alcoholic metabolites produced during the biodegradation, while phytol constitutes the alcohol moiety of most of the esters produced during growth on this isoprenoid alcohol. The amount of these esters formed increased considerably in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. Although conflicting evidence exists regarding the stability of these esters in sediments, it seems likely that, under some conditions, bacterial esterification can enhance the preservation potential of labile compounds such as phytol. PMID:9872783

Rontani, Jean-Francois; Bonin, Patricia C.; Volkman, John K.

1999-01-01

61

Multilocus enzyme analysis in aerobic and anaerobic bacteria using gel electrophoresis-nitrocellulose blotting.  

PubMed

An optimized multilocus enzyme electrophoresis method, which involves polyacrylamide-agarose gel electrophoresis followed by electrophoretic transfers on nitrocellulose sheets, was developed for the analysis of enzyme polymorphism in several aerobic and anaerobic bacterial species including Staphylococcus aureus, Streptococcus pneumoniae, S. agalactiae, Klebsiella pneumoniae and K. oxytoca, Clostridium bifermentans and C. sordellii, and Prevotella bivia. Serial electrophoretic transfers (during 5-15 min each) from a single polyacrylamide gel could be achieved for most enzymes studied, and allowed an increased definition of enzyme bands on nitrocellulose as compared to migration gels. Four enzymes, which could not be blotted in such conditions, could still be stained in gels after blotting. Thus, the method allowed the combined analysis of several enzymes after a single gel electrophoresis separation. The analysis of enzyme polymorphism in the various species studied raised the interest of polymorphic loci such as esterase or glutamic-oxaloacetic transaminase for epidemiologic studies. The method characterized a genetic diversity of enzyme loci of S. pneumoniae higher than previously reported, and is thus convenient for the analysis of genetic relationships between related isolates. Since the present method reduces the tediousness of multilocus enzyme electrophoresis and requires experimental conditions that are not specific for the bacterial population studied, it may be proposed for rapid population genetics analysis of a wide variety of bacteria. PMID:10754243

Combe, M; Lemeland, J; Pestel-Caron, M; Pons, J

2000-04-15

62

Comparative In Vitro Activities of Torezolid (DA-7157) against Clinical Isolates of Aerobic and Anaerobic Bacteria in South Korea ?  

PubMed Central

Resistance of Gram-positive pathogens to first-line antimicrobial agents has been increasing in many parts of the world. We compared the in vitro activities of torezolid with those of other antimicrobial agents, including linezolid, against clinical isolates of major aerobic and anaerobic bacteria. Torezolid had an MIC90 of ?0.5 ?g/ml for the Gram-positive bacterial isolates tested and was more potent than either linezolid or vancomycin. PMID:20837761

Yum, Jong Hwa; Choi, Sung Hak; Yong, Dongeun; Chong, Yunsop; Im, Weon Bin; Rhee, Dong-Kwon; Lee, Kyungwon

2010-01-01

63

Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste.  

PubMed

Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria grown at 25 degrees C, 37 degrees C, and 60 degrees C decreased after treatment, but they were still abundant (10(2) to 10(8) most probable number ml(-1)) in the treated swine waste. The presence of 14 genes conferring resistance to tylosin and chlortetracycline was assessed by polymerase chain reaction in bacterial populations grown at 25 degrees C, 37 degrees C, and 60 degrees C, with or without antibiotics. In 22 cases, genes were detected before but not after treatment. The overall gene diversity was wider before [tet(BLMOSY), erm(AB)] than after [tet(LMOS), erm(B)] treatment. Analysis by denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA (rDNA) fragments generally showed a reduction of the bacterial diversity, except for total populations grown at 60 degrees C and for tylosin-resistant populations grown at 37 degrees C. The latter were further investigated by cloning and sequencing their 16S rDNA. Phylotypes found before treatment were all closely related to Enterococcus hirae, whereas six different phylotypes, related to Pseudomonas, Alcaligenes, and Pusillimonas, were found after treatment. This work demonstrated that the aerobic thermophilic biotreatment cannot be considered as a means for preventing the dissemination of aerobic antibiotic-resistant bacteria and their resistance genes to the environment. However, since pathogens do not survive the biotreatment, the effluent does not represent an immediate threat to animal or human health. PMID:19125305

Chénier, Martin R; Juteau, Pierre

2009-07-01

64

Interaction of biomass of aerobic bacteria and fungi with Pu(IV) at low pH  

Microsoft Academic Search

The aim of this study was to investigate the change of Pu oxidation states due to interaction with aerobic bacteria and fungi\\u000a at low pH under laboratory conditions. Microorganisms were isolated from samples collected from the low-level radioactive\\u000a waste repository within the confines of Ignalina NPP. Abilities of the fungi (Absidia spinosa var spinosa Lendn. and Paecilomyces lilacinus Thom Samson)

R. Druteikien?; B. Lukšien?; D. Pe?iulyt?; D. Baltr?nas

2010-01-01

65

Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products.  

PubMed

The microbial quality and safety of surimi seafood products was assessed by studying the prevalence and biodiversity of aerobic spore-forming bacteria at the beginning and end of shelf life in 100 surimi samples. Low levels of total flora and sporulated flora were numerated at the beginning of storage, however, residual spores were detected in the majority of samples during storage. Furthermore, for 34 samples, total flora counts>10(4) CFU/g were observed at the end of shelf life which could lead to non-compliance with good practice recommendations or product spoilage. In total, 460 strains were isolated, fingerprinted by M13-PCR and grouped into 98 different clusters. Representative strains were then identified at the species level via 16S rRNA gene sequencing. Overall, dominant species belonged to Bacillus simplex, Bacillus subtilis and Bacillus licheniformis; while B. simplex, B. subtilis as well as Sporosarcina aquimarina were clearly the dominant species found in samples with higher total flora counts. Amylolytic and proteolytic activities were very frequent amongst tested strains (80 and 92.5%, respectively). Heat resistance parameters of 4 strains in a surimi-based medium were determined. B. simplex and B. subtilis strains were the most heat resistant (?(96 °C)= 27.6 and 23.3 min and z(T)=8.6 and 7.9, respectively) which can explain their dominance in surimi samples exhibiting higher microbial counts. The heat resistance data obtained can now be used to model thermal destruction of strains using predictive microbiology tools (Sym'Previus). PMID:21315981

Coton, M; Denis, C; Cadot, P; Coton, E

2011-04-01

66

Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.  

PubMed

We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources. PMID:21576889

Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

2010-01-01

67

Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator  

E-print Network

In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel ...

Lam, Raymond H. W.

68

Characteristics of the bacteriocin produced by Lactococcus lactis subsp. cremoris CTC 204 and the effect of this compound on the mesophilic bacteria associated with raw beef  

Microsoft Academic Search

Summary >Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis subsp. cremoris CTC 204, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacteria (Lactobacillus helveticus), but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens). It

R. Bromberg; I. Moreno; R. R. Delboni; H. C. Cintra; P. T. V Oliveira

2005-01-01

69

Variable carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria  

NASA Astrophysics Data System (ADS)

Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH 4(?) range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH 4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the (?) is the fraction of the total CH 4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH 4 oxidized, while at higher cell densities, the overall rates of CH 4 oxidation increase sufficiently that diffusion of CH 4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH 4 is more fractionated at low cell densities, when only a small fraction of the total CH 4 has been oxidized, than at high cell densities, when up to 40% of the influent CH 4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, ? 13C values of the residual CH 4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured (?) was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the ? 13C values of biomass produced by the two types of methanotrophs were observed. Methylosinus trichosporium OB3b (Type II) produced biomass with ? 13C values about 15‰ higher than the dissimilated CO 2, whereas Methylomonas methanica (Type I) produced biomass with ? 13C values only about 6‰ higher than the CO 2. These effects were independent of the magnitude of the initial carbon isotope fractionation caused by MMO and were relatively constant despite changing ratios of assimilatory to dissimilatory carbon transformation by the organisms. This suggests that the difference in biomass carbon isotopes is primarily due to differences in the fractionation effect at the formaldehyde branch point in the metabolic pathway, rather than assimilation of CO 2 by Type II methanotrophs.

Templeton, Alexis S.; Chu, Kung-Hui; Alvarez-Cohen, Lisa; Conrad, Mark E.

2006-04-01

70

Aerobic bacterial flora of oral and nasal fluids of canines with reference to bacteria associated with bites.  

PubMed Central

Oral and nasal fluids of 50 dogs were examined to determine the prevalence of aerobic bacteria frequently associated with animal bite wounds. The most frequently isolated microorganisms included: IIj, EF-4, Pasteurella multocida, Staphylococcus aureus, Staphylococcus epidermidis, group D streptococci, Corynebacterium sp., Enterobacteria, Neisseria sp., Moraxella sp., and Bacillus sp. Other species and genera were infrequently recovered and may represent transient flora. The high incidence of IIj, EF-4, P. multocida, and S. aureus, all known human pathogens, suggests that they should be considered as probably contaminants in bite wounds. Images PMID:632349

Bailie, W E; Stowe, E C; Schmitt, A M

1978-01-01

71

Evidence for propagation of aerobic bacteria in particles suspended in gaseous atmospheres. [Terrestrial microorganism contamination of Jupiter atmosphere  

NASA Technical Reports Server (NTRS)

One factor involved in the possibility that airborne microbes might contaminate the Jovian atmosphere is whether microbes have the capacity to propagate in air. Prior to these studies, the evidence was that the airborne state was lethal to microbes. An aerosol of aerobic bacteria was mixed with another containing C-14-glucose, and the presence of C-14-CO2 was subsequently detected, which indicates that the airborne cells were metabolically active. In the same type of experiment, it was shown that thymidine was incorporated into the acid-insoluble fraction of samples, indicating the formation of DNA. It was also shown, both by an increase in the numbers of viable cells and a parallel increase in particle numbers, that at least two new generations of cells could occur. Evidence for propagation of anaerobic bacteria has so far been negative.

Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.; Straat, P.

1977-01-01

72

Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria  

E-print Network

-oxidizing bacteria Karen L. Casciotti *,1 , Bess B. Ward Department of Geosciences, Princeton University, Princeton) are climatically important trace gases that are produced by both nitrifying and den- itrifying bacteria-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both b- and c-Proteobacterial ammonia

Ward, Bess

73

Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea  

NASA Astrophysics Data System (ADS)

Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding of the AAP bacteria ecology, especially in the Mediterranean Sea and likely globally.

Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

2011-05-01

74

Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea  

NASA Astrophysics Data System (ADS)

Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding of the AAP bacteria ecology, especially in the Mediterranean Sea and likely globally.

Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

2011-07-01

75

Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov  

Microsoft Academic Search

Aerobic endospore-forming bacteria were isolated from soils taken from active fumaroles on Mount Rittmann and Mount Melbourne in northern Victoria Land, Antarctica, and from active and inactive fumaroles on Candlemas Island, South Sandwich archipelago. The Mt Rittmann and Mt Melbourne soils yielded a dominant, moderately thermophilic and acidophilic, aerobic endospore- former growing at pH 5<5 and 50SC, and further strains

N. A. Logan; L. Lebbe; B. Hoste; J. Goris; G. Forsyth; M. Heyndrickx; B. L. Murray; N. Syme; D. D. Wynn-Williams; P. De Vos

76

Acquisition of Fe from Various Natural Organic Matter Isolates by Aerobic Pseudomonad Bacteria  

Microsoft Academic Search

Iron (Fe) is an essential nutrient to most microorganisms. Aerobic microorganisms exhibit various strategies for acquiring Fe at near-neutral pH conditions, where Fe oxyhydroxides are insoluble. Although much research has focused on microbial acquisition of Fe from minerals, little is known about Fe acquisition from natural organic matter (NOM). Yet, in surface waters, soils and shallow sediments, Fe is often

Katherine C. Young; Patricia A. Maurice; Larry E. Hersman

2006-01-01

77

Efficiency of a Transport Medium for the Recovery of Aerobic and Anaerobic Bacteria from Applicator Swabs  

PubMed Central

The survival of four aerobic and four anaerobic pathogens was evaluated quantitatively on cotton swabs and calcium alginate swabs stored in dry tubes as compared with swabs stored in Amies Transport Medium without charcoal. Survival of the pathogens was markedly improved when stored in Amies Transport Medium, although there was considerable loss of viability after a few hours of storage. PMID:4626907

Barry, A. L.; Fay, G. D.; Sauer, R. L.

1972-01-01

78

Degradation of anaerobic reductive dechlorinationproducts of Aroclor 1242 by four aerobic bacteria  

Microsoft Academic Search

We studied the aerobic degradation of eight PCB congeners which comprise from 70 to 85% of the anaerobic dechlorination products from Aroclor 1242, including2-, 4-, 2,4-, 2,6-, 2,2'-, 2,4'-, 2,2',4-, and2,4,4'-chlorobiphenyl (CB), and the biodegradation of their mixtures designed to simulate anaerobic dechlorination profiles M and C. StrainsComamonas testosteroni VP44 and Rhodococcus erythreus NY05 preferentially oxidizeda para-substituted ring, while Rhodococcus

Olga V. Maltseva; Tamara V. Tsoi; John F. Quensen; Masao Fukuda; James M. Tiedje

1999-01-01

79

Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria.  

PubMed

Bioremediation of sediments contaminated with commercial polychlorinated biphenyls (PCBs) is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dehalobium chlorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with granulated activated carbon (GAC) as a delivery system was determined in 2 L laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD, USA. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 to <2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, nonbioaugmented controls containing filtered culture supernatant showed only a 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both nonindigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective and environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

Payne, Rayford B; Fagervold, Sonja K; May, Harold D; Sowers, Kevin R

2013-04-16

80

Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria  

PubMed Central

Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

2013-01-01

81

Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitation  

Microsoft Academic Search

The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h?1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from

Frank P. van den Ende; Anniet M. Laverman; Hans van Gemerden

1996-01-01

82

Aerobic andFacultatively Anaerobic Bacteria Associated with theGutofCanadaGeese(Branta canadensis) andWhistling Swans(Cygnus columbianus columbianus)  

Microsoft Academic Search

Aerobic andfacultatively anaerobic bacteria fromtheintestinal tracts ofswans andgeesewereisolated andcharacterized aspartofa larger studyofthe microbiological effects ofmigratory waterfowl onwaterquality. A total of356 isolates wereidentified byusing rapididentification methodsandclassified by using numerical taxonomy. A diverse population ofbacteria wasrecovered from thewaterfowl, andrepresentative strains couldbeclassified into21phena. The majority oftheaerobic, heterotrophic bacteria foundinthegutofthewaterfowl werespecies ofEnterobacteriaceae, Streptococcus, Lactobacillus, andBacillus. Unfortunately, thebirds thatwereexamined didnotharborsignificant numbers ofanywaterfowl-specific bacterial species. Thus,itmaynotbepossible

J. M. DAMARE; R. M. WEINER; R. R. COLWELL

1979-01-01

83

Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria.  

PubMed Central

Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than those of the facultatively anaerobic bacteria. On the other hand, in the facultatively anaerobic bacteria, the size and composition of the CoA pool drastically changed within minutes in response to the carbon and energy source provided. Acetyl-CoA was the major component of the CoA pool in the facultative anaerobes grown on sufficient glucose, although CoASH was dominant in the aerobes. Therefore, the acetyl-CoA/CoASH ratios in facultatively anaerobic bacteria were 10 times higher than those in aerobic bacteria. In Escherichia coli K-12 cells, the addition of reagents to inhibit the respiratory system led to a rapid decrease in the amount of acetyl-CoA with a concomitant increase in the amount of CoASH, whereas the addition of cerulenin, a specific inhibitor of fatty acid synthase, triggered the intracellular accumulation of malonyl-CoA. The acylation and deacylation of the three CoA molecular species coordinated with the energy-yielding systems and the restriction of the fatty acid-synthesizing system of cells. These data suggest that neither the accumulation of acetyl-CoA nor that of malonyl-CoA exerts negative feedback on pyruvate dehydrogenase and acetyl-CoA carboxylase, respectively. PMID:9023936

Chohnan, S; Furukawa, H; Fujio, T; Nishihara, H; Takamura, Y

1997-01-01

84

Abundance, Depth Distribution, and Composition of Aerobic Bacteriochlorophyll a-Producing Bacteria in Four Basins of the Central Baltic Sea? †  

PubMed Central

The abundance, vertical distribution, and diversity of aerobic anoxygenic phototrophic bacteria (AAP) were studied at four basins of the Baltic Sea. AAP were enumerated by infrared epifluorescence microscopy, and their diversity was analyzed by using pufM gene clone libraries. In addition, numbers of CFU containing the pufM gene were determined, and representative strains were isolated. Both approaches indicated that AAP reached maximal abundance in the euphotic zone. Maximal AAP abundance was 2.5 × 105 cells ml?1 (11% of total prokaryotes) or 1.0 × 103 CFU ml?1 (9 to 10% of total CFU). Environmental pufM clone sequences were grouped into 11 operational taxonomic units phylogenetically related to cultivated members of the Alpha-, Beta-, and Gammaproteobacteria. In spite of varying pufM compositions, five clones were present in all libraries. Of these, Jannaschia-related clones were always found in relative abundances representing 25 to 30% of the total AAP clones. The abundances of the other clones varied. Clones potentially affiliated with typical freshwater Betaproteobacteria sequences were present at three Baltic Sea stations, whereas clones grouping with Loktanella represented 40% of the total cell numbers in the Gotland Basin. For three alphaproteobacterial clones, probable pufM phylogenetic relationships were supported by 16S rRNA gene analyses of Baltic AAP isolates, which showed nearly identical pufM sequences. Our data indicate that the studied AAP assemblages represented a mixture of marine and freshwater taxa, thus characterizing the Baltic Sea as a “melting pot” of abundant, polyphyletic aerobic photoheterotrophic bacteria. PMID:18502937

Salka, Ivette; Moulisova, Vladimira; Koblizek, Michal; Jost, Gunter; Jurgens, Klaus; Labrenz, Matthias

2008-01-01

85

Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources  

Microsoft Academic Search

The bacterium Paenibacillus larvae, the causative agent of American foulbrood disease of honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of antagonic aerobic spore-forming bacteria isolated from honey samples and other apiarian sources were evaluated. Each isolate was screened against one strain of Paenibacillus larvae (ATCC 9545) by

Adriana M. Alippi; Francisco J. Reynaldi

2006-01-01

86

Thermophilic aerobic granular biomass for enhanced settleability.  

PubMed

Aerobic biological wastewater treatment at thermophilic (ca. 55 degrees C) temperatures notoriously produces biomass that flocculates poorly or not at all. Contrary to this, thermophilic aerobic biomass that settled well in sequencing batch reactors was cultured with sludge volume index (SVI) values as low as 60mL/g. A mixture of granular and flocculant biomass resulted when closed reactors were sparged with recirculated reactor headspace gas containing some air, whereas a conventionally aerated control reactor sparged with air alone contained dispersed growth that did not flocculate. Maximum granule diameter was from 1.2 to 1.9mm, and granule resistance to disintegration was comparable to aerobic mesophilic granules. Two bacteria were isolated and identified as Anoxybacillus flavothermus and Pseudoxanthomonas taiwanensis as determined by partial 16S rDNA sequencing. Anoxybacilli species are alkaliphilic or alkalitolerant, with the type species having an obligate requirement for carbonate, even when grown on glucose. We postulate that high alkalinity and CO(2) may select for a population of aerobic thermophilies that flocculates and granulates. PMID:17229452

Zitomer, Daniel H; Duran, Metin; Albert, Richard; Guven, Engin

2007-02-01

87

Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean  

Microsoft Academic Search

The vertical distribution of bacteriochlorophyll a, the numbers of infrared fluorescent cells, and the variable fluorescence signal at 880 nanometers wave- length, all indicate that photosynthetically competent anoxygenic phototrophic bacteria are abundant in the upper open ocean and comprise at least 11% of the total microbial community. These organisms are facultative photohetero- trophs, metabolizing organic carbon when available, but are

Zbigniew S. Kolber; F. Gerald Plumley; Andrew S. Lang; J. Thomas Beatty; Robert E. Blankenship; Cindy L. VanDover; Costantino Vetriani; Michal Koblizek; Christopher Rathgeber; Paul G. Falkowski

2001-01-01

88

Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe  

PubMed Central

We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants. PMID:9925557

Miguez, Carlos B.; Shen, Chun F.; Bourque, Denis; Guiot, Serge R.; Groleau, Denis

1999-01-01

89

Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer.  

PubMed Central

The bacterial abundance, distribution, and degradation potential (in terms of degradation versus lack of degradation) for four xenobiotic compounds in an aerobic aquifer sediment have been examined in laboratory and field experiments. The xenobiotic compounds studied were benzene, toluene, o-xylene, and naphthalene (all at concentrations of approximately 120 micrograms/liter). The aerobic degradation experiments ran for approximately 90 days at 10 degrees C, which corresponded to the groundwater temperature. At the end of the experiment, the major part of the microbial biomass, quantified as acridine orange direct counts, was attached to the groundwater sediment (18 x 10(6) to 25 x 10(6) cells per g [dry weight], and only a minor part was unattached in the groundwater (0.6 x 10(6) to 5.5 x 10(6) cells per ml). Experiments involving aquifer sediment suspensions showed identical degradation potentials in the laboratory and in the field. However, laboratory experiments involving only groundwater (excluding aquifer sediment) showed less degradation potential than in situ experiments involving only groundwater, indicating that the manipulation or approach of the laboratory experiments could affect the determination of the degradation potentials. No differences were observed between the groundwater-only and the sediment compartments in the in situ experiments in the ability to degrade the compounds, but the maximum degradation rates were substantially lower in the groundwater-only compartment. Preparations used in laboratory experiments for studying the degradation potential for xenobiotic organic contaminants should contain sediment to obtain the highest numbers of bacteria as well as the broadest and most stable degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1444415

Holm, P E; Nielsen, P H; Albrechtsen, H J; Christensen, T H

1992-01-01

90

Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.  

PubMed

It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection. PMID:23805543

Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

2013-06-01

91

Interaction of ribosomal L1 proteins from mesophilic and thermophilic Archaea and Bacteria with specific L1-binding sites on 23S rRNA and mRNA.  

PubMed

In Bacteria and Archaea (formerly Archaebacteria) ribosomal protein L1 has a dual function, as a primary rRNA-binding protein and as a translational repressor which binds to its own mRNA. The L1-binding site on the mRNA exhibits high similarity in both sequence and secondary structure to the binding site for L1 on the 23 S rRNA. A sensitive membrane-filter-binding assay has been used to examine the interactions between ribosomal L1 proteins from different archaeal and bacterial species, and 23S rRNA and mRNA fragments from Methanococcus vannielii containing the MvaL1-binding site. Under standard conditions (0 degrees C, pH 7.5, 20 mM Mg2+, 500 mM KCl), the apparent dissociation constant Kd of the homologous MvaL1-23S rRNA complex is 5 nM, the apparent dissociation constant Kd of the MvaL1-mRNA complex is 0.15 degrees M. L1 proteins from Escherichia coli (EcoL1) and from the thermophilic Bacterium Thermus thermophilus (TthL1), and from the thermophilic Archaea Methanococcus thermolithotrophicus (MthL1), Methanococcus jannaschii (MjaL1), and Sulfolobus solfataricus (SsoL1) were tested for their affinity to the specific L1-binding sites on the 23 S rRNA and mRNA. In general, the affinity of L1 proteins from thermophilic species to the binding sites on both 23 S rRNA and mRNA is about one order of magnitude higher than that of their mesophilic counterparts. This stronger protein-RNA interaction might make a substantial contribution to the thermal tolerance of ribosomes in thermophilic organisms. PMID:9746351

Köhrer, C; Mayer, C; Neumair, O; Gröbner, P; Piendl, W

1998-08-15

92

Mechanisms regulating the reduction of selenite by aerobic gram (+) and ({minus}) bacteria  

SciTech Connect

Toxic species of selenium are pollutants found in agricultural and oil refinery wastestreams. Selenium contamination is particularly problematic in areas that have seleniferous subsurface geology, such as the central valley of California. The authors are developed a bacterial treatment system to mitigate selenium-contaminated wastestreams using Bacillus subtilis and Pseudomonas fluorescens, respectively, as model gram (+) and ({minus}) soil bacteria. They have found that, during growth, both organisms reduce selenite, a major soluble toxic species, to red elemental selenium--an insoluble product generally regarded as nontoxic. In both cases, reduction depended on growth substrate and was effected by an inducible system that effectively removed selenite at concentrations typical of polluted sites--i.e., 50 to 300 {micro}g/L. The bacteria studied differed in one respect: when grown in medium supplemented with nitrate or sulfate, the ability of P. fluorescens to remediate selenite was enhanced, whereas that of B. subtilis was unchanged. Current efforts are being directed toward understanding the biochemical mechanism(s) of detoxification and determining whether bacteria occurring in polluted environments such as soils and sludge systems are capable of selenite remediation.

Garbisu, C.; Ishii, Takahisa; Yee, B.C.; Carlson, D.E.; Buchanan, B.B.; Leighton, T. [Univ. of California, Berkeley, CA (United States); Smith, N.R. [California State Univ., Hayward, CA (United States). Dept. of Biological Sciences; Yee, A. [Lawrence Berkeley Lab., CA (United States). Div. of Earth Sciences

1995-12-31

93

Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability?  

PubMed Central

Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634

Xiao, Na; Jiao, Nianzhi

2011-01-01

94

Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.  

PubMed

Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, ?-d-glucosidase, cellobiohydrolase, ?-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated ?-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. PMID:24238986

Woo, Hannah L; Hazen, Terry C; Simmons, Blake A; DeAngelis, Kristen M

2014-02-01

95

Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09  

SciTech Connect

Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

Boden, Rich [University of Warwick, UK; Cunliffe, Michael [University of Warwick, UK; Scanlan, Julie [University of Warwick, UK; Moussard, Helene [University of Warwick, UK; Kits, K. Dimitri [University of Alberta, Edmondton, Canada; Klotz, Martin G [University of Louisville, Louisville; Jetten, MSM [Radboud University Nijmegen, The Netherlands; Vuilleumier, Stephane [University of Strasbourg; Han, James [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Stein, Lisa Y. [University of Alberta, Edmondton, Canada; Murrell, Collin [University of Warwick, UK

2011-01-01

96

Aminopeptidase activity by spoilage bacteria and its relationship to microbial load and sensory attributes of poultry legs during aerobic cold storage.  

PubMed

The shelf life of poultry legs stored aerobically and the possible role of the aminopeptidase activity of gram-negative bacteria (p-nitroaniline test) as a predictor of poultry spoilage were evaluated on the basis of microbiological and sensory parameters. Chicken legs (n = 30) obtained immediately after evisceration in a local poultry processing plant were kept under aerobic refrigeration (4 +/- 1 degrees C) for 7 days. Microbiological (counts of aerobic bacteria and psychrotrophs) and sensory (odor, color, and general acceptability on a hedonic scale of 1 to 9) parameters and aminopeptidase activity (absorbance at 390 nm [A(390)]) determinations were performed after 0, 1, 3, 5, and 7 days of storage. Aerobic plate counts of 7 log CFU/g and a score of 6 for general acceptability were used as indicators of the end point of shelf life. Strong correlations (r > or = 0.76; P < 0.001) were obtained between bacterial counts, hedonic scores, and A(390) values. Samples were judged as unacceptable (shelf-life end point) after 2 and 4 days on the basis of sensory and microbiological analyses, respectively. A(390) values of 0.52 and 0.89 (corresponding to p-nitroaniline concentrations of 6.25 and 10.7 microg/ml, respectively) are proposed as the upper limits for acceptability on the basis of sensory and microbiological determinations, respectively. However, these recommendations are based on a small set of samples, and their general application is yet to be verified. PMID:20132678

Guevara-Franco, José Alfredo; Alonso-Calleja, Carlos; Capita, Rosa

2010-02-01

97

Diversity of aerobic anoxygenic phototrophic bacteria in paddy soil and their response to elevated atmospheric CO2  

PubMed Central

Summary Aerobic anoxygenic phototrophic bacteria (AAnPB) are recognized as an important group driving the global carbon cycling. However, the diversity of AAnPB in terrestrial environment remains largely unknown as well as their responses to the elevated atmospheric CO2. By using culture?independent techniques, the diversity of AAnPB in paddy soil and the changes in response to the rising atmospheric CO2 were investigated within China FACE (Free?air CO2 enrichment) platform. There was a phylogenetically diverse AAnPB community with large population size residing in paddy soil. The community structure of AAnPB in bulk and rhizospheric soils stayed almost identical, while the population size was higher in rhizospheric [2.0–2.5?×?108 copy number of pufM genes g?1 dry weight soil (d.w.s.)] than that in bulk (0.7–0.8?×?108?g?1?d.w.s.) soils. Elevated atmospheric CO2 appeared to significantly stimulate AAnPB abundance (up to 1.4–1.5?×?108?g?1?d.w.s.) and result in a higher AAnPB percentage in total bacterial community (from 0.5% up to 1.5%) in bulk soil, whereas no significant effect was observed in rhizospheric soil. Our results would extend the functional ecotypes of AAnPB and indicate that environmental changes associated with the rising atmospheric CO2 might affect AAnPB community in paddy soil. PMID:21255374

Feng, Youzhi; Lin, Xiangui; Mao, Tingting; Zhu, Jianguo

2011-01-01

98

Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden  

PubMed Central

Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

Dey, Satarupa; Paul, A.K.

2013-01-01

99

Concentration and species composition of aerobic and facultatively anaerobic bacteria released to the air of a dental operation area before and after disinfection of dental unit waterlines.  

PubMed

Bacteriological air sampling was conducted at 25 dental units during restorative treatment sessions before and after disinfection of dental unit waterlines (DUWL) with hydrogen peroxide. Air samples for determining the concentration and species composition of aerobic and facultatively anaerobic bacteria were collected with the portable Reuter Centrifugal Sampler (RCS Plus) in the dental operation area close to patient's mouth. Large concentrations of airborne bacteria in the range of 0.35-40.08 x 10(3) cfu/m(3) (median = 1.63 x 10(3) cfu/m(3)) were recorded before DUWL disinfection. After disinfection, the concentrations were significantly lower (p<0.05), ranging from 0.51-3.82 x 10(3) cfu/m(3) (median = 0.9 x 10(3) cfu/m(3)). Streptococci were most numerous among airborne bacteria before DUWL disinfection, forming 79.23 % of total isolates. The remaining isolates were staphylococci/micrococci (15.7 % ), corynebacteria (2.3 % ), endospore-forming bacilli (1.45 % ), Gram-negative bacteria (1.31 % ), and actinomycetes (0.01 % ). After DUWL disinfection, a significant decrease in the numbers of streptococci (p<0.05) and Gram-negative bacteria (p<0.01) was noted, while the numbers of other types of bacteria were unaffected. Altogether, 50 species or genera of bacteria were identified in the examined air samples before and after DUWL disinfection. Of these, 36 species or genera are considered potentially pathogenic, as a potential cause of infection, allergic disease or intoxication. In conclusion, the high pollution of dental operation area with bacteria indicates a need for use of preventive measures protecting dental staff and patients, such as DUWL disinfection that proved efficient in decrease of exposure in the present study. PMID:19061267

Szyma?ska, Jolanta; Dutkiewicz, Jacek

2008-12-01

100

Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms  

Microsoft Academic Search

Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples

An Coorevits; Valerie De Jonghe; Joachim Vandroemme; Rieka Reekmans; Jeroen Heyrman; Winy Messens; Paul De Vos; Marc Heyndrickx

2008-01-01

101

ISOLATIONS OF AEROBIC BACTERIA FROM WILD DESERT BIGHORN SHEEP (OVIS CANADENSIS NELSON! AND 0. C. MEX!CANA) IN ARIZONA  

Microsoft Academic Search

Nasal, pharyngeal, cervical and vaginal swab specimens were obtained from 74 desert bighorn sheep for the purpose of investigating the normal aerobic bacterial flora of wild sheep. A total of 281 isolates was obtained and identified by standard microbiologic tests. One hundred seven of these isolates were gram positive and included Bacillus sp. (36%.), Staphylococcus epiderrnidis (8%), S. aureus (4%),

M. M. Marshall; J. Glenn Songer; C. J. Chilelli

102

Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal  

Microsoft Academic Search

Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater

S. Shakya; B. Pradhan; L. Smith; J. Shrestha; S. Tuladhar

103

Comparative In Vitro Activities of LFF571 against Clostridium difficile and 630 Other Intestinal Strains of Aerobic and Anaerobic Bacteria  

PubMed Central

The in vitro activities of LFF571, a novel analog of GE2270A that inhibits bacterial growth by binding with high affinity for protein synthesis elongation factor Tu, fidaxomicin, and 10 other antimicrobial agents were determined against 50 strains of Clostridium difficile and 630 other anaerobic and aerobic organisms of intestinal origin. LFF571 possesses potent activity against C. difficile and most other Gram-positive anaerobes (MIC90, ?0.25 ?g/ml), with the exception of bifidobacteria and lactobacilli. The MIC90s for aerobes, including enterococci, Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA] isolates), Streptococcus pyogenes, and other streptococci were 0.06, 0.125, 2, and 8 ?g/ml, respectively. Comparatively, fidaxomicin showed variable activity against Gram-positive organisms: MIC90s against C. difficile, Clostridium perfringens, and Bifidobacterium spp. were 0.5, ?0.015, and 0.125 ?g/ml, respectively, but >32 ?g/ml against Clostridium ramosum and Clostridium innocuum. MIC90 for S. pyogenes and other streptococci was 16 and >32 ?g/ml, respectively. LFF571 and fidaxomicin were generally less active against Gram-negative anaerobes. PMID:22290948

Tyrrell, Kerin L.; Merriam, C. Vreni; Goldstein, Ellie J. C.

2012-01-01

104

Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study  

Microsoft Academic Search

Airborne contamination with bacteria-carrying particles (cfu\\/m3) and their sedimentation rate (cfu\\/m2\\/h) was compared in an operating room (OR) equipped with two turbulent ventilation systems. One was a thermally based system with inlet of cool clean air at the floor level and evacuation of the air at the ceiling by convection (17 air changes\\/h). The other was a conventional plenum pressure

B. Friberg; S. Friberg; L. G. Burman

1999-01-01

105

Diversity and Function of Chloroflexus-Like Bacteria in a Hypersaline Microbial Mat: Phylogenetic Characterization and Impact on Aerobic Respiration  

Microsoft Academic Search

Received 31 October 2006\\/Accepted 11 April 2007 We studied the diversity of Chloroflexus-like bacteria (CLB) in a hypersaline phototrophic microbial mat and assayed their near-infrared (NIR) light-dependent oxygen respiration rates. PCR with primers that were reported to specifically target the 16S rRNA gene from members of the phylum Chloroflexi resulted in the recovery of 49 sequences and 16 phylotypes (sequences

Ami Bachar; Enoma Omoregie; Rutger de Wit; Henk M. Jonkers

2007-01-01

106

Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats  

PubMed Central

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

Coulon, Frederic; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Paisse, Sandrine; Goni-Urriza, Marisol; Peperzak, Louis; Acuna Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

2012-01-01

107

Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats.  

PubMed

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A; Brussaard, Corina P D; Underwood, Graham J C; Timmis, Kenneth N; Duran, Robert; McGenity, Terry J

2012-05-01

108

Aerobic Biodegradation of Methyl tert-Butyl Ether by Aquifer Bacteria from Leaking Underground Storage Tank Sites  

PubMed Central

The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-14C]MTBE was mineralized to 14CO2. Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential. PMID:11722940

Kane, S. R.; Beller, H. R.; Legler, T. C.; Koester, C. J.; Pinkart, H. C.; Halden, R. U.; Happel, A. M.

2001-01-01

109

Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites.  

PubMed

The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential. PMID:11722940

Kane, S R; Beller, H R; Legler, T C; Koester, C J; Pinkart, H C; Halden, R U; Happel, A M

2001-12-01

110

Genome Sequence of Leuconostoc mesenteroides subsp. cremoris Strain T26, Isolated from Mesophilic Undefined Cheese Starter  

PubMed Central

Leuconostoc is the main group of heterofermentative bacteria found in mesophilic dairy starters. They grow in close symbiosis with the Lactococcus population and are able to degrade citrate. Here we present a draft genome sequence of Leuconostoc mesenteroides subsp. cremoris strain T26. PMID:24903867

Kot, W. P.; Hansen, L. H.; S?rensen, S. J.; Broadbent, J. R.; Vogensen, F. K.; Ardo, Y.

2014-01-01

111

A quantitative interpretation of recent experimental results on stable carbon isotope fractionation by aerobic CH 4-oxidizing bacteria  

NASA Astrophysics Data System (ADS)

A quantitative model of recent laboratory experiments on carbon isotope fractionation by methane-oxidizing bacteria is proposed. The simulated experimental apparatus consists of a bacterial culture with a constant liquid volume, a gas headspace and a methane bubbling mechanism. The relative effects of bacterial growth and transport phenomena that do not depend on cell density are clarified. In all calculations, gas-liquid mass transfer is defined by unconstrained model parameters. Limited mass transfer from the culture into the headspace, rather than the incomplete dissolution of substrate-rich bubbles, seems to have caused an apparent decrease in the measured carbon isotope fractionation. The experimenters attributed this fractionation shift to a growing imbalance among kinetic rates as methane consumption by bacteria increases. Model predictions support this interpretation but also show that changes in carbon isotope fractionation in the course of the experiments cannot be unambiguously correlated with bacterial cell density unless gas-liquid mass transfer parameters are calibrated. Simulations of other laboratory experiments indicate that a reported change in carbon isotope fractionation could, in part at least, be the result of experimental conditions rather than the emergence of a different methane oxidation pathway postulated by the experimenters. A careful evaluation of mass transfer from the liquid culture into the gas headspace is warranted in this type of experiments since isotope fractionation factors are likely to be used in a wide variety of environmental contexts.

Nihous, Gérard C.

2008-09-01

112

Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments.  

PubMed

Four strains of aerobic, mesophilic, acidophilic bacteria that produced bacteriochlorophyll (BChl) a were isolated from acidic hot springs and mine drainage. The characteristics of the four isolates were almost identical. The isolates were strictly aerobic and chemo-organotrophic. They were gram-negative, non-motile cocci and coccobacilli, formed salmon-pink colonies on solidified media and produced BChl a and carotenoids only under aerobic growth conditions. The cells also produced small amounts of zinc-substituted BChl a when grown in the presence of 1 mM zinc sulfate. Anaerobic growth in the light was not found, but aerobic growth was stimulated by continuous incandescent illumination. The isolates grew in a pH range of 3.5-6.0, with pH optima of 4.5-5.0. A phylogenetic analysis based on 16S rDNA sequences showed that the isolates clustered in the major acidophilic group of the class Proteobacteria, which includes species of the genera Acidiphilium and Rhodopila. The anaerobic phototrophic bacterium Rhodopila globiformis was the closest relative to the new isolates (95% level of sequence similarity). The G+C content of the genomic DNA of the isolates was 69.1-69.8 mol%. On the basis of these results, it was concluded that the four isolates should be classified into a new genus and a new species, for which the name Acidisphaera rubrifaciens is proposed. The type strain is strain HS-AP3T (= JCM 10600T). PMID:10939661

Hiraishi, A; Matsuzawa, Y; Kanbe, T; Wakao, N

2000-07-01

113

Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching from Aerobic Respiration to Denitrification  

PubMed Central

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e?-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (, h?1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With ?=?0.005 h?1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting (fraction of the cells recruited to denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’: switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a ‘false alarm’. PMID:25375393

Hassan, Junaid; Bergaust, Linda L.; Wheat, I. David; Bakken, Lars R.

2014-01-01

114

Proton and cadmium adsorption by the archaeon Thermococcus zilligii: Generalising the contrast between thermophiles and mesophiles as sorbents  

Microsoft Academic Search

Adsorption by microorganisms can play a significant role in the fate and transport of metals in natural systems. Surface complexation models (SCMs) have been applied extensively to describe metal adsorption by mesophilic bacteria, and several recent studies have extended this framework to thermophilic bacteria. We conduct acid–base titrations and batch experiments to characterise proton and Cd adsorption onto the thermophilic

Christopher J. Daughney; Adrian Hetzer; Hannah T. M. Heinrich; Peta-Gaye G. Burnett; Marjolein Weerts; Hugh Morgan; Phil J. Bremer; A. James McQuillan

2010-01-01

115

Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources.  

PubMed

The bacterium Paenibacillus larvae, the causative agent of American foulbrood disease of honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of antagonic aerobic spore-forming bacteria isolated from honey samples and other apiarian sources were evaluated. Each isolate was screened against one strain of Paenibacillus larvae (ATCC 9545) by using a perpendicular streak technique. Ten randomly selected bacterial strains from the group that showed the best antagonistic effect to P. larvae ATCC 9545 were selected for further study. These were identified as Bacillus subtilis (m351), B. pumilus (m350), B. licheniformis (m347), B. cereus (mv33), B. cereus (m387), B. cereus (m6c), B. megaterium (m404), Brevibacillus laterosporus (BLAT169), B. laterosporus (BLAT170), and B. laterosporus (BLAT171). The antagonistic strains were tested against 17 P. larvae strains from different geographical origins by means of a spot test in wells. The analysis of variance and posterior comparison of means by Tukey method (P < 0.01) showed that the best antagonists were B. megaterium (m404), B. licheniformis (m347), B. cereus (m6c), B. cereus (mv33), and B. cereus (m387). PMID:16458322

Alippi, Adriana M; Reynaldi, Francisco J

2006-03-01

116

Control of Ribosomal Protein L1 Synthesis in Mesophilic and Thermophilic Archaea  

Microsoft Academic Search

The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protein MvaL1 binds

Alexander Kraft; Christina Lutz; Arno Lingenhel; Peter Grobner; Wolfgang Piendl

1999-01-01

117

Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov  

Microsoft Academic Search

Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sedi- ments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and

W. K. Chung; G. M. King

2001-01-01

118

Characterization of subterranean bacteria in the Hungarian Upper Permian Siltstone (Aleurolite) Formation.  

PubMed

The main purpose of this work was to study the microbiology of the Hungarian Upper Permian Siltstone (Aleurolite) Formation, to assess the safety of future underground repositories for nuclear waste. Sixty-seven air, groundwater, technical water, rock, and surface samples were collected aseptically from different depths. The number of aerobic and anaerobic isolates was 277. The mesophilic minimum and maximum CFU counts of the air samples were 1.07-5.84 x 10(2).mL-1 (aerobic) and 0.22-1.04 x 10(2).mL-1 (anaerobic), respectively; those of the water samples were 0.39-1.25 x 10(5).mL-1 (aerobic) and 0.36-3.9 x 10(3).mL-1 (anaerobic); those of the technical water samples were 0.27-5.03 x 10(6).mL-1 (aerobic) and 4 x 10(5)-->10(6).mL-1 (anaerobic); and those of the aleurolite samples were 2.32 x 10(2)-2.47 x 10(5).g-1 (aerobic) and 0.45-9.5 x 10(2).g-1 (anaerobic). In the groundwater, the thermophilic aerobic bacteria count was 0-2.4 x 10(2).mL-1 and the thermophilic anaerobic bacteria count was 0.43-4.6 x 10(4).mL-1. The gases produced by the 16 gas-forming isolates were CO2 (aerobic isolates), and CO2 and H2 (anaerobic isolates). About 20% of the aerobic isolates produced siderophores. The proportions of organic acid producers were lowest in aerobic and anaerobic isolates from the aleurolite, 13% and 14%, respectively. The highest proportions of acid producers in the aerobic and anaerobic isolates from the air samples were 63% and 54%. Altogether 160 of the aerobic isolates and 52 of the anaerobic isolates were spore formers. The radiosensitivity of the aerobic isolates was also determined; the D10 values of the sporeformers ranged between 0.8-2.44 kGy. Our results indicate that the sulfate-reducing bacteria and the production of complexing agents (siderophores) may contribute to the mobilization of radionuclides from underground repositories. As well, microbial gas production can influence the environmental conditions. The variability in bacterial radiotolerance indicates the biodiversity at this potential disposal site. These facts must be considered during the planning of a nuclear waste repository. PMID:10913978

Farkas, G; Gazsó, L G; Diósi, G

2000-06-01

119

Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria  

PubMed Central

Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

Johnson, D. Barrie; McGinness, Stephen

1991-01-01

120

Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching from Aerobic Respiration to Denitrification.  

PubMed

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e--flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction ([Formula: see text]). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability ([Formula: see text], h-1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With [Formula: see text]?=?0.005 h-1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting [Formula: see text] (fraction of the cells recruited to denitrification) falls within 0.038-0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a 'bet-hedging strategy': switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a 'false alarm'. PMID:25375393

Hassan, Junaid; Bergaust, Linda L; Wheat, I David; Bakken, Lars R

2014-11-01

121

Aerobic Metabolism 1 AEROBIC RESPIRATION  

E-print Network

Aerobic Metabolism 1 AEROBIC RESPIRATION 1 Review; In the last set of notes we learned some of the basic types of reactions involved in cellular work and energy conservation. Recall that we focused on it aerobic respiration. In these notes we will consider the specific processes that use O2 plus high

Prestwich, Ken

122

Phylogenetic Analysis of Bacterial Communities in Mesophilic and Thermophilic Bioreactors Treating Pharmaceutical Wastewater  

Microsoft Academic Search

The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32°C) and thermophilic (50 to 58°C) temperatures. Community fingerprint analysis by denaturing gradient gel electro- phoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domain Bacteria revealed that

TIMOTHY M. LAPARA; CINDY H. NAKATSU; LISA PANTEA; JAMES E. ALLEMAN

2000-01-01

123

Searching for mesophilic Thermotogales bacteria: "mesotogas" in the wild.  

PubMed

All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46 degrees C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to "universal" 16S rRNA gene primer bias. PMID:20495053

Nesbø, Camilla L; Kumaraswamy, Rajkumari; Dlutek, Marlena; Doolittle, W Ford; Foght, Julia

2010-07-01

124

Searching for Mesophilic Thermotogales Bacteria: “Mesotogas” in the Wild? †  

PubMed Central

All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias. PMID:20495053

Nesbø, Camilla L.; Kumaraswamy, Rajkumari; Dlutek, Marlena; Doolittle, W. Ford; Foght, Julia

2010-01-01

125

Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.  

PubMed

The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria. PMID:22876480

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-01

126

Aerobic granulation in a sequencing batch reactor  

Microsoft Academic Search

In a sequencing batch reactor (SBR) granules of aerobic heterotrophic microorganisms were cultured. The effect of different operational conditions on the formation of these aerobic granules were studied. The time allowed for settling was the main parameter to select for growth of bacteria in well settling granules. Both a short HRT and a relative high shear were found favorable for

J. J Beun; A Hendriks; M. C. M van Loosdrecht; E Morgenroth; P. A Wilderer; J. J Heijnen

1999-01-01

127

Aerobic Exercise  

Microsoft Academic Search

This pilot study, using a modified single systems design, attempted to answer the question: what effect does an occupational therapy aerobic exercise program have on adolescents with depression? The sample was comprised of four adolescent boys from a private psychiatric hospital. Their ages ranged from 12 to 18 years and all had a primary diagnosis of major depression. The program

Chestina B. Brollier; Natalie Hamrick; Beth Jacobson

1995-01-01

128

Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies.  

PubMed

Visceral leishmaniasis is an understudied parasitic disease responsible for significant global morbidity and mortality. We are presently investigating a method of disease prevention termed paratransgenesis. In this approach, symbiotic or commensal bacteria are transformed to produce anti-Leishmania molecules. The transformed bacteria are delivered back to sand flies to inactivate the parasite within the vector itself. In this study, we identified 28 distinct gut microorganisms from Phlebotomus argentipes trapped from four visceral leishmaniasis-endemic sites in India. A significant percent of Staphylococcus spp., environmental bacteria, and Enterobacteriaceae were identified. Two non-pathogenic organisms, Bacillus megaterium and Brevibacterium linens, were also isolated. Both organisms are also used extensively in industry. Our results indicate that B. megaterium and B. linens are possible candidates for use in a model of paratransgenesis to prevent transmission of Leishmania. PMID:19052297

Hillesland, Heidi; Read, Amber; Subhadra, Bobban; Hurwitz, Ivy; McKelvey, Robin; Ghosh, Kashinath; Das, Pradeep; Durvasula, Ravi

2008-12-01

129

Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system.  

PubMed

Two different mechanisms for Mg-protoporphyrin monomethyl ester (MgPMe) cyclization are shown to coexist in Rubrivivax gelatinosus and are proposed to be conserved in all facultative aerobic phototrophs: an anaerobic mechanism active under photosynthesis or low oxygenation, and an aerobic mechanism active only under high oxygenation conditions. This was confirmed by analyzing the bacteriochlorophyll accumulation in the wild type and in three mutant strains grown under low or high aeration. A mutant lacking the acsF gene is photosynthetic, exhibits normal bacteriochlorophyll accumulation under low oxygenation and anaerobiosis, and accumulates MgPMe under high oxygenation. The photosynthesis-deficient bchE mutant produces bacteriochlorophyll only under high oxygenation and accumulates MgPMe under low oxygenation and anaerobiosis. The double knockout mutant is devoid of photosystem and accumulates MgPMe under both conditions indicating the involvement of the two enzymes at the same step of the biosynthesis pathway. Oxygen-mediated expression of bchE was studied in the wild type and in a regulatory mutant. The reverse transcriptase-PCR and the bchE promoter activity results demonstrate that the expression of the bchE gene is oxygen-independent and suggest that it is rather the enzyme activity that should be oxygen-sensitive. No obvious sequence similarities were found between oxygen-dependent AcsF and the oxygen-independent anaerobic Mg-protoporphyrin monomethylester cyclase (BchE) enzymes. However, common to all BchE proteins is the conserved CXXX-CXXC sequence. This motif is essential for 4Fe-4S cluster formation in many anaerobic enzymes. Expression and purification of BchE were achieved, and the UV-visible spectral analyses confirmed the presence of an active 4Fe-4S cluster in this protein. The use of different classes of enzymes catalyzing the same reaction under different oxygen growth conditions appears to be a common feature of different biosynthetic pathways, and the benefit of possessing both aerobic and anaerobic systems is discussed. PMID:14617630

Ouchane, Soufian; Steunou, Anne-Soisig; Picaud, Martine; Astier, Chantal

2004-02-20

130

Abstract Seven strains of marine aerobic anoxygenic pho-totrophs belonging to the genus Erythrobacter were iso-  

E-print Network

relatives, purple non-sulfur photosynthetic bacteria, these bacteria were obligate aerobes requiring oxygen photosynthetic bacteria · Bacteriochlorophyll a · Erythrobacter · Photoheterotrophy Abbreviations BChl, there exists a broad spectrum of anoxygenic photo- synthetic bacteria that contain bacteriochlorophyll (BChl

Vetriani, Costantino

131

Antibacterial action of essential oils of Artemisia as an ecological factor. I. Antibacterial action of the volatile oils of Artemisia tridentata and Artemisia nova on aerobic bacteria.  

PubMed

Bacterial response to increasing amounts of the volatile oils varies significantly according to species of bacteria tested. Among the four species examined, Escherichia coli was the most resistant to the oils, followed by Neisseria sicca, Bacillus subtilis, and Staphylococcus aureus. The oils of Artemisia tridentata seem to have the same degree of antibacterial action as oils obtained from A. nova. PMID:4963443

Nagy, J G; Tengerdy, R P

1967-07-01

132

Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions  

Microsoft Academic Search

The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55°C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60–65% SCOD removal from the first day onwards. During the 107 days of experiment,

Sigrun J Jahren; Jukka A Rintala; Hallvard Ødegaard

2002-01-01

133

Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen  

Microsoft Academic Search

The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative

Andres Kaech; Nathalie Vallotton; Thomas Egli

2005-01-01

134

Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system.  

PubMed

Danish district heating systems have good water quality, but continue to suffer from biofouling and biocorrosion. Localisation analyses of bacteria using microautoradiography were performed for one system in order to obtain detailed information for solving these problems. A mass balance showed that 77% of the bacteria were located at surfaces, with 23% in the bulk water, and 9% of the total carbon originated from biomass, while 91% was dissolved in the bulk water. The presence of active bacteria was determined with microautoradiography which showed that biofilms contained 99% and 1% were in the bulk water. A high bacterial functional diversity was observed, with active mesophilic and thermophilic bacteria under aerobic and anaerobic conditions and with potentially corrosive biofilm bacteria present. The study reveals that by applying the activity based approach, the ratio of living and dead bacteria in the biofilm and bulk water in this type of system could be accurately determined. Also, the results emphasise that to minimise biofilm growth and biocorrosion, monitoring should be established focusing on the surfaces, since bulk water parameters do not reflect bacterial activity. PMID:17290859

Kjellerup, B V; Gudmonsson, G; Sowers, K; Nielsen, P H

2006-01-01

135

Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.  

PubMed

A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. PMID:20801476

Novak, John T; Banjade, Sarita; Murthy, Sudhir N

2011-01-01

136

Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov.  

PubMed

We analyzed the 16S ribosomal DNAs of three obligately aerobic, bacteriochlorophyll a-containing bacteria, "Roseococcus thiosulfatophilus," "Erythromicrobium ramosum," and new isolate T4T (T = type strain), which was obtained from a marine cyanobacterial mat. "Roseococcus thiosulfatophilus" is a member of the alpha-1 subclass of the Proteobacteria and is moderately related to Rhodopila globiformis, Thiobacillus acidophilus, and Acidiphilium cryptum (level of sequence similarity, 90%). "Erythromicrobium ramosum" and isolate T4T are closely related to Erythrobacter longus and Porphyrobacter neustonensis (level of sequence similarity, 95%). These organisms are members of the alpha-4 subclass of the Proteobacteria. Strain T4T is a motile, red or orange bacterium. The major carotenoids are bacteriorubixanthinal and erythroxanthin sulfate. In vivo measurements revealed bacteriochlorophyll absorption maxima at 377, 590, 800, and 868 nm. Strain T4T grows in the presence of 5 to 96/1000 salinity and uses glucose, fructose, acetate, pyruvate, glutamate, succinate, and lactate as substrates. On the basis of its distinct phylogenetic position and phenotypic characteristics which are different from those of Erythrobacter longus, we propose that strain T4T should be placed in a new species of the genus Erythrobacter, Erythrobacter litoralis. The descriptions of "Roseococcus thiosulfatophilus" and "Erythromicrobium ramosum" are emended. PMID:7520734

Yurkov, V; Stackebrandt, E; Holmes, A; Fuerst, J A; Hugenholtz, P; Golecki, J; Gad'on, N; Gorlenko, V M; Kompantseva, E I; Drews, G

1994-07-01

137

Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.  

PubMed

Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in temperature and perform AD effectively. The studies of this microbial group could be a step forward in developing more efficient anaerobic digestion technology. PMID:25218710

Ziembi?ska-Buczy?ska, A; Banach, A; Bacza, T; Pieczykolan, M

2014-12-01

138

Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria  

E-print Network

LETTERS Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Stahl1 The discovery of ammonia oxidation by mesophilic and thermo- philic Crenarchaeota or their contribution to nitrification8 . Here we report oligotrophic ammonia oxidation kinetics and cellular

de la Torre, José R.

139

Biogas Production at Low Temperatures. Interim Report Concerning Propagation and Activity Tests of Anaerobic Psychrophilic Bacteria.  

National Technical Information Service (NTIS)

Literature concerning biogas production at low temperatures was received, showing that depending on dry matter content of added substrate psychophilic or mesophilic bacteria grow; U.A.S.B. filters are able to reduce low concentration waste water at temper...

N. Oestergaard

1985-01-01

140

Aerobic exercise (image)  

MedlinePLUS

Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

141

What Is Aerobic Dancing?  

MedlinePLUS

... the sesamoid bones during aerobics, and inflammation and fractures can occur. Proper shoe selection and custom orthotic ... ordinarily help alleviate the pain and stiffness. Stress fractures -- Probably the most common injuries to aerobics instructors, ...

142

Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing.  

PubMed

Methanogenesis from wastewater-borne organics and organic solid wastes (e.g., food residues) can be severely suppressed by the presence of toxic phenols. In this work, ambient (20 °C) and mesophilic (37 °C) methane-producing and phenol-degrading consortia were enriched and characterized using high-throughput sequencing (HTS). 454 Pyrosequencing indicated novel W22 (25.0 % of bacterial sequences) in the WWE1 and Sulfurovum-resembled species (32.0 %) in the family Campylobacterales were the most abundant in mesophilic and ambient reactors, respectively, which challenges previous knowledge that Syntrophorhabdus was the most predominant. Previous findings may underestimate bacterial diversity and low-abundance bacteria, but overestimate abundance of Syntrophorhabdus. Illumina HTS revealed that archaeal populations were doubled in ambient reactor and tripled in mesophilic reactor, respectively, compared to the ?4.9 % (of the bacteria and archaea sequences) in the seed sludge. Moreover, unlike the dominance of Methanosarcina in seed sludge, acetotrophic Methanosaeta predominated both (71.4-76.5 % of archaeal sequences) ambient and mesophilic enrichments. Noteworthy, this study, for the first time, discovered the co-occurrence of green sulfur bacteria Chlorobia, sulfur-reducing Desulfovibrio, and Sulfurovum-resembling species under ambient condition, which could presumably establish mutualistic relationships to compete with syntrophic bacteria and methanogens, leading to the deterioration of methanogenic activity. Taken together, this HTS-based study unravels the high microbial diversity and complicated bacterial interactions within the biogas-producing and phenol-degrading bioreactors, and the identification of novel bacterial species and dominant methanogens involved in the phenol degradation provides novel insights into the operation of full-scale bioreactors for maximizing biogas generation. PMID:24633337

Ju, Feng; Zhang, Tong

2014-08-01

143

A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum  

Microsoft Academic Search

A novel thermophilic endoglucanase (EGt) was extracted from a mesophilic fungus (Fusarium oxysporum L19). We invoked conventional kinetic enzyme reactions using the sodium salt of carboxymethyl cellulose (CMC-Na) as substrate.\\u000a EGt displayed optimal activity at 75C when kept running 30 min in the temperature range of 30–85C. Thermal stability curve\\u000a measured at 70C suggested that its half-life time is 15.1

Shuyan Liu; Xinyuan Duan; Xuemei Lu; Peiji Gao

2006-01-01

144

Aerobic and anaerobic microbiology of infections after trauma in children.  

PubMed Central

OBJECTIVE: To review the recovery of aerobic and anaerobic bacteria from infections after trauma in children over a 20 year period. METHODS: Only specimens that were studied for both aerobic and anaerobic bacteria were included in the analysis. They were collected from seven separate centres in which the microbiology laboratories only accepted specimens that were properly collected without contamination and were submitted in appropriate transport media. Anaerobes and aerobic bacteria were cultured and identified using standard techniques. Clinical records were reviewed to identify post-trauma patients. RESULTS: From 1974 to 1994, 175 specimens obtained from 166 children with trauma showed bacterial growth. The trauma included blunt trauma (71), lacerations (48), bites (42), and open fractures (5). Anaerobic bacteria only were isolated in 38 specimens (22%), aerobic bacteria only in 51 (29%), and mixed aerobic-anaerobic flora in 86 (49%); 363 anaerobic (2.1/specimen) and 158 aerobic or facultative isolates (0.9/specimen) were recovered. The predominant anaerobic bacteria included Peptostreptococcus spp (115 isolates), Prevotella spp (68), Fusobacterium spp (52), B fragilis group (42), and Clostridium spp (21). The predominant aerobic bacteria included Staph aureus (51), E coli (13), Ps aeruginosa (12), Str pyogenes (11) and Klebsiella pneumoniae (9). Principal infections were: abscesses (52), bacteraemia (3), pulmonary infections (30, including aspiration pneumonia, tracheostomy associated pneumonia, empyema, and ventilator associated pneumonia), wounds (36, including cellulitis, post-traumatic wounds, decubitus ulcers, myositis, gastrostomy and tracheostomy site wounds, and fasciitis), bites (42, including 23 animal and 19 human), peritonitis (4), osteomyelitis (5), and sinusitis (3). Staph aureus and Str pyogenes were isolated at all sites. However, organisms of the oropharyngeal flora predominated in infections that originated from head and neck wounds and abscesses, and bites, and those from the gastrointestinal tract predominated in infections that originated from peritonitis, abdominal abscesses, and decubitus ulcers. CONCLUSIONS: Many infections that follow trauma in children involve multiple organisms. PMID:9639177

Brook, I

1998-01-01

145

In vitro activity of Bay 12-8039, a new 8-methoxyquinolone, compared to the activities of 11 other oral antimicrobial agents against 390 aerobic and anaerobic bacteria isolated from human and animal bite wound skin and soft tissue infections in humans.  

PubMed Central

The in vitro activity of Bay 12-8039, a new oral 8-methoxyquinolone, was compared to the activities of 11 other oral antimicrobial agents (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, azithromycin, clarithromycin, amoxicillin clavulanate, penicillin, cefuroxime, cefpodoxime, and doxycycline) against 250 aerobic and 140 anaerobic bacteria recently isolated from animal and human bite wound infections. Bay 12-8039 was active against all aerobic isolates, both gram-positive and gram-negative isolates, at < or = 1.0 microg/ml (MICs at which 90% of isolates are inhibited [MIC90s < or = 0.25 microg/ml) and was active against most anaerobes at < or = 0.5 microg/ml; the exceptions were Fusobacterium nucleatum and other Fusobacterium species (MIC90s, > or = 4.0 microg/ml) and one strain of Prevotella loeschii (MICs, 2.0 microg/ml). In comparison, the other quinolones tested had similar in vitro activities against the aerobic strains but were less active against the anaerobes, including peptostreptococci, Porphyromonas species, and Prevotella species. The fusobacteria were relatively resistant to all the antimicrobial agents tested except penicillin G (one penicillinase-producing strain of F. nucleatum was found) and amoxicillin clavulanate. PMID:9210683

Goldstein, E J; Citron, D M; Hudspeth, M; Hunt Gerardo, S; Merriam, C V

1997-01-01

146

[Acceleration of the formation of aerobic granules in SBR by inoculating mature aerobic granules].  

PubMed

The effects of additional mature aerobic granules to the formation of aerobic granules were investigated by inoculating activated sludge and feeding synthetic municipal wastewater. The change of granular configuration and diameter was observed during the cultivation process. The average sludge volume diameter rose from 0.10, 0.16 cm to 0.23,0.30 cm, and finally was up to 0.28, 0.43 cm at the 1th, 7th and 14th day respectively. Small granules with diameter from 0.1 to 0.3 cm had a relative rapid formation speed in both reactors, whereas, the differences of the formation speed of big granules were obvious. There were filamentous bacteria winging and floc sludge adhering to the surface of small granules through cultivation process. The results showed aerobic granules could form more rapidly when 15% mature aerobic granules were put into the reactor. PMID:18290467

Shen, Xiang-Xin; Li, Xiao-Ming; Yang, Qi; Zeng, Guang-Ming; Xu, Wen-Xin; Liao, Qing; Zheng, Ying

2007-11-01

147

Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat  

PubMed Central

Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angelica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

2009-01-01

148

Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z  

NASA Astrophysics Data System (ADS)

Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been observed in freshwater and marine ciliates (such as Tetrahymena thermophila) and two bacteria unrelated to aerobic methanotrophs, Rhodopseudomonas and Bradyrhizobium. Utilizing comparative genomics we identified the oxidosqualene cyclase gene required for sterol biosynthesis as well as two copies of the squalene hopene cyclase gene necessary for hopanoid biosynthesis in the M. alcaliphilum genome. To determine if one or both copies of the squalene hopene cyclase gene were necessary for aminohopanoid or tetrahymanol production, shc gene deletions were constructed and the subsequent mutants were analyzed for impaired hopanoid production. The occurrence of sterols, hopanoids and gammacerane lipids in one bacterium not only provides a unique system in which to study the biosynthesis and function of each lipid class but also to investigate any potential functional and evolutionary relationship these three lipid classes may share. In turn, these studies provide information necessary to properly interpret the occurrence of these molecules in the rock record.

Welander, P. V.; Summons, R. E.

2013-12-01

149

Phylogenetic Analysis of Bacterial Communities in Mesophilic and Thermophilic Bioreactors Treating Pharmaceutical Wastewater  

PubMed Central

The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32°C) and thermophilic (50 to 58°C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domain Bacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the ? subdivision of the division Proteobacteria (?-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive and Synergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, including Cytophaga-Flavobacterium-Bacteroides, Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, and Proteobacteria (?-proteobacteria, ?-proteobacteria, ?-proteobacteria and ?-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity—a function of both the total number of species present (richness) and their relative distribution (evenness). PMID:10966414

LaPara, Timothy M.; Nakatsu, Cindy H.; Pantea, Lisa; Alleman, James E.

2000-01-01

150

Preliminary studies on the microbiological characterization of lactic acid bacteria in suero costeño, a Colombian traditional fermented milk product.  

PubMed

Suero costeño is a fermented milk product from the Colombian Atlantic coast, which is produced by the spontaneous acidification of raw milk due to the action of environmental microbes during traditional and semi-industrial processes. Eleven fermentations were carried out in experimental settings replicating traditional conditions and changes in concentration among microbial groups involved during the process (Aerobic Mesophilic bacteria, Yeasts, Enterobacteriaceae and Lactic Acid Bacteria (LAB)). LAB plays an important role in the fermentation process, especially during the final stage (24 hours). In addition, yeasts seem to have an effect on fermentation, showing an increase during the first hours of the process, while Enterobacterial counts decreased during fermentation. Thirty six LAB strains were isolated from commercial samples and thirty two were identified using the API 50 CH kit (BioMCrieux). 41% of the strains identified belonged to the species Lb. plantarum, and 19% were Lb. paracasei subsp. paracasei. Sugars fermented by LAB include milk carbohydrates such as D-Lactose, D-Glucose and D-Galactose. Because of their capacity to use other carbohydrates (manose, celobiose, maltose, fructose, ribose, trehalose, salicin, gentiobiose), it would also be possible to use these strains as starter cultures for other fermentations. PMID:18693547

Cueto, C; García, D; Garcés, F; Cruz, J

2007-01-01

151

UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.  

PubMed

The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2012-07-30

152

Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment  

E-print Network

Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0-ammonia reactors is negligible at the optimum mesophilic temperature of 38 C. ª 2009 Elsevier Ltd. All rights

Angenent, Lars T.

153

Distributional patterns of mesophilous and thermophilous microfungi in two bahamian soils  

Microsoft Academic Search

This study focuses on the characteristics displayed by mesophilous and thermophilous microfungal populations occurring in two tropical monodominant plant communities, a Cocos nucifera grove and a Casuarina equisetifolia forest, that provide distinctly different edaphic conditions. The mesophilous population sampled at 25°C by the dilution plate method and the thermophilous population that developed on soil plates incubated at 45°C consisted of

S. E. Gochenaur

1975-01-01

154

Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species  

Microsoft Academic Search

The genome sequence of the extremely ther- mophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their ho- mologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G1C contents

PAUL J. HANEY; J ONATHAN H. BADGER; G ERALD L. BULDAK; I. REICH; ARL R. WOESE; GARY J. OLSEN

1999-01-01

155

Aerobic Conditioning Class.  

ERIC Educational Resources Information Center

An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

Johnson, Neil R.

1980-01-01

156

Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria  

Microsoft Academic Search

Cell-free culture supernatants of five psychrophilic bacteria Pseudomonas antarctica, Pseudomonas proteolytica, Pseudomonas meridiana, Arthrobacter kerguelensis and Arthrobacter gangotriensis and two mesophilic bacteria Bacillus indicus and Bacillus cecembensis have been used to synthesize silver nanoparticles (AgNPs). The AgNPs were characterized using UV–Visible spectroscopy, transmission electron microscopy and atomic force microscopy. The sizes of the AgNPs ranged from 6 to 13nm and

S. Shivaji; S. Madhu; Shashi Singh

2011-01-01

157

The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction  

USGS Publications Warehouse

The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65??C) were the most favorable conditions forthe formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

Jaisi, D.P.; Eberl, D.D.; Dong, H.; Kim, J.

2011-01-01

158

Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)  

PubMed Central

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

2014-01-01

159

Comparative conformational properties of thermophilic and mesophilic 6-phosphogluconate dehydrogenase.  

PubMed

The structural properties of 6-phosphogluconate dehydrogenase from the mesophilic bacterium E. coli and the thermophilic B. stearothermophilus are compared using circular dichroism and fluorescence emission spectroscopy. The enzymes appear to possess a similar structure which does not change on heating up to the respective temperature of stability of the enzyme. The thermostability of the two 6-phosphogluconate dehydrogenases as determined by activity measurements parallels that determined by CD with the melting profile method, indicating that the loss of biological activity in the enzymes is directly related to the unfolding of the protein molecule. The pattern of unfolding of the proteins by the action of 8 M urea suggests that a core of enhanced conformational stability exists in the B. stearothermophilus enzyme. PMID:780123

Veronese, F M; Grandi, C; Boccù, E; Fontana, A

1976-01-01

160

Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor  

PubMed Central

Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor (Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains. PMID:22020511

Blaby, Ian K.; Lyons, Benjamin J.; Wroclawska-Hughes, Ewa; Phillips, Grier C. F.; Pyle, Tyler P.; Chamberlin, Stephen G.; Benner, Steven A.; Lyons, Thomas J.

2012-01-01

161

Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.  

PubMed

The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protein MvaL1 binds preferentially to its binding site on the 23S rRNA, and, when in excess, binds to the regulatory target site on its mRNA and thus inhibits translation of all three cistrons of the operon. The regulatory binding site on the mRNA, a structural mimic of the respective binding site on the 23S rRNA, is located within the structural gene about 30 nucleotides downstream of the ATG start codon. MvaL1 blocks a step before or at the formation of the first peptide bond of MvaL1. Here we demonstrate that a similar regulatory mechanism exists in the thermophilic M. thermolithotrophicus and M. jannaschii. The L1 gene is cotranscribed together with the L10 and L11 gene, in all genera of the Euryarchaeota branch of the Archaea studied so far. A potential regulatory L1 binding site located within the structural gene, as in Methanococcus, was found in Methanobacterium thermoautotrophicum and in Pyrococcus horikoshii. In contrast, in Archaeoglobus fulgidus a typical L1 binding site is located in the untranslated leader of the L1 gene as described for the halophilic Archaea. In Sulfolobus, a member of the Crenarchaeota, the L1 gene is part of a long transcript (encoding SecE, NusG, L11, L1, L10, L12). A previously suggested regulatory L1 target site located within the L11 structural gene could not be confirmed as an L1 binding site. PMID:10430567

Kraft, A; Lutz, C; Lingenhel, A; Gröbner, P; Piendl, W

1999-08-01

162

APPLICATION OF AEROBIC RESPIROMETRY: STUDIES ON THE IMPACT OF HUMATE ON BIOLOGICAL TREATMENT OF MUNICIPAL SEWAGE  

Microsoft Academic Search

This paper describes an application of aerobic respirometry to investigate the influence of humic matter (humate) on biological processes in dilution water and in municipal sewage. Standard product PolySeed, a consortium of bacteria considered to be representative of those found in an activated sludge, was used as a source of biomass. The results indicate that aerobic respirometry is a simple

J. Kochany

2008-01-01

163

Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io  

NASA Technical Reports Server (NTRS)

Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

2001-01-01

164

Lactic acid bacteria of meat and meat products  

Microsoft Academic Search

When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When

Aubrey F. Egan

1983-01-01

165

Dance--Aerobic and Anaerobic.  

ERIC Educational Resources Information Center

This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

Cohen, Arlette

1984-01-01

166

METHANE OXIDATION (AEROBIC) Helmut Brgmann  

E-print Network

(AEROBIC) 575 Eawag_06356 #12;respiration. Differences between methanotrophs are thought to exist regardingMETHANE OXIDATION (AEROBIC) Helmut Bürgmann Eawag, Swiss Federal Institute of Aquatic Science Chapter Aerobic Metabolism) via a pyrroloquinoline quinone cofactor to cytochrome C (methanol

Wehrli, Bernhard

167

Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring  

PubMed Central

An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within ?-Proteobacteria, purple sulfur ?-Proteobacteria, ?-Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within ?-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats. PMID:12957951

Elshahed, Mostafa S.; Senko, John M.; Najar, Fares Z.; Kenton, Stephen M.; Roe, Bruce A.; Dewers, Thomas A.; Spear, John R.; Krumholz, Lee R.

2003-01-01

168

The role of anaerobic bacteria in chronic suppurative otitis media in children: Implications for medical therapy  

Microsoft Academic Search

This review describes the microbiology, diagnosis and medical management of chronic suppurative otitis media (CSOM) in children highlighting the role of anaerobic bacteria. In studies that employed adequate method for recovery of anaerobic bacteria polymicrobial aerobic and anaerobic flora was isolated from over half of the children with CSOM. The predominant aerobic isolates were Staphylococcus aureus and Pseudomonas aeruginosa and

Itzhak Brook

2008-01-01

169

Listeria innocua and aerobic mesophiles during chill storage of inoculated mechanically recovered poultry meat treated with high hydrostatic pressure  

Microsoft Academic Search

Mechanically recovered poultry meat (MRPM) was inoculated with Listeria innocua 910 CECT at a level of approximately 108 CFU g?1. Vacuum-packaged samples were treated by combinations of pressure (350, 400, 450 and 500 MPa), time (5, 10, 15 and 30 min) and temperature (2, 10 and 20°C) and later stored at 2°C for 2 months. Counts of L. innocua and

J Yuste; M Mor-Mur; M Capellas; R Pla

1999-01-01

170

Antimicrobial susceptibility and extended-spectrum beta-lactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends (SMART 2009-2011).  

PubMed

Treatment options for multidrug-resistant pathogens remain problematic in many regions and individual countries, warranting ongoing surveillance and analysis. Limited antimicrobial susceptibility information is available for pathogens from Vietnam. This study determined the bacterial susceptibility of aerobic gram-negative pathogens of intra-abdominal infections among patients in Vietnam during 2009-2011. A total of 905 isolates were collected from 4 medical centers in this investigation as part of the Study for Monitoring Antimicrobial Resistance Trends. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL) rates among the appropriate species were determined by a central laboratory using Clinical and Laboratory Standards Institute methods. Among the species collected, Escherichia coli (48.1% ESBL-positive) and Klebsiella pneumoniae (39.5% ESBL-positive) represented the majority (46.4%) of the isolates submitted for this study. Ertapenem MIC90 values were lowest for these 2 species at 0.12 and 0.25?g/mL and remained unchanged for ESBL-positive isolates. Imipenem MIC90 values were also the same for all isolates and ESBL-positive strains at 0.25 and 0.5?g/mL, respectively. Ertapenem MIC90 values for additional species with sufficient numbers for analysis, including Enterobacter cloacae, Proteus mirabilis, Acinetobacter baumannii, and Pseudomonas aeruginosa, were 1, 0.06, >4, and >4?g/mL, respectively. Analysis of beta-lactamases in a subset of 132 phenotypically ESBL-positive Enterobacteriaceae demonstrated that CTX-M variants, particularly CTX-M-27 and CTX-M-15, were the predominant enzymes. High resistance rates in Vietnam hospitals dictate continuous monitoring as antimicrobial inactivating enzymes continue to spread throughout Asia and globally. PMID:24923210

Biedenbach, Douglas J; Bouchillon, Samuel K; Hoban, Daryl J; Hackel, Meredith; Phuong, Doan Mai; Nga, Tran Thi Thanh; Phuong, Nguyen Tran My; Phuong, Tran Thi Lan; Badal, Robert E

2014-08-01

171

An ancient divergence among the bacteria. [methanogenic phylogeny  

NASA Technical Reports Server (NTRS)

The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

1977-01-01

172

Low-temperature (9 degrees C) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species.  

PubMed

The possibilities for the treatment of low-temperature mine waste waters have not been widely studied. The amenability of low-temperature sulfate reduction for mine waste water treatment at 9 degrees C was studied in a bench-scale fluidized-bed bioreactor (FBR). Formate was used as the electron and carbon source. The first influent for the FBR was acidic, synthetic waste water containing iron, nutrients, and sulfate, followed by diluted barren bioleaching solution (DBBS). The average sulfate reduction rates were 8 mmol L(-1) day(-1) and 6 mmol L(-1) day(-1) with synthetic waste water and DBBS, respectively. The corresponding specific activities were 2.4 and 1.6 mmol SO(4)(2-) g VSS(-1) day(-1), respectively. The composition of the microbial community and the active species of the FBR was analyzed by extracting the DNA and RNA, followed by PCR-DGGE with the universal bacterial 16S rRNA gene primers and dsrB-primers specific for sulfate-reducing bacteria. The FBR microbial community was simple and stable and the dominant and active species belonged to the genus Desulfomicrobium. In summary, long-term operation of a low-temperature bioreactor resulted in enrichment of formate-utilizing, psychrotolerant mesophilic sulfate reducing bacteria. PMID:19575409

Auvinen, Hannele; Nevatalo, Laura M; Kaksonen, Anna H; Puhakka, Jaakko A

2009-11-01

173

Beating bacteria: Scientists work to understand and track bacteria in water  

E-print Network

, inadequate treatment of wastewater, and failing septic systems. Beating Bacteria Scientists work to understand and track bacteria in water ] Bacteria story continued tx H2O | pg. 12 In its 2007 report, the task force made recommendations... sources. Mukhtar said the growth and survival of E. coli from animal feces were tested in soil with 25 percent moisture content (nearly dry or aerobic condi- tions), 57 percent moisture content, and 83 percent mois- ture content (nearly saturated...

Wythe, Kathy

2010-01-01

174

Clinical microbiology of coryneform bacteria.  

PubMed Central

Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

1997-01-01

175

Mesophilic composting of food waste and bacterial pathogen reduction  

Microsoft Academic Search

The objective of this study was to evaluate the indicator efficiency of food waste composting using a small-scale solid waste composting system to reduce indicator bacteria concentrations. A raw compost material consisting of 1\\/3 volume of apple residue, 1\\/3 vol- ume of material composted, 0.5\\/3 volume of poplar leaves, 0.25\\/3 volume of grass and 0.25\\/3 volume of rumen ingredients. The

H. GÜVENMEZ

176

Aerobic landfill bioreactor  

DOEpatents

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01

177

Aerobic landfill bioreactor  

DOEpatents

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01

178

The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis  

PubMed Central

The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some ?-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated. PMID:24214943

Wagley, Sariqa; Hemsley, Claudia; Thomas, Rachael; Moule, Madeleine G.; Vanaporn, Muthita; Andreae, Clio; Robinson, Matthew; Goldman, Stan; Wren, Brendan W.; Butler, Clive S.

2014-01-01

179

Bacteria Museum  

NSDL National Science Digital Library

Who knew that bacteria had their own virtual museum? Here, visitors will "learn that not all bacteria are harmful, how they are used in industry, that they belong to the oldest living creatures on Earth", and many more interesting facts to discover about the diverse world of bacteria. The "Bacterial Species Files" tab at the top of the page, allows visitors to look up information on 40 different specific bacteria, from Anthrax to Yersinia enterocolitica. The information provided for each bacterium includes photographs, consumer guides, fact sheets, and scientific links. Visitors will find that the "Main Exhibits" tab addresses the basics about bacteria, as well as "Pathogenic Bacteria", "Evolution", "How We Fight Bacteria", and "Food and Water Safety". Visitors will surely enjoy the "Good Bacteria in Food" link found in the Food and Water Safety section, as it explains how some foods benefit from good bacteria, such as Swiss cheese, sausage, sauerkraut, chocolate, and coffee.

180

Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs  

Microsoft Academic Search

Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic\\u000a habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but\\u000a their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance,\\u000a distribution and functional diversity of anammox bacteria in

Hui Li; Shuo Chen; Bo-Zhong Mu; Ji-Dong Gu

2010-01-01

181

Metal sulfide solubilization by heterotrophic soil bacteria  

Microsoft Academic Search

The ability of heterotrophic soil organisms to solubilize heavy metal sulfides in ores was suggested by the appearance of soluble metals under conditions where sulfur-oxidizing bacteria probably were not active (e.g., in strip-mine waste amended with crop residues or sewage sludge). Soil bacteria were isolated that converted heavy metal sulfides to a soluble form when grown aerobically in nutrient broth

1977-01-01

182

Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene  

Microsoft Academic Search

A semicontinuous slurry-microcosm method was applied to mimic trichloroethylene (TCE) cometabolic biodegradation field results at the Que–Jen in-situ pilot study. The microcosm study confirmed the process of aerobic cometabolism of TCE using toluene as the primary substrate. Based on the nucleotide sequence of 16S rRNA genes, the toluene-oxidizing bacteria in microcosms were identified, i.e. Ralstonia sp. P-10 and Pseudomonasputida. The

Y. L. Han; M. C. Tom Kuo; I. C. Tseng; C. J. Lu

2007-01-01

183

Study of bacteria by spectroscopic techniques  

Microsoft Academic Search

Raman and Laser Induced Fluorescence (LIF) spectroscopic techniques were used for studying Azotobacter vinelandii- a genus of free-living diazotrophic soil bacteria. Azotobacter has generated a great deal of interest owing to their unique mode of metabolism. It is a large, obligately aerobic soil bacterium, which has one of the highest respiratory rates known among living organisms and is able to

Vidhu S. Tiwari; Chan Kyu Kim; Fang-Yu Yueh; Jagdish P. Singh; Michael Cunningham Jr.; Lakshmi Pulakat; Nara Gavini; Paresh Chandra Ray

2006-01-01

184

COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION. PHASE 2. STEADY STATE STUDIES  

EPA Science Inventory

A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

185

COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC DIGESTION - PHASE II. STEADY STATE STUDIES  

EPA Science Inventory

A study of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions was conducted. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

186

Draft Genome Sequence of Syntrophorhabdus aromaticivorans Strain UI, a Mesophilic Aromatic Compound-Degrading Syntroph  

PubMed Central

Syntrophorhabdus aromaticivorans strain UI is a mesophilic bacterium capable of degrading aromatic substrates in syntrophic cooperation with a partner methanogen. The draft genome sequence is 3.7 Mb, with a G+C content of 52.0%. PMID:24503990

Nobu, Masaru K.; Narihiro, Takashi; Tamaki, Hideyuki; Qiu, Yan-Ling; Sekiguchi, Yuji; Woyke, Tanja; Goodwin, Lynne; Davenport, Karen W.; Kamagata, Yoichi

2014-01-01

187

Mesophilic biogas production from fruit and vegetable waste in a tubular digester  

Microsoft Academic Search

A semi-continuously mixed mesophilic tubular anaerobic digester was tested for the conversion of fruit and vegetable waste (FVW) into biogas. The effect of hydraulic retention time (HRT) and the feed concentration on the extent of the degradation of the waste was examined. Varying the HRT between 12 and 20 days had no effect on the fermentation stability and pH remained

H Bouallagui; R Ben Cheikh; L Marouani; M Hamdi

2003-01-01

188

[Facultative and obligate aerobic methylobacteria synthesize cytokinins].  

PubMed

The presence and expression of genes controlling the synthesis and secretion of cytokinins by the pink-pigmented facultative methylotroph Methylobacterium mesophilicum VKM B-2143 with the serine pathway and nonpigmented obligate methylotroph Methylovorus mays VKM B-2221 with the ribulose monophosphate pathway of C1 metabolism were shown using the polymerase chain reaction (PCR) and reverse transcription-PCR methods. The presence of the corresponding mRNA in M. mesophilicum cells grown on methanol or succinate suggests that the expression of these genes is constitutive. The cytokinin activity of culture liquid and its fractions was determined by a biotest with Amarantus caudatus L. seedlings. Using enzyme-linked immunosorbent analysis, we detected zeatin (riboside) in the culture liquid of both bacteria studied. The data obtained show that the aerobic methylobacteria are phytosymbionts that are able to utilize the single- and polycarbon compounds secreted by symbiotic plants and to synthesize cytokinins. PMID:11195573

Ivanova, E G; Doronina, N V; Shepeliakovskaia, A O; Laman, A G; Brovko, F A; Trotsenko, Iu A

2000-01-01

189

Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor  

NASA Astrophysics Data System (ADS)

Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

1995-03-01

190

Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria  

Microsoft Academic Search

The formation of poly(3-hydroxyalkanoic acid), PHA, by various strains of chemolithotrophic and phototrophic bacteria has\\u000a been examined. Chemolithotrophic bacteria were grown aerobically under nitrogen-limiting conditions on various aliphatic organic\\u000a acids. Phototrophic bacteria were grown anaerobically in the light on a nitrogen-rich medium and were subsequently transferred\\u000a to a nitrogen-free medium containing acetate, propionate, valerate, heptanoate or octanoate as carbon source.

Matthias Liebergesell; Eilert Hustede; Arnulf Timm; Alexander Steinbiichel; R. Clinton Fuller; Robert W. Lenz; Hans G. Schlegel

1991-01-01

191

Aerobic Endospore-forming Bacteria and Soil Invertebrates  

Microsoft Academic Search

\\u000a The intestinal microbiotas of only a few soil invertebrates such as collembola (springtails), earthworms, nematodes, isopods\\u000a (woodlice and pill bugs), millipedes and termites have been studied by classical and molecular methods in the last decades.\\u000a It became obvious that these lower members of the soil biota harbour complex microbial communities that sometimes reach counts\\u000a of 1011 cells ml?1 in their intestinal tracts.

Helmut König

192

Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids  

Microsoft Academic Search

The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 C) upflow anaerobic sludge bed (UASB) reactors treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the

F. Omil; P. Lens; A. Visser; L. W. Hulshoff Pol; G. Lettinga

1998-01-01

193

The ecology of mercury-resistant bacteria in Chesapeake Bay  

Microsoft Academic Search

Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in\\u000a Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable,\\u000a aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved\\u000a oxygen concentration and sediment mercury concentration and negatively correlated

J. D. Nelson; R. R. Colwell

1974-01-01

194

Bisphenol A Degradation by Bacteria Isolated from River Water  

Microsoft Academic Search

Recently, there is increasing interest in the microbial degradation of endocrine disruptors. This study was conducted to show\\u000a the isolation and property of bacteria having bisphenol A (BPA) biodegradability in river water and to identify the difference\\u000a of BPA degradation under aerobic and anaerobic conditions. Three river water samples spiked with BPA (1 mg\\/L) were rapidly\\u000a degraded under aerobic conditions.

J.-H. Kang; F. Kondo

2002-01-01

195

Bacteria Transformation  

NSDL National Science Digital Library

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

196

Isolation of Thermophilic Mutants of Bacillus subtilis and Bacillus pumilus and Transformation of the Thermophilic Trait to Mesophilic Strains  

Microsoft Academic Search

~~ Thermophilic mutants were isolated from mesophilic Bacillus subtilis and Bacillus pumilus by plating large numbers of cells and incubating them for several days at a temperature about 10 \\

MARY L. DROFFNER; NOBUTO YAMAMOTO

1985-01-01

197

A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants  

E-print Network

on an elaborate analysis of a set of features calculated or predicted from 540 pairs of hyperthermophilic and mesophilic protein ortholog sequences. It was constructed by a linear combination of ten important features identified by a feature ranking procedure...

Li, Yunqi; Middaugh, C. Russell; Fang, Jianwen

2010-01-28

198

Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.  

PubMed Central

Molecular dynamics simulations in solution are performed for a rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus (RdPf) and one from the mesophilic organism Desulfovibrio vulgaris (RdDv). The two proteins are simulated at four temperatures: 300 K, 373 K, 473 K (two sets), and 500 K; the various simulations extended from 200 ps to 1,020 ps. At room temperature, the two proteins are stable, remain close to the crystal structure, and exhibit similar dynamic behavior; the RMS residue fluctuations are slightly smaller in the hyperthermophilic protein. An analysis of the average energy contributions in the two proteins is made; the results suggest that the intraprotein energy stabilizes RdPf relative to RdDv. At 373 K, the mesophilic protein unfolds rapidly (it begins to unfold at 300 ps), whereas the hyperthermophilic does not unfold over the simulation of 600 ps. This is in accord with the expected stability of the two proteins. At 473 K, where both proteins are expected to be unstable, unfolding behavior is observed within 200 ps and the mesophilic protein unfolds faster than the hyperthermophilic one. At 500 K, both proteins unfold; the hyperthermophilic protein does so faster than the mesophilic protein. The unfolding behavior for the two proteins is found to be very similar. Although the exact order of events differs from one trajectory to another, both proteins unfold first by opening of the loop region to expose the hydrophobic core. This is followed by unzipping of the beta-sheet. The results obtained in the simulation are discussed in terms of the factors involved in flexibility and thermostability. PMID:9416608

Lazaridis, T.; Lee, I.; Karplus, M.

1997-01-01

199

Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge  

Microsoft Academic Search

Thermophilic anaerobic digestion presents an advantageous way for stabilization of sludge from wastewater treatment plants. Two different strategies for changing operational process temperature from mesophilic (37°C) to thermophilic (55°C) were tested using two continuous flow stirred tank reactors operated at constant organic loading rate of 1.38g VS\\/l reactor\\/day and hydraulic retention time of 20 days. In reactor A, the temperature

A. Boušková; M. Dohányos; J. E. Schmidt; I. Angelidaki

2005-01-01

200

Enhancement of transglycosylation activity by construction of chimeras between mesophilic and thermophilic ?-glucosidase  

Microsoft Academic Search

The family 3 ?-glucosidase from Thermotoga maritima is a highly thermostable enzyme (85°C) that displays transglycosylation activity. In contrast, the ?-glucosidase from Cellvibrio gilvus is mesophilic (35°C) and displays no such transglycosylation activity. Both enzymes consist of two domains, an N-terminal and a C-terminal domain, and the amino acid identities between the two enzymes in these domains are 32.4 and

Kshamata Goyal; Bong Jo Kim; Jong-Deog Kim; Yeon-Kye Kim; Motomitsu Kitaoka; Kiyoshi Hayashi

2002-01-01

201

Comparison of seven selective media for the isolation of mesophilic Aeromonas species in fish and meat  

Microsoft Academic Search

Seven selective agar media and two enrichment broths were evaluated for their suitability for the isolation of mesophilic Aeromonas species from meat, fish, and shellfish samples. In a first trial, aeromonads were inoculated in fish and meat samples and reisolated using all selected media. For qualitative isolation, enrichment in alkaline peptone water (pH 8.7 ± 0.1) at 28 °C and

Pierre-François Gobat; Thomas Jemmi

1995-01-01

202

Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate  

NASA Astrophysics Data System (ADS)

Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was differentially regulated. With perchlorate as the sole terminal electron acceptor, cbbM was expressed under autotrophic growth with hydrogen as the electron donor but not during heterotrophic growth on acetate, indicating a putative carbon-fixation pathway. Similarly, Ferrutens uranioxidens strain 2002 was also capable of autotrophic growth during nitrate-dependent iron oxidation, although the carbon fixation pathway has yet to be identified. Anoxic XPRD analysis of the biogenic end products of nitrate-dependent Fe(II) oxidation by Diaphorobacter sp. strain TPSY and strain 2002 indicated the gradual appearance of green rust (GR II) with cacoxenite and lepidocrocite from the precursor vivianite over 81 days. SEM and TEM showed the presence of hexagonal plate like crystals surrounding the bacterial cells whose morphology closely resembled GR II, indicating a very low redox potential and a weakly acidic to weakly basic pH. Mixotrophic growth incubations of strain TPSY with 1, 5 and 10 mM Fe(II) showed markedly different end products. The identity of the mineral phases and the reason behind this difference is currently under investigation.

Bose, S.; Thrash, J. C.; Coates, J. D.

2008-12-01

203

Aerobic versus anaerobic wastewater treatment  

SciTech Connect

Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

Robinson, D.G.; White, J.E.; Callier, A.J. [Burns and McDonnell Engineering Co., Kansas City, MO (United States)

1997-04-01

204

A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.  

PubMed

A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

Zheng, Meiru; Liao, B Q

2014-01-01

205

Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.  

PubMed

The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

2014-08-01

206

Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process  

Microsoft Academic Search

The performance of mesophilic anaerobic digesters of four large Italian wastewater treatment plants without primary sedimentation were studied. Only the waste activated sludge is stabilised by means of the mesophilic (35–37°C) anaerobic digestion process. The anaerobic digesters generally worked with a hydraulic retention time in a range of 20–40 days and an organic loading rate of some 1kgVS\\/mreactor3day. The solids

David Bolzonella; Paolo Pavan; Paolo Battistoni; Franco Cecchi

2005-01-01

207

Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

Zaccardi, Margot J.; Mannweiler, Olga [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Boehr, David D., E-mail: ddb12@psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)

2012-02-10

208

Aerobic granulation in a sequencing batch reactor for the treatment of piggery wastewater.  

PubMed

This study investigated the formation of aerobic granules fed with digested piggery wastewater. After 42 days of cultivation, small yellow granules with mean diameter of 0.4 mm were first observed in the reactor. Scanning electron microscope pictures showed the granules were compact, round structures with clear outer shapes and mainly composed of filamentous bacteria. Maximum chemical oxygen demand and ammonia removal ratios were 90.1 and 91.7%, respectively. The Monod equation, which was used to describe ammonium utilization, yielded a maximum rate of 6.25 mg (g volatile suspended solids)(-1) h(-1). The measurement of extracellular polymeric substances (EPS) content and three-dimensional excitation and emission matrix results showed that the EPS concentration increased during the granulation process. Fluorescence in situ hybridization analysis showed significant amounts of nitrifying bacteria in the aerobic granules. Results in this study provide insights to the treatment of piggery wastewater using aerobic granular sludge. PMID:23581239

Zhang, Dalei; Wang, Yanan; Li, Hongwei; Wang, Shaoran; Jing, Yumei

2013-03-01

209

Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.  

PubMed

Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. PMID:22274606

Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

2012-02-10

210

Physiological and phylogenetic diversity of thermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields  

Microsoft Academic Search

The distribution and population density of aerobic hydrocarbon-oxidizing bacteria in the high-temperature oil fields of Western\\u000a Siberia, Kazakhstan, and China were studied. Seven strains of aerobic thermophilic spore-forming bacteria were isolated from\\u000a the oil fields and studied by microbiological and molecular biological methods. Based on the 16S rRNA gene sequences, phenotypic\\u000a characteristics, and the results of DNA-DNA hybridization, the taxonomic

T. N. Nazina; T. P. Tourova; A. B. Poltaraus; E. V. Novikova; A. E. Ivanova; A. A. Grigoryan; A. M. Lysenko; S. S. Belyaev

2000-01-01

211

Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions  

Microsoft Academic Search

Succinate is an interesting chemical for industries producing food and pharmaceutical products, surfactants, detergents and biodegradable plastics. Succinate is produced mainly by a mixed-acid fermentation process using anaerobically growing bacteria. However, succinate excretion is also widespread among fungi. In this article we report results on the intracellular concentration and the excretion of succinate by Penicillium simplicissimum under aerobic and anaerobic

Martin Gallmetzer; Joachim Meraner; Wolfgang Burgstaller

2002-01-01

212

Species Diversity and Substrate Utilization Patterns of Thermophilic Bacterial Communities in Hot Aerobic Poultry and Cattle Manure Composts  

Microsoft Academic Search

This study investigated the species diversity and substrate utilization patterns of culturable thermophilic bacterial communities\\u000a in hot aerobic poultry and cattle manure composts by coupling 16S rDNA analysis with Biolog data. Based on the phylogenetic\\u000a relationships of 16S rDNA sequences, 34 thermophilic (grown at 60°C) bacteria isolated during aerobic composting of poultry\\u000a manure and cattle manure were classified as Bacillus

Chao-Min Wang; Ching-Lin Shyu; Shu-Peng Ho; Shiow-Her Chiou

2007-01-01

213

Swimming bacteria power microscopic gears  

SciTech Connect

Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

2010-01-01

214

Swimming bacteria power microscopic gears.  

SciTech Connect

Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

2010-01-19

215

Swimming bacteria power microscopic gears  

PubMed Central

Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. PMID:20080560

Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

2010-01-01

216

The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments  

USGS Publications Warehouse

Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

Sandler, R. L.; Rocke, T. E.; Yuill, T. M.

1998-01-01

217

Aerobic bacterial flora of addled raptor eggs in Saskatchewan.  

PubMed

In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure. PMID:9131569

Houston, C S; Saunders, J R; Crawford, R D

1997-04-01

218

Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov.  

PubMed

A mesophilic, chemoheterotrophic bacterium, strain Fu11-5(T), was isolated from tidal-flat sediment from Tokyo Bay, Chiba, Japan. Cells of strain Fu11-5(T) were facultatively aerobic, Gram-negative, non-sporulating, non-motile and rod-shaped (1.9-6.9 µm long). Strain Fu11-5(T) grew optimally at 35-37 °C and pH 6.5-7.0 and with 1-2?% (w/v) NaCl. Oxygen and l-cysteine were used as an alternative electron acceptor and donor, respectively. Strain Fu11-5(T) also grew fermentatively on some pentoses, hexoses and disaccharides and soluble starch. Succinic acid was the major end product from d-glucose. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain Fu11-5(T) was affiliated with the order Bacteroidales, and its nearest neighbours were members of the genera Meniscus, Prolixibacter, Sunxiuqinia, Mangrovibacterium and Draconibacterium, with 87-91?% sequence similarity. Cell morphology, optimum growth temperature and utilization of sugars of strain Fu11-5(T) distinguished the strain from phylogenetically related bacteria. On the basis of its phenotypic features and phylogenetic position, a novel genus and species are proposed to accommodate strain Fu11-5(T), with the name Mariniphaga anaerophila gen. nov., sp. nov. The type strain of Mariniphaga anaerophila is strain Fu11-5(T) (?=?JCM 18693(T)?=?NBRC 109408(T)?=?DSM 26910(T)). We also propose to combine the family Draconibacteriaceae into the family Prolixibacteraceae as a later heterotypic synonym and to place the distinct sublineage of the genus Marinifilum in the family Marinifilaceae fam. nov. PMID:25096325

Iino, Takao; Mori, Koji; Itoh, Takashi; Kudo, Takuji; Suzuki, Ken-Ichiro; Ohkuma, Moriya

2014-11-01

219

Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment.  

PubMed

A modelling study has been developed in which the energy requirements of aerobic and anaerobic membrane bioreactors (MBRs) are assessed in order to compare these two wastewater treatment technologies. The model took into consideration the aeration required for biological oxidation in aerobic MBRs (AeMBRs), the energy recovery from methane production in anaerobic MBRs (AnMBRs) and the energy demands of operating submerged and sidestream membrane configurations. Aeration and membrane energy demands were estimated based on previously developed modelling studies populated with operational data from the literature. Given the difference in sludge production between aerobic and anaerobic systems, the model was benchmarked by assuming high sludge retention times or complete retention of solids in both AeMBRs and AnMBRs. Analysis of biogas production in AnMBRs revealed that the heat required to achieve mesophilic temperatures (35 degrees C) in the reactor was only possible with influent wastewater strengths above 4-5 g COD L(-1). The general trend of the submerged configuration, which is less energy intensive than the sidestream configuration in aerobic systems, was not observed in AnMBRs, mainly due to the wide variation in gas demand utilized in anaerobic systems. Compared to AeMBRs, for which the energy requirements were estimated to approach 2 kWh m(-3) (influent up to 1 g COD L(-1)), the energy demands associated with fouling control in AnMBRs were lower (0.80 kWh m(-3) for influent of 1.14 g COD L(-1)), although due to the low fluxes reported in the literature capital costs associated with membrane material would be three times higher than this. PMID:21882546

Martin, I; Pidou, M; Soares, A; Judd, S; Jefferson, B

2011-07-01

220

Psychrotrophic bacteria isolated from -20°C freezer  

Microsoft Academic Search

Three psychrotrophic bacteria, morpho-physiologically, identified as Bacillus subtilis MRLBA7, Bacillus licheniformis MRLBA8 and Bacillus megaterium MRLBA9 were isolated from -20°C freezer of the Microbiology Research Laboratory (MRL), Quaid-i-Azam University, Islamabad, Pakistan. These strains were able to grow aerobically at 6°C but not at 40°C except MRLBA8 that could grow at 48°C. None of the isolates showed inhibition of growth in

Bashir Ahmad; Imran Javed; Aamer Ali Shah; Abdul Hameed; Fariha Hasan

2010-01-01

221

Acidophilic, heterotrophic bacteria of acidic mine waters  

SciTech Connect

Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

Wichlacz, P.L.; Unz, R.F.

1981-05-01

222

Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability?  

PubMed

A long-term comparative study using continuously-stirred anaerobic digesters (CSADs) operated at mesophilic and thermophilic temperatures was conducted to evaluate the influence of the organic loading rate (OLR) and chemical composition on process performance and stability. Cow manure was co-digested with dog food, a model substrate to simulate a generic, multi-component food-like waste and to produce non-substrate specific, composition-based results. Cow manure and dog food were mixed at a lower - and an upper co-digestion ratio to produce a low-fiber, high-strength substrate, and a more recalcitrant, lower-strength substrate, respectively. Three increasing OLRs were evaluated by decreasing the CSADs hydraulic retention time (HRT) from 20 to 10 days. At longer HRTs and lower manure-to-dog food ratio, the thermophilic CSAD was not stable and eventually failed as a result of long-chain fatty acid (LCFA) accumulation/degradation, which was triggered by the compounded effects of temperature on reaction rates, mixing intensity, and physical state of LCFAs. At shorter HRTs and upper manure-to-dog food ratio, the thermophilic CSAD marginally outperformed the biomethane production rates and substrate stabilization of the mesophilic CSAD. The increased fiber content relative to lipids at upper manure-to-dog food ratios improved the stability and performance of the thermophilic process by decreasing the concentration of LCFAs in solution, likely adsorbed onto the manure fibers. Overall, results of this study show that stability of the thermophilic co-digestion process is highly dependent on the influent substrate composition, and particularly for this study, on the proportion of manure to lipids in the influent stream. In contrast, mesophilic co-digestion provided a more robust and stable process regardless of the influent composition, only with marginally lower biomethane production rates (i.e., 7%) for HRTs as short as 10 days (OLR = 3 g VS/L-d). PMID:24530545

Labatut, Rodrigo A; Angenent, Largus T; Scott, Norman R

2014-04-15

223

Methanotrophic bacteria.  

PubMed Central

Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

Hanson, R S; Hanson, T E

1996-01-01

224

Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.  

PubMed Central

We report the characterization of the first chaperonin (Mm-cpn) from a mesophilic archaeon, Methanococcus maripaludis. The single gene was cloned from genomic DNA and expressed in Escherichia coli to produce a recombinant protein of 543 amino acids. In contrast with other known archaeal chaperonins, Mm-cpn is fully functional in all respects under physiological conditions of 37 degrees C. The complex has Mg(2+)-dependent ATPase activity and can prevent the aggregation of citrate synthase. It promotes a high-yield refolding of guanidinium-chloride-denatured rhodanese in a nucleotide-dependent manner. ATP binding is sufficient to effect folding, but ATP hydrolysis is not essential. PMID:12628000

Kusmierczyk, Andrew R; Martin, Jorg

2003-01-01

225

Local entropy difference upon a substrate binding of a psychrophilic ?-amylase and a mesophilic homologue  

NASA Astrophysics Data System (ADS)

Psychrophilic ?-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic ?-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

Kosugi, Takahiro; Hayashi, Shigehiko

2011-01-01

226

Role of N-acyl homoserine lactone (AHL)-based quorum sensing (QS) in aerobic sludge granulation.  

PubMed

N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion. PMID:24846735

Li, Yao-Chen; Zhu, Jian-Rong

2014-09-01

227

[The aerobic bacterial intestinal flora of various wintering geese species].  

PubMed

The aerobic fecal flora of wintering Brent Goos (Branta bernicla), Barnacle Goose (Branta leucopsis), Greylag Goose (Anser anser), White-fronted Goose (Anser albifrons), Pink-footed Goose (Anser brachyrhynchus), and Bean Goose (Anser fabalis) was studied. There were no specific differences between the various geese. Bacterial counts were in the range of 10(5)-10(7) CPU per gram of feces. Neither pathogenic bacteria nor rotavirus could be detected in the fecal samples of the wintering geese, so that a contamination of the environment with those pathogenic organisms could be excluded. The majority of the isolated bacteria belonged to the genera Bacillus and Pseudomonas; enterobacteria and streptococci were less common. The observations are discussed regarding their epidemiological and ecological significance. PMID:7136353

Holländer, R

1982-07-01

228

Effect of sodium chloride on growth of heterotrophic marine bacteria  

Microsoft Academic Search

The effect of NaCl on the growth rates and yields of 31 gram-negative, heterotrophic, marine bacteria was determined. The strains used were representative of aerobic genera (Alteromonas, Pseudomonas, Alcaligenes, Bdellovibrio) as well as genera comprised of facultative anaerobes (Beneckea, Photobacterium). Two media were used-the first, a medium designed for the cultivation of marine bacteria and, the second, a medium used

John L. Reichelt; Paul Baumann

1974-01-01

229

Injuries associated with aerobic dance.  

PubMed

Overuse injuries, often related to training errors, inappropriate footgear, poor floor surface and biomechanical factors, are by far the most common injuries in aerobic dance enthusiasts. Rest, ice applications and nonsteroidal anti-inflammatory drugs provide pain relief. Combined with attention to precipitating factors, prompt treatment gives good results and allows a return to participation. Traumatic injuries are much less common than overuse syndromes and are seldom severe. They are treated in a standard fashion. PMID:2349908

Belt, C R

1990-06-01

230

Aerobic respiration in the Archaean?  

Microsoft Academic Search

THE Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10-12 times the present value1. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would

Kenneth M. Towe

1990-01-01

231

Aerobic Exercise Enhances Cognitive Flexibility  

Microsoft Academic Search

Introduction Physical activity is believed to prevent cognitive decline and may enhance frontal lobe activity. Methods Subjects were 91 healthy adults enrolled in a wellness center. Over a 10 week intervention, controls were aerobically active\\u000a 0–2 days per week. Half the intervention group was active 3–4 days\\/week and half 5–7 days\\/week. Outcome measures included\\u000a memory, mental speed, reaction time, attention, and cognitive flexibility. Results

Steven Masley; Richard Roetzheim; Thomas Gualtieri

2009-01-01

232

Study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate  

SciTech Connect

The cellulases that strains of Streptomyces albogrisolus, S. nitrosporeus, and Micromonospora melanosporea produce when grown on untreated ballmilled bagasse were investigated. Optimum conditions for extracellular cellulase production and activity were determined to be growth at pH 6.7-7.4 and 25-35 degrees C for 4-5 days and assay at pH 5.0-6.0 and 45-55 degrees C, respectively. The endoglucanases were thermally stable at 50 degrees C, but the Avicelases had a half-life of approximately 24 hours at this temperature. Nearly half of the endoglucanases and almost all of the Avicelases were absorbed on ballmilled bagasse after 15 minutes incubation at 50 degrees C. The ..beta..-glucosidases were found to be mainly intracellular or cell wall bound. These mesophilic actinomycetes concomitantly produced xylanases and ..beta..-xylosidases with cellulases that, apart from cellobiose and glucose, also release xylose from bagasse. This feature may be advantageous in the commercial application of the enzymes of mesophilic actinomycetes for the saccharification of natural cellulosic substrates.

Van Zyl, W.H.

1985-09-01

233

Exploring Local Flexibility/Rigidity in Psychrophilic and Mesophilic Carbonic Anhydrases  

PubMed Central

Molecular flexibility and rigidity are required to determine the function and specificity of protein molecules. Some psychrophilic enzymes demonstrate a higher catalytic efficiency at low temperatures, compared to the efficiency demonstrated by their meso/thermophilic homologous. The emerging picture suggests that such enzymes have an improved flexibility of the structural catalytic components, whereas other protein regions far from functional sites may be even more rigid than those of their mesophilic counterparts. To gain a deeper insight in the analysis of the activity-flexibility/rigidity relationship in protein structure, psychrophilic carbonic anhydrase of the Antarctic teleost Chionodraco hamatus has been compared with carbonic anhydrase II of Bos taurus through fluorescence studies, three-dimensional modeling, and activity analyses. Data demonstrated that the cold-adapted enzyme exhibits an increased catalytic efficiency at low and moderate temperatures and, more interestingly, a local flexibility in the region that controls the correct folding of the catalytic architecture, as well as a rigidity in the hydrophobic core. The opposite result was observed in the mesophilic counterpart. These results suggest a clear relationship between the activity and the presence of flexible and rigid protein substructures that may be useful in rational molecular and drug design of a class of enzymes playing a key role in pathologic processes. PMID:19217874

Chiuri, R.; Maiorano, G.; Rizzello, A.; del Mercato, L.L.; Cingolani, R.; Rinaldi, R.; Maffia, M.; Pompa, P.P.

2009-01-01

234

Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.  

PubMed

The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

2013-01-01

235

Toxic effects of butyl elastomers on aerobic methane oxidation  

NASA Astrophysics Data System (ADS)

Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

2013-04-01

236

Continuous Culture of Some Anaerobic and Facultatively Anaerobic Rumen Bacteria  

Microsoft Academic Search

SUMMARY Strains of Streptococcw bovis, Selenomonas ruminantiurn, and an an- aerobic lipolytic bacterium (5 s) have been grown under carbohydrate- limiting conditions in continuous culture for long periods. With s. rumi- nuntium and bacterium 5 s the fermentation products varied with growth rate. Yield of organism in continuous culture of all three bacteria showed a maximum at a particular growth

P. N. HOBSON

1965-01-01

237

Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria  

Microsoft Academic Search

SUMMARY More than IOO Gram-negative, strictly aerobic, methane-utilizing bacteria were isolated. All used only methane and methanol of the substrates tested for growth. The organisms were classified into five groups on the basis of mor- phology, fine structure, and type of resting stage formed (exospores and different types of cysts) and into subgroups on other properties. Methods of enrichment, isolation

R. Whittenbury; K. C. Phillips; J. F. Wilkinson

1970-01-01

238

Microbial Composition and Structure of Aerobic Granular Sewage Biofilms?  

PubMed Central

Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J.

2007-01-01

239

Microbial composition and structure of aerobic granular sewage biofilms.  

PubMed

Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

Weber, S D; Ludwig, W; Schleifer, K-H; Fried, J

2007-10-01

240

Formation of filamentous aerobic granules: role of pH and mechanism.  

PubMed

Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

2014-10-01

241

Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.  

PubMed

In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR. PMID:24696379

Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

2014-10-01

242

Comparison of aerobic and anaerobic methods for the microbiological monitoring of chilled packaged meat during storage.  

PubMed

Aerobic and anaerobic plate counts were compared for routine monitoring of the microflora, dominated by lactic acid bacteria, developing on vacuum- and carbon dioxide-packaged raw meat during chilled storage. No statistical differences were observed between aerobic and anaerobic enumerations, made on plate count and blood agar plates, of the microflora developing on beef striploins packaged under vacuum or carbon dioxide during 14 weeks' storage at 0 degree C. With both techniques the spoilage microflora development differed between the two packaging regimes. The results indicate that there is no necessity for aerobic plate counts to be replaced by anaerobic plate counts in the routine microbiological examination of the spoilage microflora developing on chilled meats packaged under anoxic modified atmospheres. PMID:9134773

Bell, R G; Penney, N; Moorhead, S M

1997-04-01

243

Aerobic Mineralization of Hexachlorobenzene by Newly Isolated Pentachloronitrobenzene-Degrading Nocardioides sp. Strain PD653 ?  

PubMed Central

A novel aerobic pentachloronitrobenzene-degrading bacterium, Nocardioides sp. strain PD653, was isolated from an enrichment culture in a soil-charcoal perfusion system. The bacterium also degraded hexachlorobenzene, a highly recalcitrant environmental pollutant, accompanying the generation of chloride ions. Liberation of 14CO2 from [U-ring-14C]hexachlorobenzene was detected in a culture of the bacterium and indicates that strain PD653 is able to mineralize hexachlorobenzene under aerobic conditions. The metabolic pathway of hexachlorobenzene is initiated by oxidative dechlorination to produce pentachlorophenol. As further intermediate metabolites, tetrachlorohydroquinone and 2,6-dichlorohydroquinone have been detected. Strain PD653 is the first naturally occurring aerobic bacteria capable of mineralizing hexachlorobenzene. PMID:19429557

Takagi, Kazuhiro; Iwasaki, Akio; Kamei, Ichiro; Satsuma, Koji; Yoshioka, Yuichi; Harada, Naoki

2009-01-01

244

Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study.  

PubMed

Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors (3.38 l active volume) were used to directly compare psychrophilic (15 degrees C), anaerobic digestion (PAD) to mesophilic (37 degrees C) anaerobic digestion (MAD) for the treatment of a brewery wastewater (chemical oxygen demand (COD) concentration of 3,136+/-891 mg l(-1)). Bioreactor performance was evaluated by COD removal efficiency and biogas yields at a range of hydraulic and organic loading rates. Specific methanogenic activity (SMA) assays were also employed to investigate the activity of the biomass in the bioreactors. No significant difference in the COD removal efficiencies (which ranged from 85-93%) were recorded between PAD and MAD during the 194-d trial at maximum organic and hydraulic loading rates of 4.47 kg m(-3) day(-1) and 1.33 m(3) m(-3) day(-1), respectively. In addition, the methane content (%) of the biogas was very similar. The volumetric biogas yield from the PAD bioreactor was approximately 50% of that from the MAD bioreactor at an organic loading rate of 4.47 kg COD m(-3) day(-3) and an applied liquid up-flow velocity (V(up)) of 2.5 m h(-1). Increasing the V(up) in the PAD bioreactor to 5 m h(-1) resulted in a volumetric biogas production rate of approximately 4.1 l d(-1) and a methane yield of 0.28 l CH(4) g(-1) COD d(-1), which were very similar to the MAD bioreactor. Significant and negligible biomass washout was observed in the mesophilic and psychrophilic systems, respectively, thus increasing the sludge loading rate applied to the former and underlining the robustness of the latter, which appeared underloaded. A psychrotolerant mesophilic, but not truly psychrophilic, biomass developed in the PAD bioreactor biomass, with comparable maximum SMA values to the MAD bioreactor biomass. PAD, therefore, was shown to be favourably comparable to MAD for brewery wastewater treatment and biogas generation. PMID:16814840

Connaughton, Sean; Collins, Gavin; O'Flaherty, Vincent

2006-07-01

245

Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date  

SciTech Connect

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell-cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene - a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.

Zhaxybayeva, Olga [Dartmouth College; Swithers, Kristen S [University of Connecticut, Storrs; Foght, Julia [University of Alberta, Edmondton, Canada; Green, Anna G. [University of Connecticut; Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Dlutek, Marlena [Dalhousie University, Halifax, Nova Scotia, CANADA; Doolittle, W. Ford [Dalhousie University, Halifax, Nova Scotia, CANADA; Noll, Kenneth M [University of Connecticut, Storrs; Nesbo, Camilla [University of Oslo, Norway

2012-01-01

246

How “Healthful” Are Aerobics Classes? Exploring the Health and Wellness Messages in Aerobics Classes for Women  

Microsoft Academic Search

The purpose of this study was to explore the health messages communicated by aerobics instructors in aerobics classes for women. A theoretical framework influenced by adult learning theory and feminist pedagogy was used in this qualitative study. Over a 3-month period, the practices of five aerobics instructors working at one nonprofit fitness center and one wellness facility were explored. The

Michelle Lee D’abundo

2007-01-01

247

Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.  

PubMed

In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. PMID:24177153

Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

2013-12-01

248

Discrimination of Psychrotrophic and Mesophilic Strains of the Bacillus cereus Group by PCR Targeting of Major Cold Shock Protein Genes  

Microsoft Academic Search

Detection of psychrotrophic strains (those able to grow at or below 7°C) of the Bacillus cereus group (Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides) in food products is at present extremely slow with conven- tional microbiology. This is due to an inability to discriminate these cold-adapted strains from their mesophilic counterparts (those able to grow only above 7°C) by means

KEVIN P. FRANCIS; RALF MAYR; FELIX VON STETTEN; GORDON S. A. B. STEWART; SIEGFRIED SCHERER

1998-01-01

249

Effect of mesophilic and thermophilic conditions on changes of physicochemical characteristics of smooth cordgrass via dry digestion process  

Microsoft Academic Search

In this study, the changes on physicochemical characteristics of pretreated and digested smooth cordgrass were investigated by the composition, X-ray, FTIR and 13C NMR, and TG analyses. Simultaneous lime treatment and dry digestion could be successfully carried out in leaching bed reactor at thermophilic condition with highest breakage of lignocellulose and higher biogas yield. Comparing with mesophilic condition, thermophilic condition

Yue-gan Liang; Zheng Zheng; Xing-zhang Luo; Fei-hong Guo; Long-mian Wang; Ji-biao Zhang

2011-01-01

250

Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.  

PubMed

Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon. PMID:24645472

Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan

2014-01-01

251

Two distinct arginine kinases in Neocaridina denticulate: psychrophilic and mesophilic enzymes.  

PubMed

The small shrimp Neocaridina denticulata has two types of arginine kinases (AKs): AK1 and AK2. We determined the full kinetic parameters for the forward reaction of the AKs at temperatures between 15 and 35°C. The catalytic efficiencies, determined by kcat/(Ka(ATP)·Kia(ARG)), of the two enzymes showed a marked difference in temperature dependence. The efficiency of AK2 decreased markedly with decreasing temperature, while that of AK1 did not decrease with decreasing temperature, suggesting that AK1 is a cold-adapted enzyme. This unusual characteristic of AK1 was attributable to the remarkable decrease in Kia(ARG) with decreasing temperature, which enlarges its catalytic efficiency. Criterion with the values of ?(?H(o‡))p-m and ?(T?S(o‡))p-m also indicate that AK1 is a psychrophilic enzyme and AK2 is mesophilic. PMID:24727438

Suzuki, Tomohiko; Kanou, Yoshitaka

2014-06-01

252

High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium  

SciTech Connect

We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada (Weizmann Inst Israel); (Mac Planck Germany); (Max Planck Germany)

2009-10-07

253

Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis.  

PubMed

The performance of dry anaerobic digestion (AD) of food waste was investigated under mesophilic conditions and the methanogenic community was investigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulic retention time (HRT) control without the addition of alkali agents. The average CH4 production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m(3)/m(3)/d, 66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogenic community of the seed sludge experienced a significant reduction in genus diversity from 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclastic groups after the acclimation under dry condition. Almost all sequences of the dry anaerobic digester were closely related with those of Methanosarcina thermophila with similarity of 96.4-99.1%. The experimental results would serve as useful information to understand the dry AD system. PMID:23347929

Cho, Si-Kyung; Im, Wan-Taek; Kim, Dong-Hoon; Kim, Moon-Hwan; Shin, Hang-Sik; Oh, Sae-Eun

2013-03-01

254

A STUDY ON AEROBIC BACTERIAL FLORA DURING INCUBATION OF RAINBOW TROUT (Oncorhynchus mykiss, Walbaum 1792) EGGS IN HATCHERY  

Microsoft Academic Search

Aerobic bacterial flora in rainbow trout egg, Oncorhynchus mykiss, Walbaum 1792, and the hatchery water were analyzed. It was determined that the number of bacteria varied between 10 3 -10 4 cfu g -1 in disinfected eggs and 10 6 -10 7 cfu g -1 in undisinfected eggs. The total bacterial count was 5.7x 102 cfu ml-1 in the spring

Soner Altun

255

Survey of petroleum-degrading bacteria in coastal waters of Sunderban Biosphere Reserve  

Microsoft Academic Search

A survey of petroleum-degrading bacteria was carried out in the Indian part of deltaic Sunderbans to evaluate the distribution of the naturally occurring petroleum-degrading aerobic bacteria. Bacteriological analysis of surface water samples collected from five different locations in the Hooghly–Matla river mouth showed that, depending on the location, 0.08–2.0% of the heterotrophic bacteria culturable in marine agar medium could degrade

Subarna Roy; Dipak Hens; Debabrata Biswas; Dipa Biswas; Ranajit Kumar

2002-01-01

256

An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.  

PubMed

Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

2014-08-01

257

Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common  

PubMed Central

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694

2013-01-01

258

Measuring aerobic fitness in divers.  

PubMed

The editorial by Bosco, Paoli and Camporesi in the last issue of this journal provides an interesting overview of some of the factors that are either known or suspected to be important in the physiological health of divers. The part pertinent to our paper concerns the meaning and use of metabolic equivalents (MET). Our goal was to estimate the metabolic effort required for a substantial sample of recreational dives. Computing MET values based on an assumed resting oxygen consumption rate of 3.5 millilitres of oxygen per kilogram body mass per minute is well established. Most pointedly, MET is used in the Recreational Scuba Training Council (RSTC) Guidelines for Recreational Scuba Diver's Physical Examination found in the Medical Statement documentation. Given the increasingly widespread use of the RSTC assessment, it makes the most sense to be consistent. Concerns over whether or not a more appropriate index value could be used are moot. Anyone wishing to compute a different base for 1.0 MET can simply crossmultiply and divide. The question to be answered is not what level of aerobic capacity is desirable for divers, the answer to that is the higher the better. The critical question is what constitutes a reasonable minimum threshold aerobic capacity consistent with operational safety. The authors mention the often invoked 13 MET capacity identified as a threshold for US Navy divers. What is typically ignored, however, is the fact that the Navy has far more applicants for dive school than posts to be filled, making very stringent selection standards feasible even if not truly operationally necessary. It is not at all clear that this is a reasonable threshold for the broader diving community. Despite this, the RSTC documentation adheres to the traditional position. "Formalized stress testing is encouraged if there is any doubt regarding physical performance capability. The suggested minimum criteria for stress testing in such cases is at least 13 METS [sic]. Failure to meet the exercise criteria would be of significant concern." This is contrary to the available data. A review of 14 studies in which the aerobic capacity of divers was measured found that mean aerobic fitness ranged from 37-57 mL?kg?¹?min?¹ (10.6-16.3 MET). The lowest individual scores were below 5.0 MET. The threshold of 13 MET was exceeded by the group mean in only six of the 14 studies described. This certainly does not support 13 MET as a meaningful threshold for participation. Our current work was intended as a simple effort to begin to assess the aerobic demands of recreational diving. It is our hope to promote discussion that is willing to risk the heresy of challenging conventional wisdom and to stimulate additional research. We certainly agree with the authors and feel strongly that enhanced in-water evaluation of physical fitness is desirable to establish diver readiness. We would not, however, refer to this as a "medical examination" since it is likely that it will largely be dive professionals and not clinicians that conduct the evaluations. PMID:25311329

Pollock, Neal W; Buzzacott, Peter

2014-09-01

259

A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.  

PubMed

An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

2014-06-01

260

Hybrid UASFB-aerobic bioreactor for biodegradation of acid yellow-36 in wastewater.  

PubMed

In this study, a combined anaerobic-aerobic treatment process based on mixed culture of bacteria was used to degrade azo dyes (AY-36). The experiment was integrated by exposing anaerobic granular sludge and aerobic aromatic amine degrading bacterial enrichment cultures. Under anaerobic conditions UASFB bioreactor using sodium acetate as a co-substrate, the AY-36 was reduced and resulting in a temporary accumulation of aromatic amines by the bacterial biomass. Hydraulic residence time (HRT) was fixed (24 h) through out the experiment. The two aromatic amine p-amino diphenylamine (p-ADPA) and 4-aminobenzenesulfonic acid (4-ABS) were detected from the reduction of AY-36. Subsequently, 4-ABS was degraded in the aerobic reactor which was earlier accumulated for 30days. But p-ADPA was not degraded in aerobic condition. The combined anaerobic-aerobic bioreactor was able to completely remove the AY-36 at a maximum loading rate of 100mg AY-36L(-1)d(-1). PMID:20097557

Ahmad, Rais; Mondal, Pijush Kanti; Usmani, Shams Qamar

2010-05-01

261

Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?  

PubMed Central

Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

2011-01-01

262

Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms.  

PubMed

In this study, the possibility of using backwashed biofilm as seed in an aerobic granular sludge continuous-flow airlift fluidized bed (CAFB) reactor was investigated. After the addition of the inoculated backwashed biofilm, the start-up period of this reactor fed with municipal wastewater was reduced to 25 days, and aerobic granulation and stabilization were enhanced. At steady state, the chemical oxygen demand (COD) removal efficiency and nitrification efficiency were as high as 80-90 and 60 %, respectively. The CAFB was operated continuously and totally for 90 days, and its performance was much more stable when compared with system inoculated with activated sludge. Microbial distribution analyzed by fluorescence in situ hybridization (FISH) showed that the nitrite-oxidizing bacteria (NOB) and ammonium-oxidizing bacteria (AOB) were compatible with heterotrophic bacteria and distributed evenly throughout the granules. Such unique population distribution might be attributed to the low COD level and abundant dissolved oxygen in the entire granule as simulated by the mathematic models. Moreover, scanning electron microscopy revealed broad holes in the granules, which might promote the mass transfer of the nutrients from the surface to the center and enable simultaneous COD removal and nitrification. In conclusion, backwashed biofilm is an alternative seed of the conventional flocculent activated sludge in the aerobic granular sludge system to enhance carbonaceous oxidization and nitrification. PMID:24643735

Yang, Yang; Zhou, Dandan; Xu, Zhengxue; Li, Aijun; Gao, Hang; Hou, Dianxun

2014-06-01

263

Aerobic microorganisms associated with alfalfa leafcutter bees (megachile rotundata).  

PubMed

Characterization of microorganisms associated with alfalfa leaf-cutter bee (Megachile rotundata) nectar, pollen, provisions, larval guts, and frass (excreta) in Alberta demonstrated a varied aerobic microflora. Yeasts were isolated frequently from nectar, pollen, and provisions but rarely from guts or frass. The most prevalent yeast taxa were: Candida bombicola, Cryptococcus albidus, Metschnikowia reukaufii, and Rhodotorula glutinis. Although few filamentous fungi were found in nectar, they were frequently isolated from pollen and provisions; the predominant taxa were Alternaria alternata, Cladosporium cladosporioides, C. herbarum, Epicoccum nigrum, and Penicillium chrysogenum. Bacteria, including species of Bacillus, Corynebacterium, Micrococcus, and the actinomycete Streptomyces, also were prevalent in provisions and/or on pollen. In general, the diversity of microorganisms isolated from alimentary canals and frass was lower than from nectar, pollen, and provisions. Bacillus firmus, B. licheniformis, B. megaterium, B. pumilus, and Streptomyces spp. were the most frequently isolated bacteria, whereas Trichosporonoides megachiliensis was the most common filamentous fungus isolated from larval guts and/or frass. These taxa may be part of the resident microflora of the alimentary canal. Populations of bacteria and filamentous fungi, but not yeasts, were larger from Ascosphaera aggregata-infected larvae than from healthy larvae. However, with the exception of Aspergillus niger and T. megachiliensis in frass from healthy larvae, no taxon of filamentous fungi was conspicuously present or absent in infected larvae, healthy larvae, or their frass. PMID:24190009

Inglis, G D; Sigler, L; Goette, M S

1993-09-01

264

In silico Approach to Study Adaptive Divergence in Nucleotide Composition of the 16S rRNA Gene Among Bacteria Thriving Under Different Temperature Regimes.  

PubMed

Abstract Bacteria exist in a wide range of habitats ranging from psychrophilic through mesophilic to thermophilic. These different habitats have distinct environmental restriction for their existence. These microorganisms evolve themselves to survive in a specific habitat through the phenotypic and genotypic changes. In the bacterial domain, in silico analysis of 16S rRNA gene sequences using Mega 5.2 software by computing nucleotide composition, and evaluating their significance by statistical analysis using analysis of variance through Statistical Package for the Social Sciences (SPSS) version 16.0, revealed the habitat-specific bias in the occurrence of four types of nucleosides (A, T, C, and G) in the 16S rRNA gene. This hypothesis is also supported by Duncan's multiple range significance test at p=0.05 and also by the clustering of bacterial species of the same habitat group in the neighbor-joining tree of 150 different bacterial species of different psychrophilic, mesophilic, and thermophilic habitats (50 from each). The results on the probability of substitution (transition and transversion) in 16S rRNA gene sequences suggest that there is a habitat-specific selection pressure that possibly happens at the level of replication and repair process that results in a decreasing frequency of occurrence of adenine and thymine in the order psychrophilic>mesophilic>thermophilic species, and in an increasing frequency of occurrence of cytosine and guanine in the order psychrophilic<mesophilicbacteria. PMID:25147925

Ram, Hari; Kumar, Alok; Thomas, Lebin; Singh, Ved Pal

2014-10-01

265

Aerobic and anaerobic PCB biodegradation in the environment.  

PubMed Central

Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxinlike toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. PMID:8565922

Abramowicz, D A

1995-01-01

266

Heterotrophic nitrification and aerobic denitrification in Alcaligenes faecalis strain TUD.  

PubMed

Heterotrophic nitrification and aerobic and anaerobic denitrification by Alcaligenes faecalis strain TUD were studied in continuous cultures under various environmental conditions. Both nitrification and denitrification activities increased with the dilution rate. At dissolved oxygen concentrations above 46% air saturation, hydroxylamine, nitrite and nitrate accumulated, indicating that both the nitrification and denitrification were less efficient. The overall nitrification activity was, however, essentially unaffected by the oxygen concentration. The nitrification rate increased with increasing ammonia concentration, but was lower in the presence of nitrate or nitrite. When present, hydroxylamine, was nitrified preferentially. Relatively low concentrations of acetate caused substrate inhibition (KI = 109 microM acetate). Denitrifying or assimilatory nitrate reductase were not detected, and the copper nitrite reductase, rather than cytochrome cd, was present. Thiosulphate (a potential inhibitor of heterotrophic nitrification) was oxidized by A. faecalis strain TUD, with a maximum oxygen uptake rate of 140-170 nmol O2.min-1.mg prot-1. Comparison of the behaviour of A. faecalis TUD with that of other bacteria capable of heterotrophic nitrification and aerobic denitrification established that the response of these organisms to environmental parameters is not uniform. Similarities were found in their responses to dissolved oxygen concentrations, growth rate and ammonia concentration. However, they differed in their responses to externally supplied nitrite and nitrate. PMID:1416919

van Niel, E W; Braber, K J; Robertson, L A; Kuenen, J G

1992-10-01

267

Aerobic and anaerobic PCB biodegradation in the environment  

SciTech Connect

Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxin like toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. 27 refs., 1 fig., 1 tab.

Abramowicz, D.A. [GE Corporate Research and Development, Schenectady, NY (United States)

1995-06-01

268

Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.  

PubMed

This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors. PMID:24326212

Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

2014-01-01

269

Aerobic reserve and physical functional performance in older adults  

Microsoft Academic Search

Background: older adults can be limited in their performance of daily tasks due to an inadequate aerobic capacity. Aerobic capacity below minimum physiological thresholds required to maintain independence leaves older adults with little, or no, aerobic reserve. Objective: the aim of this study was to measure functional performance and aerobic reserve in older adults during the serial performance of daily

SCOTT W. ARNETT; J ENNIFER; H. LAITY; S UBODH K. AGRAWAL; M. ELAINE CRESS

270

The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR).  

PubMed

The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and ?-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge. PMID:23685649

Zhu, Liang; Lv, Mei-le; Dai, Xin; Zhou, Jia-heng; Xu, Xiang-yang

2013-07-01

271

Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling  

Microsoft Academic Search

Summary Mesophilic crenarchaeota are frequently found in ter- restrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43 kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b

Alexander H. Treusch; Sven Leininger; Arnulf Kletzin; Stephan C. Schuster; Christa Schleper

2005-01-01

272

Comparison of protein-water interactions in psychrophilic, mesophilic, and thermophilic Fe-SOD.  

PubMed

Iron superoxide dismutase (Fe-SOD) can eliminate superoxide anion radicals and is widely used in pharmaceuticals, cosmetics and foodstuff. It's significant to determine the factors that influence Fe-SOD thermostability. Previous studies have focused on the relationship between the structural parameters and thermostability of Fe-SOD while the contribution of water molecules was overlooked. In this study, we examined the relationship between hydration waters and Fe-SOD thermostability. The Voronoi polyhedra method was used to explore the distribution of hydration waters around the Fe-SODs and it was interesting to find that the distribution of hydration waters is related to the B-factor of amino acids, i.e., the flexibility of residues can affect the distribution of waters. Protein-water and water-water hydrogen bonds were examined. We found that the hydrogen bond density in thermophilic Fe-SOD was higher than that in mesophilic Fe- SOD. In addition, larger hydrogen bond networks that involve more waters covered the thermophilic Fe-SOD. PMID:24410726

Mou, Zhaolin; Ding, Yanrui; Wang, Xueqin; Cai, Yujie

2014-06-01

273

Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology.  

PubMed

Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. PMID:21481437

Dolan, T; Cook, M B; Angus, A J

2011-06-01

274

Improvement of mesophilic anaerobic co-digestion of agri-food waste by addition of glycerol.  

PubMed

Anaerobic co-digestion is a promising alternative to manage agri-food waste rather than landfilling, composting or incineration. But improvement of methane yield and biodegradability is often required to optimize its economic viability. Biomethanization of agri-food solid waste presents the disadvantage of a slow hydrolytic phase, which might be enhanced by adding a readily digestible substrate such as glycerol. In this study, strawberry extrudate, fish waste and crude glycerol derived from biodiesel manufacturing are mixed at a proportion of 54:5:41, in VS (VS, total volatile solids), respectively. The mesophilic anaerobic co-digestion at lab-scale of the mixture was stable at loads lower than 1.85 g VS/L, reaching a methane yield coefficient of 308 L CH4/kg VS (0 °C, 1 atm) and a biodegradability of 96.7%, in VS. Moreover, the treatment capacity of strawberry and fish waste was increased 16% at adding the crude glycerol. An economic assessment was also carried out in order to evaluate the applicability of the proposed process. Even in a pessimistic scenario, the net balance was found to be positive. The glycerol adding implied a net saving in a range from 25.5 to 42.1 €/t if compared to landfill disposal. PMID:24726968

Serrano, Antonio; Siles, Jose A; Chica, Arturo F; Martin, M Angeles

2014-07-01

275

A new cold-adapted, organic solvent stable lipase from mesophilic Staphylococcus epidermidis AT2.  

PubMed

The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6-9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca(2+), Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents. PMID:24777627

Kamarudin, Nor Hafizah Ahmad; Rahman, Raja Noor Zaliha Raja Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Basri, Mahiran; Salleh, Abu Bakar

2014-06-01

276

Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.  

PubMed

The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones. PMID:17578635

Kurtböke, D I; Neller, R J; Bellgard, S E

2007-08-01

277

Biomethane production and dynamics of microflora in response to copper treatments during mesophilic anaerobic digestion.  

PubMed

This study discussed the effects of different concentrations (0.625, 1.875 and 3.125 mM) of copper (Cu) in the form of CuSO4 on biomethane production and on the dynamics of microbial communities during the mesophilic anaerobic digestion (AD) of cow manure. The effects on biomethane production were found to depend on CuSO4 concentrations. After 50 days of AD, treatment A3 (3.125 mM) had lower cumulative biomethane production than the no-Cu control. The maximum value of cumulative biomethane production was detected under treatment A2 (1.875 mM). These results suggested that the stimulation or inhibition to biomethane production might be related to the concentration and chemical forms of Cu. Moreover, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to discuss the dynamics of microbial communities. Results revealed that different concentrations of CuSO4 had effects on the richness and diversity of bacterial and archaeal communities. The predominance of Bacteroidetes bacterium (GU339485.1) was verified through the sequencing of the dominant DGGE bands. Furthermore, Bacteroidetes bacterium could be detected during the whole AD process and is adaptable to a certain concentration range of CuSO4. PMID:25092381

Ke, Xin; Wang, Chunyong; Li, Rundong; Zhang, Yun; Zhang, Haijun; Gui, Shaofeng

2014-08-01

278

Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development  

PubMed Central

Background Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. Results Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. Conclusion We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants. PMID:23587418

2013-01-01

279

The Sulfur Oxygenase Reductase from the Mesophilic Bacterium Halothiobacillus neapolitanus Is a Highly Active Thermozyme  

PubMed Central

A biochemical, biophysical, and phylogenetic study of the sulfur oxygenase reductase (SOR) from the mesophilic gammaproteobacterium Halothiobacillus neapolitanus (HnSOR) was performed in order to determine the structural and biochemical properties of the enzyme. SOR proteins from 14 predominantly chemolithoautotrophic bacterial and archaeal species are currently available in public databases. Sequence alignment and phylogenetic analysis showed that they form a coherent protein family. The HnSOR purified from Escherichia coli after heterologous gene expression had a temperature range of activity of 10 to 99°C with an optimum at 80°C (42 U/mg protein). Sulfite, thiosulfate, and hydrogen sulfide were formed at various stoichiometries in a range between pH 5.4 and 11 (optimum pH 8.4). Circular dichroism (CD) spectroscopy and dynamic light scattering showed that the HnSOR adopts secondary and quaternary structures similar to those of the 24-subunit enzyme from the hyperthermophile Acidianus ambivalens (AaSOR). The melting point of the HnSOR was ?20°C lower than that of the AaSOR, when analyzed with CD-monitored thermal unfolding. Homology modeling showed that the secondary structure elements of single subunits are conserved. Subtle changes in the pores of the outer shell and increased flexibility might contribute to activity at low temperature. We concluded that the thermostability was the result of a rigid protein core together with the stabilizing effect of the 24-subunit hollow sphere. PMID:22139503

Veith, Andreas; Botelho, Hugo M.; Kindinger, Florian; Gomes, Claudio M.

2012-01-01

280

Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803.  

PubMed

Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems-photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSI(PsaJF). PSI(PsaJF) is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSI(PsaJF) and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001. PMID:24473073

Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan

2014-01-01

281

Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions.  

PubMed

The effects of chitosan addition on treatment of palm oil mill effluent were investigated using two lab-scale upflow anaerobic sludge bed (UASB) reactors: (1) with chitosan addition at the dosage of 2 mg chitosan per g volatile suspended solids on the first day of the operation (R1), (2) without chitosan addition (the control, R2). The reactors were inoculated with mesophilic anaerobic sludge which was acclimatized to a thermophilic condition with a stepwise temperature increase of 5 °C from 37 to 57 °C. The OLR ranged from 2.23 to 9.47 kg COD m(-3) day(-1). The difference in biogas production rate increased from non-significant to 18% different. The effluent volatile suspended solids of R1 was 65 mg l(-1) lower than that of R2 on Day 123. 16S rRNA targeted denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial community indicated that some methanogens in the genus Methanosaeta can be detected in R1 but not in R2. PMID:21316949

Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

2011-04-01

282

Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803  

PubMed Central

Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems—photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSIPsaJF. PSIPsaJF is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSIPsaJF and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001 PMID:24473073

Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan

2014-01-01

283

Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.  

PubMed

This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

Thomsen, D; Ballor, D L

1991-03-01

284

Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.  

PubMed

Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

Gobi, K; Vadivelu, V M

2014-06-01

285

The Energetics of Aerobic versus Anaerobic Respiration.  

ERIC Educational Resources Information Center

Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

Champion, Timothy D.; Schwenz, Richard W.

1990-01-01

286

Conditioning and Aerobics for Older Americans.  

ERIC Educational Resources Information Center

A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

Hansen, Joyce

1980-01-01

287

Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation  

PubMed Central

Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a sequencing batch reactor. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes demonstrated a major shift in the microbial community as the seed sludge developed into granules. Culture isolation and DGGE assays confirmed the dominance of ?-Proteobacteria and high-G+C gram-positive bacteria in the phenol-degrading aerobic granules. Of the 10 phenol-degrading bacterial strains isolated from the granules, strains PG-01, PG-02, and PG-08 possessed 16S rRNA gene sequences that matched the partial sequences of dominant bands in the DGGE fingerprint belonging to the aerobic granules. The numerical dominance of strain PG-01 was confirmed by isolation, DGGE, and in situ hybridization with a strain-specific probe, and key physiological traits possessed by PG-01 that allowed it to outcompete and dominate other microorganisms within the granules were then identified. This strain could be regarded as a functionally dominant strain and may have contributed significantly to phenol degradation in the granules. On the other hand, strain PG-08 had low specific growth rate and low phenol degradation ability but showed a high propensity to autoaggregate. By analyzing the roles played by these two isolates within the aerobic granules, a functional model of the microbial community within the aerobic granules was proposed. This model has important implications for rationalizing the engineering of ecological systems. PMID:15528543

Jiang, He-Long; Tay, Joo-Hwa; Maszenan, Abdul Majid; Tay, Stephen Tiong-Lee

2004-01-01

288

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-print Network

treatment process includes four main components that work together to purify wastewater: A pretreatment tank, generally ? referred to as the ?trash tank? because it removes materials that microorganisms (microbes) can- not degrade. An aeration chamber..., where ? aerobic microbes decompose waste in the water. An aeration system consists of an air pump, piping, and diffusers that force air into the aeration chamber. The air pump, located near the aerobic tank, compresses air to flow...

Lesikar, Bruce J.

2008-10-31

289

Influence of aerobic exercise on depression  

Microsoft Academic Search

43 depressed undergraduate women were randomly assigned to either an aerobic exercise treatment condition in which they participated in strenuous exercise, a placebo treatment condition in which they practiced relaxation exercises, or a no-treatment condition. Aerobic capacity was assessed before and after a 10-wk treatment period. Self-reported depression was assessed before, during, and after the treatment period. Results show that

I. Lisa McCann; David S. Holmes

1984-01-01

290

Aerobic bacterial flora of nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica.  

PubMed

Bacteriological examination of 70 nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica was performed to investigate nasal and cloacal aerobic bacteria. A total of 325 bacterial isolates were obtained, including 10 Gram-negative and three Gram-positive genera. Two hundred thirty-nine were Gram-negative and 86 were Gram-positive isolates. Klebsiella pneumoniae was the most common microbe identified in turtle samples: 27/70 (38.5%) in cloacal, and 33/70 (47.1%) in nasal samples. The Enterobacteriaceae family, including Enterobacter agglomerans, E. cloacae, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, and Serratia marcescens, was the largest Gram-negative group of bacteria recovered and comprised 127 of 239 (53.1%) of the Gram-negative isolates. Staphylococcus species was the largest Gram-positive bacteria group, including S. aureus, S. cromogenes, S. epidermis, and S. intermedius, and made up 63 of 86 (73.2%) of the Gram-positive isolates recovered. The results of this study demonstrate that the aerobic bacterial flora of nesting green turtles at Tortuguero National Park is composed of a very wide spectrum of bacteria, including several potential pathogens. PMID:17315444

Santoro, Mario; Hernández, Giovanna; Caballero, Magaly

2006-12-01

291

Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India.  

PubMed

Twelve chemolithotrophic strains were isolated from temperate orchard soil on reduced sulfur compounds as energy and electron sources and characterized on the basis of their physiological properties and ability to oxidize various reduced sulfur compounds. The new isolates could oxidize tetrathionate as well as thiosulfate, and oxidation of the latter involved conversion of thiosulfate to tetrathionate followed by its accumulation and eventual oxidation to sulfate, manifested in the production of acid. The mesophilic, neutrophilic, Gram-negative and coccoid bacteria had a respiratory metabolism. Physiologically and biochemically, all the strains were more or less similar, differing only in their growth rates and ability to utilize a few carbon compounds as single heterotrophic substrates. 16S rRNA gene sequence analysis was performed with five representative strains, which revealed a high degree of similarity (> or =99%) among them and placed the cluster in the 'Betaproteobacteria'. The strains showed low levels (93.5-95.3 %) of 16S rRNA gene sequence similarity to Pigmentiphaga kullae, Achromobacter xylosoxidans, Pelistega europaea and species belonging to the genera Alcaligenes, Taylorella and Bordetella. The taxonomic coherence of the new isolates was confirmed by DNA-DNA hybridization. On the basis of their uniformly low 16S rRNA gene sequence similarities to species of all the closest genera, unique fatty acid profile, distinct G+C content (54-55.2 mol%) and phenotypic characteristics that include efficient chemolithotrophic utilization of tetrathionate, the organisms were classified in a new genus, Tetrathiobacter gen. nov. In the absence of any significant discriminatory phenotypic or genotypic characteristics, all the new isolates are considered to constitute a single species, for which the name Tetrathiobacter kashmirensis sp. nov. (type strain WT001(T)=LMG 22695(T)=MTCC 7002(T)) is proposed. PMID:16166666

Ghosh, Wriddhiman; Bagchi, Angshuman; Mandal, Sukhendu; Dam, Bomba; Roy, Pradosh

2005-09-01

292

Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil.  

PubMed

Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [¹³C]bicarbonate assimilation assay showed stoichiometric incorporation of ¹³C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to "Candidatus Nitrosopumilus maritimus" revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N?O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated "Candidatus Nitrosoarchaeum koreensis." PMID:22003023

Jung, Man-Young; Park, Soo-Je; Min, Deullae; Kim, Jin-Seog; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kim, Geun-Joong; Madsen, Eugene L; Rhee, Sung-Keun

2011-12-01

293

Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).  

PubMed

Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (?(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. PMID:23026327

Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

2012-12-01

294

Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions  

NASA Astrophysics Data System (ADS)

Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental parameters acted to generally increase the inhibitory nature of the low-pressure conditions on growth and replication of the seven Bacillus spp. tested.

Schuerger, Andrew C.; Nicholson, Wayne L.

2006-11-01

295

[Phylogenetic analysis of bacteria of extreme ecosystems].  

PubMed

Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses. PMID:25007437

Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A

2014-01-01

296

Bioelectricity Aware of bacteria  

E-print Network

Bioelectricity Aware of bacteria Bacteria of the genus Geobacter carry out anaerobic respiration the mechanism that makes these bacteria conductors of electricity. Researchers have studied this for a population of G. sulfurreducens, endowed with bacteria nanometric filaments (pili) that enable them

Lovley, Derek

297

Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.  

PubMed

A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a ?-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit. PMID:21236663

Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong

2011-05-01

298

Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor.  

PubMed

Aerobic granular sludge which had good performance to pollutants removal was successfully cultivated within 18 days in a pilot scale sequencing batch reactor, about 25% mature aerobic granular sludge was inoculated when the setting time of activated sludge was reduced to 10 min. Anaerobic biological selector was implemented to inhibit filamentous bacteria overgrowth, where the maximum COD could reach to 1703.74 mg/L. The cultivated aerobic granular sludge was irregular and pale yellow, average particle size, SVI, SV??/SV?, PN/PS, EPS and water content were 1.58 mm, 67.64 mL/g, 0.91, 2.17, 268.90 mg EPS/g MLVSS and 98.16% on the 18th day. Mechanism of rapid granulation mainly included crystal nucleus hypothesis and selection pressure hypothesis. The inoculated aerobic granules could maintain stable under short setting time environment, making it directly as the crystal nucleus and the carriers for new particles without obvious disintegration, which eventually shortened the granulation time greatly. PMID:24905043

Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Jiang, Guo-sheng; Dan, Jing-feng; Li, Chun-yang; Liu, Fu-biao

2014-08-01

299

Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways.  

PubMed

We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the ?-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequence identity to the BzdR transcriptional repressor that controls the bzd genes involved in the anaerobic degradation of benzoate. Because the boxR gene is present in all box clusters so far identified in bacteria, the BoxR/benzoyl-CoA regulatory system appears to be a widespread strategy to control this aerobic hybrid pathway. Interestingly, the paralogous BoxR and BzdR regulators act synergistically to control the expression of the box and bzd genes. This cross-regulation between anaerobic and aerobic pathways for the catabolism of aromatic compounds has never been shown before, and it may reflect a biological strategy to increase the cell fitness in organisms that survive in environments subject to changing oxygen concentrations. PMID:22303008

Valderrama, J Andrés; Durante-Rodríguez, Gonzalo; Blázquez, Blas; García, José Luis; Carmona, Manuel; Díaz, Eduardo

2012-03-23

300

Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions  

Microsoft Academic Search

Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding\\u000a of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3.\\u000a Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3\\u000a grew under strictly anoxic conditions on n-alkanes

Frank Aeckersberg; Fred A. Rainey; Friedrich Widdel

1998-01-01

301

Increased number of Arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100  

Microsoft Academic Search

Thermotolerant acetic acid bacteria (AAB), Acetobacter tropicalis SKU1100, can grow above 40°C. To investigate the basis of its thermotolerance, we compared the genome of A. tropicalis SKU1100 with that of mesophilic AAB strain Acetobacter pasteurianus IFO3283-01. The comparative genomic study showed that amino acid substitutions from large to small residue and Lys to Arg occur in many orthologous genes. Furthermore,

Minenosuke Matsutani; Hideki Hirakawa; Mitsuteru Nishikura; Wichai Soemphol; Ibnaof Ali Ibnaof Ali; Toshiharu Yakushi; Kazunobu Matsushita

2011-01-01

302

Study on Effective Microorganisms Bacteria for Acrylonitrile Wastewater Treatment  

Microsoft Academic Search

In this study, according to the specific characteristics of acrylonitrile wastewater, Effective Microorganisms (EM) was used as Contact oxidation strain. The optimum conditions of EM bacteria domestication and contact oxidation treatment, such as pH, concentration and temperature, was confirmed. In addition, the results of aerobic treatment of wastewater suggested that COD effluent reduced to below 100mg\\/L, the removal efficiency to

Zhou Guizhong; Sun Jing

2010-01-01

303

Jania rubens-associated bacteria: molecular identification and antimicrobial activity  

Microsoft Academic Search

Marine macroalgae surfaces constitute suitable\\u000asubstrata for bacterial colonization which are known to\\u000aproduce bioactive compounds. Thus, hereby we focused on\\u000aheterotrophic aerobic bacteria species associated with\\u000acoralline red alga Jania rubens (northern coast of Tunisia,\\u000asouthern Mediterranean Sea) and their inhibition against\\u000aseveral microbial marine and terrestrial species. The whole\\u000acollection (19 isolates, J1 to J19) was identified, based

A. Ismail-Ben Ali; M. El Bour; L. Ktari; H. Bolhuis; M. Ahmed; A. Boudabbous; L. J. Stal

2012-01-01

304

Submerged filter biotreatment of hazardous leachate in aerobic, anaerobic, and anaerobic/aerobic systems  

SciTech Connect

Aerobic, anaerobic and anaerobic/aerobic biotreatment of an industrial hazardous waste landfill leachate was evaluated in bench scale biofilm reactor systems operated under steady-and non-steady-state conditions. The leachate contained volatile and semi-volatile organics that exceeded the best-demonstrated-available-technology (BDAT) standard established for multi-source leachate wastewater under the Resources Conservation and Recovery Act (RCRA). The influent leachate stream was continuously applied to three parallel systems: (1) an upflow anaerobic filter followed by a submerged aerobic filter, both plastic packing, (2) an anaerobic granular activated carbon column, and (3) an upflow, plastic packed aerobic filter. All systems achieved steady-state COD removals of 66-82 percent. The sequential anaerobic/aerobic filter system was most resistant to hydraulic and organic shock loading, whereas the aerobic filter performance deteriorated significantly. Though transformations of specific chemical compounds were achieved in both anaerobic and aerobic treatment, the sequential anaerobic/aerobic system was cost effective for meeting BDAT standards for hazardous organics. 25 refs., 6 figs., 15 tabs.

Smith, D.P. [Utah State Univ., Logan, UT (United States)

1995-12-31

305

Peroxide-Sensing Transcriptional Regulators in Bacteria  

PubMed Central

The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H2O2, while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H2O2 via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins. PMID:22797754

Mongkolsuk, Skorn

2012-01-01

306

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions.  

PubMed

With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO(2) emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH(4) production yield (MPY) and VS reduction achieved in this condition were 5.0m(3)/m(3)/d, 0.25 m(3) CH(4)/g COD(added), and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m(3)/m(3)/d, MPY of 0.26 m(3) CH(4)/g COD(added), and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes. PMID:21684733

Kim, Dong-Hoon; Oh, Sae-Eun

2011-01-01

307

Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols.  

PubMed

Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes. PMID:24910337

Chong, Barrie Fong; Harrison, Mark D; O'Hara, Ian M

2014-01-01

308

Bacteria TMDL Projects  

E-print Network

of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper... above Canyon Lake: A TMDL Project for Bacteria ? Houston Metropolitan Area: A TMDL Project for Bacteria ? Leon River below Proctor Lake ? Northwest Houston Area Bacteria TMDL Project ? Oso Bay and Oso Creek: A TMDL Project for Bacteria ? Peach...

Wythe, Kathy

2007-01-01

309

Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system.  

PubMed Central

Escherichia coli grown anaerobically with fumarate as electron acceptor is able to take up C4-dicarboxylates by a specific transport system. The system differs in all tested parameters from the known aerobic C4-dicarboxylate transporter. The anaerobic transport system shows higher transport rates (95 mumol/g [dry weight] per min versus 30 mumol/g/min) and higher Kms (400 versus 30 microM) for fumarate than for the aerobic system. Mutants lacking the aerobic dicarboxylate uptake system are able to grow anaerobically at the expense of fumarate respiration and transport dicarboxylates with wild-type rates after anaerobic but not after aerobic growth. Transport by the anaerobic system is stimulated by preloading the bacteria with dicarboxylates. The anaerobic transport system catalyzes homologous and heterologous antiport of dicarboxylates, whereas the aerobic system operates only in the unidirectional mode. The anaerobic antiport is measurable only in anaerobically grown bacteria with fnr+ backgrounds. Additionally, the system is inhibited by incubation of resting bacteria with physiological electron acceptors such as O2, nitrate, dimethyl sulfoxide, and fumarate. The inhibition is reversed by the presence of reducing agents. It is suggested that the physiological role of the system is a fumarate/succinate antiport under conditions of fumarate respiration. PMID:1512189

Engel, P; Krämer, R; Unden, G

1992-01-01

310

Ecophysiological Characteristics of Obligate Methanotrophic Bacteria and Methane Oxidation In Situ  

NASA Technical Reports Server (NTRS)

Most of the obligate methane-oxidizing bacteria (MOB) described to date are neutrophilic mesophiles that grow optimally in dilute media. Kinetic analyses generally indicate that bacterial methane uptake occurs by transport systems with a K(sub m) greater than l micronM. These and other properties of MOB are inconsistent with characteristics of methane oxidation in situ. The inconsistencies indicate a need for greater attention to the ecophysiological characteristics of isolates and the design of enrichment and isolation schemes which emphasize ecologically relevant parameters (e.g., low temperature, limited and diverse substrate availability, low water potential).

King, Gary M.

1993-01-01

311

Effect of temperature on mineralization by heterotrophic bacteria  

SciTech Connect

When pure cultures of the bacteria Pseudomonas fluorescens (a psychrotroph), Escherichia coli (a mesophile), and SRL 261 (a thermophile) were shifted away from temperatures to which they were adapted, the percentage of substrate mineralized increased (percent mineralized = (substrate respired to CO/sub 2/)/(substrate respired to CO/sub 2/ + substrate incorporated into biomass) x 100). The increase in the percent mineralized was larger for larger temperature shifts. Similar responses were observed when natural heterotrophic bacterial populations from sediments of Lake George, N.Y., and a thermophilic algal-bacterial mat community at the Savannah River Plant, Aiken, S.C., were subjected to temperature shifts. These results suggest that an increase in the percent mineralized may be an indication of thermal stress in bacterial populations.

Tison, D.L.; Pope, D.H.

1980-03-01

312

Comparative study of normal and sensitive skin aerobic bacterial populations  

PubMed Central

The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

Hillion, Melanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

2013-01-01

313

Comparative study of normal and sensitive skin aerobic bacterial populations.  

PubMed

The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

2013-12-01

314

Application of aerobic respirometry: studies on the impact of humate on biological treatment of municipal sewage.  

PubMed

This paper describes an application of aerobic respirometry to investigate the influence of humic matter (humate) on biological processes in dilution water and in municipal sewage. Standard product PolySeed, a consortium of bacteria considered to be representative of those found in an activated sludge, was used as a source of biomass. The results indicate that aerobic respirometry is a simple and convenient method for studies of biological processes. It was observed that an addition of humate at doses up to 2000 mg 1(-1) stimulated biological processes both in dilution water and in sewage. Also, it was found that humate is effective in suppressing an inhibitory effect of phenol and copper on the biomass. The results of the studies suggest than the application of humate has great potential in wastewater treatment, as it can serve as a source of additives, stimulating biological activity and removing toxic inhibitors of biological processes. PMID:18702290

Lipczynska-Kochany, E; Kochany, J

2008-06-01

315

Disintegration of aerobic granules: role of second messenger cyclic di-GMP.  

PubMed

Loss of structural stability of aerobic granular process is the challenge for its field applications to treat wastewaters. The second messenger, cyclic diguanylate (c-di-GMP), is widely used by bacteria to regulate the synthesis of exopolysaccharide. This study for the first time confirmed the correlation between concentration of intracellular c-di-GMP and the granular stability under sequencing batch reactor (MBR) mode. In the presence of manganese ions (Mn(2+)), the concentrations of intracellular c-di-GMP and of extracellular polysaccharides and proteins in granules were declined. Clone library study revealed that the polysaccharide producers. Acinetobacter sp., Thauera sp., Bdellovibrio sp. and Paracoccus sp. were lost after Mn(2+) addition. The findings reported herein confirmed that the c-di-GMP is a key chemical factor epistatic to quorum sensing to determine granular stability. Stimulation of synthesis of intracellular c-di-GMP presents a potential way to enhance long-term stability of aerobic granules. PMID:23948271

Wan, Chunli; Zhang, Peng; Lee, Duu-Jong; Yang, Xue; Liu, Xiang; Sun, Supu; Pan, Xiangliang

2013-10-01

316

Aerobic biodegradation of trichloroethene without auxiliary substrates.  

PubMed

Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. PMID:24793109

Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

2014-08-01

317

Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods.  

PubMed

The phylogeny and taxonomy of the mesophilic methane-producing archaea of the order Methanococcales were examined by DNA relatedness, 16S rRNA sequence analysis, cellular protein patterns, and phenotypic methods. The mesophilic species Methanococcus maripaludis, Methanococcus vannielii, Methanococcus voltaei, and "Methanococcus aeolicus" formed a deep group with 5 to 30% DNA relatedness and 92 to 96% 16S rRNA sequence similarity. Twenty-two additional isolates and Methanococcus deltae were similar to the type strain of either M. voltaei or M. maripaludis. Two isolates, strains A2 and A3, exhibited 37% DNA relatedness and 99.2% 16S rRNA sequence similarity to M. voltaei PS(T) (T = type strain). In the absence of phenotypic differences, these organisms were assigned to M. voltaei. Similarly, four autotrophic isolates, strains C5, C6, C7, and C8, exhibited 54 to 69% DNA relatedness and 99.2% 16S rRNA sequence similarity to M. maripaludis JJT and were assigned to M. Maripaludis. While these isolates were sufficiently genetically diverse to justify classification in novel species, few differences were apparent in the phenotypic properties available for measurement. Thus, the phenotypic properties of these lithotrophic archaea were highly conserved and poor indicators of genetic diversity. Partial sequencing of about 200 bases of both the 16S and 23S rRNAs of the isolates demonstrated allelic diversity within methanococcal species. This allelic diversity did not correlate with diversity measured by DNA relatedness, cellular protein pattern, and other methods. Similarly, antisera to whole cells of the type strains did not cross-react strongly to whole cells of strains that were genetically similar, and serological cross-reactivity was not a useful taxonomic method for methanococci. Lastly, on the basis of the results of 16S rRNA sequence analyses and biochemical data, the ancestor of the mesophilic methanococci may have been an autotrophic thermophile. PMID:8782682

Keswani, J; Orkand, S; Premachandran, U; Mandelco, L; Franklin, M J; Whitman, W B

1996-07-01

318

Bacteria isolated from amoebae/bacteria consortium  

DOEpatents

New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

Tyndall, R.L.

1995-05-30

319

Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes  

NASA Astrophysics Data System (ADS)

Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

2003-12-01

320

Development of the aerobic spoilage flora of chilled rabbit meat.  

PubMed

Even though worldwide production of rabbit meat is over 1,000,000ton, little information is available on rabbit meat microbiology. This paper reports on the microflora developing on chill-stored rabbit carcasses. Four different lots of 24h post-mortem rabbit carcasses dressed and kept at 0°C in a medium-size abattoir were collected and evaluated for sensory, physicochemical and microbiological changes during aerobic storage at 3±1°C. Mean initial pH value (pH(24)), extract-release volume (ERV) and lactate content of Biceps femoris muscle, were 6.26±0.20, 13.50±3.50ml and 0.70±0.07%, respectively. As with other muscle foods kept chilled in air, pH increased and ERV and lactate decreased as storage progressed. Initial levels (logcfu/g) of aerobes (APC), psychrotrophic flora, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae and yeasts were 4.76±0.31, 4.81±0.81, 3.39±1.12, 2.01±0.92, 2.76±0.51, 0.49±0.45 and 3.46±0.32, respectively. Pseudomonads, most of them fluorescent, and to a lesser extent B. thermosphacta and yeasts grew faster than the remaining microorganisms and became predominant at the end of the shelf life. Carcasses spoiled when mean APC, psychrotrophic and pseudomonads numbers were ca. 8logcfu/g, their mean shelf life being estimated at 6.8 days. A lot of DFD-like rabbit carcasses, with higher pH and lower ERV values but similar microbial loads to normal meat, developed a strong putrid odour after 4 days. PMID:22063497

Rodríguez-Calleja, José M; García-López, María-Luisa; Santos, Jesús A; Otero, Andrés

2005-06-01

321

Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria  

NASA Astrophysics Data System (ADS)

Batch culture experiments were performed to investigate the weathering of meteoritic material by iron-oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron-oxidizers growing under pH-neutral conditions oxidized iron from iron meteorites. These results show that rapid biologicallymediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.

Gronstal, A.; Pearson, V.; Kappler, A.; Dooris, C.; Anand, M.; Poitrasson, F.; Kee, T. P.; Cockell, C. S.

2009-03-01

322

Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia)  

NASA Astrophysics Data System (ADS)

The primary geochemical process at methane seeps is anaerobic oxidation of methane (AOM), performed by methanotrophic archaea and sulfate-reducing bacteria (SRB). The molecular fingerprints (biomarkers) of these chemosynthetic microorganisms can be preserved in carbonates formed through AOM. However, thermal maturity and aerobic degradation can change the original preserved compounds, making it difficult to establish the relation between AOM and carbonate precipitation. Here we report a study of amino acid and lipid abundances in carbonate matrices of aerobically altered pipes recovered from the seafloor of the Gulf of Cadiz (SW Iberian Peninsula). This area is characterized by a complex tectonic regime that supports numerous cold seeps. Studies so far have not determined whether the precipitation of carbonate pipes in the Gulf of Cadiz is a purely chemical process or whether microbial communities are involved. Samples from this site show signs of exposure to oxygenated waters and of aerobic alteration, such as oxidation of authigenic iron sulfides. In addition, the degradation index, calculated from the relative abundance of preserved amino acids, indicates aerobic degradation of organic matter. Although crocetane was the only lipid identified from methanotrophic archaea, the organic compounds detected (n-alkanes, regular isoprenoids and alcohols) are compatible with an origin from AOM coupled with bacterial sulfate reduction (BSR) and subsequent aerobic degradation. We establish a relation among AOM, BSR and pipe formation in the Gulf of Cadiz through three types of analysis: (1) stable carbon and oxygen isotopic composition of carbonate minerals; (2) carbonate microfabrics; and (3) mineralogical composition. Our results suggest that carbonate pipes may form through a process similar to the precipitation of vast amounts of carbonate pavements often found at cold seeps. Our approach suggests that some organic compound patterns, in combination with additional evidence of AOM and BSR, may help indicate the source of altered methane-derived carbonates commonly occurring in ancient and modern deposits.

Merinero, Raúl; Ruiz-Bermejo, Marta; Menor-Salván, César; Lunar, Rosario; Martínez-Frías, Jesús

2012-07-01

323

Effects of Cu2+ on morphological structure, functional groups, and elemental composition of aerobic granular sludge.  

PubMed

Aerobic granular sludge (AGS) is shaped by the self-immobilization of microorganisms. In this study, AGS was cultivated successively in a column sequencing batch reactor (SBR) with glucose and sodium acetate as the carbon sources. The shock-loading effects of varying the Cu2+ concentration (0.0, 1.0, 3.0, 5.0, or 10.0 mg/L) on the characteristics of aerobic granules were studied. The results show that Cu2+ has a toxic effect on the aerobic granules. Although the aerobic granules became increasingly loose as the Cu2+ concentration increased from 1.0 to 5.0 mg/L, their structural integrity was largely maintained. However, the aerobic granules disintegrated and their skeletons consisting of internal filamentous bacteria were exposed at the Cu2+ concentration of 10.0mg/L. The functional groups -NH2, -OH, -COOH, and C-N reacted with Cu2+. Ca, Fe, and P were the major trace elements observed in the AGS. With an increase in the Cu2+ concentration from 0.0 to 10.0 mg/L, the weight percentages of the essential elements Fe, Ca, Na, and K in the granules decreased from 23.98%, 24.64%, 3.86%, and 3.87% to 14.90%, 13.93%, 0%, and 0%, respectively, whereas the weight percentage of copper increased correspondingly from 0% to 35.43%. Cu2+ was exchanged with the essential metals and chelated by the nitrogen-containing functional groups (-NH2 or C-N) of the protein. These effects influenced the structural stability of the sludge. PMID:23530333

Zheng, Xiao-Ying; Wang, Xing-Nan; Huang, Xi; Chen, Qing; Chen, Wei; He, Yu-Jie

2013-01-01

324

High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

Bolzonella, David, E-mail: david.bolzonella@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Cavinato, Cristina, E-mail: cavinato@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Fatone, Francesco, E-mail: francesco.fatone@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Pavan, Paolo, E-mail: pavan@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Cecchi, Franco, E-mail: franco.cecchi@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy)

2012-06-15

325

Crowding Induces Differences in the Diffusion of Thermophilic and Mesophilic Proteins: A New Look at Neutron Scattering Results  

PubMed Central

The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior. PMID:22261067

Marcos, Enrique; Mestres, Pau; Crehuet, Ramon

2011-01-01

326

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions  

SciTech Connect

Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

Kim, Dong-Hoon [Wastes Energy Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1, Duckmyoung-dong, Yuseong-gu, Daejeon (Korea, Republic of)

2011-09-15

327

Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods  

PubMed Central

Background Xylanases have drawn much attention owing to possessing great potential in various industrial applications. However, the applicability of xylanases, exemplified by the production of bioethanol and xylooligosaccharides (XOSs), was bottlenecked by their low stabilities at higher temperatures. The main purpose of this work was to improve the thermostability of AuXyn11A, a mesophilic glycoside hydrolase (GH) family 11 xylanase from Aspergillus usamii E001, by N-terminus replacement. Results A hybrid xylanase with high thermostability, named AEXynM, was predicted by computational methods, and constructed by substituting the N-terminal 33 amino acids of AuXyn11A with the corresponding 38 ones of EvXyn11TS, a hyperthermostable family 11 xylanase. Two AuXyn11A- and AEXynM-encoding genes, Auxyn11A and AExynM, were then highly expressed in Pichia pastoris GS115, respectively. The specific activities of two recombinant xylanases (reAuXyn11A and reAEXynM) were 10,437 and 9,529 U mg-1. The temperature optimum and stability of reAEXynM reached 70 and 75°C, respectively, much higher than those (50 and 45°C) of reAuXyn11A. The melting temperature (Tm) of reAEXynM, measured using the Protein Thermal Shift (PTS) method, increased by 34.0°C as compared with that of reAuXyn11A. Analyzed by HPLC, xylobiose and xylotriose as the major hydrolytic products were excised from corncob xylan by reAEXynM. Additionally, three single mutant genes from AExynM (AExynMC5T, AExynMP9S, and AExynMH14N) were constructed by site-directed mutagenesis as designed theoretically, and expressed in P. pastoris GS115, respectively. The thermostabilities of three recombinant mutants clearly decreased as compared with that of reAEXynM, which demonstrated that the three amino acids (Cys5, Pro9, and His14) in the replaced N-terminus contributed mainly to the high thermostability of AEXynM. Conclusions This work highly enhanced the thermostability of AuXyn11A by N-terminus replacement, and further verified, by site-directed mutagenesis, that Cys5, Pro9, and His14 contributed mainly to the improved thermostability. It will provide an effective strategy for improving the thermostabilities of other enzymes. PMID:24393334

2014-01-01

328

Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.  

PubMed

The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy. PMID:23361646

Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

2013-08-01

329

Influence of hydraulic retention time on partial nitrification of continuous-flow aerobic granular-sludge reactor.  

PubMed

This study investigated the effects of hydraulic retention time (HRT) at 12 h, 7.2 h and 2.4 h on partial nitrification efficiency of continuous-flow aerobic granular reactors (CFAGRs) with mature aerobic granules (500 +/- 20mg l-1). At HRT 12 h and 7.2h, the removal efficiency of both ammonia-nitrogen (NH4+ - N) and nitrite accumulation rate were exceeding 90%. At HRT 2.4 h, NH4+ - N removal efficiency was reduced but most of the conversion efficiency to nitrite was only slightly reduced. At HRT < 2.4 h, washout of aerobic granules occurred. In all tests conducted herein, the chemical oxygen demand removal efficiencies exceeded 90%. The clone library results noted the presence of ammonia-oxidizing bacteria belonged to beta-Proteobacteria subclass, including 94% of Nitrosomonas europaea and 6% of Nitrosomonas sp. The polymerase chain reaction and denaturing gradient gel electrophoresis results suggested that Alpha proteobacterium, Pseudoxanthomonas mexicana strain, Sphaerotilus natans and Uncultured gamma proteobacterium were responsible for the aerobic granular stability and processing performance. The present CFAGR successfully implemented continuous partial nitrification using aerobic granules at low HRT. PMID:24956768

Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Sun, Supu; Liu, Xiang; Zhang, Peng

2014-08-01

330

[Cultivation of aerobic granular sludge with municipal wastewater and studies on its characteristics under the continuous flow].  

PubMed

The aerobic granular sludge was cultivated successfully in a continuous-flow airlift aerobic granular sludge fluidized bed (CAFB), with low-concentration municipal sewage as the influent and flocculent activated sludge as the seeding sludge. The formation, characteristics and the biological diversity of the aerobic granules in the CAFB were investigated and analyzed. Experimental results showed that many dense and compact granules with diameter of 800-1 000 microm were formed as early as the 6th days operation. At the start-up stage, sludge volume index (SVI) decreased to 35 mL x g(-1), the mixed liquor suspended solid (MLSS) concentration increased to 6000 mg x L(-1), and the mass fraction of extracellular polymeric substances increased significantly. The granules presented a good biological diversity and high biomass contents at the steady running stage. The aerobic granules were basically composed of coccid and bacillus as observed by the scanning electron microscope. A large number of voids and channels were found to be located on the surface of the granules. The removal rate of COD maintained at 70% -75% at the steady stage of CAFB running, and the effluent COD concentrations were 70 mg x L(-1). At the 32nd day of operation, filamentous bacteria grew apparently and sludge bulking happened. Above results showed the CAFB aerobic granules formed rapidly, and performed a good ability on the pollutant removal. However, more work is necessary on the steady running of this novel bioreactor in the future. PMID:23745405

Niu, Shu; Duan, Bai-Chuan; Zhang, Zuo-Li; Liu, Shi-Feng; Zhang, Jia-Ming; Wang, Cong; Zhou, Dan-Dan

2013-03-01

331

Is it possible to stabilize a thermophilic protein further using sequences and structures of mesophilic proteins: a theoretical case study concerning DgAS  

PubMed Central

Incorporating structural elements of thermostable homologs can greatly improve the thermostability of a mesophilic protein. Despite the effectiveness of this method, applying it is often hampered. First, it requires alignment of the target mesophilic protein sequence with those of thermophilic homologs, but not every mesophilic protein has a thermophilic homolog. Second, not all favorable features of a thermophilic protein can be incorporated into the structure of a mesophilic protein. Furthermore, even the most stable native protein is not sufficiently stable for industrial applications. Therefore, creating an industrially applicable protein on the basis of the thermophilic protein could prove advantageous. Amylosucrase (AS) can catalyze the synthesis of an amylose-like polysaccharide composed of only ?-1,4-linkages using sucrose as the lone energy source. However, industrial development of AS has been hampered owing to its low thermostability. To facilitate potential industrial applications, the aim of the current study was to improve the thermostability of Deinococcus geothermalis amylosucrase (DgAS) further; this is the most stable AS discovered to date. By integrating ideas from mesophilic AS with well-established protein design protocols, three useful design protocols are proposed, and several promising substitutions were identified using these protocols. The successful application of this hybrid design method indicates that it is possible to stabilize a thermostable protein further by incorporating structural elements of less-stable homologs. PMID:23575217

2013-01-01

332

In Vitro Activities of OPT-80 and Comparator Drugs against Intestinal Bacteria  

PubMed Central

The activities of OPT-80 against 453 intestinal bacteria were compared with those of seven other drugs. OPT-80 showed good activity against most clostridia, staphylococci, and enterococci, but streptococci, aerobic and facultative gram-negative rods, anaerobic gram-negative rods, and Clostridium ramosum were resistant. Poor activity against anaerobic gram-negative rods may maintain colonization resistance. PMID:15561877

Finegold, Sydney M.; Molitoris, Denise; Vaisanen, Marja-Liisa; Song, Yuli; Liu, Chengxu; Bolanos, Mauricio

2004-01-01

333

Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria  

Microsoft Academic Search

BACKGROUND: G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies

Mainá Bitar; Mauricio GS Costa; Shaila CS Rössle; Paulo M Bisch

2010-01-01

334

Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant  

Microsoft Academic Search

A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7

Neal D. Durant; Liza P. Wilson; Edward J. Bouwer

1995-01-01

335

Aditya Mittal Left: Magnetotactic bacteria on the walls of a tube with a  

E-print Network

, they cannot survive under too much oxygen (aerobic conditions) or under no oxygen (anaerobic conditions. doi:10.1038/nindia.2008.216; Published online 5 June 2008 Commentary Women are from Venus the time to invoke scientific interest in the exciting experimental world of magnetotactic bacteria

Mittal, Aditya

336

Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge  

Microsoft Academic Search

A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the

Xuesong Li; Hongzhi Ma; Qunhui Wang; Shoichiro Matsumoto; Toshinari Maeda; Hiroaki I. Ogawa

2009-01-01

337

Adolescents' Interest and Performances in Aerobic Fitness Testing  

ERIC Educational Resources Information Center

This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

Zhu, Xihe; Chen, Senlin; Parrott, James

2014-01-01

338

Temperature effects on wastewater treatment under aerobic and anoxic conditions  

Microsoft Academic Search

Current evaluations find savings in operating costs of greater than 25% when denitrification is added to a system already achieving nitrification. The economic evaluations performed were based on a sludge reduction of 25% under anoxic conditions compared to aerobic conditions. Conflicting reports of biosolids production for reactors operating under aerobic, anoxic and alternating aerobic conditions exist. This study quantifies and

L. A. Lishman; R. L. Legge; G. J. Farquhar

2000-01-01

339

Formation of aerobic granular sludge biofilms for sustainable wastewater treatment  

E-print Network

ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G to aerobic granular microbial biofilms (Confocal laser scanning microscopy analysis) Floc viscous bulking) Exopolysaccharide-producing Zoogloea spp. form the early-stage aerobic granular biofilms, and then decline

340

Can sludge dewatering reactivate microorganisms in mesophilically digested anaerobic sludge? Case of belt filter versus centrifuge.  

PubMed

The anaerobic digestion process that successfully reduces the organic content of sludge is one of the most common alternatives to meet pathogen reduction requirements for particular classes of biosolids. However, recently it was reported that, much higher densities of indicator bacteria were measured in dewatered cake samples compared to samples collected after anaerobic digestion. Additionally, this increase was commonly observed after centrifugation but not after belt filter dewatering. Several hypotheses were tested to explain this occurrence; however, much of the attention was given to the reactivation of the indicator bacteria which might enter a viable but non-culturable state (VBNC) during digestion. The objective of this research is to examine sludge samples from 5 different full-scale treatment plants in order to observe the effect of dewatering processes on the reactivation potential of indicator bacteria. The bacterial enumerations were performed by both Standard Culturing Methods (SCM) and quantitative polymerase chain (qPCR) on samples collected after digestion and dewatering. Results obtained by SCM indicated that in two investigated treatment plants operating belt filter dewatering, an average 0.6 log decrease was observed after the dewatering process. However, 0.7-1.4 log increases were observed immediately after centrifuge dewatering for the other three treatment plants. On the other hand, qPCR results gave 0.1-1.9 log higher numbers compared to SCM. Comparative evaluation of results obtained by two analytical methods for five treatment plants indicates that the differences observed might be originating from both reactivation of VBNC bacteria and amplification of DNA from dead cells found in the sludge. PMID:23141737

Erkan, M; Sanin, F D

2013-01-01

341

Anaerobic and aerobic transformation of TNT  

SciTech Connect

Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

1996-12-31

342

THE COMPOSTING CONUNDRUM: JUST HOW AEROBIC IS \\  

Microsoft Academic Search

The composting process, by definition, is the microbial degradation of organic matter in the presence of free oxygen, i.e. the process is aerobic. If oxygen is not adequately available, degradation will still proceed, but will spontaneously and progressively switch over to an anaerobic pathway with accompanying production of odour, leachate and phytotoxic compounds. Successful compost-making depends on correct preparation and

Geoff Hemm

343

AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER  

E-print Network

provides 100% oxygen transfer efficiency. The dissolved oxygen concentration in the bio and controlled to a dissolved oxygen setpoint. The VOCs of concern, not contained in the wastewater, are dosed Studied Aerobic Dissolved Oxygen Conc. Cosubstrate Conc. 2 3 Anaerobic Anoxic Denitrifying Cosubstrate

344

Aerobic respiration in pelagic marine sediments  

Microsoft Academic Search

Analyses for dissolved oxygen, nitrate and total CO 2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification. Organic carbon and total nitrogen decrease exponentially with

Varis Grundmanis; James W. Murray

1982-01-01

345

Aerobic Methane Production by Banana Plant  

Microsoft Academic Search

Previous conclusions about the global methane budget have been proven incomplete with the discovery of large methane emissions coming from tropical rainforests during the dry season and by the findings of Frank Keppler and his colleagues, that certain plants are a source of aerobic methane production. Since methane is a greenhouse gas, these studies could have important implications for global

Jamie Rodriguez

346

AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING  

EPA Science Inventory

In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

347

Reflections on Psychotherapy and Aerobic Exercise.  

ERIC Educational Resources Information Center

This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

Silverman, Wade

348

Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.  

PubMed

The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W?) and chips steam-treated at less than 1.0 MPa (W?) and 2.0 MPa (W?) were co-digested with sewage sludge (S? and S?) taken from two different wastewater treatment plants. The apparent methane yield of W? and W? co-digested with S? (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W? co-digested with S? was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W? due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. PMID:24926605

Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

2014-08-01

349

Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 {sup o}C  

SciTech Connect

Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 {sup o}C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 {sup o}C and 55 {sup o}C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH{sub 4}/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH{sub 4}/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

Ferrer, Ivet, E-mail: ivet.ferrer@upc.ed [Environmental Engineering Division, Department of Hydraulic, Maritime and Environmental Engineering. Technical University of Catalonia, C/ Jordi Girona 1-3, E-08034 Barcelona (Spain); Palatsi, Jordi [GIRO Technological Centre, Rambla Pompeu Fabra 1, E-08100 Mollet del Valles, Barcelona (Spain); Campos, Elena [Laboratory of Environmental Engineering, Centre UdL-IRTA, Rovira Roure 191, E-25198 Lleida (Spain); Flotats, Xavier [GIRO Technological Centre, Rambla Pompeu Fabra 1, E-08100 Mollet del Valles, Barcelona (Spain); Department of Agrifood Engineering and Biotechnology, Technical University of Catalonia, Parc Mediterrani de la Tecnologia Edifici D-4, E-08860 Castelldefels, Barcelona (Spain)

2010-10-15

350

Comparison of the mesophilic cellulosome?producing Clostridium cellulovorans genome with other cellulosome?related clostridial genomes  

PubMed Central

Summary Clostridium cellulovorans, an anaerobic and mesophilic bacterium, degrades native substrates in soft biomass such as corn fibre and rice straw efficiently by producing an extracellular enzyme complex called the cellulosome. Recently, we have reported the whole?genome sequence of C. cellulovorans comprising 4220 predicted genes in 5.10?Mbp [Y. Tamaru et?al., (2010) J. Bacteriol., 192: 901–902]. As a result, the genome size of C. cellulovorans was about 1?Mbp larger than that of other cellulosome?producing clostridia, mesophilic C. cellulolyticum and thermophilic C. thermocellum. A total of 57 cellulosomal genes were found in the C. cellulovorans genome, and they coded for not only carbohydrate?degrading enzymes but also a lipase, peptidases and proteinase inhibitors. Interestingly, two novel genes encoding scaffolding proteins were found in the genome. According to KEGG metabolic pathways and their comparison with 11 Clostridial genomes, gene expansion in the C. cellulovorans genome indicated mainly non?cellulosomal genes encoding hemicellulases and pectin?degrading enzymes. Thus, by examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced cellulosome?producing Clostridium strains for industrial applications such as biofuel production. PMID:21255373

Tamaru, Yutaka; Miyake, Hideo; Kuroda, Kouichi; Nakanishi, Akihito; Matsushima, Chiyuki; Doi, Roy H.; Ueda, Mitsuyoshi

2011-01-01

351

Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci.  

PubMed

Cells of methanococci are covered by a single layer of protein subunits (S-layer) in hexagonal arrangement, which are directly exposed to the environment and which cannot be stabilized by cellular components. We have isolated S-layer proteins from cells of Methanococcus vannielii ( T(opt.)=37 degrees C), Methanococcus thermolithotrophicus ( T(opt.)=65 degrees C), and Methanococcus jannaschii ( T(opt.)=85 degrees C). The primary structure of the S-layer proteins was determined by sequencing the corresponding genes. According to the predicted amino acid sequence, the molecular masses of the S-layer proteins of the different methanococci are in a small range between 59,064 and 60,547 Da. Compared with its mesophilic counterparts, it is worth noting that in the S-layer protein of the extreme thermophile Mc. jannaschii the acidic amino acid Asp is predominant, the basic amino acid Lys occurs in higher amounts, and Cys and His are only present in this organism. Despite the differences in the growth optima and the predominance of some amino acids, the comparative total primary structure revealed a relatively high degree of identity (38%-45%) between the methanococci investigated. This observation indicates that the amino acid sequence of the S-layer proteins is significantly conserved from the mesophilic to the extremely thermophilic methanococci. PMID:12382110

Akca, Erol; Claus, Harald; Schultz, Nina; Karbach, Gilbert; Schlott, Bernhard; Debaerdemaeker, Tony; Declercq, Jean-Paul; König, Helmut

2002-10-01

352

Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease.  

PubMed

The anaerobic biodegradability of municipal primary sludge, thickened waste activated sludge (TWAS), and fat, oil, and grease (FOG) was assessed using semi-continuous-feed, laboratory-scale anaerobic digesters and compared with the ultimate degradability obtained from 120-day batch digestion at 35 degrees C. In run 1, combined primary sludge and TWAS (40/60%, volatile solids [VS] basis) were fed to digesters operated at mesophilic (35 degrees C) and thermophilic (52 degrees C) temperatures at loading rates of 0.99 and 1.46 g-VS/L x d for primary sludge and TWAS, respectively, and a hydraulic retention time (HRT) of 12 days. The volatile solids destruction values were 25.3 and 30.7% (69 and 83% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane (CH4) yields were 159 and 197 mL at the standard temperature and pressure (STP) conditions of 0 degree C and 1 atm/g-VS added or 632 and 642 mL @ STP/g-VS destroyed at 35 degrees C and 52 degrees C, respectively. In run 2, a mix of primary sludge, TWAS, and FOG (21/31/48%, volatile solids basis) was fed to an acid digester operated at a 1-day HRT, at 35 degrees C, and a loading rate of 52.5 g-VS/L x d. The acid-reactor effluent was fed to two parallel methane-phase reactors operated at an HRT of 12 days and maintained at 35 degrees C and 52 degrees C, respectively. After an initial period of 20 days with near-zero gas production in the acid reactor, biogas production increased and stabilized to approximately 2 mL CH4 @ STP/g-VS added, corresponding to a volatile solids destruction of 0.4%. The acid-phase reactor achieved a 43% decrease in nonsaturated fat and a 16, 26, and 20% increase of soluble COD, volatile fatty acids, and ammonia, respectively. The methane-phase volatile solids destruction values in run 2 were 45 and 51% (85 and 97% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane yields for the methane-phase reactors were 473 and 551 mL @ STP/g-VS added, which is approximately 3 times larger compared with run 1, or 1040 and 1083 mL @ STP/g-VS destroyed, at 35 degrees C and 52 degrees C, respectively. The results indicate that, when co-digesting municipal sludge and FOG, a large FOG organic load fraction could have a profound effect on the methane gas yield. PMID:19472939

Kabouris, John C; Tezel, Ulas; Pavlostathis, Spyros G; Engelmann, Michael; Dulaney, James A; Todd, Allen C; Gillette, Robert A

2009-05-01

353

Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfuroxidizing bacterium isolated from a Thioploca mat.  

PubMed

A new member of the genus Thiomicrospira, which utilizes thiosulfate as the electron donor and CO2 as the carbon source, was isolated from a sediment sample dominated by the filamentous sulfur bacterium Thioploca. Although the physiological properties investigated are nearly identical to other described species of the genus, it is proposed that strain Ch-1T is a member of a new species, Thiomicrospira chilensis sp. nov., on the basis of differences in genotypic characteristics (16S rRNA sequence, DNA homology, G + C content). Strain Ch-1T was highly motile with a slight tendency to form aggregates in the stationary growth phase. The organism was obligately autotrophic and strictly aerobic. Nitrate was not used as an electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. The isolate was not able to grow heterotrophically. Growth of strain Ch-1T was observed between pH 5.3 and 8.5 with an optimum at pH 7.0. The temperature range for growth was between 3.5 and 42 degrees C; the optimal growth temperature was between 32 and 37 degrees C. The mean maximum growth rate on thiosulfate was 0.4 h-1. This is the second Thiomicrospira species described that has a rod-shaped morphology; therefore discrimination between vibrio-shaped Thiomicrospira and rod-shaped Thiobacilli is no longer valid. PMID:10319513

Brinkhoff, T; Muyzer, G; Wirsen, C O; Kuever, J

1999-04-01

354

D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria  

NASA Astrophysics Data System (ADS)

The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of ?D values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in ?D values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar ?D values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between ?D and metabolism previously understood from aerobic bacteria is not universally applicable.

Osburn, M. R.; Sessions, A. L.

2012-12-01

355

Aerobic residential onsite sewage systems: an evaluation of treated-effluent quality.  

PubMed

This retrospective cohort study used existing data to evaluate the quality of effluent from three of the most common types of onsite residential aerobic treatment sewage systems (Multi-Flo, Norweco, and Whitewater) installed in Kitsap County, Washington. Five-day biochemical oxygen demand (BOD5), total suspended solids (TSS), and fecal-coliform-bacteria parameters were used to determine performance. Although most (77 percent) of the systems were less than one year old at the time of sampling, over a third failed to meet NSF certification standards for BOD5 and TSS in effluent (< 30 milligrams per liter [mg/L]). Over two-thirds of systems failed to meet Washington State Board of Health Treatment Standard 2 criteria for BOD5 and TSS (< 10 mg/L). Furthermore, an average of 59 percent of the systems failed to meet state standards for fecal coliform (< 800 fecal coliform bacteria per 100 milliliters). PMID:14556365

Maxfield, Meliss; Daniell, William E; Treser, Charles D; VanDerslice, Jim

2003-10-01

356

Identification and functional properties of dominant lactic acid bacteria isolated at different stages of solid state fermentation of cassava during traditional gari production  

Microsoft Academic Search

Culture-based technique was used to study the population dynamics of the bacteria and determine the dominant lactic acid bacteria\\u000a (LAB) during cassava fermentation. LAB was consistently isolated from the fermented mash with an initial viable count of 6.00 log c.f.u. g?1 observed at 12 h. The aerobic viable count of amylolytic lactic acid bacteria (ALAB) was higher than other group of LAB throughout\\u000a the

F. A. Oguntoyinbo

2007-01-01

357

The green non-sulfur bacteria: a deep branching in the eubacterial line of descent  

NASA Technical Reports Server (NTRS)

Ribosomal RNA sequence comparisons define a phylogenetic grouping, the green non-sulfur bacteria and relatives (GNS), known to contain the genera Chloroflexus, Herpetosiphon and Thermomicrobium--organisms that have little phenotypic similarity. The unit is phylogenetically deep, but entirely distinct from any other eubacterial division (phylum). It is also relatively ancient--branching from the common eubacterial stem earlier than any other group of eubacteria reported thus far. The group phenotype is predominantly thermophilic, and its thermophilic members, especially Thermomicrobium, are more slowly evolving than Herpetosiphon, a mesophile. The GNS unit appears significantly older than either the green sulfur bacteria or the cyanobacteria--making it likely that organisms such as Chloroflexus, not the cyanobacteria, generated the oldest stromatolites, which formed over three billion years ago.

Oyaizu, H.; Debrunner-Vossbrinck, B.; Mandelco, L.; Studier, J. A.; Woese, C. R.

1987-01-01

358

Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria  

PubMed Central

Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms. PMID:22723998

Anderson, Iain; Abt, Birte; Lykidis, Athanasios; Klenk, Hans-Peter; Kyrpides, Nikos; Ivanova, Natalia

2012-01-01

359

Impact of feathers and feather follicles on broiler carcass bacteria.  

PubMed

Genetically featherless and feathered broiler siblings were used to test the contribution of feathers and feather follicles to the numbers of aerobic bacteria, Escherichia coli, and Campylobacter in whole-carcass rinse samples taken immediately after carcasses were defeathered for 30 or 60 s. Numbers of spoilage bacteria were counted after the same fully processed carcasses were stored for 1 wk at 2 degrees C. In each of 3 replications, twenty-eight 11-wk-old, mixed-sex, genetically featherless or feathered broilers were processed in a laboratory processing facility. Immediately after individual defeathering in a mechanical picker, carcasses were sampled using a carcass rinse technique. Carcasses were eviscerated, immersion chilled at 2 degrees C for 30 min, individually bagged, and stored for 1 wk at 2 degrees C, after which all carcasses were rinsed again, and spoilage bacteria in the rinsate were enumerated. There were no significant differences (P < or = 0.05) between the featherless and feathered broilers in numbers of aerobic bacteria, E. coli, and Campylobacter in rinse samples taken immediately after defeathering and no differences between carcasses picked for 30 or 60 s. There were no differences in numbers of spoilage bacteria after 1 wk of refrigeration for any of the feather presence-picking length combinations. Although the defeathering step in poultry processing has been identified as an opportunity for bacterial contamination from the intestinal tract and cross-contamination between carcasses, the presence of feathers and feather follicles does not make a significant difference in carcass bacterial contamination immediately after defeathering or in spoilage bacteria after 1 wk of refrigeration. PMID:15339024

Cason, J A; Hinton, A; Buhr, R J

2004-08-01

360

PHA Production in Aerobic Mixed Microbial Cultures  

Microsoft Academic Search

Polyhydroxyalkanoate (PHA) is a common intracellular energy and carbon storage material in bacteria, which is considered as a bioplastic due to its plastic like properties. PHAs are versatile materials which are biodegradable and made from renewable resources. Commercial production of PHAs is currently based on pure culture processes employing either natural PHA producers or genetically modified bacteria. Pure culture processes

K. Johnson

2010-01-01

361

Uncoupler-resistant mutants of bacteria.  

PubMed Central

The chemiosmotic model of energy transduction offers a satisfying and widely confirmed understanding of the action of uncouplers on such processes as oxidative phosphorylation; the uncoupler, by facilitating the transmembrane movement of protons or other compensatory ions, reduces the electrochemical proton gradient that is posited as the energy intermediate for many kinds of bioenergetic work. In connection with this formulation, uncoupler-resistant mutants of bacteria that neither exclude nor inactivate these agents represent a bioenergetic puzzle. Uncoupler-resistant mutants of aerobic Bacillus species are, in fact, membrane lipid mutants with bioenergetic properties that are indeed challenging in connection with the chemiosmotic model. By contrast, uncoupler-resistant mutants of Escherichia coli probably exclude uncouplers, sometimes only under rather specific conditions. Related phenomena in eucaryotic and procaryotic systems, as well as various observations on uncouplers, decouplers, and certain other membrane-active agents, are also briefly considered. Images PMID:2181259

Krulwich, T A; Quirk, P G; Guffanti, A A

1990-01-01

362

Livestock wastewater treatment using aerobic granular sludge.  

PubMed

The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.1 to 4.1 mm towards the end of the experimental period. The sludge volume index (SVI) was 42 ml g(-1) while the biomass concentration in the reactor grew up to 10.3 g L(-1) represent excellent biomass separation and good settling ability of the granules. During this period, maximum COD, TN and TP removal efficiencies (74%, 73% and 70%, respectively) were observed in the SBR system, confirming high microbial activity in the SBR system. PMID:23453799

Othman, Inawati; Anuar, Aznah Nor; Ujang, Zaini; Rosman, Noor Hasyimah; Harun, Hasnida; Chelliapan, Shreeshivadasan

2013-04-01

363

Chemical Composition of Variants of Aerobic Actinomycetes  

PubMed Central

It has been shown previously that aerobic actinomycetes can be separated into four main groups on the basis of their cell wall composition. Six representatives of aerobic actinomycetes (Nocardia asteroides and Micropolyspora brevicatena, cell wall type IV; N. madurae, Microbispora rosea, cell wall type III; Actinoplanes sp., cell wall type II; Streptomyces griseus, cell wall type I) were subjected to selecting agents which permitted the isolation of stable variants morphologically different from the parent strain. Whole cell analyses of 134 substrains from the six parents revealed no significant change in the isomeric form of diaminopimelic acid or in sugar constituents. Analyses of cell wall preparations from 52 of these did not reveal any change in the diagnostic constituents of their murein or polysaccharides. PMID:16349745

Suput, Jelena; Lechevalier, Mary P.; Lechevalier, H. A.

1967-01-01

364

Aerobic metabolism underlies complexity and capacity  

PubMed Central

The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

Koch, Lauren G; Britton, Steven L

2008-01-01

365

Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen.  

PubMed

In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions. PMID:20956064

Yan, Jia; Op den Camp, Huub J M; Jetten, Mike S M; Hu, Yong Y; Haaijer, Suzanne C M

2010-11-01

366

Aerobic exercise in fibromyalgia: a practical review  

Microsoft Academic Search

The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia\\u000a (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane\\u000a Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references\\u000a found from the

Eric N. Thomas; Francis Blotman

2010-01-01

367

Aerobic power of competitive paraplegic road racers  

Microsoft Academic Search

The purpose of this study was to determine peak aerobic power and associated physiological responses in highly competitive spinal cord injured (SCI) paraplegic road racers. Seven (6 male and one female) active paraplegic (lesions T4-T12) road racers and 9 healthy untrained able-bodied males performed continuous graded arm crank ergometer tests to exhaustion for determinations of peak power output (PO), oxygen

S P Hooker; C L Wells

1992-01-01

368

Genetic transformation in bacteria  

Microsoft Academic Search

Certain species of bacteria can become competent to take up high molecular weight DNA from the surrounding medium. DNA homologous\\u000a to resident chromosomal DNA is transported, processed and recombined with the resident DNA. There are some variations in steps\\u000a leading to transformation between Gram-positive bacteria likebiplococcus pneumoniae and Gram-negative bacteria represented byHaemophilus influenzae but the integration is by single-strand displacement

N. K. Notani; V. P. Joshi; R. P. Kanade

1984-01-01

369

Species Numbers in Bacteria  

PubMed Central

A modified biological species definition (BSD), i.e., that bacteria exchange genes within a species, but not usually between species, is shown to apply to bacteria. The formal definition of bacterial species, which is more conservative than the modified BSD, is framed in terms of DNA hybridization. From this I estimate there are a million species of bacteria in 30 grams of rich forest topsoil and propose that there will be at least a billion species worldwide. PMID:21874075

Dykhuizen, Daniel

2010-01-01

370

The epidemiology of aerobic dance injuries.  

PubMed

Aerobic dance is currently the largest organized fitness activity primarily for women in the United States. In an attempt to identify and characterize the health problems associated with it, 351 students and 60 instructors from six facilities were followed for 16 weeks with weekly telephone calls. Of the 327 medical complaints reported during 29,924 hours of documented activity, only 84 (0.28 per hundred hours) resulted in any disability and only 2.1% required medical care. The shin/leg, foot and ankle accounted for nearly two-thirds of the injuries. Instructors were twice as likely to be injured as students. Both a history of prior orthopaedic problems and a lack of involvement in other fitness activities resulted in higher injury rates. Injury rates were influenced by the design and conduct of the aerobic program but not by brand of shoe or type of flooring. Aerobic dance appears to offer students the potential for fitness enhancement with a minimal risk of injury. PMID:3752348

Garrick, J G; Gillien, D M; Whiteside, P

1986-01-01

371

Partial nitritation and o-cresol removal with aerobic granular biomass in a continuous airlift reactor.  

PubMed

Several chemical industries produce wastewaters containing both, ammonium and phenolic compounds. As an alternative to treat this kind of complex industrial wastewaters, this study presents the simultaneous partial nitritation and o-cresol biodegradation in a continuous airlift reactor using aerobic granular biomass. An aerobic granular sludge was developed in the airlift reactor for treating a high-strength ammonium wastewater containing 950 ± 25 mg N-NH4(+) L(-1). Then, the airlift reactor was bioaugmented with a p-nitrophenol-degrading activated sludge and o-cresol was added progressively to the ammonium feed to achieve 100 mg L(-1). The results showed that stable partial nitritation and full biodegradation of o-cresol were simultaneously maintained obtaining a suitable effluent for a subsequent anammox reactor. Moreover, two o-cresol shock-load events with concentrations of 300 and 1000 mg L(-1) were applied to assess the capabilities of the system. Despite these shock load events, the partial nitritation process was kept stable and o-cresol was totally biodegraded. Fluorescence in situ hybridization technique was used to identify the heterotrophic bacteria related to o-cresol biodegradation and the ammonia oxidising bacteria along the granules. PMID:24140352

Jemaat, Zulkifly; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián

2014-01-01

372

The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog  

SciTech Connect

We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W. (Duke)

2008-10-27

373

Intact membrane lipids of "Candidatus Nitrosopumilus maritimus," a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota.  

PubMed

In this study we analyzed the membrane lipid composition of "Candidatus Nitrosopumilus maritimus," the only cultivated representative of the cosmopolitan group I crenarchaeota and the only mesophilic isolate of the phylum Crenarchaeota. The core lipids of "Ca. Nitrosopumilus maritimus" consisted of glycerol dialkyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl moieties. Crenarchaeol, a unique GDGT containing a cyclohexyl moiety in addition to four cyclopentyl moieties, was the most abundant GDGT. This confirms unambiguously that crenarchaeol is synthesized by species belonging to the group I.1a crenarchaeota. Intact polar lipid analysis revealed that the GDGTs have hexose, dihexose, and/or phosphohexose head groups. Similar polar lipids were previously found in deeply buried sediments from the Peru margin, suggesting that they were in part synthesized by group I crenarchaeota. PMID:18296531

Schouten, Stefan; Hopmans, Ellen C; Baas, Marianne; Boumann, Henry; Standfest, Sonja; Könneke, Martin; Stahl, David A; Sinninghe Damsté, Jaap S

2008-04-01

374

Aerobic methanotrophic communities at the Red Sea brine-seawater interface  

PubMed Central

The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

2014-01-01

375

Use of MALDI-TOF MS technique for rapid identification of bacteria from positive blood cultures.  

PubMed

We evaluated the feasibility of same-day routine aerobic bacterial identification using the following procedures: Picking colonies from 4 and 6 h incubated subculture from positive blood culture bottle and analyzing them by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). The matched identification rate of this procedure at the species level was 80.6% (141/175) for the 4-h cultures compared with overnight cultures and 90.9% (159/175) for the 6-h cultures. Thus, our technique provides an easy and rapid method for identification of aerobic bacteria in routine clinical microbiology laboratories. PMID:25297028

Hong, Sung Kuk; Chang, Beung Ki; Song, Sang Hoon; Kim, Eui-Chong

2014-01-01

376

Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions  

PubMed Central

Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

2014-01-01

377

[Study on rapid start-up of a nitrifying process using aerobic granular sludge as seed sludge].  

PubMed

Using synthetic ammonia-rich wastewater as influent, rapid start-up of the nitrification reactor was attained in a laboratory-scale column-type sequencing batch reactor (SBR) inoculated with aerobic granular sludge, by gradually increasing the influent NH4(+) -N concentration (100-1000 mg x L(-1)) and decreasing the hydraulic retention time (8-4 h) under mesophilic condition (28-30 degrees C). The influent loading rate of NH4(+) -N reached 3.9 kg x (m3 x d)(-1) and the average ammonia removal efficiency was above 95% within one month. Values of ammonia oxidizing rate (AOR) as high as 5.0 kg x (m3 x d)(-1) was obtained in the following operational stage with extremely high nitrogen loading rate. Nitrite accumulation obviously occurred during the start-up period. The nitrite accumulation rate reached 2-4.5 kg x (m3 x d)(-1) from day 25 to 70. In spite of the change in the feeding composition (COD/N ratio) and the frequent fluctuations of nitrogen loading rate, the granules maintained their structures, with the SVI of 30-40 mL x g(-1). The amount of granules with diameter larger than 0.21 mm was about 93% (mass fraction) of the total on day 36. The granular color changed from yellow to brownish-yellow, and some turned brown in this study. All these results suggested the critical role of aerobic granular sludge as seed sludge for the rapid start-up of nitrifying processes and the formation of nitrifying granules. PMID:23947048

Liu, Wen-Ru; Shen, Yao-Liang; Ding, Ling-Ling; Ding, Min

2013-06-01

378

Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.  

PubMed

Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems. PMID:24200006

Weissbrodt, David G; Schneiter, Guillaume S; Fürbringer, Jean-Marie; Holliger, Christof

2013-12-01

379

Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.  

PubMed

Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO?-N/L, aerobic P-uptake and oxidation of intercellular poly-?-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO?-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

2014-02-01

380

cbb3-Type Cytochrome c Oxidases, Aerobic Respiratory Enzymes, Impact the Anaerobic Life of Pseudomonas aeruginosa PAO1.  

PubMed

For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions. PMID:25182494

Hamada, Masakaze; Toyofuku, Masanori; Miyano, Tomoki; Nomura, Nobuhiko

2014-11-15

381

The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste  

NASA Astrophysics Data System (ADS)

Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.

Smet, Erik; Van Langenhove, Herman; De Bo, Inge

382

Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors.  

PubMed

Sludge bulking caused by loss of stability is a major problem in aerobic granular sludge systems. This study investigated the feasibility of preventing sludge bulking and enhancing the stability of aerobic granular sludge in a sequencing batch reactor by optimizing operation conditions. Five operation parameters have been studied with the aim to understand their impact on sludge bulking. Increasing dissolved oxygen (DO) by raising aeration rates contributed to granule stability due to the competition advantage of non-filamentous bacteria and permeation of oxygen at high DO concentration. The ratio of polysaccharides to proteins was observed to increase as the hydraulic shear force increased. When provided with high/low organic loading rate (OLR) alternately, large and fluffy granules disintegrated, while denser round-shape granules formed. An increase of biomass concentration followed a decrease at the beginning, and stability of granules was improved. This indicated that aerobic granular sludge had the resistance of OLR. Synthetic wastewater combined highly and slowly biodegradable substrates, creating a high gradient, which inhibited the growth of filamentous bacteria and prevented granular sludge bulking. A lower chemical oxygen demand/N favored the hydrophobicity of granular sludge, which promoted with granule stability because of the lower diffusion rate of ammonia. The influence of temperature indicated a relatively low temperature was more suitable. PMID:25401316

Zhou, Jun; Wang, Hongyu; Yang, Kai; Ma, Fang; Lv, Bin

2014-01-01

383

THE MITOCHONDRIA OF BACTERIA  

Microsoft Academic Search

Recent evidence from the biochemical, the genetic and the morphologic study of bacteria, in that chronological order, has indicated essential similarities of the bacterial cell to the cells of higher organisms. Recognition in bacteria of a large category of cytoplasmic granules as possessing characteristics which strongly sug- gest that they are the functional equivalents of the mitochondria of anirnaE and

STUART MUDD

1953-01-01

384

Weed management in aerobic rice systems under varying establishment methods  

Microsoft Academic Search

Aerobic rice systems, wherein the crop is established via direct-seeding in non-puddled, non-flooded fields, are among the most promising approaches for saving water and labour. However, aerobic systems are subject to much higher weed pressure than conventionally puddled transplanted rice (CPTR). Experiments were conducted for 2 years to develop effective and economical methods for managing weeds in aerobic rice grown

Samar Singh; J. K. Ladha; R. K. Gupta; Lav Bhushan; A. N. Rao

2008-01-01

385

Nitrogen removal over nitrite by aeration control in aerobic granular sludge sequencing batch reactors.  

PubMed

This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m-3·d-1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

2014-07-01

386

Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments  

Microsoft Academic Search

Colony counts of acetate-, propionate- and l-lactate-oxidizing sulfate-reducing bacteria in marine sediments were made. The vertical distribution of these organisms were equal for the three types considered. The highest numbers were found just beneath the border of aerobic and anaerobic layers.

Hendrikus J. Laanbroek; Norbert Pfennig

1981-01-01

387

Microbicidal activity of tripotassium phosphate and fatty acids toward spoilage and pathogenic bacteria associated with poultry.  

PubMed

The ability of solutions of tripotassium phosphate (TPP) and fatty acids (lauric and myristic acids) to reduce populations of spoilage and pathogenic microorganisms associated with processed poultry was examined. In vitro studies were conducted with cultures of bacteria (Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus) and yeasts (Candida ernobii and Yarrowia lipolytica). Cultures of the bacteria and yeasts were suspended in solutions of TPP or mixtures of TPP with lauric or myristic acid and mixed for 5 min. Viable numbers (log CFU per milliliter) in the suspensions were enumerated on microbiological agar. Results indicated that TPP solutions are highly bactericidal toward gram-negative bacteria and that mixtures of TPP and fatty acids are highly microbicidal toward gram-negative bacteria, gram-positive bacteria, and yeasts. The microbicidal activity of mixtures of TPP and fatty acids toward the native bacterial flora of skin of processed broiler carcasses was also examined. Skin samples were washed in mixtures of TPP and fatty acid, and the populations of total aerobic bacteria, campylobacters, enterococci, E. coli, lactic acid bacteria, pseudomonads, staphylococci, and yeasts in the skin rinsates were enumerated on the appropriate microbiological media. Results indicated that washing the skin in mixtures of TPP and fatty acids produced significant reductions in the number of aerobic bacteria, campylobacters, E. coli, pseudomonads, and yeasts recovered from skin rinsates, but there was no significant reduction in the populations of enterococci, lactic acid bacteria, or staphylococci. These findings indicate that mixtures of TPP and fatty acids possess microbicidal activity against several microorganisms associated with processed poultry and that these solutions could be useful as microbicides to reduce the populations of some bacteria and yeasts associated with some poultry processing operations. PMID:16013388

Hinton, Arthur; Ingram, Kimberly D

2005-07-01

388

Biotransformation of phytosterols under aerobic conditions.  

PubMed

Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (?-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. ?-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation. PMID:24747138

Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

2014-07-01

389

Injuries Arising From Aerobic Fitness Classes  

PubMed Central

Aerobic fitness classes are a popular form of exercise for many people. A questionnaire survey of 410 participants and a clinical review of 100 patients presenting for treatment, showed that 67.3% of respondents had significant pain resulting from the classes, but only 21% stopped exercising because of it. The majority of injuries are to the lower extremities, including tibial stress syndrome and patellofemoral pain. This study suggests that most of these injuries are preventable, especially by advice on proper footwear, pace of activity, how many classes to attend and how frequently to increase activity. PMID:21274037

Hayes, Gary W.

1985-01-01

390

The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge.  

PubMed

The aerobic granulation process is involved in the attachment of microorganisms, and the quorum sensing (QS) is supposed to play an important role in microbial attachment. In this study, the attachment potential of aerobic granular activated sludge (AGAS) and flocculent activated sludge (FAS) was investigated. Results clearly showed that AGAS had stronger attachment potential than FAS. A bioassay with NTL4 proved that N-acylhomoserine lactones (AHLs) were produced in both sludge, but the AHLs content of AGAS was significantly higher than FAS. Additionally, the extracellular polymeric substances (EPS) measurements indicated that there were more proteins and polysaccharides in the hydrophobic EPS fraction of AGAS. Besides, the bacterial community structure of AGAS differed from FAS by PCR-DGGE. Some hydrophobic bacteria, such as Flavobacterium, exclusively existed in AGAS. It was speculated that the difference of attachment potential between AGAS and FAS was derived from the divergence of AHLs, EPS and microbial community. PMID:24262838

Lv, Junping; Wang, Yaqin; Zhong, Chen; Li, Yaochen; Hao, Wen; Zhu, Jianrong

2014-01-01

391

Multidrug Resistance in Bacteria  

PubMed Central

Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. PMID:19231985

Nikaido, Hiroshi

2010-01-01

392

Test-Retest Reliability of the United States Air Forces Submaximal Bicycle Ergometry Aerobic Fitness Test.  

National Technical Information Service (NTIS)

The ability to perform endurance work is dependent on aerobic metabolism. Maximal oxygen consumption (VO2max) defines aerobic capacity and quantifies an individual's capability for aerobic resynthesis of adenosine triphosphate (6,51). VO2max is the primar...

F. A. Glenn

1998-01-01

393

Characterization and aerobic biodegradation of selected monoterpenes  

SciTech Connect

Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M. [Georgia Institute of Technology, Atlanta, GA (United States)

1996-12-31

394

Intercellular communication in bacteria.  

PubMed

Bacteria have been long considered primitive organisms, with a lifestyle focused on the survival and propagation of single cells. However, in the past few decades it became obvious that bacteria can display sophisticated group behaviors. For instance, bacteria can communicate amongst themselves and with their hosts, by producing, sensing, and responding to chemical signals. By doing so, they can sense their surroundings and adapt as to increase their chances of survival and propagation. Here, we review the discovery of bacterial intercellular communication, some of the signaling molecules identified to date, the role of intercellular signaling in symbiotic and pathogenic relationships between bacteria and their hosts and its implications for the development of new therapeutic strategies against human disease. PMID:19514909

Antunes, L Caetano M; Ferreira, Rosana B R

2009-01-01

395

Cultivation Media for Bacteria  

NSDL National Science Digital Library

Common bacteriological culture media (tryptic soy agar, chocolate agar, Thayer-Martin agar, MacConkey agar, eosin-methylene blue agar, hektoen agar, mannitol salt agar, and sheep blood agar) are shown uninoculated and inoculated with bacteria.

American Society For Microbiology;

2009-12-08

396

Bacteria in shear flow  

E-print Network

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01

397

Aerobic denitrification in permeable intertidal sediments from the Wadden Sea  

NASA Astrophysics Data System (ADS)

Sandy sediments dominate the intertidal region of the Wadden Sea but so far little is known about their role in the coastal N-cycle. We investigated the potential N-loss rates at a sandflat (Janssand) in the central German Wadden Sea by using a modified version of the whole core incubation technique used for fine-grained sediments. In view of the high permeability and strong pore water advection in these sediments, the percolation method better represents the in situ conditions than the conventional diffusive flux technique. Denitrification assays with those permeable sediments incubated with 15NO3- indicate immediate 29N2 and 30N2 production. In contrast to the conventional views, our preliminary results show that permeable Janssand sediments are characterized by some of the highest denitrification rates in the marine environment. Moreover, our results from gas-tight bag incubations indicate that denitrification immediately occurs even under aerobic conditions, with rates of 2.03±0.06 at 0-2 cm and 2.30±0.09 mmol m-3 h-1 at 2-4 cm of the sediments with the starting O2concentrations of 90 and 30 mol L-1, respectively. Additional evidence for denitrification in the presence of free oxygen was obtained by simultaneous O2 and NOx measurements with microsensors in percolated cores and Membrane Inlet Mass Spectrometer measurements. We speculate that the observed high denitrification rates in the presence of free oxygen might be an adaptation of the denitrifying bacteria to recurrent tidally-induced oscillations in pore water oxygen concentrations in the permeable sediments of Janssand.

Gao, H.; Schreiber, Frank; Collins, Gavin; Jensen, Marlene Mark; Lavik, Gaute; Kuypers, Marcel M. M.

2009-04-01

398

Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China.  

PubMed

Community characteristics of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria in Honghe freshwater marsh, a Ramsar-designated wetland in Northeast China, were analyzed in this study. Samples were collected from surface and low layers of sediments in the Experimental, Buffer, and Core Zones in the reserve. Community structures of AOB were investigated using both 16S rRNA and amoA (encoding for the ?-subunit of the ammonia monooxygenase) genes. Majority of both 16S rRNA and amoA gene-PCR amplified sequences obtained from the samples in the three zones affiliated with Nitrosospira, which agreed with other wetland studies. A relatively high richness of ?-AOB amoA gene detected in the freshwater marsh might suggest minimal external pressure was experienced, providing a suitable habitat for ?-AOB communities. Anammox bacteria communities were assessed using both 16S rRNA and hzo (encoding for hydrazine oxidoreductase) genes. However, PCR amplification of the hzo gene in all samples failed, suggesting that the utilization of hzo biomarker for detecting anammox bacteria in freshwater marsh might have serious limitations. Results with 16S rRNA gene showed that Candidatus Kuenenia was detected in only the Experimental Zone, whereas Ca. Scalindua including different lineages was observed in both the Buffer and Experimental Zones but not the Core Zone. These results indicated that both AOB and anammox bacteria have specific distribution patterns in the ecosystem corresponding to the extent of anthropogenic impact. PMID:25139035

Lee, Kwok-Ho; Wang, Yong-Feng; Zhang, Guo-Xia; Gu, Ji-Dong

2014-12-01

399

Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor?  

PubMed Central

All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter?1 to less than 0.1 mg P liter?1 (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-?-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that “Candidatus Accumulibacter phosphatis” bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated acetate and contained intracellular PHA during the feed stages, they never accumulated poly(P) during the cycles, consistent with the phenotype of glycogen-accumulating organisms. PMID:17293509

Ahn, Johwan; Schroeder, Sarah; Beer, Michael; McIlroy, Simon; Bayly, Ronald C.; May, John W.; Vasiliadis, George; Seviour, Robert J.

2007-01-01

400

Essential roles of eDNA and AI-2 in aerobic granulation in sequencing batch reactors operated at different settling times.  

PubMed

Settling time has been considered as one of the most effective selection pressures for aerobic granulation in sequencing batch reactors (SBRs), i.e., poorly settleable bioparticles would be washed out from SBRs, and the heavy and good settling ones would be retained at a shorter setting time. However, its biological implication remains unclear. This study investigated the microbiological mechanisms of aerobic granulation at different settling times. It provided experimental evidence for the first time showing that a shorter settling time could enhance release of extracellular DNA through cell lysis, which in turn initiated microbial aggregation leading to increased biomass size and density, while AI-2-mediated quorum sensing was found not to be involved in initial aggregation. It was further shown that the AI-2-mediated quorum sensing system was activated to regulate the growth and maturation of aerobic granules when the biomass density reached a threshold of 1.025 g ml(-1). It appears from this study that a short settling time of SBR would induce microbiological and physiological responses of bacteria which are required at different stages of aerobic granulation and provide new insights into biological mechanisms of settling time-triggered aerobic granulation. PMID:21915611

Xiong, Yanghui; Liu, Yu

2012-03-01

401

Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.  

PubMed

The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (

Martens-Habbena, Willm; Berube, Paul M; Urakawa, Hidetoshi; de la Torre, José R; Stahl, David A

2009-10-15

402

Leaching of marine manganese nodules by acidophilic bacteria growing on elemental sulfur  

NASA Astrophysics Data System (ADS)

This article describes the bioleaching of manganese nodules by thermophilic and mesophilic sulfuroxidizing bacteria, in which oxidized sulfur compounds are biologically produced from elemental sulfur added to liquid medium and are simultaneously used to leach nodules. The thermophile Acidianus brierleyi solubilized the manganese nodules faster at 65 °C than did the mesophiles Thiobacillus ferrooxidans and Thiobacillus thiooxidans at 30 °C. Leaching experiments with A. brierleyi growing on elemental sulfur were used to optimize various process parameters, such as medium pH, initial sulfur-liquid loading ratio, and initial cell concentration. The observed dependencies of the leaching rates at a pH optimum on the initial amounts of elemental sulfur and A. brierleyi cells were qualitatively consistent with model simulations for microbial sulfur oxidation. Under the conditions determined as optimum, the leaching of nodule particles (-330+500 mesh) by A. brierleyi yielded 100 pct extraction of both copper and zinc within 4 days and high extractions of nickel (85 pct), cobalt (70 pct), and manganese (55 pct) for 10 days. However, the iron leaching was practically negligible.

Konishi, Yasuhiro; Asai, Satoru; Sawada, Yuichi

1997-02-01

403

Aerobic Dance Exercise Programs: Maintaining Quality and Effectiveness.  

ERIC Educational Resources Information Center

A study of the effectiveness of Washington State University's aerobic dance program showed that participation in the program did not improve students' cardiovascular fitness. Aerobics instructors should be trained to use pulse rate and other principles of exercise physiology to make their work more effective. (PP)

Russell, Pamela J.

1983-01-01

404

The Acute Effect of Aerobic Exercise on Measures of Stress.  

ERIC Educational Resources Information Center

The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

Fort, Inza L.; And Others

405

Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling  

E-print Network

Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling William F. Kemper by comparing intracellular glycolysis during anoxia to lactate efflux from muscle during sustained, aerobic generation in exercising muscle to an intracellular O2 limitation to respiration of pyruvate (2). However

Lindstedt, Stan

406

Sexual Dimorphism in Primate Aerobic Capacity: A Phylogenetic Test  

PubMed Central

Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e., sexual dimorphism), and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of hematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should covary negatively with body mass. For the first two predictions we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate, and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility. PMID:20406346

Lindenfors, Patrik; Revell, Liam J.; Nunn, Charles L.

2010-01-01

407

Water aerobics in pregnancy: cardiovascular response, labor and neonatal outcomes  

Microsoft Academic Search

BACKGROUND: To evaluate the association between water aerobics, maternal cardiovascular capacity during pregnancy, labor and neonatal outcomes. METHODS: A randomized, controlled clinical trial was carried out in which 34 pregnant women were allocated to a water aerobics group and 37 to a control group. All women were submitted to submaximal ergometric tests on a treadmill at 19, 25 and 35

Erica P Baciuk; Rosa I Pereira; Jose G Cecatti; Angelica F Braga; Sergio R Cavalcante

2008-01-01

408

Cyanide inhibits respiration yet stimulates aerobic growth of Zymomonas mobilis  

Microsoft Academic Search

Potassium cyanide at submillimolar concentrations (20-500 lM) inhibited the high respiration rates of aerobic cultures of Zymomonas mobilis but, remarkably, stimulated culture growth. In batch culture, after an extended lag phase, exponential growth persisted longer, resulting in higher biomass densities. In aerobic chemostat cultures, elevated biomass concentration was observed in the presence of cyanide. This growth stimulation effect is attributed

Uldis Kalnenieks; Nina Galinina; Malda M. Toma; Robert K. Poole

409

Sexual dimorphism in primate aerobic capacity: a phylogenetic test.  

PubMed

Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co-vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility. PMID:20406346

Lindenfors, Patrik; Revell, L J; Nunn, C L

2010-06-01

410

Age, aerobic fitness, executive function, and episodic memory  

Microsoft Academic Search

Free recall, executive function, and aerobic fitness were investigated in young (M = 26.10 years) and older adults (M = 66.61 years). Participants encoded words in both active and passive conditions. Results suggested that higher aerobic fitness was positively associated with free recall in older adults, and that this effect was stronger in the more cognitively demanding passive encoding condition.

David Bunce; Fiona Murden

2006-01-01

411

Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils  

Microsoft Academic Search

Studies were conducted to characterize mineralization of nitrilotriacetate (NTA) in subsurface soils under aerobic and anaerobic conditions. Chemical (redox indicator, resazurin) and biological (dentrification) markers were used as indicators of anaerobic conditions in the test system. The indigenous microflora in subsurface soils previously exposed to septage containing NTA were able to rapidly mineralize NTA under aerobic and anaerobic conditions. The

T WARD

1986-01-01