Sample records for aerobic mesophilic bacteria

  1. Aerobic Mesophilic Bacteria in Composts

    Microsoft Academic Search

    D. M. Webley

    1948-01-01

    IN a previous communication1, an account was given of the activity of the thermophilic flora which develops in composts made from grass cuttings (lawn mowings). This thermophilic flora can be seen as a white coating on the cuttings, particularly in the upper layers during the high-temperature phase. From it true and facultative thermophilic bacteria were isolated. Recently, in addition, evidence

  2. Fate of mesophilic aerobic bacteria and Salmonella enterica on the surface of eggs as affected by chicken feces, storage temperature, and relative humidity.

    PubMed

    Park, Sunhyung; Choi, Seonyeong; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2015-06-01

    We compared the microbiological quality of chicken eggshells obtained from a traditional wholesale market and a modern supermarket. We also determined the survival and growth characteristics of naturally occurring mesophilic aerobic bacteria (MAB) and artificially inoculated Salmonella enterica on eggshells under various environmental conditions (presence of chicken feces, temperature [4, 12, or 25 °C], and relative humidity [RH; 43 or 85%]). The populations of MAB, coliforms, and molds and yeasts on eggshells purchased from a traditional wholesale market were significantly (P ? 0.05) higher than those from a modern supermarket. In the second study, when we stored uninoculated eggs under various storage conditions, the population of MAB on eggshells (4.7-4.9 log CFU/egg) remained constant for 21 days, regardless of storage conditions. However, when eggshells were inoculated with S. enterica and stored under the same conditions, populations of the pathogen decreased significantly (P ? 0.05) under all tested conditions. Survival of S. enterica increased significantly (P ? 0.05) in the presence of feces, at low temperatures, and at low RH. These observations will be of value when predicting the behavior of microorganisms on eggshells and selecting storage conditions that reduce the populations of S. enterica on eggshells during distribution. PMID:25791009

  3. Kinetic comparisons of mesophilic and thermophilic aerobic biomass

    Microsoft Academic Search

    Jaap C. T. Vogelaar; Bram Klapwijk; Hardy Temmink; Jules B. van Lier

    2003-01-01

      \\u000a Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined\\u000a in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate\\u000a (acetate) in a mineral medium. The intrinsic maximum growth rate (?\\u000a max) at 55°C was 0.71±0.09 h?1, which is 1.5 times higher than the ?

  4. Effect of inoculation of mesophilic lactic acid bacteria on microbial and sensory changes of minced goat meat during storage under vacuum and subsequent aerobic storage.

    PubMed

    Babji, Y; Murthy, T R

    2000-02-01

    Minced goat meat inoculated with cell suspensions of Lactococcus lactis ssp lactis (Lc. lactis) or Lactobacillus plantarum was stored under vacuum in PETPE film at 4°C and transferred to aerobic storage for 7 days in LDPE bags. During storage under vacuum, the lactic counts of the inoculated samples dropped followed by the development of spontaneous lactic flora. The pH of meat was lower in the treated samples than in the control. Towards the end of vacuum storage cell densities were lower than those in the control only for psychrotrophs in L. plantarum treatment and coliforms and staphylococcal counts in Lc. lactis treatment. There were increases in lactic counts in both treated and control samples during aerobic storage after previous vacuum storage of 18 days in trial 1 and 9 days in trial 2 with reductions in the counts of different bacterial groups and deterioration in colour of the treated samples compared with the control. When goat meat chunks were surface sanitized in alcohol and treated with lactic cell suspension and vacuum stored, there was development of acid and salty taste (acceptable) in the treated samples whereas the control showed a bland taste. PMID:22060616

  5. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  6. Thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)--utilisation of main carbon sources.

    PubMed

    Krzywonos, Ma?gorzata; Cibis, Edmund; Lasik, Ma?gorzata; Nowak, Jacek; Mi?kiewicz, Tadeusz

    2009-05-01

    The aim of the study was to ascertain the extent to which temperature influences the utilisation of main carbon sources (reducing substances determined before and after hydrolysis, glycerol and organic acids) by a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in the course of aerobic batch biodegradation of potato stillage, a high-strength distillery effluent (COD=51.88 g O(2)/l). The experiments were performed at 20, 30, 35, 40, 45, 50, 55, 60 and 63 degrees C, at pH 7, in a 5l working volume stirred-tank bioreactor (Biostat B, B. Braun Biotech International) with a stirrer speed of 550 rpm and aeration at 1.6 vvm. Particular consideration was given to the following issues: (1) the sequence in which the main carbon sources in the stillage were assimilated and (2) the extent of their assimilation achieved under these conditions. PMID:19138516

  7. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  8. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. PMID:23685650

  9. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  10. Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater.

    PubMed

    Abeynayaka, Amila; Visvanathan, Chettiyappan

    2011-02-01

    This study compares organic and nitrogen removals of thermophilic and mesophilic aerobic processes. The experiments were performed in three 7.2L sequential batch reactors (SBRs) operated at 30, 47 and 60°C. Molasses based synthetic wastewater consisting chemical oxygen demand (COD): 11,200 mg/L, total kheljal nitrogen (TKN): 770 mg/L, ammonical nitrogen (NH(4)): 560 mg/L was the feed medium. Biokinetic parameters, COD, NH(4)(+) and TKN removal efficiencies were compared under six different operating conditions. Five times lower sludge production and similar COD removal were observed in thermophilic SBRs compared to mesophilic SBR under 8.25 kg COD/m(3)d loading rate. However at 24.75 kg COD/m(3)d there were no differences in terms of sludge production while COD removals were varied as 59%, 80% and 82% at 30, 47 and 60°C respectively. A mechanism was developed to understand the varying behaviors of thermophilic aerobic process. Stripping is the major mechanism for nitrogen removal in thermophilic SBRs. PMID:21075626

  11. Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria.

    PubMed

    Averhoff, Beate; Friedrich, Alexandra

    2003-12-01

    Horizontal gene flow is a driving force for bacterial adaptation. Among the three distinct mechanisms of gene transfer in bacteria, conjugation, transduction, and transformation, the latter, which includes competence induction, DNA binding, and DNA uptake, is perhaps the most versatile mechanism and allows the incorporation of free DNA from diverse bacterial species. Here we review DNA transport machineries mediating uptake of naked DNA in gram-positive and gram-negative bacteria. Different putative models of transformation machineries comprising components similar to proteins of type IV pili are presented. Emphasis is placed on a comparative discussion of the underlying mechanisms of DNA transfer in mesophilic and extremely thermophilic bacteria, highlighting conserved and distinctive features of these transformation machineries. PMID:14593449

  12. TEMPO TVC for the enumeration of aerobic mesophilic flora in foods: collaborative study.

    PubMed

    Crowley, Erin S; Bird, Patrick M; Torontali, Marianne K; Agin, James R; Goins, David G; Johnson, Ronald

    2009-01-01

    The automated system for enumeration of total viable count (TVC) in foods, TEMPO TVC, uses a dehydrated culture medium and an enumeration card containing 48 wells across 3 different dilutions for the automatic determination of the most probable number (MPN). The alternative method was compared in a multilaboratory collaborative study to AOAC Method 966.23 for determination of aerobic plate count for nondairy products and the Standard Methods for the Examination of Dairy Products (SMEDP) Standard Plate Count for dairy products. Five food types, raw ground beef, raw ground chicken, cooked whitefish fillets, bagged lettuce, and milk, were analyzed for TVC by 14 collaborating laboratories throughout the United States and Canada. Three lots of naturally contaminated food products representing a wide range of counts were tested for each of the 5 food types. The study demonstrated that the overall repeatability, reproducibility, and mean log counts of the TEMPO TVC method were statistically comparable to those of the 2 standard methods at the 5% level. PMID:19382575

  13. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-01

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus groups, were strongly proteolytic, whereas thermophilic strains displayed generally a low enzymatic activity and thus spoilage potential. Cytotoxicity was only detected in B. cereus, suggesting that the risk of food poisoning by aerobic, thermoresistant spore-formers outside of the B. cereus group is rather low. PMID:23973839

  14. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3?) to N2 at rates of 0.9 and 0.03 ?mol min?1 unit of optical density at 540 nm?1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 ?mol liter?1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3? with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the ? subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  15. Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef

    Microsoft Academic Search

    Danilo Ercolini; Federica Russo; Antonella Nasi; Pasquale Ferranti; Francesco Villani

    2009-01-01

    Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC\\/MS). Fifty mesophilic and twenty- nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA

  16. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  17. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions.

    PubMed

    Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E

    2010-07-01

    The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. PMID:20554304

  18. Fluorescence In Situ Hybridization Using 16S rRNA-Targeted Oligonucleotides Reveals Localization of Methanogens and Selected Uncultured Bacteria in Mesophilic and Thermophilic Sludge Granules

    PubMed Central

    Sekiguchi, Yuji; Kamagata, Yoichi; Nakamura, Kazunori; Ohashi, Akiyoshi; Harada, Hideki

    1999-01-01

    16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35°C) and thermophilic (55°C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-, Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genus Methanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655–2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related to Syntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and their in situ morphologies and metabolic functions in both mesophilic and thermophilic granular sludges. PMID:10049894

  19. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  20. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.

    PubMed

    Jang, H M; Park, S K; Ha, J H; Park, J M

    2014-01-01

    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production. PMID:24759540

  1. Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real-Time PCR and Flow Cytometry-Fluorescence In Situ Hybridization

    Microsoft Academic Search

    Udo Friedrich; Jan Lenke

    2006-01-01

    Nucleic acid-based assays were developed to enumerate members of the three taxa Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis, and Leuconostoc spp. in mesophilic starter cultures. To our knowledge the present is the first study to present a multiplex quantitative PCR (qPCR) strategy for the relative enumeration of bacteria. The multiplex qPCR strategy was designed to quantify the target

  2. Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems

    Microsoft Academic Search

    P. N. Lens; M.-P. De Poorter; C. C. Cronenberg; W. H. Verstraete

    1995-01-01

    A selection of aerobic biofilm reactors and activated sludge plants were investigated for the presence of methane producing bacteria (MPB) and sulfate reducing bacteria (SRB). Detection tests showed that acetotrophic and hydrogenotrophic MPB as well as lactate, acetate and propionate oxidizing SRB were present in all reactor types investigated, except in an activated sludge reactor aerated with pure oxygen. Methane

  3. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide-

    E-print Network

    Skolnick, Jeff

    Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide uranium [U(VI)] mediated by the intrinsic phosphatase acti- vities of naturally occurring bacteria such as uranium (U), technetium (Tc) and other toxic metals [e.g. cadmium (Cd), lead (Pb), chromium (Cr

  4. Aerobic Anoxygenic Photosynthesis in Roseobacter Clade Bacteria from Diverse Marine Habitats

    Microsoft Academic Search

    Martin Allgaier; Heike Uphoff; Andreas Felske; Irene Wagner-Dobler

    2003-01-01

    The marine Roseobacter clade comprises several genera of marine bacteria related to the uncultured SAR83 cluster, the second most abundant marine picoplankton lineage. Cultivated representatives of this clade are physiologically heterogeneous, and only some have the capability for aerobic anoxygenic photosynthesis, a process of potentially great ecological importance in the world's oceans. In an attempt to correlate phylogeny with ecology,

  5. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration

    Microsoft Academic Search

    M. M. M. Vissers; F. Driehuis; M. C. Te Giffel; P. De Jong; J. M. G. Lankveld

    2007-01-01

    Germination and growth of spores of butyric acid bacteria (BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to deter- mine the significance of grass silages and corn silages assourcesofBABsporesandtoinvestigatetherelation- ships between high concentrations of BAB spores in corn silage and aerobic deterioration. In

  6. Fate of Chlortetracycline and Tylosin-Resistant Bacteria in an Aerobic Thermophilic Sequencing Batch Reactor Treating Swine Waste

    Microsoft Academic Search

    Martin R. Chénier; Pierre Juteau

    2009-01-01

    Antibiotics have been added to animal feed for decades. Consequently, food animals and their wastes constitute a reservoir\\u000a of antibiotic-resistant bacteria. The objective of this work was to characterize the impact of an aerobic thermophilic biotreatment\\u000a on aerobic, antibiotic-resistant bacteria in swine waste. The proportion of tylosin- and chlortetracycline-resistant bacteria\\u000a grown at 25°C, 37°C, and 60°C decreased after treatment, but

  7. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria

    Microsoft Academic Search

    Peter L Bergquist; Moreland D Gibbs; Daniel D Morris; V. S. Junior Te'o; David J Saul; Hugh W Morgan

    1999-01-01

    Many thermophilic bacteria belong to groups with deep phylogenetic lineages and ancestral forms were established before the occurrence of eucaryotes that produced cellulose and hemicellulose. Thus they may have acquired their ?-glycanase genes from more recent mesophilic bacteria. Most research has focussed on extremely thermophilic eubacteria growing above 65°C under anaerobic conditions. Only recently have aerobic cellulolytic thermophiles been described

  8. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.

    PubMed

    Cibis, Edmund; Ryznar-Luty, Agnieszka; Krzywonos, Ma?gorzata; Lutos?awski, Krzysztof; Mi?kiewicz, Tadeusz

    2011-07-01

    The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse. PMID:21367516

  9. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  10. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    Microsoft Academic Search

    Satoshi Okabe; Tsukasa Itoh; Hisashi Satoh; Yoshimasa Watanabe

    1999-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of Oâ, HâS, NOâ-, NHâ{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the

  11. Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China)

    Microsoft Academic Search

    Ying Zhang; Xiao-Hong Ruan; Toine J. M. Smits; Mike S. M. Jetten; Markus C. Schmid

    2007-01-01

    Here we report on the biodiversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in sediment samples from the Xinyi River, Jinagsu Province (China). The biodiversity of aerobic ammonium-oxidizing bacteria in the sediment was assessed using the amoA gene as functional marker. The retrieved amoA clones were affiliated to environmental sequences from freshwater habitats. The closest cultivated relative was Nitrosomonas

  12. Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina

    Microsoft Academic Search

    David L. Balkwill

    1989-01-01

    The aerobic, chemoheterotrophic bacteria indigenous to deep aquifers and other subsurface sediments (depths to 265 m) at a site in South Carolina were characterized by direct microscopy, enumeration of viable cells, analysis of colony morphologies on plates, and analysis of cell morphologies of isolated strains. Substantial numbers of viable bacteria (1010\\/g) were present in all transmissive, aquifer sediments, and their

  13. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.

    PubMed

    Chen, Po-Wen; Ku, Yu-We; Chu, Fang-Yi

    2014-10-01

    Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use. PMID:24916115

  14. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day?1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day?1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 ?M, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  15. Quantification of Syntrophic Fatty Acid-?-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-?-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-?-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-?-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  16. Similarity and divergence between the RNA polymerase ? subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria

    Microsoft Academic Search

    Frederique Braun; Fanny B. Marhuenda; Amelie Morin; Laetitia Guevel; Fabrice Fleury; Masayuki Takahashi; Vehary Sakanyan

    2006-01-01

    The ? subunit (?Tm) of Thermotoga maritima RNA polymerase has been characterized to investigate its role in transcriptional regulation in one of the few known anaerobic hyperthermophilic bacteria. The highly thermostable ?Tm shares 54% similarity with its Escherichia coli analogue (?Ec). The T. maritima rpoA gene coding the ? subunit does not complement the thermosensitive rpoA112 mutation of E. coli.

  17. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.

    PubMed

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-07-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

  18. Investigation of the diversity of homoacetogenic bacteria in mesophilic and thermophilic anaerobic sludges using the formyltetrahydrofolate synthetase gene.

    PubMed

    Ryan, P; Forbes, C; Colleran, E

    2008-01-01

    Homoacetogenic bacteria are strict anaerobes capable of autotrophic growth on H(2)/CO(2) or CO, and of heterotrophic growth on a wide range of sugars, alcohols, methoxylated aromatic compounds and one carbon compounds, yielding acetate as their sole metabolic end-product. Batch activity tests on anaerobic granular sludge, using H(2)/CO(2) as a substrate and 2-bromoethanesulfonate (BES) as a specific methanogenic inhibitor revealed that H(2)/CO(2) conversion and concomitant acetate production commenced only after a lag period of 60-100 h. This finding suggests that the homoacetogenic population of digester sludge could be maintained by heterotrophic growth on sugars or other organic compounds, rather than by autotrophic growth on H(2)/CO(2). In the present study, two upflow anaerobic sludge bed (UASB) reactors were operated at 37 degrees C and 55 degrees C for two distinct trial periods, each characterised by the application of influents designed to enrich for homoacetogenic bacteria. Specific primers designed for the amplification of the functional gene encoding formyltetrahydrofolate synthetase (FTHFS), a key enzyme in the acetyl-CoA pathway of acetogenesis, were used as a specific probe for acetogenic bacteria. The diversity of acetogens in the granular sludge cultivated in each reactor was revealed by application of FTHFS targeted PCR. Results show that biomass acetogenic composition was dependent upon the operational temperature of the reactor and the substrate supplied as influent. PMID:18401137

  19. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T.

    PubMed

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803(T) grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803(T). Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  20. New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov.

    PubMed

    Zaitsev, G M; Tsitko, I V; Rainey, F A; Trotsenko, Y A; Uotila, J S; Stackebrandt, E; Salkinoja-Salonen, M S

    1998-01-01

    The genus Ammoniphilus is proposed for aerobic endospore-forming Gram-variable rod-shaped bacteria, which are ammonium-dependent, obligately oxalotrophic and haloalkalitolerant, oxidase- and catalase-positive, mesophilic and motile by peritrichous flagella. Cell wall contained two electron-dense layers. The external layer consists of a chain of electron-dense granules morphologically resembling the cellulosomes of Clostridium thermocellum. Two species are described, Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. The type strains of these species are strains RAOx-1 (= DSM 11538) and RAOx-FS (= DSM 11537), respectively. Ammoniphilus strains were isolated from the rhizosphere of sorrel (Rumex acetosa) and from decaying wood. The strains require a high concentration of ammonium ions and use oxalate as the sole organic source of carbon and energy for growth; no growth factors were required. Growth occurred at pH 6.8-9.5. The optimum temperature and pH for growth were 28-30 degrees C and 8.0-8.5. All strains grew in a saturated solution of ammonium oxalate, and tolerated 3% NaCl. Whole-cell hydrolysates contain meso-diaminopimelic acid and glucose. The menaquinone of the strains was MK 7, and the major cellular fatty acids were 12-methyl tetradecanoic, cis-hexadec-9-enoic and hexadecanoic acids. The G + C content of the DNA was 45-46 mol% for A. oxalaticus and 42 mol% for A. oxalivorans. The almost complete 16S rDNA sequence of three strains of the two species of Ammoniphilus shows that the genus falls into the radiation of the Clostridium-Bacillus subphylum of Gram-positive bacteria. The closest phylogenetic neighbour of Ammoniphilus is Oxalophagus oxalicus. The DNA-DNA hybridization value between strains RAOx-1 and RAOx-FS was 39.7%. PMID:9542085

  1. Impact of an Aerobic Thermophilic Sequencing Batch Reactor on Antibiotic-Resistant Anaerobic Bacteria in Swine Waste

    Microsoft Academic Search

    Martin R. Chénier; Pierre Juteau

    2009-01-01

    The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated\\u000a animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on\\u000a anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations\\u000a enumerated in the swine waste at 25°C and 37°C, resistant

  2. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (? 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (? 10 mM) in an enriched activated sludge culture. PMID:25259503

  3. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    SciTech Connect

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-11-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O{sub 2}, H{sub 2}S, NO{sub 2}{minus}, NH{sub 2}{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells were evenly distributed throughout the biofilm, even in the toxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations. The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 {micro}m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S{degree}) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms, which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

  4. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.

    PubMed

    Hernández, Noemi; Escudero, José A; San Millán, Álvaro; González-Zorn, Bruno; Lobo, Jorge M; Verdú, José R; Suárez, Mónica

    2015-04-01

    Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens. PMID:24339348

  5. Comparison between Rinse and Crush-and-Rub Sampling for Aerobic Bacteria Recovery from Hatching Eggs after Sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatments with sanitizers. Eggs were arranged into 5 treatments consisting of three sanitizers, Water, and No-treatment. Sanitizers were Hydrogen...

  6. Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO 2-incorporation in Acidiphilium rubrum

    Microsoft Academic Search

    Noriaki Kishimoto; Fumihito Fukaya; Kenji Inagaki; Tsuyoshi Sugio; Hidehiko Tanaka; Tatsuo Tano

    1995-01-01

    Four Acidiphilium species among aerobic and acidophilic bacteria, Acidiphilium angustum, Acidiphilium cryptum, Acidiphilium organovorum, and Acidiphilium rubrum, produced the bacteriochlorophyll a (0.005 ~ 0.76 nmol mg?1 dried cells), whereas Acidiphilium aminolytica, Acidiphilium facilis, Acidomonas methanolica, Acidobacterium capsulatum. Thiobacillus acidophilus, Thiobacillus ferrooxidans, and Thiohacillus thiooxidans produced no phototrophic pigments. Bacteriochlorophyll a was purified from A. rubrum to a single spot on

  7. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of No-treatment, Water, and three sanitizers. Sanitizers were Hydrogen ...

  8. Nitrogen-Fixing (Acetylene Redution) Activity and Population of Aerobic Heterotrophic Nitrogen-Fixing Bacteria Associated with Wetland Rice

    PubMed Central

    Watanabe, Iwao; Barraquio, Wilfredo L.; De Guzman, Marcelino R.; Cabrera, Delfin A.

    1979-01-01

    Nitrogen-fixing activity associated with different wetland rice varieties was measured at various growth stages by an in situ acetylene reduction method after the activities of blue-green algae (cyanobacteria) in the flood water and on the lower portion of the rice stem were eliminated. Nitrogen-fixing activities associated with rice varieties differed with plant growth stages. The activities increased with plant age, and the maximum was about at heading stage. The nitrogen fixed during the whole cropping period was estimated at 5.9 kg of N per ha for variety IR26 (7 days) and 4.8 kg of N per ha for variety IR36 (95 days). The population of aerobic heterotrophic N2-fixing bacteria associated with rice roots and stems was determined by the most-probable-number method, using semisolid glucose-yeast extract and semisolid malate-yeast extract media. The addition of yeast extract to the glucose medium increased the number and activity of aerobic heterotrophic N2-fixing bacteria. The glucose-yeast extract medium gave higher counts of aerobic N2-fixing bacteria associated with rice roots than did the malate-yeast extract medium, on which Spirillum-like bacteria were usually observed. The lower portion of the rice stem was also inhabited by N2-fixing bacteria and was an active site of N2 fixation. PMID:16345379

  9. Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).

    PubMed

    Damaré, J M; Hussong, D; Weiner, R M; Colwell, R R

    1979-08-01

    Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

  10. Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus).

    PubMed Central

    Damaré, J M; Hussong, D; Weiner, R M; Colwell, R R

    1979-01-01

    Aerobic and facultatively anaerobic bacteria from the intestinal tracts of swans and geese were isolated and characterized as part of a larger study of the microbiological effects of migratory waterfowl on water quality. A total of 356 isolates were identified by using rapid identification methods and classified by using numerical taxonomy. A diverse population of bacteria was recovered from the waterfowl, and representative strains could be classified into 21 phena. The majority of the aerobic, heterotrophic bacteria found in the gut of the waterfowl were species of Enterobacteriaceae. Streptococcus. Lactobacillus, and Bacillus. Unfortunately, the birds that were examined did not harbor significant numbers of any waterfowl-specific bacterial species. Thus, it may not be possible to assess microbiological impact of migratory waterfowl by using and "indicator" species since avian fecal pollution could not be distinguished from animal and human fecal pollution. PMID:518085

  11. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

  12. Detection and Quantification of Bacteria Involved in Aerobic and Anaerobic Ammonium Oxidation in an Ammonium-Contaminated Aquifer

    Microsoft Academic Search

    Theo H. M. Smits; Arne Hüttmann; David N. Lerner; Christof Holliger

    2009-01-01

    The aerobic and anaerobic ammonium-oxidizing bacterial guilds were studied from two multilevel samplers in an ammonium-contaminated aquifer in the UK. By end point polymerase chain reaction (PCR), the presence of betaproteobacterial ammonium-oxidizing bacteria and anaerobic ammonium-oxidizing (anammox) planctomycetes was demonstrated. The sequences of cloned anammox-specific PCR fragments had close relationships with known anammox strains. Real-time PCR was subsequently used to

  13. Dynamics of phosphorus and phytate-utilizing bacteria during aerobic degradation of dairy cattle dung.

    PubMed

    Fuentes, Bárbara; Jorquera, Milko; Mora, María de la Luz

    2009-01-01

    During organic wastes degradation, P is transformed which may affect its availability. In this study, the dynamics of P and the occurrence of phytate-utilizing bacteria (PUB) were evaluated during aerobic degradation of dairy cattle dung in laboratory-scale reactors for 105 d. The results showed an increase of water-soluble inorganic P (Pi) (from 570 to 1890 mg kg(-1)) and biomass P (from 390 to 870 mg kg(-1)) during the initial 40 d. After this period, water-soluble Pi remained constant (around 1500 mg kg(-1)) and biomass P decreased (around 220 mg kg(-1)) probably due to the decrease of easily available C in dung. Under the acidic conditions in the first 20 d there was an increase in concentration of Al (25 mg kg(-1)) and Fe (27 mg kg(-1)) ions. These ions were no longer detectable in the alkaline conditions occurring after 40 d. In the same period, the Ca concentration increased (from 1170 to 2370 mg kg(-1)) and chemical speciation revealed permanent association of Ca ions with Pi. Sequential P fractionation showed a decrease of organic P in NaHCO(3), NaOH and HCl fractions and an increase of residual P (25-52% with respect to total P). Analysis by (31)P NMR also showed a decrease (from 14% to 1.6%) of phytic acid content during final experimental period (60 and 105 d). The bacteriological analysis revealed various PUB involved in degradation of the dung. Two morphotypes, genetically characterized as Enterobacter and Rahnella, which were dominant under higher content of residual P, showed strong utilization of phytate in vitro. PMID:18977014

  14. Drug resistance and molecular epidemiology of aerobic bacteria isolated from puerperal infections in bangladesh.

    PubMed

    Ahmed, Salma; Kawaguchiya, Mitsuyo; Ghosh, Souvik; Paul, Shyamal Kumar; Urushibara, Noriko; Mahmud, Chand; Nahar, Kamrun; Hossain, Mohammad Akram; Kobayashi, Nobumichi

    2015-06-01

    Puerperal infection is a common complication during postnatal period in developing countries. Bacterial species, drug resistance, and genetic characteristics were investigated for a total of 470 isolates from puerperal infections in Bangladesh for a 2-year period (2010-2012). The most common species was Escherichia coli (n=98), followed by Enterococcus faecalis (n=54), Staphylococcus haemolyticus (n=33), Proteus mirabilis (n=32), Staphylococcus aureus (n=27), Klebsiella pneumoniae (n=22), and Enterobacter cloacae (n=21). S. aureus and Acinetobacter baumannii were isolated at a higher frequency from wound infections after cesarean section, while E. coli, E. cloacae, and K. pneumoniae were isolated from community-acquired endometritis and urinary tract infections. Resistance to third-generation cephalosporins was frequent for Enterobacteriacae, and was mainly mediated by blaCTX-M-1 group beta-lactamases. The CTX-M gene in E. coli from the four phylogroups was identified as blaCTX-M-15, and phylogroup B2 isolates with blaCTX-M-15 were classified into ST131 with O25b allele, harboring aac(6')-Ib-cr and various virulence factors. Carbapenemase genes blaNDM-1 and blaNDM-7 were identified in one isolate each of phylogroup A E. coli. Methicillin-resistant S. aureus isolates had type IV or V SCCmec, including isolates of ST361 (CC672), which is related to an emerging ST672 clone in the Indian subcontinent. This study revealed the recent epidemiological status of aerobic bacteria causing puerperal infections in Bangladesh, providing useful information to improve clinical practice and infection control. PMID:25555043

  15. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. PMID:25974213

  16. Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    E-print Network

    Lam, Raymond H. W.

    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel ...

  17. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland

    Microsoft Academic Search

    Lucy Finnegan; Manuel Garcia-Melgares; Tomasz Gmerek; W. Ryan Huddleston; Alexander Palmer; Andrew Robertson; Sarah Shapiro; Shiela E. Unkles

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz\\u000a and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews,\\u000a Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions\\u000a in

  18. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria

    E-print Network

    Ward, Bess

    -oxidizing bacteria Karen L. Casciotti *,1 , Bess B. Ward Department of Geosciences, Princeton University, Princeton) are climatically important trace gases that are produced by both nitrifying and den- itrifying bacteria-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both b- and c-Proteobacterial ammonia

  19. Characteristics of the bacteriocin produced by Lactococcus lactis subsp. cremoris CTC 204 and the effect of this compound on the mesophilic bacteria associated with raw beef

    Microsoft Academic Search

    R. Bromberg; I. Moreno; R. R. Delboni; H. C. Cintra; P. T. V Oliveira

    2005-01-01

    Summary >Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis subsp. cremoris CTC 204, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacteria (Lactobacillus helveticus), but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens). It

  20. Comparison of Growth Rates of Aerobic Anoxygenic Phototrophic Bacteria and Other Bacterioplankton Groups in Coastal Mediterranean Waters?

    PubMed Central

    Ferrera, Isabel; Gasol, Josep M.; Sebastián, Marta; Hojerová, Eva; Koblížek, Michal

    2011-01-01

    Growth is one of the basic attributes of any living organism. Surprisingly, the growth rates of marine bacterioplankton are only poorly known. Current data suggest that marine bacteria grow relatively slowly, having generation times of several days. However, some bacterial groups, such as the aerobic anoxygenic phototrophic (AAP) bacteria, have been shown to grow much faster. Two manipulation experiments, in which grazing, viruses, and resource competition were reduced, were conducted in the coastal Mediterranean Sea (Blanes Bay Microbial Observatory). The growth rates of AAP bacteria and of several important phylogenetic groups (the Bacteroidetes, the alphaproteobacterial groups Roseobacter and SAR11, and the Gammaproteobacteria group and its subgroups the Alteromonadaceae and the NOR5/OM60 clade) were calculated from changes in cell numbers in the manipulation treatments. In addition, we examined the role that top-down (mortality due to grazers and viruses) and bottom-up (resource availability) factors play in determining the growth rates of these groups. Manipulations resulted in an increase of the growth rates of all groups studied, but its extent differed largely among the individual treatments and among the different groups. Interestingly, higher growth rates were found for the AAP bacteria (up to 3.71 day?1) and for the Alteromonadaceae (up to 5.44 day?1), in spite of the fact that these bacterial groups represented only a very low percentage of the total prokaryotic community. In contrast, the SAR11 clade, which was the most abundant group, was the slower grower in all treatments. Our results show that, in general, the least abundant groups exhibited the highest rates, whereas the most abundant groups were those growing more slowly, indicating that some minor groups, such the AAP bacteria, very likely contribute much more to the recycling of organic matter in the ocean than what their abundances alone would predict. PMID:21724878

  1. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms.

    PubMed

    Coorevits, An; De Jonghe, Valerie; Vandroemme, Joachim; Reekmans, Rieka; Heyrman, Jeroen; Messens, Winy; De Vos, Paul; Heyndrickx, Marc

    2008-06-01

    Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples from five conventional and five organic dairy farms, sampled in late summer/autumn and in winter, were plated on a standard medium and two differential media, one screening for phospholipolytic and the other for proteolytic activity of bacteria. Almost 930 isolates were obtained of which 898 could be screened via fatty acid methyl ester analysis. Representative isolates were further analysed using 16S rRNA gene sequencing and (GTG)(5)-PCR. The majority of aerobic spore-formers in milk belonged to the genus Bacillus and showed at least 97% 16S rRNA gene sequence similarity with type strains of Bacillus licheniformis, Bacillus pumilus, Bacillus circulans, Bacillus subtilis and with type strains of species belonging to the Bacillus cereus group. About 7% of all isolates may belong to possibly new spore-forming taxa. Although the overall diversity of aerobic spore-forming bacteria in milk from organic vs. conventional dairy farms was highly similar, some differences between both were observed: (i) a relatively higher number of thermotolerant organisms in milk from conventional dairy farms compared to organic farms (41.2% vs. 25.9%), and (ii) a relatively higher number of B. cereus group organisms in milk from organic (81.3%) and Ureibacillus thermosphaericus in milk from conventional (85.7%) dairy farms. One of these differences, the higher occurrence of B. cereus group organisms in milk from organic dairy farms, may be linked to differences in housing strategy between the two types of dairy farming. However, no plausible clarification was found for the relatively higher number of thermotolerant organisms and the higher occurrence of U. thermosphaericus in milk from conventional dairy farms. Possibly this is due to differences in feeding strategy but no decisive indications were found to support this assumption. PMID:18406093

  2. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-03-01

    In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

  3. Colonization by aerobic bacteria in karst: laboratory and in situ experiments.

    PubMed

    Personné, J C; Poty, F; Mahler, B J; Drogue, C

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton. PMID:15318775

  4. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  5. Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables.

    PubMed

    Lehours, Anne-Catherine; Cottrell, Matthew T; Dahan, Océane; Kirchman, David L; Jeanthon, Christian

    2010-11-01

    Aerobic anoxygenic phototrophic bacteria (AAP) represent an important fraction of bacterioplankton assemblages in various oceanic regimes. Although their abundance and distribution have been explored recently in diverse oceanic regions, the environmental factors controlling the population structure and diversity of these photoheterotrophic bacteria remain poorly understood. Here, we investigate the horizontal and vertical distributions and the genetic diversity of AAP populations collected in late summer throughout the Mediterranean Sea using pufM-temporal temperature gel gradient electrophoresis (TTGE) and clone library analyses. The TTGE profiles and clone libraries analyzed using multivariate statistical methods demonstrated a horizontal and vertical zonation of AAP assemblages. Physicochemical parameters such as pH, inorganic nitrogen compounds, photosynthetically active radiation, total organic carbon and to a lesser extent particulate organic nitrogen and phosphorus, and biogenic activities (e.g. bacterial production, cell densities), acted in synergy to explain the population changes with depth. About half of the pufM sequences were <94% identical to known sequences. The AAP populations were predominantly (~80%) composed of Gammaproteobacteria, unlike most previously explored marine systems. Our results suggest that genetically distinct ecotypes inhabiting different niches may exist in natural AAP populations of the Mediterranean Sea whose genetic diversity is typical of oligotrophic environments. PMID:21039650

  6. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant?+?propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P?aerobic conditions, L silage had similar yeast counts as the control silage (>?10(5) ?cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6?h. P and PL silages showed fewer yeasts (aerobic stability (>?360?h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau. PMID:25494579

  7. Lipid composition and vertical distribution of bacteria in aerobic sediments of the Venezuela Basin

    NASA Astrophysics Data System (ADS)

    Harvey, H. Rodger; Richardson, Michael D.; Patton, John S.

    1984-04-01

    Box cores of surface (0 to 30-cm) sediments from carbonate, hemipelagic, and turbidite sediment types of the deep (3493 to 5039-m) Venezuelan Basin were analyzed to investigate the relationship between the vertical distribution of bacteria, lipids, lipid phosphate, and grain size. The polar lipid fraction was isolated chromatographically and quantified by flame-ionization detection using the Iatroscan TH-10 analyzer. Total bacterial abundance was measured by epifluorescence microscopy in sediments (0 to 20-cm) from the carbonate and turbidite sediments. In all three sediment types investigated, both total and polar lipid concentrations decreased with increasing depth in the sediment. The highest total and polar lipid concentrations were at the sediment-water interface (0 to 2-cm) of hemipelagic sediments (62.0 and 25.7 ?g g -1 dry sediment, respectively) followed by the carbonate and turbidite sediments. A similar decline in lipid phosphate was also observed. Bacterial abundance was > 5 × 10 8 bacteria (per gram dry sediment) at the sediment surface in both sediments examined and over 1 × 10 7 bacteria 20 cm below the sediment-water interface. Polar lipid and lipid phosphate concentrations did not appear to correlate with estimates of bacterial biomass, even in regions where bacteria were apparently the only organisms present.

  8. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes. PMID:12675610

  9. Distribution and Persistence of Staphylococcus and Micrococcus Species and Other Aerobic Bacteria on Human Skin1

    PubMed Central

    Kloos, Wesley E.; Musselwhite, Margaret S.

    1975-01-01

    The distribution of Staphylococcus and Micrococcus species and associated coryneform bacteria, Acinetobacter, Klebsiella, Enterobacter, Bacillus, and Streptomyces on skin was determined during October 1971 from samples collected on persons living in North Carolina and New Jersey. Persistence of these organisms on skin was estimated in temporal studies conducted during the period from June 1971 to June 1972 on persons living in North Carolina. Staphylococci and coryneforms were the most predominant and persistent bacteria isolated from the nares and axillae. Staphylococci, coryneforms, micrococci, and Bacillus were the most predominant and persistent bacteria isolated from the head, legs, and arms. Acinetobacters were most frequently isolated during the warmer months of the years. Staphylococcus aureus and S. epidermidis were the most predominant and persistent staphylococci isolated from the nares, whereas S. epidermidis and S. hominis were the most predominant and persistent staphylococci isolated from the axillae, head, legs, and arms. S. capitis was often isolated from the head and arms and S. haemolyticus was often isolated from the head, legs, and arms. S. simulans, S. xylosus, S. cohnii, S. saprophyticus, S. warneri, and an unclassified coagulase-positive species were only occasionally isolated from skin. Micrococcus luteus was the most predominant and persistent Micrococcus isolated from skin and preferred regions of the head, legs, and arms. M. varians was the second most frequent Micrococcus isolated. M. lylae, M. sedentarius, M. roseus, M. kristinae, and M. nishinomiyaensis were only occasionally isolated from skin. M. lylae was most frequently isolated during the colder months of the years. PMID:810086

  10. Population Changes in Enteric Bacteria and Other Microorganisms During Aerobic Thermophilic Windrow Composting1

    PubMed Central

    Savage, Jacob; Chase, Theodore; Macmillan, James D.

    1973-01-01

    Composting of wastes from swine feeding operations was studied. The effects of the frequency of turning the wastes and addition of straw to improve the physical structure were studied to determine the most effective technique to rapidly increase the temperature and, consequently, destroy coliforms and Salmonella. Four different treatments were studied; the results showed that, with addition of 5% (wt/wt) straw and mechanical turning of the compost 20 times per week, the temperature reached 60 C within 3 days and enteric bacteria were destroyed within 14 days. Images PMID:4203338

  11. Diversity of aerobic anoxygenic phototrophic bacteria in paddy soil and their response to elevated atmospheric CO2

    PubMed Central

    Feng, Youzhi; Lin, Xiangui; Mao, Tingting; Zhu, Jianguo

    2011-01-01

    Summary Aerobic anoxygenic phototrophic bacteria (AAnPB) are recognized as an important group driving the global carbon cycling. However, the diversity of AAnPB in terrestrial environment remains largely unknown as well as their responses to the elevated atmospheric CO2. By using culture?independent techniques, the diversity of AAnPB in paddy soil and the changes in response to the rising atmospheric CO2 were investigated within China FACE (Free?air CO2 enrichment) platform. There was a phylogenetically diverse AAnPB community with large population size residing in paddy soil. The community structure of AAnPB in bulk and rhizospheric soils stayed almost identical, while the population size was higher in rhizospheric [2.0–2.5?×?108 copy number of pufM genes g?1 dry weight soil (d.w.s.)] than that in bulk (0.7–0.8?×?108?g?1?d.w.s.) soils. Elevated atmospheric CO2 appeared to significantly stimulate AAnPB abundance (up to 1.4–1.5?×?108?g?1?d.w.s.) and result in a higher AAnPB percentage in total bacterial community (from 0.5% up to 1.5%) in bulk soil, whereas no significant effect was observed in rhizospheric soil. Our results would extend the functional ecotypes of AAnPB and indicate that environmental changes associated with the rising atmospheric CO2 might affect AAnPB community in paddy soil. PMID:21255374

  12. New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov

    Microsoft Academic Search

    Gennadi M. Zaitsev; I. V. Tsitko; F. A. Rainey; Y. A. Trotsenko; J. S. Uotila; E. Stackebrandt; M. S. Salkinoja-Salonen

    1998-01-01

    The genus Ammoniphilus is proposed for aerobic endospore-forming Gram- variable rod-shaped bacteria, which are ammonium-dependent, obligately oxa lotrop h ic and haloa I ka I i to lerant, oxidase- and catal ase-pos i t ive, mesop h i I ic and motile by peritrichous flagella. Cell wall contained two electron-dense layers. The external layer consists of a chain of electron-dense

  13. METHANE OXIDATION (AEROBIC) Helmut Brgmann

    E-print Network

    Wehrli, Bernhard

    ; Madigan et al., 2003; Bowman, 2006). The process is performed by a specialized group of bacteria (qv) (Madigan et al., 2003). Thus, aerobic methane oxidation can be considered a special case of aerobic ADP ATP

  14. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    PubMed Central

    Dey, Satarupa; Paul, A.K.

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

  15. Bacterial gene import and mesophilic adaptation in archaea.

    PubMed

    López-García, Purificación; Zivanovic, Yvan; Deschamps, Philippe; Moreira, David

    2015-07-01

    It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages - including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) - independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles. PMID:26075362

  16. Effects of carbon dioxide on the fate of Listeria monocytogenes, of aerobic bacteria and on the development of spoilage in minimally processed fresh endive.

    PubMed

    Carlin, F; Nguyen-the, C; Abreu Da Silva, A; Cochet, C

    1996-09-01

    Minimally processed fresh broad-leaved endive (Cichorium endivia L.) were stored at 3 and 10 degrees C in modified atmospheres containing air, 10% CO2/10% O2, 30% CO2/10% O2, and 50% CO2/10% O2. The effects of these modified atmospheres on the fate of both aerobic bacteria and three strains of Listeria monocytogenes, was investigated. Increases in CO2 concentrations significantly reduced the growth of the aerobic microflora. The best preservation of the visual quality occurred on endive leaves stored in 10% CO2/10% O2, whereas leaves stored in 30% CO2/10% O2 and 50% CO2/10% O2, and to a lesser extent in air, showed extensive spoilage after storage. Listeria monocytogenes was slightly affected at 3 degrees C by the modified atmospheres, as compared to air. At 10 degrees C, results varied between replicate experiments, but L. monocytogenes generally grew better as the CO2 concentration was increased. The three test strains behaved in a similar way. In conclusion, among the modified atmospheres tested, a modified atmosphere containing 10% CO2/10% O2 resulted in improved visual quality of minimally processed fresh endive, without a marked effect on the growth of the aerobic microflora or of L. monocytogenes. PMID:8880336

  17. Investigation of aerobic and anaerobic ammonium-oxidising bacteria presence in a small full-scale wastewater treatment system comprised by UASB reactor and three polishing ponds.

    PubMed

    Araujo, J C; Correa, M M S; Silva, E C; Campos, A P; Godinho, V M; Von Sperling, M; Chernicharo, C A L

    2010-01-01

    This work applied PCR amplification method and Fluorescence in situ hybridisation (FISH) with primers and probes specific for the anammox organisms and aerobic ammonia-oxidising beta-Proteobacteria in order to detect these groups in different samples from a wastewater treatment system comprised by UASB reactor and three polishing (maturation) ponds in series. Seven primer pairs were used in order to detect Anammox bacteria. Positive results were obtained with three of them, suggesting that Anammox could be present in polishing pond sediments. However, Anammox bacteria were not detected by FISH, indicating that they were not present in sediment samples, or they could be present but below FISH detection limit. Aerobic ammonia- and nitrite-oxidising bacteria were verified in water column samples through Most Probable Number (MPN) analysis, but they were not detected in sediment samples by FISH. Ammonia removal efficiencies occurred systematically along the ponds (24, 32, and 34% for polishing pond 1, 2, and 3, respectively) but the major reaction responsible for this removal is still unclear. Some nitrification might have occurred in water samples because some nitrifying bacteria were present. Also Anammox reaction might have occurred because Anammox genes were detected in the sediments, but probably this reaction was too low to be noticed. It is important also to consider that some of the ammonia removal observed might be related to NH(3) stripping, associated with the pH increase resulting from the intensive photosynthetic activity in the ponds (mechanism under investigation). Therefore, it can be concluded that more than one mechanism (or reaction) might be involved in the ammonia removal in the polishing ponds investigated in this study. PMID:20150711

  18. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Ga?sin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest. PMID:25844460

  19. Nucleotide sequences of genes coding for photosynthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria.

    PubMed

    Nagashima, K V; Matsuura, K; Wakao, N; Hiraishi, A; Shimada, K

    1997-11-01

    The nucleotide sequences of the puf operons of the Zn-bacteriochlorophyll a (Zn-BChl a)-containing photosynthetic aerobic bacteria, Acidiphilium rubrum and Acidiphilium angustum, were determined. The nucleotide sequences of the pufL and -M of Acidiphilium cryptum, Acidiphilium multivorum, and Acidiphilium organovorum were also determined. The puf operons of A. rubrum and A. angustum contained pufB, -A, -L, -M, and -C as seen in other purple bacteria with an unknown gene directly upstream of pufB. Comparing the deduced amino acid sequences of the puf genes of the Acidiphilium species with those of other purple bacteria showed that His L168, which is highly conserved in other bacteria, is replaced by a glutamic acid in the Acidiphilium species. The three-dimensional structures of the reaction centers of Blastochloris (Rhodopseudomonas) viridis and Rhodobacter sphaeroides suggest that this residue locates closely to a special pair of bacteriochlorophylls and may be involved in the stabilization and function of "Zn-BChl a". The relative content of charged amino acid residues in the L and M subunit is a little lower in A. rubrum (10% of total) than in B. viridis (12%), and the tendency is more pronounced in the cytochrome subunit: 12.5% in A. rubrum and 18.8% in B. viridis. PMID:9435141

  20. Microbial diversity of aerobic heterotrophic bacteria inside the foregut of two tyrphophilous water beetle species (Coleoptera: Dytiscidae)

    Microsoft Academic Search

    O. Schaaf; K. Dettner

    1997-01-01

    Using nutrient-rich and poor media 30 eutrophic or facultatively oligotrophic bacterial strains were isolated in a microbiological study of the aerobic, heterotrophic bacterial flora inside the foregut of the water beetle species Agabus affinis (Payk.) and Hydroporus melanarius Strm., 41 strains were isolated from the aquatic habitat of both beetles. A comparison is made between bacterial communities inside the beetles'

  1. Thermophilic aerobic biological wastewater treatment

    Microsoft Academic Search

    Timothy M LaPara; James E Alleman

    1999-01-01

    The following review article will serve to elucidate the existing state-of-the-art and breadth of technical understanding related to thermophilic aerobic biological wastewater treatment. The advantages of this technology include rapid biodegradation rates, low sludge yields, and excellent process stability. Substrate utilization rates reported in the technical literature are 3–10 times greater than that observed with analogous mesophilic processes, and sludge

  2. Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes

    Microsoft Academic Search

    Don Cowan; Rebecca Cramp; Rui Pereira; Dan Graham; Qadreyah Almatawah

    1998-01-01

    Mesophilic nitrile-degrading enzymes are widely dispersed in the Bacteria and lower orders of the eukaryotic kingdom. Two\\u000a distinct enzyme systems, a nitrilase catalyzing the direct conversion of nitriles to carboxylic acids and separate but cotranscribed\\u000a nitrile hydratase and amidase activities, are now well known. Nitrile hydratases are metalloenzymes, incorporating FeIII or CoII ions in thiolate ligand networks where they function

  3. The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European Arctic seas but does not favor endemism

    PubMed Central

    Lehours, Anne-Catherine; Jeanthon, Christian

    2015-01-01

    Despite an increasing number of studies over the last 15 years, aerobic anoxygenic photoheterotrophic (AAP) bacteria remain a puzzling functional group in terms of physiology, metabolism, and ecology. To contribute to a better knowledge of their environmental distribution, the present study aims at analyzing their diversity and structure at the boundary between the Norwegian, Greenland, and Barents Seas. The polymorphism of a marker gene encoding a sub-unit of the photosynthetic apparatus (pufM gene) was analyzed and attempted to be related to environmental parameters. The Atlantic or Arctic origin of water masses had a strong impact on the AAP bacterial community structure whose populations mostly belonged to the Alpha- and Gammaproteobacteria. A majority (>60%) of pufM sequences were affiliated to the Gammaproteobacteria reasserting that this class often represents the major component of the AAP bacterial community in oceanic regions. Two alphaproteobacterial groups dominate locally suggesting that they can constitute key players in this marine system transiently. We found that temperature is a major determinant of alpha diversity of AAP bacteria in this marine biome with specific clades emerging locally according to the partitioning of water masses. Whereas we expected specific AAP bacterial populations in this peculiar and newly explored ecosystem, most pufM sequences were highly related to sequences retrieved elsewhere. This observation highlights that the studied area does not favor AAP bacteria endemism but also opens new questions about the truthfulness of biogeographical patterns and on the extent of AAP bacterial diversity.

  4. Aerobic Heterotrophic Bacteria Indigenous to pH 2.8 Acid Mine Water: Microscopic Examination of Acid Streamers

    PubMed Central

    Dugan, Patrick R.; MacMillan, Carol B.; Pfister, Robert M.

    1970-01-01

    “Acid streamers” found in acid coal mine drainage consist of bacteria trapped within an extracellular fibrillar polymer network. Inorganic compounds also precipitate within the polymer network. Several bacteria which appear to be different and are presumed to be different species are associated in the slimy mass of the “acid streamers.” The “streamers” contain individual microcolonies or microcosms that can be recognized by a selective polysaccharide stain, which suggests that the slime streamer is a conglomeration of polymers produced by more than one species. Images PMID:4191322

  5. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia.

    PubMed

    Guo, Huaming; Liu, Zeyun; Ding, Susu; Hao, Chunbo; Xiu, Wei; Hou, Weiguo

    2015-08-01

    Intact aquifer sediments were collected to obtain As-resistant bacteria from the Hetao basin. Two strains of aerobic As-resistant bacteria (Pseudomonas sp. M17-1 and Bacillus sp. M17-15) were isolated from the aquifer sediments. Those strains exhibited high resistances to both As(III) and As(V). Results showed that both strains had arr and ars genes, and led to reduction of dissolved As(V), goethite-adsorbed As(V), scorodite As(V) and sediment As(V), in the presence of organic carbon as the carbon source. After reduction of solid As(V), As release was observed from the solids to solutions. Strain M17-15 had a higher ability than strain M17-1 in reducing As(V) and promoting the release of As. These results suggested that the strains would mediate As(V) reduction to As(III), and thereafter release As(III), due to the higher mobility of As(III) in most aquifer systems. The processes would play an important role in genesis of high As groundwater. PMID:25863882

  6. Effect of Time and Sand Abrasion on Recovery of Aerobic Bacteria, Escherichia coli, and Coliforms from Broiler Carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to determine the effect of rinse time and a sand abrasion on bacteria from whole broiler carcass rinses (WCR). Twelve eviscerated broiler carcasses were obtained from a commercial processing plant prior to chilling. Six carcasses were rinsed in 400 mL of 2.0% buffered pe...

  7. Interference by Aerobic and Anaerobic Bacteria in Children With Recurrent Group A b-Hemolytic Streptococcal Tonsillitis

    Microsoft Academic Search

    Itzhak Brook; Alan E. Gober

    1999-01-01

    Objective: To compare the frequency of recovery of aero- bic and anaerobic bacteria with interfering capability of group A b-hemolytic streptococci (GABHS) in the ton- sils of children with and without a history of recurrent GABHS pharyngotonsillitis. Patients and Methods: Tonsillar cultures were taken from a group of 20 children with and 20 without history of recurrent GABHS pharyngotonsillitis. Results:

  8. Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats.

    PubMed

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A; Brussaard, Corina P D; Underwood, Graham J C; Timmis, Kenneth N; Duran, Robert; McGenity, Terry J

    2012-05-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  9. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  10. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.

    PubMed

    Burtscher, Carola; Wuertz, Stefan

    2003-08-01

    A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37 degrees C and 24 h in Rappaport Vassiliadis medium at 43 degrees C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples that tested positive when classical isolation procedures were followed. The study shows that selective two-step enrichment is useful when very low numbers of bacterial pathogens must be detected in organic waste materials, such as biosolids. There were no false-positive results derived from DNA of dead cells in the waste sample, suggesting that it is not necessary to perform RT-PCR analyses when PCR is combined with selective enrichment. Large numbers of added nontarget bacteria did not affect detection of Salmonella spp., L. monocytogenes, and Y. enterocolitica but increased the detection limit of Staphylococcus aureus from <10 to 10(4) CFU/g of organic waste. Overall, the detection methods developed using seeded organic waste samples from one waste treatment facility (WTF) needed to be modified for satisfactory detection of pathogens in samples from other WTFs, emphasizing the need for extensive field testing of laboratory-derived PCR protocols. A survey of 13 WTFs in Germany revealed that all facilities complied with the German Biowaste Ordinance, which mandates that the end product after anaerobic digestion or aerobic composting be free of Salmonella In addition, all biosolids were free of L. monocytogenes, Staphylococcus aureus, and Y. enterocolitica, as evidenced by both classical and PCR-based detection methods. PMID:12902250

  11. Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov

    Microsoft Academic Search

    W. K. Chung; G. M. King

    2001-01-01

    Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sedi- ments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and

  12. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    PubMed

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. PMID:19959355

  13. Isolation of cellulolytic mesophilic clostridia from a municipal solid waste digestor

    Microsoft Academic Search

    L. Benoit; C. Cailliez; E. Petitdemange; J. Gitton

    1992-01-01

    Ten obligately anaerobic, cellulolytic mesophilic bacteria were isolated from a municipal solid waste digestor used for biogas\\u000a production. The isolates were rod-shaped, spore-forming bacteria in anaerobic conditions, and stained Gram-positive in young\\u000a cultures, and hence were identified asClostridium. Small regular translucent and unpigmented colonies were observed on cellulose plates. The strains were gelatinase-negative,\\u000a hydrolyzed esculin and starch, and fermented xylose

  14. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula.

    PubMed

    Tabacco, E; Righi, F; Quarantelli, A; Borreani, G

    2011-03-01

    The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 10(6) cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24h, the net energy for lactation (NE(L)), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NE(L), and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24h, the NE(L), and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at opening. In the sorghum silages, the milk yield, after 14 d of air exposure, decreased to 1,226, 1,278, and 1,250 kg/Mg of DM for C, LB, and LP, respectively. When the estimated milk yield per megagram of harvested DM of corn and sorghum silage were related to mold count, it was shown that the loss of potential milk production occurred when the mold count exceeded 4 log cfu/g of silage, and it was almost halved when the mold count reached values greater than 8 log cfu/g of silage. Inoculation with L. buchneri, at a rate of 1 × 10(6) cfu/g of fresh forage, enhanced the stability of the silage after exposure to air, and, consequently, contributed to maintaining the nutritional value of the harvested forage over time, for air exposure up to 7 d. PMID:21338806

  15. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. PMID:20627391

  16. Identification of mesophilic and thermophilic fermentative species in anaerobic granular sludge.

    PubMed

    Hernon, F; Forbes, C; Colleran, E

    2006-01-01

    Large quantities of biodegradable food waste in the form of fruit and vegetables are still being deposited in landfill sites in Ireland. The development of an anaerobic digestion process using fermentative species which degrade the carbohydrate-rich waste could divert the food waste from landfills. We identified fermentative species grown on glucose and sucrose at mesophilic and thermophilic temperatures using molecular biology techniques. The dominating fermentative bacteria of the mesophilic sludge were of the Bacteroidetes and Spirochaetes classes. Although both groups of bacteria are typically fermentative their substrate range appears to be limited. The dominating fermentative bacteria in the thermophilic sludge was Thermoanaerobacterium aotearoense of the Clostridia class. The indications are that Thermoanaerobacterium aotearoense may be highly suitable to biodegrade a carbohydrate-rich influent feed due to its possibly very rapid growth rate and also an extensive substrate range. PMID:16939079

  17. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line.

    PubMed

    Guinebretiere, M H; Girardin, H; Dargaignaratz, C; Carlin, F; Nguyen-The, C

    2003-05-15

    A food processing plant producing pasteurized purées and its zucchini purée processing line were examined for contamination with aerobic and facultative anaerobic bacterial spores during a day's operation. Multiplication of spores was also monitored in the product stored under different conditions. High concentrations of Bacillus cereus spores were found in the soil in which the zucchinis were grown (4.6+/-0.3 log CFU/g), with a background spore population of 6.1+/-0.2 log CFU/g. In the processing plant, no B. cereus or psychrotrophic bacterial spores were detected on equipment. B. cereus and psychrotrophic bacterial spores were detected after enrichment in all samples of raw zucchinis, washed zucchinis, of two ingredients (starch and milk proteins) and in processed purée at each processing step. Steam cooking of raw zucchinis and pasteurization of purée in the final package significantly reduced spore numbers to 0.5+/-0.3 log CFU/g in the processed food. During storage, numbers of spore-forming bacteria increased up to 7.8+/-0.1 log CFU/g in purée after 5 days at 20-25 degrees C, 7.5+/-0.3 log CFU/g after 21 days at 10 degrees C and 3.8+/-1.1 log CFU/g after 21 days at 4 degrees C. B. cereus counts reached 6.4+/-0.5 log CFU/g at 20-25 degrees C, 4.6+/-1.9 log CFU/g at 10 degrees C, and remained below the detection threshold (1.7 log CFU/g) at 4 degrees C. Our findings indicate that raw vegetables and texturing agents such as milk proteins and starch, in spite of their low levels of contamination with bacterial spores and the heat treatments they undergo, may significantly contribute to the final contamination of cooked chilled foods. This contamination resulted in growth of B. cereus and psychrotrophic bacterial spores during storage of vegetable purée. Ways to eliminate such contamination in the processing line are discussed. PMID:12593925

  18. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates. PMID:19501962

  19. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2?), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  20. Survival of Aerobic and Anaerobic Bacteria in Purulent Clinical Specimens Maintained in the Copan Venturi Transystem and Becton Dickinson Port-a-Cul Transport Systems

    Microsoft Academic Search

    DIANE M. CITRON; YUMI A. WARREN; MARIE K. HUDSPETH; ELLIE J. C. GOLDSTEIN

    2000-01-01

    Protection of anaerobic bacteria from exposure to oxygen during the transport of clinical specimens to the laboratory is crucial for the survival of these organisms. Because the use of swabs may encourage collection of superficial specimens that represent colonizing bacteria instead of the etiologic agents found deeper in the infected tissues, aspirates have always been preferable to swab systems for

  1. Aerobic Gram-Positive and Gram-Negative Bacteria Exhibit Differential Sensitivity to and Transformation of 2,4,6Trinitrotoluene (TNT)

    Microsoft Academic Search

    Mark E. Fuller

    1997-01-01

    .   A systematic evaluation of the ability of different bacterial genera to transform 2,4,6-trinitrotoluene (TNT), and grow in\\u000a its presence, was conducted. Aerobic Gram-negative organisms degraded TNT and evidenced net consumption of reduced metabolites\\u000a when cultured in molasses medium. Some Gram-negative isolates transformed all the initial TNT to undetectable metabolites,\\u000a with no adsorption of TNT or metabolites to cells. Growth

  2. Searching for Mesophilic Thermotogales Bacteria: “Mesotogas” in the Wild? †

    PubMed Central

    Nesbø, Camilla L.; Kumaraswamy, Rajkumari; Dlutek, Marlena; Doolittle, W. Ford; Foght, Julia

    2010-01-01

    All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias. PMID:20495053

  3. Evaluation of the Use of PCR and Reverse Transcriptase PCR for Detection of Pathogenic Bacteria in Biosolids from Anaerobic Digestors and Aerobic Composters

    Microsoft Academic Search

    Carola Burtscher; Stefan Wuertz

    2003-01-01

    A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and

  4. Toxicity of nitrite toward mesophilic and thermophilic sulphate-reducing, methanogenic and syntrophic populations in anaerobic sludge.

    PubMed

    O'Reilly, Caroline; Colleran, Emer

    2005-02-01

    The various problems associated with treating sulphate-containing wastewaters stem inherently from successful competitive interactions between sulphate reducing bacteria (SRB) and other bacteria involved in the process, resulting in the formation of H(2)S. Prevention of in-reactor sulphide generation by use of specific SRB inhibitors presents a potential solution. Nitrite has been reported to be a specific inhibitor of SRB but its possible toxicity to syntrophic and methanogenic members of the anaerobic consortium has not been investigated. In batch activity and toxicity tests, under both mesophilic and thermophilic conditions, nitrite, at concentrations of up to 150 mg L(-1), was found to be ineffective as a specific inhibitor of SRB, and was also shown to have an inhibitory effect on the activity of syntrophic and methane-producing bacteria in mesophilic and thermophilic digester sludge samples. PMID:15759145

  5. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions

    Microsoft Academic Search

    Sigrun J Jahren; Jukka A Rintala; Hallvard Ødegaard

    2002-01-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55°C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60–65% SCOD removal from the first day onwards. During the 107 days of experiment,

  6. Surface properties of autoagglutinating mesophilic aeromonads.

    PubMed

    Paula, S J; Duffey, P S; Abbott, S L; Kokka, R P; Oshiro, L S; Janda, J M; Shimada, T; Sakazaki, R

    1988-10-01

    The surface characteristics of 24 autoagglutinating (AA+) mesophilic aeromonads were investigated. One group of 16 was found to be highly related serologically by their reactive pattern against O antisera generated against three reference strains. Subsequent characterization of 11 of these isolates (group 1) indicated that they had the following properties in common: precipitation after boiling (PAB+), membership of serogroup O:11 (typing scheme of Sakazaki and Shimada), resistance to lysis by bacteriophage Aeh1, and possession of a surface layer (S layer) as determined by transmission electron microscopy. Strains not exhibiting the same serologic reactivity pattern belonged to diverse serogroups (other than O:11), were generally susceptible to lysis by Aeh1, and were S layer negative by transmission electron microscopy (group 2). Analysis of selected isolates representing both groups indicated that group 2 strains were usually more hydrophobic than group 1 isolates in several different assays; both groups, however, possessed high surface charge as determined by binding to DEAE-cellulose. Group 1 isolates were more virulent than group 2 strains tested as determined by lower 50% lethal doses for mice. On the basis of the results of the kinetics of autoagglutination in broth, relative surface hydrophobicity, uptake of Congo red, agglutination of yeast cells, and electrophoretic protein profiles of whole-cell extracts, the surface layer associated with O:11 mesophilic aeromonads appears to be distinct from that of Aeromonas salmonicida. The results suggest that a new pathogenic group of mesophilic aeromonads linked through a common AA phenotype, serogroup, and S layer cause serious infections in both humans and animals (fish). PMID:3417353

  7. Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen.

    PubMed

    Kaech, Andres; Vallotton, Nathalie; Egli, Thomas

    2005-04-01

    The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline. PMID:15900970

  8. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria.

    PubMed

    Jourand, Philippe; Giraud, Eric; Béna, Gilles; Sy, Abdoulaye; Willems, Anne; Gillis, Monique; Dreyfus, Bernard; de Lajudie, Philippe

    2004-11-01

    Data on 72 non-pigmented bacterial strains that specifically induce nitrogen-fixing root nodules on the legume species Crotalaria glaucoides, Crotalaria perrottetii and Crotalaria podocarpa are reviewed. By SDS-PAGE analysis of total protein patterns and by 16S rRNA PCR-RFLP, these strains form a homogeneous group that is separate from other legume root-nodule-forming bacteria. The 16S rRNA gene-based phylogeny indicates that these bacteria belong to the genus Methylobacterium. They can grow on C(1) compounds such as methanol, formate and formaldehyde but not methylamine as sole carbon source, and carry an mxaF gene, encoding methanol dehydrogenase, which supports their methylotrophic metabolism. Presence of a nodA nodulation gene, and ability to nodulate plants of Crotalaria species and to fix nitrogen are features that separate the strains currently included in this group from other members of the genus Methylobacterium. The present study includes additional genotypic and phenotypic characterization of this novel Methylobacterium species, i.e. nifH gene sequence, morphology, physiology, enzymic and carbon source assimilation tests and antibiotic resistance. The name Methylobacterium nodulans sp. nov. (type strain, ORS 2060(T)=CNCM I 2342(T)=LMG 21967(T)) is proposed for this group of root-nodule-forming bacteria. PMID:15545469

  9. High-rate anaerobic degradation of 5 and 6 carbon sugars under thermophilic and mesophilic conditions.

    PubMed

    Forbes, C; Hughes, D; Fox, J; Ryan, P; Colleran, E

    2010-06-01

    In this research paper, a comparison between thermophilic and mesophilic anaerobic degradation of a variety of the simple sugar components of carbohydrate rich biomass is presented. In order to investigate the degradability of these basic sugars, three synthetic sugar based influents were supplied to two high rate upflow anaerobic hybrid reactors (UAHR) operated at 37 degrees C (R1) and 55 degrees C (R2). These influent streams were: d-glucose/sucrose; l-arabinose/d-xylose and l-rhamnose/d-galacturonic acid. The reactors were challenged in terms of influent composition rather than loading rate and were therefore operated at a maximum volumetric loading rate (VLR) of 4.5 gCODl(-1)d(-1) during stable reactor performance. It was found that a switch from a d-glucose/sucrose synthetic influent to an influent composed of l-arabinose/d-xylose resulted in failure of the mesophilic reactor while the thermophilic UAHR was able to tolerate the change of sugar influent at an unchanged VLR of 4.5 gCODl(-1)d(-1). A subsequent phasing-in approach was used to introduce new sugar influent streams and proved highly successful. The physiology of the biomass was assessed and it was noted that thermophilic anaerobic digestion (AD) involved the formation of acetate and H(2), implying the involvement of homoacetogenic bacteria, while mesophilic AD proceeded via the formation of other intermediates. PMID:20133126

  10. [Comparative characteristics of free-living ultramicroscopical bacteria obtained from extremal biotopes].

    PubMed

    Suzina, N E; Esikova, T Z; Oleinikov, R R; Gafarov, B; Shorokhov, A P; Polivtseva, V N; Ross, D V; Abashina, T N; Duda, V I; Boronin, A M

    2015-01-01

    We isolated 50 strains of free-living ultrasmall bacteria with a cell volume that varies from 0.02 to 1.3 microm3 from a range of extremal natural biotopes, namely permafrost soils, oil slime, soils, lake silt, thermal swamp moss, and the skin integuments of the clawed frog, Xenopus laevis. Of them, 15 isolates, characterized by a cell size of less than 0.1 microm3 and a genome size from 1.5 to 2.4 Mb, were subsumed to ultramicrobacteria belonging to different philogenetic groups (Alphaproteobacteria, Bacteroidetes, Actinobacteria) and genera (Kaistia, Chryseobacterium, Microbacterium, Leucobacter, Leifsonia, and Agrococcus) of the Bacteria domain. They are free-living mesophilic heterotrophic aerobic bacteria. The representatives of Kaistia and Chryseobacterium genera were capable of facultative parasitism on other species of chemo-organotrophic bacteria and cyanobacteria. The ultramicrobacteria differed in their morpholgy, cell ultrastructural organization, and physiological and biochemical features. According to the fine structure of their cell walls, the isolates were subdivided into two groups, namely Gram-positive and Gram-negative forms. PMID:26027350

  11. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov.

    PubMed

    Yurkov, V; Stackebrandt, E; Holmes, A; Fuerst, J A; Hugenholtz, P; Golecki, J; Gad'on, N; Gorlenko, V M; Kompantseva, E I; Drews, G

    1994-07-01

    We analyzed the 16S ribosomal DNAs of three obligately aerobic, bacteriochlorophyll a-containing bacteria, "Roseococcus thiosulfatophilus," "Erythromicrobium ramosum," and new isolate T4T (T = type strain), which was obtained from a marine cyanobacterial mat. "Roseococcus thiosulfatophilus" is a member of the alpha-1 subclass of the Proteobacteria and is moderately related to Rhodopila globiformis, Thiobacillus acidophilus, and Acidiphilium cryptum (level of sequence similarity, 90%). "Erythromicrobium ramosum" and isolate T4T are closely related to Erythrobacter longus and Porphyrobacter neustonensis (level of sequence similarity, 95%). These organisms are members of the alpha-4 subclass of the Proteobacteria. Strain T4T is a motile, red or orange bacterium. The major carotenoids are bacteriorubixanthinal and erythroxanthin sulfate. In vivo measurements revealed bacteriochlorophyll absorption maxima at 377, 590, 800, and 868 nm. Strain T4T grows in the presence of 5 to 96/1000 salinity and uses glucose, fructose, acetate, pyruvate, glutamate, succinate, and lactate as substrates. On the basis of its distinct phylogenetic position and phenotypic characteristics which are different from those of Erythrobacter longus, we propose that strain T4T should be placed in a new species of the genus Erythrobacter, Erythrobacter litoralis. The descriptions of "Roseococcus thiosulfatophilus" and "Erythromicrobium ramosum" are emended. PMID:7520734

  12. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  13. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics ?-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  14. Mesophilic and thermotolerant actinomycetes in strongly heated soils

    Microsoft Academic Search

    A. I. Kurapova; G. M. Zenova; V. K. Orleanskii; A. S. Manucharov; Zh. Norovsuren

    2008-01-01

    Mesophilic and thermotolerant actinomycetes were identified in strongly heated desert-steppe soils of Mongolia, mountainous\\u000a meadow soils of the Central Caucasus, and cyanobacterial films on volcanic ash near hot springs of Kamchatka. Thermotolerant\\u000a actinomycetes in these soil objects were more abundant and had a greater taxonomic diversity in comparison with mesophilic\\u000a actinomycetes. Thermotolerant Streptomyces were present in all the objects, except

  15. Isolation of cellulolytic mesophilic clostridia from a municipal solid waste digestor.

    PubMed

    Benoit, L; Cailliez, C; Petitdemange, E; Gitton, J

    1992-06-01

    Ten obligately anaerobic, cellulolytic mesophilic bacteria were isolated from a municipal solid waste digestor used for biogas production. The isolates were rod-shaped, spore-forming bacteria in anaerobic conditions, and stained Gram-positive in young cultures, and hence were identified asClostridium. Small regular translucent and unpigmented colonies were observed on cellulose plates. The strains were gelatinase-negative, hydrolyzed esculin and starch, and fermented xylose and arabinose. The lecithinase, lipase, and indole tests were negative. The major fermentation products from cellulose included ethanol and acetate. The morphological and other biochemical characteristics indicated that these clostridia did not correspond to any previously described species. All the strains produced high activities of extracellular cellulases in cellulose media and degraded paper. PMID:24192858

  16. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37°C) and thermophilic (60°C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42mol H2/mol hexose) was three times the mesophilic yield (0.13mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. PMID:26101964

  17. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Microsoft Academic Search

    Kirit D. Chapatwala; G. R. V. Babu; Larry Baresi; Richard M. Trunzo

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in

  18. Sequencing mesophilic and thermophilic anaerobic digesters. Final report

    SciTech Connect

    Not Available

    1982-12-01

    This project employed two laboratory bench scale, complete-mix anaerobic sludge digesters arranged in a series configuration. The first digester was operated at 35/sup 0/C (mesophilic) and the second at 50/sup 0/C (thermophilic). A portion of the thermophilic sludge was recycled through an aeration basin. As a comparison to the mesophilic-thermophilic sequencing, a mesophilic-mesophilic digester sequence, without sludge recycle to the aeration basin, was operated in parallel to the test units and loaded at an equivalent rate. Conclusions of this study are as follows: in establishing a thermophilic anaerobic digester, a slow-start procedure, in which the temperature is increased at a rate of 0.6/sup 0/C per day with loading, appears to produce a more stable thermophilic digester in a shorter period of time than a quick-start procedure, in which the temperature is increased rapidly with no loading. Even after a year, the slow-start thermophilic digester proved to be unstable once sequencing began. A greater volatile solids, COD, BOD, and grease reduction with a higher gas production was achieved using a mesophilic-mesophilic sequence, probably, in part, due to the instability (volatile acids in the effluent) of the thermophilic digester in the mesophilic-thermophilic sequence. A greater total kjeldahl N (TKN) and total coliform destruction was achieved in the thermophilic digester, however, poor dewatering characteristics, as indicated by the capillary suction time (CST), and an obnoxious odor were also evident. Other than an increase in effluent suspended solids, the recycle of thermophilic sludge to an aeration basin produced no discernable effect. 9 figs., 3 tabs.

  19. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  20. Bacteria, toxins, and the peritoneum

    Microsoft Academic Search

    Toni Hau

    1990-01-01

    Intraperitoneal infections are caused by members of the gastrointestinal flora, mainlyEscherichia coli, enterococci, Klebsiella, Enterobacter, Proteus, Bacteroides, anaerobic cocci, Clostridia, and Fusobacteria. The Gram-negative aerobic bacteria exert their pathogenic potential mainly through endotoxin which acts by way of mediators, causing systemic septic response and, initially, the local response of the peritoneal cavity. The main virulence factors of anaerobic bacteria are

  1. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments

    Microsoft Academic Search

    D. J. W. Moriarty; A. C. Hayward

    1982-01-01

    Bacteria in sediments from the surface aerobic layer (0–1 cm) and a deeper anaerobic layer (20–21 cm) of a seagrass bed were examined in section by transmission electron microscopy. Bacteria with a Gram-negative ultrastructure made up 90% of bacteria in the surface layer, and Gram-positive bacteria comprised 10%. In the anaerobic zone, Gram-negative bacteria comprised 70% and Gram-positive bacteria 30%

  2. A survey of bacteria and fungi occurring during composting and self-heating processes

    Microsoft Academic Search

    J. RYCKEBOER; J. MERGAERT; K. VAES; S. KLAMMER; D. DE CLERCQ; J. COOSEMANS; H. INSAM; J. SWINGS

    2003-01-01

    Composting is a controlled self-heating, aerobic solid phase biodegradative process of organic materials. The process comprises mesophilic and thermophilic phases involving numerous microorganisms. In several successive steps, microbial communities degrade organic substrates into more stable, humified forms and inorganic products, gener- ating heat as a metabolic waste product. Due to the complexity of substrates and intermedi- ate products, microbial diversity

  3. Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag ( Acorus calamus L.)

    Microsoft Academic Search

    Roman Marecik; Pawe? Króliczak; Katarzyna Czaczyk; Wojciech Bia?as; Anna Olejnik; Pawe? Cyplik

    2008-01-01

    In presented study the capability of microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus) to the atrazine degradation was assessed. Following isolation of the microorganisms counts of psychrophilic bacteria, mesophilic\\u000a bacteria and fungi were determined. Isolated microorganisms were screened in terms of their ability to decompose a triazine\\u000a herbicide, atrazine. Our results demonstrate that within the rhizosphere of

  4. Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures

    Microsoft Academic Search

    R. I. Mackie; M. P. Bryant

    1995-01-01

    Methanogenesis was studied using stirred, bench-top fermentors of 3-1 working volume fed on a semi-continuous basis with waste obtained from cattle fed a high grain, finishing diet. Digestion was carried out at 40 and 60°C. CH4 production was 11.8, 18.3, 61.9 and 84.5% higher in the thermophilic than the mesophilic digestor at the 3, 6, 9 and 12 g volatile

  5. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structure and process stability.

    PubMed

    Li, Lei; He, Qin; Ma, Yao; Wang, Xiaoming; Peng, Xuya

    2015-08-01

    Organic loading rate (OLR) disturbances were introduced into a mesophilic anaerobic digester treating food waste (FW) to induce stable and deteriorative phases. The microbial community of each phase was investigated using 454-pyrosequencing. Results show that the relative abundance of acid-producing bacteria and syntrophic volatile fatty acid (VFA) oxidizers increased dramatically at deteriorative phase, while the dominant methanogens did not shift from acetoclastic to hydrogenotrophic groups. The mismatching between bacteria and methanogens may partially be responsible for the process deterioration. Moreover, the succession of predominant hydrogenotrophic methanogens reduced the consumption efficiency of hydrogen; meanwhile, the dominant Methanosaeta with low acetate degradation rate, and the increase of inhibitors concentrations further decreased its activity, which may be the other causes for the process failure. These results improve the understanding of the microbial mechanisms of process instability, and provide theoretical basis for the efficient and stable operation of anaerobic digester treating FW. PMID:25879178

  6. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  7. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  8. Semi-continuous mesophilic anaerobic digester performance under variations in solids retention time and feeding frequency.

    PubMed

    Manser, Nathan D; Mihelcic, James R; Ergas, Sarina J

    2015-08-01

    The goal of this research was to understand the effect of solids retention time (SRT) and feeding frequency on the performance of anaerobic digesters used to recover bioenergy from swine waste. Semi-continuous mesophilic anaerobic digesters were operated at varying SRTs and feeding frequencies. Performance metrics included biogas and methane production rates, biomass robustness and functionality and removals of volatile solids, soluble chemical oxygen demand, the fecal-indicator bacteria Escherichia coli, and the human pathogen Salmonella. Biochemical methane formation potential and specific methanogenic activity assays were used to demonstrate biomass robustness and functionality. Results indicated that anaerobic digesters fed weekly had higher average methane yields (0.20 vs. 0.18m(3)CH4/kg-VSadded), specific methanogenic activities (40 vs. 35ml/day), and fecal indicator bacteria destruction (99.9% vs. 99.4%) than those fed every-other day. Salmonella, soluble COD, and VS destruction did not change with varied feeding frequency; however, higher removals were observed with longer SRT. PMID:25965953

  9. Corrosion inhibition of mild steel by aerobic biofilm

    Microsoft Academic Search

    Shobhana Chongdar; G. Gunasekaran; Pradeep Kumar

    2005-01-01

    Mild steel electrodes were incubated in phosphate-buffered basal salt solution (BSS) having two different aerobic bacteria, viz. Pseudomonas alcaligenes and Pseudomonas cichorii. In the medium containing P. cichorii, significant reduction in the corrosion rate was observed due to the surface reaction leading to the formation of corrosion inhibiting bacterial biofilm. With a view to understand the mechanism of microbially influenced

  10. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, ?-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures. PMID:26042978

  11. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

  12. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  13. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis

    Microsoft Academic Search

    Hang-Sik Shin; Jong-Ho Youn; Sang-Hyoun Kim

    2004-01-01

    Hydrogen production from food waste by the mesophilic and thermophilic acidogenic culture acclimated with food waste at 5 days HRT for the effect of pH and volatile solid (VS) concentrations was evaluated. The biogas produced from the thermophilic acidogenic culture was free of methane at all tested pH and VS concentrations, but methane was detected from the mesophilic acidogenic culture

  14. Distributional patterns of mesophilous and thermophilous microfungi in two bahamian soils

    Microsoft Academic Search

    S. E. Gochenaur

    1975-01-01

    This study focuses on the characteristics displayed by mesophilous and thermophilous microfungal populations occurring in two tropical monodominant plant communities, a Cocos nucifera grove and a Casuarina equisetifolia forest, that provide distinctly different edaphic conditions. The mesophilous population sampled at 25°C by the dilution plate method and the thermophilous population that developed on soil plates incubated at 45°C consisted of

  15. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  16. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. PMID:24656488

  17. Evaluation of mesophilic biodegraded grape marc as soil fertilizer.

    PubMed

    Moldes, Ana B; Vázquez, Manuel; Domínguez, José M; Díaz-Fierros, Francisco; Barral, María T

    2007-04-01

    The wine industry generates a large amount of wastes, including grape marc and vinification lees. These substances can be used to produce enzymes or other food additives. Composting could be a successful strategy for the sustainable and complete recycling of grape marc. In this work, the mesophilic biodegradation of grape marc during 60 d under microaerobic conditions using several ratios of seeds, skin, and stem were studied. The presence of Penicillium spp. was detected at the beginning of the composting. Changes in chemical and biological parameters were evaluated. Biodegraded grape marc with stem showed the best organic matter properties (C/N ratio of 14 and N content of 37 g/kg) and a germination index of 155% for the growth of ray grass seeds. The results suggest that the biodegraded of grape marc could be used as fertilizer, especially for ray grass crops. PMID:17625264

  18. Psychrophilic and Mesophilic Fungi in Frozen Food Products

    PubMed Central

    Kuehn, Harold H.; Gunderson, Millard F.

    1963-01-01

    The mold flora of certain frozen pastries and chicken pies was investigated. Molds were determined qualitatively or quantitatively, or both, by preparing pour plates of the blended product and incubating the plates at various temperatures. The mesophilic fungal flora developed on plates incubated at 10 and 20 C, whereas psychrophilic fungi were obtained on plates incubated at 0 and 5 C. About 2,000 cultures of fungi, representing about 100 different species, were isolated from various products. Four different brands of blueberry, two brands of cherry pastries, two brands of apple, and one brand of raspberry pastries were examined. In addition, two brands of chicken pies were studied. Blueberry pastries had a much higher total fungal population than the other products, although different brands of blueberry pastries varied considerably. Blueberry pastries had from 347 to 1,586 psychrophilic fungi per g. Cherry pastries had about 70 to 110 psychrophiles per g, and apple pastries had 19 to 92 psychrophiles per g. Chicken pies contained very few psychrophilic fungi, about 15 per g. Aureobasidium pullulans was recovered most frequently. About 90% of the psychrophilic fungi found in blueberry products was A. pullulans. Depending upon the brand of cherry pastry, either Phoma spp. or A. pullulans was the most common fungus present. Apple pastries also displayed brand variation, but were unique in having many mesophilic aspergilli. This genus was generally absent from other products. The Penicillium content of apple pastries was also rather high; 50% of the psychrophilic flora was represented by this genus. The psychrophilic fungal flora of chicken pies was composed primarily of penicillia (50%) and Chrysosporium pannorum (46%). PMID:13927344

  19. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step towards such a system was to evaluate two different on-line instruments. Both had severe stability problems, which made them unsuitable as parts in a system for control of the nutrient dosage. PMID:16459803

  20. [Start-up and operation characteristics of aerobic granular short-cut nitrification process].

    PubMed

    Yang, Yang; Zuo, Jian-E; Bu, De-Hua; Gu, Xia-Sheng

    2007-11-01

    In a lab-scale aerated upflow sludge bed (AUSB) reactor inoculated with the mixture of anaerobic granular sludge and aerobic sludge, using synthetic ammonia-rich wastewater as influent, aerobic short-cut nitrification granules were cultivated. After that, the short-cut nitrification reactor could be operated stably with very high efficiency under mesophilic condition (30 approximately 35 degrees C), and the influent loading rate (NH4(+) -N) could reach 2.5 approximately 3.0 kg/(m3 x d). The ammonia removal efficiency and the short-cut nitrification ratio (NO2(-)/NOx(-)) were above 90% respectively. Some organic COD (about 100 mg/L) existed in the influent had no obvious effects on the operation of the short-cut nitrification process. The short-cut nitrification reactor could also be operated stably with very high efficiency under ambient temperature (about 20 degrees C). PMID:18290466

  1. Enantiomeric resolution of 2-aryl propionic esters with hyperthermophilic and mesophilic esterases: contrasting thermodynamic mechanisms.

    PubMed

    Sehgal, Amitabh C; Kelly, Robert M

    2002-07-17

    The enantiomeric resolution of 2-aryl propionic esters by hyperthermophilic and mesophilic esterases was found to be governed by contrasting thermodynamic mechanisms. Entropic contributions predominated for mesophilic esterases from Candida rugosa and Rhizomucor miehei, while enthalpic forces controlled this resolution by the esterase from the extremely thermoacidophilic archaeon, Sulfolobus solfataricus P1. This disparity in thermodynamic mechanism can be attributed to the differences in conformational flexibility of mesophilic and thermophilic enzymes as they relate to the temperature range (4-70 degrees C) examined. PMID:12105890

  2. A novel biological sulfate reduction method using hydrogenogenic carboxydotrophic mesophilic bacteria.

    PubMed

    Sinharoy, Arindam; Manikandan, N Arul; Pakshirajan, Kannan

    2015-09-01

    Sulfate reduction by carbon monoxide (CO) utilizing anaerobic biomass from a large scale upflow anaerobic sludge blanket reactor was studied. Anaerobic mixed microbial consortia from five different sources were initially examined for their biological CO conversion potential. Among the different biomass, the biomass from an upflow anaerobic sludge blanket reactor treating domestic wastewater, located in Kavoor, Karnataka, India, showed a maximum CO conversion efficiency. The effect of three main culture parameters, i.e. inoculum volume, initial CO concentration and temperature on simultaneous CO conversion and sulfate reduction was assessed employing the Taguchi experimental design technique. A maximum CO conversion of 85.62% and a maximum sulfate reduction of 50.65% were achieved. Furthermore, the experimental data was fitted to substrate inhibition models reported in the literature. Among the different models, Monods and Haldane kinetic models were found most suitable to describe the kinetics of biomass growth and CO removal by the anaerobic biomass. PMID:26081625

  3. Antimicrobial susceptibility and extended-spectrum beta-lactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends (SMART 2009-2011).

    PubMed

    Biedenbach, Douglas J; Bouchillon, Samuel K; Hoban, Daryl J; Hackel, Meredith; Phuong, Doan Mai; Nga, Tran Thi Thanh; Phuong, Nguyen Tran My; Phuong, Tran Thi Lan; Badal, Robert E

    2014-08-01

    Treatment options for multidrug-resistant pathogens remain problematic in many regions and individual countries, warranting ongoing surveillance and analysis. Limited antimicrobial susceptibility information is available for pathogens from Vietnam. This study determined the bacterial susceptibility of aerobic gram-negative pathogens of intra-abdominal infections among patients in Vietnam during 2009-2011. A total of 905 isolates were collected from 4 medical centers in this investigation as part of the Study for Monitoring Antimicrobial Resistance Trends. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL) rates among the appropriate species were determined by a central laboratory using Clinical and Laboratory Standards Institute methods. Among the species collected, Escherichia coli (48.1% ESBL-positive) and Klebsiella pneumoniae (39.5% ESBL-positive) represented the majority (46.4%) of the isolates submitted for this study. Ertapenem MIC90 values were lowest for these 2 species at 0.12 and 0.25?g/mL and remained unchanged for ESBL-positive isolates. Imipenem MIC90 values were also the same for all isolates and ESBL-positive strains at 0.25 and 0.5?g/mL, respectively. Ertapenem MIC90 values for additional species with sufficient numbers for analysis, including Enterobacter cloacae, Proteus mirabilis, Acinetobacter baumannii, and Pseudomonas aeruginosa, were 1, 0.06, >4, and >4?g/mL, respectively. Analysis of beta-lactamases in a subset of 132 phenotypically ESBL-positive Enterobacteriaceae demonstrated that CTX-M variants, particularly CTX-M-27 and CTX-M-15, were the predominant enzymes. High resistance rates in Vietnam hospitals dictate continuous monitoring as antimicrobial inactivating enzymes continue to spread throughout Asia and globally. PMID:24923210

  4. Biofilm Performance in an Aerobic Fluidized Bed Reactor During the Start-Up Period

    Microsoft Academic Search

    Dandan Zhou; Heli Wang; Xiaotao Bi; Shuangshi Dong

    2008-01-01

    This study investigated the performance of an aerobic fluidized-bed biofilm reactor (AFBBR) at the start-up stage. By means of cultivating bacteria naturally in a growth culture medium that has similar ingredients as the feed water for the AFBBR reactor, the seeding bacteria solution with sufficient amount of lively and well-acclimated bacteria and very low suspended solid was obtained after 4

  5. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    Microsoft Academic Search

    PAUL L. E. BODELIER; JACOBUS A. LIBOCHANT; CEES W. P. M. BLOM; H. J. Laanbroek

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria, The oxygen- releasing, aerenchymatous emergent macrophyte Glycerin maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer, The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by

  6. The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis

    PubMed Central

    Wagley, Sariqa; Hemsley, Claudia; Thomas, Rachael; Moule, Madeleine G.; Vanaporn, Muthita; Andreae, Clio; Robinson, Matthew; Goldman, Stan; Wren, Brendan W.; Butler, Clive S.

    2014-01-01

    The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some ?-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated. PMID:24214943

  7. BOGUS BACTERIA...

    NSDL National Science Digital Library

    Mrs. Deaton

    2007-01-24

    Here are some websites to get you started... Just click on the links and start searching! microbe world- bacteria Bacteria Rule Quiz! Bacteria.... Harmful Bacteria Bacteria Museum Bacteria! Microbes- all sorts of info... When you are finished looking at the sites or when you have enough information concerning bacteria, ask Mrs. Deaton for some books that can give you even more DETAIL!!! *Don\\'t forget to keep track of your information on your I-CHARTS... ...

  8. Aerobic Glycolysis: Beyond Proliferation

    PubMed Central

    Jones, William; Bianchi, Katiuscia

    2015-01-01

    Aerobic glycolysis has been generally associated with cancer cell proliferation, but fascinating and novel data show that it is also coupled to a series of further cellular functions. In this Mini Review, we will discuss some recent findings to illustrate newly defined roles for this process, in particular in non-malignant cells, supporting the idea that metabolism can be considered as an integral part of cellular signaling. Consequently, metabolism should be regarded as a plastic and highly dynamic determinant of a wide range of cellular specific functions.

  9. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  10. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  11. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  12. Psychrophilic, mesophilic, and thermophilic triosephosphate isomerases from three clostridial species.

    PubMed Central

    Shing, Y W; Akagi, J M; Himes, R H

    1975-01-01

    Triosephosphate isomerase was purified to homogeneity as judged by analytical gel electrophoresis from clostridium sp. strain 69, clostridium pasteurianum, and C. thermosaccharolyticum, which grow optimally at 18, 37, and 55 C, respectively. Comparative studies on these purified proteins showed that they had the same molecular weight (53,000) and subunit molecular weight (26,500). They were equally susceptible to the active site-directed inhibitor, glycidol phosphate. However, their temperature and pH optima, as well as their stabilities to heat, urea, and sodium dodecyl sulfate, differed. The proteins also had different mobilities in acrylamide gel electrophoresis. This difference in ionic character was also reflected in the elution behavior of the enzymes from hydroxyapatite and in the isoelectric points determined by isoelectric focusing in acrylamide gel. The amino acid composition of these proteins showed that the thermophilic enzyme contains a greater amount of proline than the other enzymes. The ratio of acidic amino acids to basic amino acids was 1.79, 1.38, and 1.66 for the thermophilic mesophilic and psychrophilic enzymes, respectively. This is consistent with the relative isoelectric point values of these three enzymes. Images PMID:235509

  13. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  14. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  15. Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor.

    PubMed

    Yang, Sen-Lin; Tang, Yue-Qin; Gou, Min; Jiang, Xia

    2015-04-01

    A mesophilic anaerobic moving bed biofilm reactor (MBBR) was operated to evaluate the effect of sulfate addition on methane production and sulfate reduction using acetate as the sole carbon source. The results show that at the organic loading rate of 4.0 g TOC/L/day, the TOC removal efficiencies and the biogas production rates achieved over 95 % and 7000 mL/L/day without sulfate, respectively, and slightly decreased with sulfate addition (500-800 mg/L). Methane production capacities were not influenced significantly with the addition of sulfate, while sulfate reduction efficiencies were not stable with 23-87 % in the acetate-fed reactor. Fluorescent in situ hybridization (FISH) was used to analyze the functional microbial compositions of acetate-degrading methane-producing bacteria (MPB) and sulfate-reducing bacteria (SRB) in the reactor. The results found that as the increase of sulfate concentration, the proportion of Methanomicrobiales increased up to 58?±?2 %, while Methanosaeta and Methanosarcina decreased. The dominant methanogens shifted into hydrogenotrophic methanogens from even distribution of acetoclastic and hydrogenotrophic methanogens. When hydrogenotrophic methanogens were dominant, sulfate reduction efficiency was high, while sulfate reduction efficiency was low as acetoclastic methanogens were dominant. PMID:25427678

  16. The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds

    Microsoft Academic Search

    R. A. Laycock

    1974-01-01

    The bacteria associated with the surface of fronds of the sublittoral brown alga Laminaria longicruris were investigated over a 13-month period on the coast of Nova Scotia (Canada). A psychrophilic population was found to be associated with the frond during the winter and a mesophilic population with the decaying frond during the summer. Numbers of psychrophiles varied inversely with ambient

  17. Aerobic vaginitis in pregnancy.

    PubMed

    Donders, Ggg; Bellen, G; Rezeberga, D

    2011-09-01

    Aerobic vaginitis (AV) is an alteration in vaginal bacterial flora that differs from bacterial vaginosis (BV). AV is characterised by an abnormal vaginal microflora accompanied by an increased localised inflammatory reaction and immune response, as opposed to the suppressed immune response that is characteristic of BV. Given the increased local production of interleukin (IL)-1, IL-6 and IL-8 associated with AV during pregnancy, not surprisingly AV is associated with an increased risk of preterm delivery, chorioamnionitis and funisitis of the fetus. There is no consensus on the optimal treatment for AV in pregnant or non-pregnant women, but a broader spectrum drug such as clindamycin is preferred above metronidazole to prevent infection-related preterm birth. The exact role of AV in pregnancy, the potential benefit of screening, and the use of newer local antibiotics, disinfectants, probiotics and immune modulators need further study. PMID:21668769

  18. Fermentation of Wood-dust by Cellulose Bacteria

    Microsoft Academic Search

    Artturi I. Virtanen

    1946-01-01

    IN this laboratory, fermentation of birch, aspen and pine-dusts has been investigated by enrichment cultures of thermophilic1, and recently also of mesophilic2, cellulose bacteria. he Tfiner the wood was ground, the more of the cellulose was fermented. In the best cases, a fermentation of about 70 per cent of cellulose in wood was obtained with the leaf-tree dust at 60°

  19. Different management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk.

    PubMed

    Miller, R A; Kent, D J; Boor, K J; Martin, N H; Wiedmann, M

    2015-07-01

    Bacterial endospores (also referred to as spores) present in raw milk are capable of surviving pasteurization and other adverse conditions encountered during dairy powder production. Therefore, requiring low spore levels in raw ingredients (e.g., raw milk) may be necessary for producing dairy powders with low spore counts. To identify potential associations between management practices and spore levels in raw milk, we sampled bulk tank raw milk from 33 farms throughout New York State every other month for 1yr. Following spore pasteurization (80°C for 12min), samples were incubated at 3 different temperatures to enumerate psychrotolerant (6°C for 10 d), mesophilic (32°C for 48h), and thermophilic (55°C for 48h) spores. An additional enrichment procedure was used to detect spores present at low levels (<10 spores/mL). Overall, psychrotolerant, mesophilic, and thermophilic spores were detected (at levels ?10 spores/mL) in 1, 74, and 58% of bulk tank raw milk samples, respectively. Although thermophilic spore levels could not be quantified (due to bacterial swarming), mesophilic spore levels ranged from below detection (<10 spores/mL) to 680 spores/mL. Data collected through surveys were used to identify management practices associated with either mesophilic or thermophilic spore levels. We found that different management practices are associated with mesophilic and thermophilic spore levels. Low mesophilic spore levels in bulk tank raw milk samples were associated with (1) large herd size, (2) use of sawdust or sand bedding, and (3) not fore stripping during the premilking routine. Management practices that were associated with lower odds of having a thermophilic spore level ?10 spores/mL are (1) large herd size, (2) spray-based application of the postmilking disinfectant, (3) dry massaging the udder during the premilking routine, and (4) the use of straw bedding. Collectively, these results suggest that different management practices may influence mesophilic and thermophilic spore levels in raw milk. PMID:25958277

  20. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  1. Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process

    Microsoft Academic Search

    J. Suvilampi; A. Lehtomäki; J. Rintala

    2003-01-01

    A combined thermophilic–mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF\\/A-filtered COD (CODfilt) of 1900±190 mgl?1). With hydraulic retention times (HRTs) of 12–18 h the thermophilic ASP and thermophilic SCBP

  2. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Astrophysics Data System (ADS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-03-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  3. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs

    Microsoft Academic Search

    Hui Li; Shuo Chen; Bo-Zhong Mu; Ji-Dong Gu

    2010-01-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic\\u000a habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but\\u000a their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance,\\u000a distribution and functional diversity of anammox bacteria in

  4. Petrifilm plates for enumeration of bacteria counts in goat milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...

  5. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. PMID:24291796

  6. Bacteria Museum

    NSDL National Science Digital Library

    Who knew that bacteria had their own virtual museum? Here, visitors will "learn that not all bacteria are harmful, how they are used in industry, that they belong to the oldest living creatures on Earth", and many more interesting facts to discover about the diverse world of bacteria. The "Bacterial Species Files" tab at the top of the page, allows visitors to look up information on 40 different specific bacteria, from Anthrax to Yersinia enterocolitica. The information provided for each bacterium includes photographs, consumer guides, fact sheets, and scientific links. Visitors will find that the "Main Exhibits" tab addresses the basics about bacteria, as well as "Pathogenic Bacteria", "Evolution", "How We Fight Bacteria", and "Food and Water Safety". Visitors will surely enjoy the "Good Bacteria in Food" link found in the Food and Water Safety section, as it explains how some foods benefit from good bacteria, such as Swiss cheese, sausage, sauerkraut, chocolate, and coffee.

  7. Trade-off between mesophilic and thermophilic denitrification: rates vs. sludge production, settleability and stability.

    PubMed

    Courtens, Emilie N P; Vlaeminck, Siegfried E; Vilchez-Vargas, Ramiro; Verliefde, Arne; Jauregui, Ruy; Pieper, Dietmar H; Boon, Nico

    2014-10-15

    The development of thermophilic nitrogen removal strategies will facilitate sustainable biological treatment of warm nitrogenous wastewaters. Thermophilic denitrification was extensively compared to mesophilic denitrification for the first time in this study. Two sequential batch reactors (SBR) at 34 °C and 55 °C were inoculated with mesophilic activated sludge (26 °C), fed with synthetic influent in a first phase. Subsequently, the carbon source was switched from acetate to molasses, whereas in a third phase, the nitrate source was fertilizer industry wastewater. The denitrifying sludge maintained its activity at 55 °C, resulting in an immediate process start-up, obtaining nitrogen removal rates higher than 500 mg N g(-1) VSS d(-1) in less than one week. Although the mesophilic SBR showed twice as high specific nitrogen removal rates, the maximum thermophilic denitrifying activity in this study was nearly 10 times higher than the activities reported thus far. The thermophilic SBR moreover had a 73% lower sludge volume index, a 45% lower sludge production and a higher resilience towards a change in carbon source compared with the mesophilic SBR. The higher resilience was potentially related to a higher microbial diversity and evenness of the thermophilic community at the end of the synthetic feeding period. The thermophilic microbial community showed a higher similarity over the different feeding periods implying a more stable community. Overall, this study showed the capability of mesophilic denitrifiers to maintain their activity after a large temperature increase. Existing mesophilic process systems with cooling for the treatment of warm wastewaters could thus efficiently be converted to thermophilic systems with low sludge production and good settling properties. PMID:25007305

  8. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  9. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  10. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Casado Muñoz, María Del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2015-10-01

    The aim of this study was to evaluate biocide susceptibility in mesophilic and psychrotrophic pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which was representative of the region. To determine biocide resistance in pseudomonads, we determined for the first time the epidemiological cut-off values (ECOFFs) of benzalkonium, cetrimide, chlorhexidine, hexachlorophene, P3 oxonia, polyhexamethylene guanidine hydrochloride (PHMG), topax 66 and triclosan being generally very similar in different Pseudomonas spp. with some exceptions. Thus, resistance of pseudomonads was mainly shown to triclosan, and in lesser extent to cetrimide and benzalkonium chloride depending on the species, however they were highly susceptible to industrial formulations of biocides. By means of statistical analysis, positive correlations between antibiotics, biocides and both antimicrobials in pseudomonads were detected suggesting a co- or cross resistance between different antimicrobials in goat and lamb slaughterhouse environment. Cross-resistance between biocides and antibiotics in pseudomonads were especially detected between PHMG or triclosan and different antibiotics depending on the biocide and the population type. Thus, the use of those biocides as disinfectant in slaughterhouse zones must be carefully evaluated because of the selection pressure effect of antimicrobials on the emergence of resistant bacteria which could be spread to the consumer. It is noteworthy that specific industrial formulations such as topax 66 and oxonia P3 showed few correlations with antibiotics (none or 1-2 antibiotics) which should be taken into consideration for disinfection practices in goat and lamb slaughterhouse. PMID:26187825

  11. Aerobic versus anaerobic wastewater treatment

    SciTech Connect

    Robinson, D.G.; White, J.E.; Callier, A.J. [Burns and McDonnell Engineering Co., Kansas City, MO (United States)

    1997-04-01

    Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

  12. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus. PMID:25962871

  13. Sequential anaerobic-aerobic degradation of munitions waste.

    PubMed

    Ibeanusi, Victor; Jeilani, Yassin; Houston, Samantha; Doss, Danielle; Coley, Bianca

    2009-01-01

    A sequential anaerobic-aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus-GC subgroup B. PMID:18779925

  14. A Field-Suitable, Semisolid Aerobic Enrichment Medium for Isolation of Campylobacter jejuni in Small Numbers

    PubMed Central

    Jeffrey, J. S.; Hunter, A.; Atwill, E. R.

    2000-01-01

    The objective of this study was to produce an economical, easy to prepare, field-suitable enrichment medium for detection of Campylobacter jejuni in small numbers. A semisolid aerobic enrichment medium was developed. Rates of recovery from inoculated medium, sterile swabs, and mixed cultures of C. jejuni and coliform bacteria were tested. PMID:10747165

  15. Growth of aerobic bacteria on alkali-solubilized lignite

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1991-12-31

    Coal contains a complex mixture of organic compounds, the variety of which depends on the particular type of coal. There is a general agreement that coal is composed of a macromolecular fraction and a lower-mol-wt fraction that are noncovalently associated with each other. Huttinger and Michenfelder have proposed a structural unit for the macromolecular portion of a lignite coal that comprises 2 and 3-ring fused aromatics, paraffin, terpene, cycloaliphatics, hydrocarbon bridges, several carboxyl moieties, straight-chain saturated hydrocarbons, branched-chain hydrocarbons, sulfur heterocyclics, ether linkages, alcohol groups, nitrogen heterocyclics, and chelated metals. Low-mol-wt compounds found in coal can be separated from macromolecules by extraction with organic solvents, such as tetrahydrofuran. Low-mol-wt organic compounds that have been revealed by such extractions include straight-chain (C{sub 13}-C{sub 33}), branched, and cyclic alkanes; aryl and aryl alkyl compounds with 1-6 rings; and phenolic compounds. In low-ranked coals, branched alkanes predominate over straight chain. This report describes the enrichment for, and isolation of, microorganisms that are capable of modifying lignite.

  16. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress

    Microsoft Academic Search

    Freda R. Hawkes; Ines Hussy; Godfrey Kyazze; Richard Dinsdale; Dennis L. Hawkes

    2007-01-01

    Continuous, dark fermentative hydrogen production technology using mixed microflora at mesophilic temperatures may be suitable for commercial development. Clostridial-based cultures from natural sources have been widely used, but more information on the need for heat treatment of inocula and conditions leading to germination and sporulation are required. The amount of nutrients given in the literature vary widely. Hydrogen production is

  17. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC DIGESTION - PHASE II. STEADY STATE STUDIES

    EPA Science Inventory

    A study of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions was conducted. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  18. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION. PHASE 2. STEADY STATE STUDIES

    EPA Science Inventory

    A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  19. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC DIGESTION - PHASE I. TEMPERATURE TRANSITION STUDIES

    EPA Science Inventory

    As part of a larger study on the comparison between mesophilic and thermophilic anaerobic digestion, a study of the operation of anaerobic systems under temperature transition was conducted. Systems seeded with domestic sewage sludge, but subsequently fed a chemically defined com...

  20. The ecology of mercury-resistant bacteria in Chesapeake Bay

    Microsoft Academic Search

    J. D. Nelson; R. R. Colwell

    1974-01-01

    Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in\\u000a Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable,\\u000a aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved\\u000a oxygen concentration and sediment mercury concentration and negatively correlated

  1. Luxury uptake of phosphorus by sediment bacteria

    Microsoft Academic Search

    Aazamkhoshm Anesh; Barry T. Hart; Anabelle Duncan; Ron Beckett

    Abstract This note reports the results of experiments,aimed,at confirming,the luxury uptake,of phosphorus,(P) by sediment bacteria as polyphosphate,(Poly-P). Aerobic suspensions,of sediments from two different sites were spiked with 1 mg P\\/L as orthophosphate,and,augmented,with acetate (a fermentation,product) or glucose. The orthophosphate,was rapidly taken up over a period of a few hours. When,these aerobic uptake,experiments,were made,anaerobic,and,additional organic carbon added, only the acetate-amended sediment

  2. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit 

    E-print Network

    Lesikar, Bruce J.

    2008-10-31

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  3. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit

    E-print Network

    Lesikar, Bruce J.

    2008-10-31

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  4. Pedagogy: The Missing Link in Aerobic Dance.

    ERIC Educational Resources Information Center

    Claxton, David B.; Lacy, Alan C.

    1991-01-01

    For aerobic dance classes to succeed, the instructors must be properly trained teachers. Effective teachers must know more than just subject matter. They need sound pedagogical skills and knowledge in the content areas relating to aerobic dance. The article lists recommendations to help aerobic dance teachers be more effective. (SM)

  5. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the existing animal waste management processes to control manure-borne pathogens.

  6. Soccer specific aerobic endurance training

    Microsoft Academic Search

    J Hoff; U Wisløff; L C Engen; O J Kemi; J Helgerud

    2002-01-01

    Background: In professional soccer, a significant amount of training time is used to improve players' aerobic capacity. However, it is not known whether soccer specific training fulfils the criterion of effective endurance training to improve maximal oxygen uptake, namely an exercise intensity of 90–95% of maximal heart rate in periods of three to eight minutes.Objective: To determine whether ball dribbling

  7. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure. PMID:9131569

  8. Novel Primers Reveal Wider Diversity among Marine Aerobic Anoxygenic Phototrophs†

    PubMed Central

    Yutin, Natalya; Suzuki, Marcelino T.; Béjà, Oded

    2005-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPs) were previously proposed to account for up to 11% of marine bacterioplankton and to potentially have great ecological importance in the world's oceans. Our data show that previously used primers based on the M subunit of anoxygenic photosynthetic reaction center genes (pufM) do not comprehensively identify the diversity of AAnPs in the ocean. We have designed and tested a new set of pufM-specific primers and revealed several new AAnP variants in environmental DNA samples and genomic libraries. PMID:16332899

  9. Bacteria Transformation

    NSDL National Science Digital Library

    National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

    Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

  10. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    SciTech Connect

    Zaccardi, Margot J.; Mannweiler, Olga [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Boehr, David D., E-mail: ddb12@psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  11. Comparative Evaluation of Bio-Hydrogen Production From Cheese Whey Wastewater Under Thermophilic and Mesophilic Anaerobic Conditions

    Microsoft Academic Search

    N. Azbar; F. T. Dokgöz; T. Keskin; R. Eltem; K. S. Korkmaz; Y. Gezgin; Z. Akbal; S. Öncel; M. C. Dalay; Ç. Gönen; F. Tutuk

    2009-01-01

    Hydrogen production from cheese whey wastewater via dark fermentation was conducted using mixed culture under mesophilic (36°C ± 1) and thermophilic (55°C ± 1) conditions, respectively. The hydrogen yields and specific hydrogen production rates were found as follows: mesophilic: 9.2 mmol H2 \\/g COD (chemical oxygen demand) and 5.1 mL H2 \\/g VSS h; thermophilic: 8.1 mmol H2 \\/ g

  12. Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment

    Microsoft Academic Search

    Isil Toreci; Kevin J. Kennedy; Ronald L. Droste

    2009-01-01

    Effect of microwave pretreatment (MW) high temperature (175°C) and MW intensity to waste activated sludge digested with acclimatized inoculum in single- and dual-stage semi-continuous mesophilic anaerobic digesters at different sludge retention times (SRTs) (20, 10 and 5 days) were investigated. MW pretreatment led to similar sludge stabilization at low SRTs (5 and 10 days). Although lowering MW intensity slightly improved

  13. Characterization of 10 mesophilic cellulolytic clostridia isolated from a municipal solid waste digestor

    Microsoft Academic Search

    C. Cailliez; L. Benoit; J.-P. Thirion; H. Petitdemange

    1992-01-01

    By hybridization experiments with three cloned fragments carrying cellulase genes ofClostridium cellulolyticum, we tried to differentiate 10 cellulolytic mesophilic clostridia, isolated from a municipal solid waste digestor. On the basis of hybridization experiments, three major groups were found among the 10 isolates. The two endoglucanase genes,cel CCA andcel CCB ofC. cellulolyticum, hybridized with nine strains of our isolates, suggesting homology

  14. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic

    Microsoft Academic Search

    Moonil Kim; Young-Ho Ahn; R. E Speece

    2002-01-01

    The comparative process stability and efficiency of mesophilic (35°C) and thermophilic anaerobic digestion (55°C) has been evaluated for four different reactor configurations, which are: daily batch-fed single-stage continuously stirred tank reactor (CSTR), continuously fed single-stage CSTR, daily batch-fed two-phase CSTR, and daily batch-fed non-mixed single-stage reactor. The results are discussed for three periods: (1) start-up, (2) steady state, and (3)

  15. High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium

    Microsoft Academic Search

    Joerg Harms; Frank Schluenzen; Raz Zarivach; Anat Bashan; Sharon Gat; Ilana Agmon; Heike Bartels; François Franceschi; Ada Yonath

    2001-01-01

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase

  16. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time.

    PubMed

    Ercolani, G L

    1991-12-01

    Mesophilic heterotrophic, aerobic or facultatively anaerobic bacteria that grow on yeast tryptone glucose extract agar were isolated from the surface of olive leaves of 3 or 4 different ages in January, April, July, and October from 1984 to 1989. Unweighted average linkage cluster analysis on either the Jaccard coefficient or the simple matching coefficient recovered 1,701 representative strains in 32 phena defined at the 70% and 80% similarity level, respectively. Of these, 25 were identified to genus or lower level. From the identity of the representative strains, the frequency of occurrence among the phylloplane bacteria over the 6-year period was estimated at 51% forPseudomonas syringae, followed byXanthomonas campestris (6.7%),Erwinia herbicola (6%),Acetobacter aceti (4.7%),Gluconobacter oxydans (4.3%),Pseudomonas fluorescens (3.9%),Bacillus megaterium (3.8%),Leuconostoc mesenteroides subsp.dextranicum (3.1%),Lactobacillus plantarum (2.8%),Curtobacterium plantarum (2.2%),Micrococcus luteus (2.2%),Arthrobacter globiformis (1.4%),Klebsiella planticola (1.2%),Streptococcus faecium (1.2%),Clavibacter sp. (0.98%),Micrococcus sp. (0.82%),Serratia marcescens (0.81%),Bacillus subtilis (0.57%),Cellulomonas flavigena (0.4%),Erwinia sp. (0.37%),Zymomonas mobilis (0.3%),Bacillus sp. (0.29%),Alcaligenes faecalis (0.27%),Erwinia carotovora (0.08%), andPseudomonas aeruginosa (0.04%). Bacterial communities on leaves of a given age at a given time during any one year displayed a very similar structure but differed significantly from those on the leaves of the same age at a different time or on the leaves of a different age at any time during any one year. Communities on the leaves of a given age at a given time of the year were invariably dominated by one or another of only 9 taxa, which accounted for 22 to 98.5% of the isolates from those leaves. The communities on 10- and 13-month-old leaves were invariably made up of fewer taxa than those on younger leaves at the same time of the year. PMID:24194200

  17. Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae.

    PubMed

    Chen, C H; Berns, D S

    1980-10-01

    Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H(2)O and D(2)O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485

  18. Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics

    SciTech Connect

    A. Yahya; F. F. Roberto; D. B. Johnson

    1999-06-01

    Four mesophilic acidophilic bacteria isolated from the Caribbean island of Montserrat have been studied to establish their taxonomic relationship to other metal-metabolizing bacteria and to analyze their potential role in mineral processing. Two of the isolates have some physiological and morphological traits in common with Thiobacillus ferrooxidans (Gram negative, iron-oxidizing mesophilic rods) but differed from T. ferrooxidans in displaying chemolitho-heterotrophic growth in ferrous iron/yeast extract medium and greater sensitivity to some metals. Isolates RIV-14 and L-15 were, in contrast, Gram positive, spore-forming rods that displayed considerable metabolic flexibility, and resembled moderately thermophilic Sulfobacillus spp. All the Montserrat isolates were able to oxidize pyrite in pure culture.

  19. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  20. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  1. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  2. Luxury uptake of phosphorus by sediment bacteria

    Microsoft Academic Search

    Aazam Khoshmanesh; Barry T. Hart; Anabelle Duncan; Ron Beckett

    2002-01-01

    This note reports the results of experiments aimed at confirming the luxury uptake of phosphorus (P) by sediment bacteria as polyphosphate (Poly-P). Aerobic suspensions of sediments from two different sites were spiked with 1mg P\\/L as orthophosphate and augmented with acetate (a fermentation product) or glucose. The orthophosphate was rapidly taken up over a period of a few hours. When

  3. Magnetotactic Bacteria and Their Potential for Terraformation

    Microsoft Academic Search

    Ioan I. Ardelean; Cristina Moisescu; Dan Razvan Popoviciu

    This paper is focused on magnetotactic bacteria and their possible contributions to the terraformation of Mars or other planets.\\u000a The potential for terraformation is mainly based on their ability to carry out aerobic or anaerobic respiration with either\\u000a nitrate or ferric iron, to fix carbon dioxide in the dark using the energy released through the oxidation of inorganic chemicals\\u000a such

  4. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(?)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification. PMID:20926188

  5. Distribution of folates and modified folates in extremely thermophilic bacteria.

    PubMed Central

    White, R H

    1991-01-01

    Analyses were made of the structures and levels of folates and modified folates present in extremely thermophilic bacteria. These procedures involved the chemical analysis of products resulting from the oxidative cleavage of the 6-substituted, folatelike tetrahydropterins present in the cells. Air-oxidized cell extracts of extreme thermophiles from two members of the archaebacterial order Thermococcales, Thermococcus celer and Pyrococcus furiosus, contained only 7-methylpterin, indicating that these cells contain a modified folate with a methylated pterin. Cell extracts also contained 6-acetyl-7-methyl-7,8-dihydropterin, another product derived from the oxidative cleavage of a dimethylated folate, demonstrating that both the C-7 and C-9 carbons of the pterin were methylated. Extracts, however, contained neither p-aminobenzoylpolyglutamates nor methaniline, the oxidative cleavage products of folates and methanopterin, respectively, indicating that they contain a previously undescribed C1 carrier(s). On the basis of the level of the 7-methylpterin isolated, the levels of modified folate were 2 to 10 times higher than those typically found in mesophilic bacteria and 10 to 100 times less than the level of methanopterin found in the methanogenic bacteria. Oxidized cell extracts of Sulfolobus spp. of the archaebacterial order Sulfolobales contained only pterin, and, like members of the order Thermococcales, they contained neither-p-aminobenzoylpolyglutamates nor methaniline. Oxidized cell extracts of the extreme thermophiles Pyrobaculum sp. strain H10 and Pyrodictium occultum, from the archaebacterial orders Thermoproteales and Pyrodictiales, respectively, and Thermotoga maritima from the eubacterial order Thermotogales, contained pterin and p-aminobenzoylpolyglutamates, indicating that these cells contained unmodified folates. The levels of p-aminobenzoylpolyglutamates in these archaebacterial cell extracts indicate that the folates were present in the cells at levels 4 to 10 times higher than generally found in those mesophilic eubacteria which do not folates in energy metabolism. The levels and chain lengths of the of p-aminobenzoylpolyglutamates present in Thermotoga maritima were typical of those found in mesophilic eubacteria. PMID:1900506

  6. Comparative biocidal efficacy vs. sulfate-reducing bacteria

    SciTech Connect

    Grab, L.A.; Theis, A.B. (Union Carbide Chemicals and Plastics Co. Inc., Bound Brook, NJ (United States))

    1993-06-01

    A number of antimicrobial compounds commonly used in cooling water, paper making, and oilfield systems were evaluated for their ability to control sessile and planktonic sulfate-reducing bacteria (SRB). While all the biocides tested are known to be effective against common planktonic, general aerobic bacteria, most were unable to control either planktonic or sessile SRB. In addition, low levels of sulfide, an SRB by-product, were found to have some effect on biocide efficacy.

  7. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR. PMID:24696379

  8. Capnocytophaga : New genus of gram-negative gliding bacteria I. General characteristics, taxonomic considerations and significance

    Microsoft Academic Search

    E. R. Leadbetter; S. C. Holt; S. S. Socransky

    1979-01-01

    The characteristics of gliding bacteria isolated from both healthy and diseased sites in the oral cavity are, summarized and the taxonomic position of the bacteria discussed. Uniform attributes of the fusiform isolates include gliding motility, strictly fermentative metabolism dependent on the presence of CO2 (or HCO3-), under either anaerobic or aerobic conditions, presence of benzidine-reactive components, and the production of

  9. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    Microsoft Academic Search

    Henriette Stokbro Jensen; Piet N. L. Lens; Jeppe L. Nielsen; Kai Bester; Asbjørn Haaning Nielsen; Thorkild Hvitved-Jacobsen; Jes Vollertsen

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was

  10. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria

    Microsoft Academic Search

    R. Whittenbury; K. C. Phillips; J. F. Wilkinson

    1970-01-01

    SUMMARY More than IOO Gram-negative, strictly aerobic, methane-utilizing bacteria were isolated. All used only methane and methanol of the substrates tested for growth. The organisms were classified into five groups on the basis of mor- phology, fine structure, and type of resting stage formed (exospores and different types of cysts) and into subgroups on other properties. Methods of enrichment, isolation

  11. Xylanases of thermophilic bacteria from Icelandic hot springs

    Microsoft Academic Search

    M. Perttula; M. Rättö; M. Kondradsdottir; J. K. Kristjansson; L. Viikari

    1993-01-01

    Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat\\/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect

  12. Iron requirement and search for siderophores in lactic acid bacteria

    Microsoft Academic Search

    Ashok Pandey; Françoise Bringel; Jean-Marie Meyer

    1994-01-01

    Twenty-three strains of lactic acid bacteria belonging to the genera Lactobacillus, Lactococcus, Leuconostoc, Pediococcus or Carnobacterium, were studied for growth and siderophore production under controlled iron-starvation conditions. No growth differences were observed in the media either supplemented with or depleted of iron, in agitated (aerobic) or static (microaerophilic) growth conditions, and none of the tested species produced siderophores. Growth studies

  13. Aerobic biodegradation of alkylphenol ethoxylates.

    PubMed

    Zhao, Jianliang; Zhang, Gaoyong; Qin, Yong; Zhao, Yumei

    2006-12-01

    Primary aerobic biodegradation of alkylphenol ethoxylates (APEOs) was studied using a new simple and fast porphyrin method, which did not require the extraction step. Extent of primary biodegradation of a nonylphenol ethoxylates (NP-10) was excess of 92% after 1.5 days, and reached 99% after 2 days, which was similar to the results obtained using modified CTAS (thiocyanate active substances) method. Degradation of benzene ring of NP-10 was studied using UV-absorbance at 277 nm in chloroform. Results showed that only little of benzene ring was degraded. PMID:16574409

  14. A STUDY ON AEROBIC BACTERIAL FLORA DURING INCUBATION OF RAINBOW TROUT (Oncorhynchus mykiss, Walbaum 1792) EGGS IN HATCHERY

    Microsoft Academic Search

    Soner Altun

    Aerobic bacterial flora in rainbow trout egg, Oncorhynchus mykiss, Walbaum 1792, and the hatchery water were analyzed. It was determined that the number of bacteria varied between 10 3 -10 4 cfu g -1 in disinfected eggs and 10 6 -10 7 cfu g -1 in undisinfected eggs. The total bacterial count was 5.7x 102 cfu ml-1 in the spring

  15. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    PubMed

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present. PMID:20390902

  16. Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria

    Microsoft Academic Search

    D. Shcherbakov; M. Dontsova; M. Tribus; M. Garber; W. Piendl

    2006-01-01

    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12

  17. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  18. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  19. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  20. Local entropy difference upon a substrate binding of a psychrophilic ?-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic ?-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic ?-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  1. Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production

    Microsoft Academic Search

    Herbert P. Schweizer; Kyoung-Hee Choi

    2011-01-01

    Unsaturated fatty acids (UFAs) play a pivotal role in maintaining a functional cellular membrane in response to changes in\\u000a environmental factors. Unlike in other gram-negative bacteria, in Pseudomonas aeruginosa, UFA synthesis is governed by 2 pathways: (1) the anaerobic FabAB-mediated pathway and (2) the aerobic inducible DesA\\/DesB\\u000a desaturase pathway. Although fatty acids are functional constituents of several known virulence factors,

  2. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced. PMID:6354082

  3. Magnetotactic Bacteria

    Microsoft Academic Search

    Richard Blakemore

    1975-01-01

    Bacteria with motility directed by the local geomagnetic field have been observed in marine sediments. These magnetotactic microorganisms possess flagella and contain novel structured particles, rich in iron, within intracytoplasmic membrane vesicles. Conceivably these particles impart to cells a magnetic moment. This could explain the observed migration of these organisms in fields as weak as 0.5 gauss.

  4. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium

    PubMed Central

    Dinamarca, Jorge; Shlyk-Kerner, Oksana; Kaftan, David; Goldberg, Eran; Dulebo, Alexander; Gidekel, Manuel; Gutierrez, Ana; Scherz, Avigdor

    2011-01-01

    Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43°C but only at elevated CO2 (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated QA??QB electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO2 concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant PMID:22216094

  5. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues.

    PubMed

    Kinnunen, H V; Koskinen, P E P; Rintala, J

    2014-03-01

    This paper studies methane production using a marine microalga, Nannochloropsis sp. residue from biodiesel production. Residue cake from Nannochloropsis, oils wet-extracted, had a methane potential of 482LCH4kg(-1) volatile solids (VS) in batch assays. However, when dry-extracted, the methane potential of residue cake was only 194LCH4kg(-1) VS. In semi-continuous reactor trials with dry-extracted residue cake, a thermophilic reactor produced 48% higher methane yield (220LCH4kg(-1)VS) than a mesophilic reactor (149LCH4kg(-1)VS). The thermophilic reactor was apparently inhibited due to ammonia with organic loading rate (OLR) of 2kgVSm(-3)d(-1) (hydraulic retention time (HRT) 46d), whereas the mesophilic reactor performed with OLR of 3kgVSm(-3)d(-1) (HRT 30d). Algal salt content did not inhibit digestion. Additional methane (18-33% of primary digester yield) was produced during 100d post-digestion. PMID:24462882

  6. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    PubMed

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

  7. [Incidence of anaerobic bacteria in respiratory tract infections].

    PubMed

    Kedzia, Anna; Kwapisz, Ewa; Wierzbowska, Maria

    2003-01-01

    Anaerobic bacteria are predominant components of normal oral cavity, upper respiratory tract, gastrointestinal, genital and skin flora. They are involved in infections such as pneumonia, aspiration pneumonia, lung abscess and empyema. Laboratory diagnosis of anaerobic infections is based on recovering the etiological agents from clinical materials. Appropriatte specimens include: pus, purulent fluid, biopsy specimen of lung, transtracheal aspirates and bronchoalveolar lavage (BAL). Lower respiratory infections are usually either polymicrobial or mixed anaerobic-aerobic infections. Peptostreptococcus, Fusobacterium, Prevotella and Bacteroides are the most common anaerobes. Anaerobic bacteria are susceptible to metronidazole, tinidazole (exception of Gram-positive rods), amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin/tazobactam, imipenem and clindamycin. Treatment includes an antibiotics regimen with an agent active against anaerobic and aerobic bacteria (therapy with 2 or 3 antimicrobial drugs). PMID:12959026

  8. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration. PMID:22691472

  9. Copper tolerance and virulence in bacteria.

    PubMed

    Ladomersky, Erik; Petris, Michael J

    2015-06-10

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(i) and Cu(ii). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  10. [Thermogenesis of mesophilic, thermotolerant and thermophilic strains of microorganisms--producers of fungal cell wall--destroying enzymes].

    PubMed

    Koriagin, V V; Konovalov, S A; Chirkov, I M; Vorotilo, S P; Zvereva, G A

    1976-01-01

    Investigations were carried out to clarify the relationship between thermogenesis and production of yeast wall lyzing enzymes by the mesophilic strain of Bacillus subtilis, thermotolerant strain of Actinomyces sp. II and thermophilic strain of Actinomyces sp. 10. The enzymic lyzing activity was measured in the culture liquid filtrate of those microorganisms. The thermophilic strain of Actinomyces sp. 10 showed the highest enzymic activity. The thermogenetic curves of the cultures had several inflections. The mesophilic culture of Bacillus subtilis whose enzymic lyzing activity was the lowest displayed the highest heat release. PMID:1026939

  11. Ethylene Dibromide Mineralization in Soils under Aerobic Conditions

    PubMed Central

    Pignatello, Joseph J.

    1986-01-01

    1,2-Dibromoethane (EDB), which is a groundwater contaminant in areas where it was once used as a soil fumigant, was shown to be degraded aerobically by microorganisms in two types of surface soils from an EDB-contaminated groundwater discharge area. At initial concentrations of 6 to 8 ?g/liter, EDB was degraded in a few days to near or below the detection limit of 0.02 ?g/liter. At 15 to 18 mg/liter, degradation was slower. Bromide ion release at the higher concentrations was 1.4 ± 0.3 and 2.1 ± 0.2 molar equivalents for the two soils. Experiments with [14C]EDB showed that EDB was converted to approximately equal amounts of CO2 and apparent cellular carbon; only small amounts of added 14C were not attributable to these products or unreacted EDB. These results are encouraging, because they indicate that groundwater bacteria may hasten the removal of EDB from contaminated aerobic groundwater supplies. This report also provides evidence for soil-mediated chemical transformations of EDB. PMID:16347020

  12. Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date

    SciTech Connect

    Zhaxybayeva, Olga [Dartmouth College; Swithers, Kristen S [University of Connecticut, Storrs; Foght, Julia [University of Alberta, Edmondton, Canada; Green, Anna G. [University of Connecticut; Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Dlutek, Marlena [Dalhousie University, Halifax, Nova Scotia, CANADA; Doolittle, W. Ford [Dalhousie University, Halifax, Nova Scotia, CANADA; Noll, Kenneth M [University of Connecticut, Storrs; Nesbo, Camilla [University of Oslo, Norway

    2012-01-01

    Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell-cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene - a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.

  13. Aerobic thermophilic treatment of farm slurry and food wastes

    Microsoft Academic Search

    Mohammed Mohaibes; Helvi Heinonen-Tanski

    2004-01-01

    The review discusses the aerobic treatments for farm slurry and food wastes and concentrates in particular on the thermophilic aerobic treatments. Methods are discussed under the heading of chemical, physical and other treatments. From those methods considered, the most suitable physical–microbiological treatment are aerobic thermophilic treatments. The main problem faced in aerobic thermophilic treatments could be the foaming formation during

  14. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  15. Aerobic endurance training improves soccer performance

    Microsoft Academic Search

    JAN HELGERUD; LARS CHRISTIAN ENGEN; JAN HOFF

    2001-01-01

    HELGERUD, J., L. C. ENGEN, U. WISLØFF, and J. HOFF. Aerobic endurance training improves soccer performance.Med. Sci. Sports Exerc., Vol. 33, No. 11, 2001, pp. 1925-1931. Purpose: The aim of the present study was to study the effects of aerobic training on performance during soccer match and soccer specific tests. Methods: Nineteen male elite junior soccer players, age 18.1 0.8

  16. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins

    Microsoft Academic Search

    Raghu Prasad Rao Metpally; Boojala Vijay B Reddy

    2009-01-01

    BACKGROUND: Cold adapted or psychrophilic organisms grow at low temperatures, where most of other organisms cannot grow. This adaptation requires a vast array of sequence, structural and physiological adjustments. To understand the molecular basis of cold adaptation of proteins, we analyzed proteomes of psychrophilic and mesophilic bacterial species and compared the differences in amino acid composition and substitution patterns to

  17. Discrimination of Psychrotrophic and Mesophilic Strains of the Bacillus cereus Group by PCR Targeting of Major Cold Shock Protein Genes

    Microsoft Academic Search

    KEVIN P. FRANCIS; RALF MAYR; FELIX VON STETTEN; GORDON S. A. B. STEWART; SIEGFRIED SCHERER

    1998-01-01

    Detection of psychrotrophic strains (those able to grow at or below 7°C) of the Bacillus cereus group (Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides) in food products is at present extremely slow with conven- tional microbiology. This is due to an inability to discriminate these cold-adapted strains from their mesophilic counterparts (those able to grow only above 7°C) by means

  18. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    Microsoft Academic Search

    Hariklia N. Gavala; Umur Yenal; Ioannis V. Skiadas; Peter Westermann; Birgitte K. Ahring

    2003-01-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the

  19. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: Measuring redox behavior,

    E-print Network

    Pace, Norman

    5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester in microcosms containing active anaerobic digester biomass, propylene glycol, and settled sewage centrate. In addition, activity assessment in anaerobic digesters using FISH and CTC reduction assays may be comparable

  20. Seven N-terminal Residues of a Thermophilic Xylanase Are Sufficient to Confer Hyperthermostability on Its Mesophilic Counterpart

    PubMed Central

    Zhang, Shan; He, Yongzhi; Yu, Haiying; Dong, Zhiyang

    2014-01-01

    Xylanases, and especially thermostable xylanases, are increasingly of interest for the deconstruction of lignocellulosic biomass. In this paper, the termini of a pair of xylanases, mesophilic SoxB and thermophilic TfxA, were studied. Two regions in the N-terminus of TfxA were discovered to be potentially important for the thermostability. By focusing on Region 4, it was demonstrated that only two mutations, N32G and S33P cooperated to improve the thermostability of mesophilic SoxB. By introducing two potential regions into SoxB in combination, the most thermostable mutant, M2-N32G-S33P, was obtained. The M2-N32G-S33P had a melting temperature (Tm) that was 25.6°C higher than the Tm of SoxB. Moreover, M2-N32G-S33P was even three-fold more stable than TfxA and had a Tm value that was 9°C higher than the Tm of TfxA. Thus, for the first time, the mesophilic SoxB “pupil” outperformed its thermophilic TfxA “master” and acquired hyperthermostability simply by introducing seven thermostabilizing residues from the extreme N-terminus of TfxA. This work suggested that mutations in the extreme N-terminus were sufficient for the mesophilic xylanase SoxB to acquire hyperthermostability. PMID:24498158

  1. Nitrate?reducing and ammonium?oxidizing bacteria in the vadose zone of the chalk aquifer of England

    Microsoft Academic Search

    K. Whitelaw; J. F. Rees

    1980-01-01

    The vadose zone of the Chalk aquifer from two sites of different land use was found to contain large numbers of nitrate?reducing and ammonium?oxidizing bacteria. Relationships between the type of bacteria and nitrogen compounds produced showed that denitrification was occurring beneath the permanent grassland site, whereas the vadose zone beneath the fertilized arable site was essentially aerobic and little attenuation

  2. Carbon isotopic fractionation in lipids from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers

    Microsoft Academic Search

    Roger E. Summons; Linda L. Jahnke; Zarko Roksandic

    1994-01-01

    Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13 C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica , grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13 C fractionation of approximately 30%. in the resultant biomass. In M . capsulatus ,

  3. Biodegradability and mesophilic co-digestion of municipal sludge and scum.

    PubMed

    Young, Bradley; Delatolla, Robert; Kennedy, Kevin

    2013-11-01

    The objective of this study is to investigate and optimize the co-digestion of scum with thickened waste activated sludge (TWAS) and primary sludge (PS) undergoing mesophilic anaerobic digestion. The effect of scum loading on the co-digestion of PS, TWAS and scum has shown to have a significant impact on the ultimate cumulative biogas production and on the specific biogas production between 20 and 40 days of digestion, while the effects of the scum holding time within the scum concentrator and temperature of the scum concentrator did not demonstrate a significant effect on the ultimate or specific biogas production. The study demonstrates that care must be taken to avoid inhibitory effects and potential souring of digesters due to scum overloading and specifically scum overloading in combination with long holding times of scum within the scum concentrator at elevated temperatures. PMID:23553004

  4. Complete Type III Secretion System of a Mesophilic Aeromonas hydrophila Strain

    PubMed Central

    Vilches, Silvia; Urgell, Cecilia; Merino, Susana; Chacón, Matilde R.; Soler, Lara; Castro-Escarpulli, Graciela; Figueras, Maria Jose; Tomás, Juan M.

    2004-01-01

    We have investigated the existence and genetic organization of a functional type III secretion system (TTSS) in a mesophilic Aeromonas strain by initially using the Aeromonas hydrophila strain AH-3. We report for the first time the complete TTSS DNA sequence of an Aeromonas strain that comprises 35 genes organized in a similar disposition as that in Pseudomonas aeruginosa. Using several gene probes, we also determined the presence of a TTSS in clinical or environmental strains of different Aeromonas species: A. hydrophila, A. veronii, and A. caviae. By using one of the TTSS genes (ascV), we were able to obtain a defined insertion mutant in strain AH-3 (AH-3AscV), which showed reduced toxicity and virulence in comparison with the wild-type strain. Complementation of the mutant strain with a plasmid vector carrying ascV was fully able to restore the wild-type toxicity and virulence. PMID:15528564

  5. Chemical changes during anaerobic decomposition of hardwood, softwood, and old newsprint under mesophilic and thermophilic conditions.

    PubMed

    De la Cruz, Florentino B; Yelle, Daniel J; Gracz, Hanna S; Barlaz, Morton A

    2014-07-01

    The anaerobic decomposition of plant biomass is an important aspect of global organic carbon cycling. While the anaerobic metabolism of cellulose and hemicelluloses to methane and carbon dioxide are well-understood, evidence for the initial stages of lignin decomposition is fragmentary. The objective of this study was to look for evidence of chemical transformations of lignin in woody tissues [hardwood (HW), softwood (SW), and old newsprint (ONP)] after anaerobic decomposition using Klason and acid-soluble lignin, CuO oxidation, and 2D NMR. Tests were conducted under mesophilic and thermophilic conditions, and lignin associations with structural carbohydrates are retained. For HW and ONP, the carbon losses could be attributed to cellulose and hemicelluloses, while carbon loss in SW was attributable to an uncharacterized fraction (e.g., extractives etc.). The 2D NMR and chemical degradation methods revealed slight reductions in ?-O-4 linkages for HW and ONP, with no depolymerization of lignin in any substrate. PMID:24967726

  6. Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.

    PubMed

    Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan

    2014-01-01

    Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon. PMID:24645472

  7. Evaluation of the anaerobic co-digestion of sewage sludge and tomato waste at mesophilic temperature.

    PubMed

    Belhadj, Siham; Joute, Yassine; El Bari, Hassan; Serrano, Antonio; Gil, Aida; Siles, José A; Chica, Arturo F; Martín, M Angeles

    2014-04-01

    Sewage sludge is a hazardous waste, which must be managed adequately. Mesophilic anaerobic digestion is a widely employed treatment for sewage sludge involving several disadvantages such as low methane yield, poor biodegradability, and nutrient imbalance. Tomato waste was proposed as an easily biodegradable co-substrate to increase the viability of the process in a centralized system. The mixture proportion of sewage sludge and tomato waste evaluated was 95:5 (wet weight), respectively. The stability was maintained within correct parameters in an organic loading rate from 0.4 to 2.2 kg total volatile solids (VS)/m(3) day. Moreover, the methane yield coefficient was 159 l/kg VS (0 °C, 1 atm), and the studied mixture showed a high anaerobic biodegradability of 95 % (in VS). Although the ammonia concentration increased until 1,864 ± 23 mg/l, no inhibition phenomenon was determined in the stability variables, methane yield, or kinetics parameters studied. PMID:24682875

  8. Producing high-strength liquor from mesophilic batch acidification of chicken manure.

    PubMed

    Abendroth, Christian; Wünsche, Erik; Luschnig, Olaf; Bürger, Christoph; Günther, Thomas

    2015-03-01

    This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10?gVS?L?¹ and 20?gVS?L?¹; the pH value remained high (pH?6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10?gVS?L?¹ there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. PMID:25672618

  9. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  10. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  11. High ratio of bacteriochlorophyll biosynthesis genes to chlorophyll biosynthesis genes in bacteria of humic lakes.

    PubMed

    Eiler, Alexander; Beier, Sara; Säwström, Christin; Karlsson, Jan; Bertilsson, Stefan

    2009-11-01

    Recent studies highlight the diversity and significance of marine phototrophic microorganisms such as picocyanobacteria, phototrophic picoeukaryotes, and bacteriochlorophyll- and rhodopsin-holding phototrophic bacteria. To assess if freshwater ecosystems also harbor similar phototroph diversity, genes involved in the biosynthesis of bacteriochlorophyll and chlorophyll were targeted to explore oxygenic and aerobic anoxygenic phototroph composition in a wide range of lakes. Partial dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide oxidoreductase (COR) genes in bacteria of seven lakes with contrasting trophic statuses were PCR amplified, cloned, and sequenced. Out of 61 sequences encoding the L subunit of DPOR (L-DPOR), 22 clustered with aerobic anoxygenic photosynthetic bacteria, whereas 39 L-DPOR sequences related to oxygenic phototrophs, like cyanobacteria, were observed. Phylogenetic analysis revealed clear separation of these freshwater L-DPOR genes as well as 11 COR gene sequences from their marine counterparts. Terminal restriction fragment length analysis of L-DPOR genes was used to characterize oxygenic aerobic and anoxygenic photosynthesizing populations in 20 lakes differing in physical and chemical characteristics. Significant differences in L-DPOR community composition were observed between dystrophic lakes and all other systems, where a higher proportion of genes affiliated with aerobic anoxygenic photosynthetic bacteria was observed than in other systems. Our results reveal a significant diversity of phototrophic microorganisms in lakes and suggest niche partitioning of oxygenic and aerobic anoxygenic phototrophs in these systems in response to trophic status and coupled differences in light regime. PMID:19801478

  12. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

    PubMed

    Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

    2014-06-01

    An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

  13. Bacteria TMDL Projects

    E-print Network

    Wythe, Kathy

    2007-01-01

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL... Creek: A TMDL Project for Bacteria ? Lower San Antonio River: A TMDL Project for Bacteria ? Upper San Antonio River: A TMDL Project for Bacteria ? Trinity River: A TMDL Project for Bacteria ? Upper Oyster Creek: A TMDL Project for Bacteria...

  14. Bacteria TMDL Projects 

    E-print Network

    Wythe, Kathy

    2007-01-01

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL... Creek: A TMDL Project for Bacteria ? Lower San Antonio River: A TMDL Project for Bacteria ? Upper San Antonio River: A TMDL Project for Bacteria ? Trinity River: A TMDL Project for Bacteria ? Upper Oyster Creek: A TMDL Project for Bacteria...

  15. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  16. [Short-cut nitrification of landfill leachate by aerobic moving-bed biofilm reactor].

    PubMed

    Du, Yue; Chen, Sheng; Sun, De-zhi

    2007-05-01

    Short-cut nitrification process was studied to remove the ammonium nitrogen from the anaerobically pretreated leachate using aerobic moving-bed biofilm reactor (MBBR) at ambient temperature. The effect of DO concentration, pH and C/N ratio on the ammonium removal efficiency and nitrite accumulation rate was investigated, respectively. Experimental results showed that, more than 70% of ammonium removal efficiency and about 90% of nitrite accumulation rate could be achieved when the reaction conditions were controlled as follows: HRT at 24 hours, DO concentration at 2 mg x L(-1), pH at 8 and C/N ratio less than 3. Batch experiments showed that the quantity and activity of ammonia oxidizing bacteria were much higher than those of nitrite oxidizing bacteria. MBBR could effectively remove ammonium nitrogen from leachate and easily obtain a stable nitrite accumulation rate due to the selective immobilization and accumulation of ammonia oxidizing bacteria on the bio-carrier. PMID:17633176

  17. Recalcitrance of DDE (2,2?BIS?(4?chlorophenyl)?1,1 dichloroethylene) and DPE (1,1?diphenylethylene) to cometabolic aerobic biodegradation

    Microsoft Academic Search

    Jürgen H. Thiele; Robin S. Simmonds; H. Lawrence Boul

    1999-01-01

    Bacterial degradation of the persistent DDT [1,1,1?trichloro?2,2?bis(4?chloro?pheny?l)ethane] metabolite DDE has not previously been reported. Bacteria from DDT, PCP and PAH contaminated soils and sediments were extracted and evaluated for their ability to degrade DDE and its dehalogenated derivative DPE. Aerobic aromatic hydrocarbon degrading bacteria were enriched using chemostat techniques under both carbon limited and nitrogen limited selection conditions. DDE, ethylbenzene

  18. Methanotrophic Bacteria: Use in Bioremediation

    SciTech Connect

    Brigmon, R.L.

    2001-02-15

    The methanotrophs are aerobic bacteria that oxidize methane as an energy source and carbon source through the enzyme methane monooxygenase (MMO). This MMO can cometabolize or transform nongrowth substrates by either growing or resting cells. Cometabolism is a result of nonspecific MMO activity towards organic compounds that do not serve as carbon or energy sources. While many cometabolizing bacterial species have been identified, the best studied are the methanotrophs. The reason for this is that methanotrophs are ubiquitous and can cometabolize many aliphatic compounds, alkanes, and aromatic compounds. Methanotrophs have been intensely studied for use in degrading chlorinated solvents, most notably trichloroethylene, to environmentally acceptable concentrations in soils, sediment, and groundwater. Stimulation of methanotrophic bacteria is accomplished through the addition of methane and other gaseous nutrients resulting in an increase in contaminant biodegradation and biotransformation. The composition of gaseous nutrients used with methane is dependent on the characteristics of the site geochemistry and microbiology. This biostimulation may be applied in situ within the contaminated aquifer or soil. If necessary, the contaminated soil or groundwater can be moved and treated ex situ based on the site-specific needs.

  19. Disintegration of aerobic granules: role of second messenger cyclic di-GMP.

    PubMed

    Wan, Chunli; Zhang, Peng; Lee, Duu-Jong; Yang, Xue; Liu, Xiang; Sun, Supu; Pan, Xiangliang

    2013-10-01

    Loss of structural stability of aerobic granular process is the challenge for its field applications to treat wastewaters. The second messenger, cyclic diguanylate (c-di-GMP), is widely used by bacteria to regulate the synthesis of exopolysaccharide. This study for the first time confirmed the correlation between concentration of intracellular c-di-GMP and the granular stability under sequencing batch reactor (MBR) mode. In the presence of manganese ions (Mn(2+)), the concentrations of intracellular c-di-GMP and of extracellular polysaccharides and proteins in granules were declined. Clone library study revealed that the polysaccharide producers. Acinetobacter sp., Thauera sp., Bdellovibrio sp. and Paracoccus sp. were lost after Mn(2+) addition. The findings reported herein confirmed that the c-di-GMP is a key chemical factor epistatic to quorum sensing to determine granular stability. Stimulation of synthesis of intracellular c-di-GMP presents a potential way to enhance long-term stability of aerobic granules. PMID:23948271

  20. Comparative study of normal and sensitive skin aerobic bacterial populations

    PubMed Central

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-01-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  1. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verification.

    PubMed

    de Gracia, M; Grau, P; Huete, E; Gómez, J; García-Heras, J L; Ayesa, E

    2009-10-01

    This paper presents a new mathematical model developed to reproduce the performance of a generic sludge digester working either under aerobic or anaerobic operational conditions. The digester has been modelled as two completely mixed tanks associated with gaseous and liquid volumes. The conversion model has been developed based on a plant wide modelling methodology (PWM) and comprises biochemical transformations, physicochemical reactions and thermodynamic considerations. The model predicts the reactor temperature and the temporary evolution of an extensive vector of model components which are completely defined in terms of elemental mass fractions (C, H, O, N and P) and charge density. Thus, the comprehensive definition of the model components guarantees the continuity of elemental mass and charge in all the model transformations and between any two systems defined by the model. The aim of the generic digester model is to overcome the problems that arise when trying to connect aerobic and anaerobic digestion processes working in series or to connect water and sludge lines in a WWTP. The modelling methodology used has allowed the systematic construction of the biochemical model which acts as an initial illustrative example of an application that has been experimentally verified. The variation of the temperature is also predicted based on a thermal dynamic model. Real data from four different facilities and a straightforward calibration have been used to successfully verify the model predictions in the cases of mesophilic and thermophilic anaerobic digestion as well as autothermal thermophilic aerobic digestion (ATAD). The large amount of data from the full scale ATAD and the anaerobic digestion pilot plants, all of them working under different conditions, has allowed the validation of the model for that case study. PMID:19720390

  2. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic-aerobic process.

    PubMed

    Shou-Liang, Huo; Bei-Dou, Xi; Hai-Chan, Yu; Shi-Lei, Fan; Jing, Su; Hong-Liang, Liu

    2008-09-01

    An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration. PMID:18164956

  3. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, Tonie E.; Yuill, Thomas M.

    1998-01-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

  4. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments.

    PubMed

    Sandler, R J; Rocke, T E; Yuill, T M

    1998-10-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments. PMID:9813858

  5. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  6. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these proteins, allowing mitochondrial endosymbiosis and ending the Lomagundi-Jatuli event at 2.056 Ga.

  7. Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia)

    NASA Astrophysics Data System (ADS)

    Merinero, Raúl; Ruiz-Bermejo, Marta; Menor-Salván, César; Lunar, Rosario; Martínez-Frías, Jesús

    2012-07-01

    The primary geochemical process at methane seeps is anaerobic oxidation of methane (AOM), performed by methanotrophic archaea and sulfate-reducing bacteria (SRB). The molecular fingerprints (biomarkers) of these chemosynthetic microorganisms can be preserved in carbonates formed through AOM. However, thermal maturity and aerobic degradation can change the original preserved compounds, making it difficult to establish the relation between AOM and carbonate precipitation. Here we report a study of amino acid and lipid abundances in carbonate matrices of aerobically altered pipes recovered from the seafloor of the Gulf of Cadiz (SW Iberian Peninsula). This area is characterized by a complex tectonic regime that supports numerous cold seeps. Studies so far have not determined whether the precipitation of carbonate pipes in the Gulf of Cadiz is a purely chemical process or whether microbial communities are involved. Samples from this site show signs of exposure to oxygenated waters and of aerobic alteration, such as oxidation of authigenic iron sulfides. In addition, the degradation index, calculated from the relative abundance of preserved amino acids, indicates aerobic degradation of organic matter. Although crocetane was the only lipid identified from methanotrophic archaea, the organic compounds detected (n-alkanes, regular isoprenoids and alcohols) are compatible with an origin from AOM coupled with bacterial sulfate reduction (BSR) and subsequent aerobic degradation. We establish a relation among AOM, BSR and pipe formation in the Gulf of Cadiz through three types of analysis: (1) stable carbon and oxygen isotopic composition of carbonate minerals; (2) carbonate microfabrics; and (3) mineralogical composition. Our results suggest that carbonate pipes may form through a process similar to the precipitation of vast amounts of carbonate pavements often found at cold seeps. Our approach suggests that some organic compound patterns, in combination with additional evidence of AOM and BSR, may help indicate the source of altered methane-derived carbonates commonly occurring in ancient and modern deposits.

  8. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy. PMID:23361646

  9. Metabolism of pyridine compounds by phthalate-degrading bacteria

    Microsoft Academic Search

    B. F. Taylor; J. A. Amador

    1988-01-01

    Bacteria were isolated from marine sediments that grew aerobically on m-phthalate, p-phthalate, or dipicolinate (2,6-pyridine dicarboxylate (2,6-PDCA)). Strain OP-1, which grew on o-phthalate and was previously obtained from a marine source, was also studied. Intact cells of each organism demonstrated Na{sup +}-dependent oxidation of their growth substrates. Strain PCC5M grew on dipicolinate but did not metabolize m-phthalate. The phthalate degraders,

  10. Anaerobic degradation of hydroaromatic compounds by newly isolated fermenting bacteria

    Microsoft Academic Search

    Andreas Brune; Berhard Schink

    1992-01-01

    Aerobic organisms degrade hydroaromatic compounds via the hydroaromatic pathway yielding protocatechuic acid which is further metabolized by oxygenase-mediated ring fission in the 3-oxoadipate pathway. No information exists on anaerobic degradation of hydroaromatics so far. We enriched and isolated from various sources of anoxic sediments several strains of rapidly growing gram-negative bacteria fermenting quinic (1,3,4,5-tetrahydroxy-cyclohexane-1-carboxylic acid) and shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid)

  11. Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria

    Microsoft Academic Search

    R. Boopathy; H. Bokang; L. Daniels

    1993-01-01

    Summary A survey was conducted with seventeen enteric bacterial strains (including the generaKlebsiella, Enterobacter, Escherichia, Citrobacter, Edwardsiella andProteus) to examine their ability to transform furfural and 5-hydroxymethyl furfural (5-MHF). The enteric bacteria were able to convert furfural to furfuryl alcohol under both aerobic and anaerobic conditions in a relatively short incubation time of 8 h. 5-HMF was transformed by all

  12. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  13. Nitrogen-converting communities in aerobic granules at different hydraulic retention times (HRTs) and operational modes.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Wojnowska-Bary?a, Irena

    2015-01-01

    This study determined how the activity and number of nitrogen-converting microorganisms varied with changes in hydraulic retention time (HRT) and the operating regime of aerobic granular sequencing batch reactors (GSBRs) treating high-nitrogen wastewater. Continuously aerated (O-mode) GSBRs were operated at HRTs of 10-, 13- and 19-h. Then the same reactors were operated at identical HRTs but the cycles started with an anoxic phase (A/O mode). To investigate the microbial communities, DNA- and RNA-based relative real-time PCR was used. In all experimental reactors ammonium was fully removed with a removal rate up to 75 mg N-NH4 (+)/(L·h), and nitrification efficiency was above 90 %. The efficiency of the removal of oxidized nitrogen forms decreased with the lengthening of HRT. The study found that variable oxic conditions (A/O mode) in the GSBR cycle stimulated the simultaneous activity of ammonium oxidizing bacteria (AOB), N2O-reducers, and Anammox bacteria in aerobic granules. With both modes, the activity of nitrogen-converting bacteria was highest with a 13-h HRT. Shortening HRT, resulted in higher chemical oxygen demand and nitrogen loadings, which favored the growth of Anammox microorganisms in granules and caused a decrease in the number of AOB. With all HRTs, the number of Anammox microorganisms was about 1.5-times higher in A/O mode than in O mode. PMID:25367416

  14. [Phylogenetic analysis of bacteria of extreme ecosystems].

    PubMed

    Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A

    2014-01-01

    Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses. PMID:25007437

  15. Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure

    Microsoft Academic Search

    J. P. Bassin; M. Pronk; G. Muyzer; R. Kleerebezem; M. Dezotti; M. C. M. Loosdrecht

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria

  16. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal

    Microsoft Academic Search

    Wen-Tso Liu; Takashi Mino; Kazunori Nakamura; Tomonori Matsuo

    1996-01-01

    The presence of a glycogen accumulating population and its abilities of substrate uptake and storage in anaerobic-aerobic activated sludge fed with mainly acetate were investigated. Because a low phosphorus\\/carbon feeding ratio (2\\/100, wt\\/wt) was used to suppress the growth of polyphosphate-accumulating bacteria, the sludge exhibited no biological phosphorus removal activity. Still, under anaerobic conditions, acetate, propionate, butyrate, valerate, pyruvate, lactate,

  17. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution

    Microsoft Academic Search

    Chun-jiang An; Yan-ling He; Guo-he Huang; Yong-hong Liu

    2010-01-01

    The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in

  18. Comparative performance between temperature-phased and conventional mesophilic two-phased processes in terms of anaerobically produced bioenergy from food waste.

    PubMed

    Youn, Jong-Ho; Shin, Hang-Sik

    2005-02-01

    Comparative evaluation of bioenergy production from food waste was carried out with both a temperature-phased and a conventional mesophilic two-phased process at different organic loading rates (OLRs). No methane was detected in the temperature-phased thermophilic-acidogenic fermenter at all the OLRs tested. However, a significant amount of methane content was detected in the conventional two-phased mesophilic-acidogenic fermenter, with increments depending on the organic loading rate [from 17% at 3 g VS L(-1) day(-1) to 25% at 8 g VS L(-1) day(-1) (VS, volatile solid)]. Acetate and butyrate were the main volatile fatty acids (VFAs) in the temperature-phased thermophilic-acidogenic fermenter; conversely propionate was a major VFA in the conventional two-phased mesophilic-acidogenic fermenter. Through the chemical oxygen demand (COD) balance of both temperature-phased and conventional mesophilic two-phased processes, the fraction of the feed-COD converted to the hydrogen-COD in the thermophilic-acidogenic fermenter within the former process was estimated from 7.9 to 9.3%, with a peak at ORL of 6 g VS L(-1) day(-1), whereas it was quantified from 0.3 to 0.9% in the mesophilic-acidogenic fermenter within the latter one. Moreover, the fraction of the feed-COD converted to the methane-COD in the mesophilic-acidogenic fermenter within the conventional two-phased process ranged from 5.4 to 7.9%. On the other hand, conversion of the feed-COD to the methane-COD in the mesophilic-methanogenic fermenter of both temperature-phased and conventional mesophilic two-phased processes ranged from 66.2 to 72.3% and from 63.5 to 70.5%, respectively, with decrements related to the increase of organic loading rate. PMID:15751393

  19. Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2006-11-01

    Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental parameters acted to generally increase the inhibitory nature of the low-pressure conditions on growth and replication of the seven Bacillus spp. tested.

  20. Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphthalene and pyrene removal.

    PubMed

    Benabdallah El-Hadj, T; Dosta, J; Márquez-Serrano, R; Mata-Alvarez, J

    2007-01-01

    In many anaerobic digestion processes for the treatment of the sludge produced in wastewater treatment plants, the hydrolysis of the organic matter has been identified as the rate limiting step. This study is focused on the effect of ultrasonic pretreatment of raw sewage sludge before being fed to the mesophilic and the thermophilic anaerobic digestion. From particle size reduction, COD disintegration degree and biodegradability test, 11,000kJ/kg TS was estimated as the optimal specific energy in ultrasonic pretreatment. Moreover, the use of pretreated sludge improved significantly the COD removal efficiency and biogas production in lab-scale anaerobic digesters when compared with the performance without pretreatment, specially under mesophilic conditions. During ultrasonic pretreatment, the diffusion of polycyclic aromatic hydrocarbons (PAH) compounds to the aqueous phase was stated by a reduction in the pretreated sludge micropollutants content. With sonication, naphthalene was better removed than without this pretreatment, particularly in the mesophilic digester. However, pyrene removal remained at same efficiency level with and without ultrasonic pretreatment. PMID:17113620

  1. Mesophilic and Thermophilic Conditions Select for Unique but Highly Parallel Microbial Communities to Perform Carboxylate Platform Biomass Conversion

    PubMed Central

    Hollister, Emily B.; Forrest, Andrea K.; Wilkinson, Heather H.; Ebbole, Daniel J.; Tringe, Susannah G.; Malfatti, Stephanie A.; Holtzapple, Mark T.; Gentry, Terry J.

    2012-01-01

    The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55°C), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, ?-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes. PMID:22761870

  2. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2014-10-18

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

  3. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology.

    PubMed

    Dolan, T; Cook, M B; Angus, A J

    2011-06-01

    Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. PMID:21481437

  4. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    PubMed

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%. PMID:16568796

  5. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate.

    PubMed

    Astals, S; Nolla-Ardèvol, V; Mata-Alvarez, J

    2012-04-01

    Crude glycerol derived from biodiesel production is characterized by its high concentration of organic carbon and its solubility in water; properties that make it a suitable co-substrate to improve the efficiency of a manure digester. An increase of about 400% in biogas production was obtained under mesophilic conditions when pig manure was co-digested with 4% of glycerol, on a wet-basis, compared to mono-digestion. The increase in biogas production was mainly a consequence of the increase in organic loading rate. However, the differences could also be related to the synergy between both substrates and the carbon-to-nitrogen ratio. Moreover, the analysis of the macro-compounds, protein, lipids, carbohydrates and fibers, showed lower removal efficiencies in the co-digester as the microorganisms obtained nutrients from the soluble carbohydrates provided by the glycerol. The digestate stability, evaluated through a respirometric assay, showed that co-substrate addition does not exert a negative impact on digestate quality. PMID:22341889

  6. Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.

    PubMed

    Kurtböke, D I; Neller, R J; Bellgard, S E

    2007-08-01

    The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones. PMID:17578635

  7. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  8. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem

    Microsoft Academic Search

    Heike Stevens; Meinhard Simon; Thorsten Brinkhoff

    2009-01-01

    Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates,\\u000a the oxic layer, and the oxic–anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The\\u000a heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and

  9. Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India

    Microsoft Academic Search

    Koushik Ghosh; Sudipta Mandal

    2010-01-01

    Antibiotic resistant bacteria from the commercial marine catch of the pelagic fishes in the Bay of Bengal at Digha coast (21°37?N,\\u000a 87°33?E), West Bengal, India were evaluated. Aerobic heterotrophic and gram negative, along with the enteric bacteria were\\u000a enumerated from gill and intestinal homogenates. Media supplemented with the antibiotics were used to evaluate the antibiotic\\u000a resistant bacterial load. Viable counts

  10. Radiosensitivity of Escherichia coli B bacteria containing different amounts of nucleic acids and proteins

    Microsoft Academic Search

    Milena Vízdalová; B. Liška

    1966-01-01

    Escherichia coli B bacteria cultivated under aerobic and anaerobic conditions were irradiated with X-rays at different phases of growth of\\u000a the culture (at the outset and end of the logarithmic phase and in the stationary phase). Changes in the nucleic acid and\\u000a protein content and in the number of nuclear equivalents per cell were determined in irradiated bacteria. The extrapolation

  11. Selecting anti-microbial treatment of aerobic vaginitis.

    PubMed

    Donders, Gilbert G G; Ruban, Katerina; Bellen, Gert

    2015-05-01

    Aerobic vaginitis (AV) is a vaginal infectious condition which is often confused with bacterial vaginosis (BV) or with the intermediate microflora as diagnosed by Nugent's method to detect BV on Gram-stained specimens. However, although both conditions reflect a state of lactobacillary disruption in the vagina, leading to an increase in pH, BV and AV differ profoundly. While BV is a noninflammatory condition composed of a multiplex array of different anaerobic bacteria in high quantities, AV is rather sparely populated by one or two enteric commensal flora bacteria, like Streptococcus agalactiae, Staphylocuccus aureus, or Escherichia coli. AV is typically marked by either an increased inflammatory response or by prominent signs of epithelial atrophy or both. The latter condition, if severe, is also called desquamative inflammatory vaginitis. As AV is per exclusionem diagnosed by wet mount microscopy, it is a mistake to treat just vaginal culture results. Vaginal cultures only serve as follow-up data in clinical research projects and are at most used in clinical practice to confirm the diagnosis or exclude Candida infection. AV requires treatment based on microscopy findings and a combined local treatment with any of the following which may yield the best results: antibiotic (infectious component), steroids (inflammatory component), and/or estrogen (atrophy component). In cases with Candida present on microscopy or culture, antifungals must be tried first in order to see if other treatment is still needed. Vaginal rinsing with povidone iodine can provide rapid relief of symptoms but does not provide long-term reduction of bacterial loads. Local antibiotics most suitable are preferably non-absorbed and broad spectrum, especially those covering enteric gram-positive and gram-negative aerobes, like kanamycin. To achieve rapid and short-term improvement of severe symptoms, oral therapy with amoxyclav or moxifloxacin can be used, especially in deep dermal vulvitis and colpitis infections with group B streptococci or (methicillin resistant) Staphylococcus aureus. Since the latter colonizations are frequent, but seldom inflammatory infections, we in general discourage the use of oral antibiotics in women with AV. In cases with a severe atrophy component (more than 10 % of epithelial cells are of the parabasal type), local estrogens can be used; and in postmenopausal or breast cancer patients with a contraindication for estrogens, even a combination of probiotics with an ultra-low dose of local estriol may be considered. PMID:25896749

  12. p53, Aerobic Metabolism, and Cancer

    PubMed Central

    Lago, Cory U.; Sung, Ho Joong; Ma, Wenzhe; Wang, Ping-yuan

    2011-01-01

    Abstract p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain genomic stability is less clear. In an attempt to understand the biology, this review presents human epidemiologic data on the inverse relationship between aerobic capacity and cancer incidence that appears to be mirrored by the impact of p53 on aerobic capacity in mouse models. The review summarizes mechanisms by which p53 regulates mitochondrial respiration and proposes how this might contribute to maintaining genomic stability. Although disparate in nature, the data taken together suggest that the promotion of aerobic metabolism by p53 serves as an important tumor suppressor activity and may provide insights for cancer prevention strategies in the future. Antioxid. Redox Signal. 15, 1739–1748. PMID:20919942

  13. Akt Stimulates Aerobic Glycolysis in Cancer Cells

    Microsoft Academic Search

    Rebecca L. Elstrom; Daniel E. Bauer; Monica Buzzai; Robyn Karnauskas; Marian H. Harris; David R. Plas; Hongming Zhuang; Ryan M. Cinalli; Abass Alavi; Charles M. Rudin; Craig B. Thompson

    2004-01-01

    Cancer cells frequently display high rates of aerobic glycolysis in comparison to their nontransformed counterparts, although the molecular basis of this phenomenon remains poorly understood. Constitutive activity of the serine\\/threonine kinase Akt is a common perturbation observed in malignant cells. Surprisingly, although Akt activity is sufficient to pro- mote leukemogenesis in nontransformed hematopoietic precursors and maintenance of Akt activity was

  14. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  15. Age and aerobic performance in deer mice

    Microsoft Academic Search

    Mark A. Chappell; Enrico L. Rezende; Kimberly A. Hammond

    2003-01-01

    Age impacts the phenotype of all multicellular animals, but lifetime changes in physiological traits are poorly understood for all but a few species. Here, we describe a cross-sectional study of age effects on body composition, aerobic performance and ventilation in deer mice Peromyscus maniculatus. This species lives considerably longer in captivity (in excess of 5 years) than most laboratory rodents,

  16. RBC characteristics for nejayote aerobic treatment

    Microsoft Academic Search

    R. Pedroza de Brenes; C. Durán de Bazúa

    1987-01-01

    Corn processing effluents, known as nejáyote , were aerobically treated in a lab scale rotating biological contactor. Effluents organic compounds removal was monitored, evaluating them as chemical oxygen demand and reducing sugars. Results showed selective elimination of organic compounds along the cascade by microorganisms, corroborating previous hypothesis on staged removal of maize wastes pollutants by adapted biocommunities.

  17. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  18. AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER

    E-print Network

    #12;AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER DOE FRAP 1997-15 Prepared for in both domestic and industrial wastewater. The release of these compounds during wastewater treatment to predict the mass of the VOCs in the wastewater treated by biotransformation and the mass stripped

  19. Fatty acid characterization of rapidly growing pathogenic aerobic actinomycetes as a means of identification.

    PubMed Central

    McNabb, A; Shuttleworth, R; Behme, R; Colby, W D

    1997-01-01

    The fatty acid compositions of 39 type strains and 529 clinical or reference strains of pathogenic aerobic actinomycetes were analyzed after standardized culture by using the Microbial Identification System (MIS). Library entries for each type strain were created by using the MIS Library Generation Software, and the fatty acid profiles of clinical and reference strains were compared to these library entries. The bacteria separated into two large groups based upon major amounts of branched-chain or of saturated or monounsaturated straight-chain fatty acids. Identification of isolates was possible by using only the type strains for comparison, but fatty acid heterogeneity occurred within most species. PMID:9163444

  20. Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage

    Microsoft Academic Search

    Siegfried E. Vlaeminck; Joke Geets; Han Vervaeren; Nico Boon; Willy Verstraete

    2007-01-01

    The biomass of an oxygen-limited autotrophic\\u000a nitrification\\/denitrification (OLAND) biofilm reactor was preserved in\\u000a various ways to find a storage method for both aerobic and anaerobic\\u000a ammonium-oxidizing bacteria (AerAOB and AnAOB). Storage occurred at -20\\u000a degrees C with and without glycerol as cryoprotectant and at 4 and -20\\u000a degrees C with and without nitrate as redox buffer. After 2 and 5

  1. Biochemical control of sulfide generated by sulfate-reducing bacteria in an industrial waste treatment system

    SciTech Connect

    Russell, G.L.; Britton, L.N. [Vista Chemical Co., Austin, TX (United States)

    1994-12-31

    Hydrogen sulfide production by sulfate-reducing bacteria (SRB) is common in non-aerated, upstream, equalization tanks that receive process wastewater prior to aerobic treatment. This phenomenon results in increased oxygen demand in the aerobic basin and problems with deposition of metal sulfides. The objective of this research was to develop a method for sulfide control without the use of biocides or release of volatile organics upstream of the treatment basin via sparging to maintain inhibitory levels of dissolved oxygen. Specifically, the addition of nitrate to competitively decrease SRB activity by shifting the microbial activity towards nitrate reduction was evaluated in bench-scale reactors. This shift was found to be favorable as a pretreatment for oxidation of organics in advance of the aerobic treatment process. The addition of nitrate while maintaining low dissolved oxygen had the same effect as a sequenced anaerobic/aerobic treatment process in the removal of organics, yet there were no problems with sulfide generation.

  2. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients

    PubMed Central

    Ali, Zizi M. Ibrahim; El-Refay, Basant H.; Ali, Rania Reffat

    2015-01-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20–40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20–40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60?min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance. PMID:25931686

  3. The Museum of Bacteria

    NSDL National Science Digital Library

    The Museum of Bacteria serves as a clearinghouse of Web links on bacteria and bacteriology and also provides "crystal-clear information about many aspects of bacteria." The Museum of Bacteria is provided by the Foundation of Bacteria, a non-profit organization dedicated to promoting the field of bacteriology. Links are selected for a general audience, although one section is geared toward professionals in the field. Some of the latest features of the Museum are an "exhibit" on the good bacteria found in food and a Student Hall where students can present their own bacteria-related projects.

  4. Enzymatic characterization of Nocardia spp. and related bacteria by API ZYM profile

    Microsoft Academic Search

    Patrick Boiron; Frédérique Provost

    1990-01-01

    Characterization of 62 isolates belonging to the genus Nocardia and related bacteria was obtained by using the API ZYM system. The difference in enzymatic profile should allow a relatively efficient, low-cost means to identify aerobic actinomycetes of clinical significance.

  5. Iron-reducing bacteria unravel novel strategies for the anaerobic catabolism of aromatic compounds

    Microsoft Academic Search

    Manuel Carmona; Eduardo Díaz

    2005-01-01

    Summary Although the aerobic degradation of aromatic com- pounds has been extensively studied in many microorganisms, the anaerobic mineralization of the aromatic ring is a more recently discovered microbial capacity on which very little information is available from facultative anaerobic bacteria. In this issue of Molecular Microbiology , Wischgoll and colleagues use proteomic and reverse-transcription polymerase chain reaction (PCR) approaches

  6. Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant

    Microsoft Academic Search

    Neal D. Durant; Liza P. Wilson; Edward J. Bouwer

    1995-01-01

    A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7

  7. Solid–Aqueous Phase Partitioning of Radionuclides by Complexing Compounds Excreted by Subsurface Bacteria

    Microsoft Academic Search

    Anna Johnsson; Johanna Arlinger; Karsten Pedersen; Arvid Ödegaard-Jensen; Yngve Albinsson

    2006-01-01

    Radionuclides are present in numerous aerobic and anaerobic subsurface environments due to nuclear weapons testing, leakage from process and storage facilities, and discharge of radioactive waste. The partitioning of radionuclides between liquid and solid phases by complexing compounds excreted by subsurface bacteria was studied. The solid–aqueous phase partitioning of pico- to submicromolar amounts of Fe, Pm, Th, and Am was

  8. Biosorption of rare earth metal ion on aerobic granules.

    PubMed

    Zhang, Li-Li; Feng, Xin-Xing; Xu, Fang; Xu, Shi; Cai, Wei-Min

    2005-01-01

    Aerobic granules are microbial aggregates possessing excellent settling ability and high-porosity structure. In this study, aerobic granules as a novel type of biosorbent were used for cerium's removal from aqueous solution simulating the polluted industrial wastewater. Batch trials were conducted at different initial cerium ion and granule concentration. Biosorption kinetics was also studied. The biosorption conformed to a first-order kinetics model. The results showed that the biosorption ability of aerobic granules was related to both initial cerium ion and granule concentration. The maximum biosorption capacity of cerium by aerobic granules was 357 mg g(-1) granules. The aerobic granules were settled down by gravity from the aqueous solution in one minute after the biosorption experiments. Thus, the post-separation of the conventional suspended biosorbents from the treated effluent could be ignored in the aerobic granule-based biosorption process. All the results confirmed the technical feasibility of the biosorption process by aerobic granules. PMID:15792304

  9. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films.

    PubMed

    Borreani, Giorgio; Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca

    2013-08-01

    The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage microorganisms by delaying the onset of aerobic deterioration. PMID:23769373

  10. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions.

    PubMed

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-01-01

    With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO(2) emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH(4) production yield (MPY) and VS reduction achieved in this condition were 5.0m(3)/m(3)/d, 0.25 m(3) CH(4)/g COD(added), and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m(3)/m(3)/d, MPY of 0.26 m(3) CH(4)/g COD(added), and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes. PMID:21684733

  11. Stability of endoglucanases from mesophilic fungus and thermophilic bacterium in acidified polyols.

    PubMed

    Chong, Barrie Fong; Harrison, Mark D; O'Hara, Ian M

    2014-01-01

    Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100°C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100°C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90°C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes. PMID:24910337

  12. Stability and activity of mesophilic subtilisin E and its thermophilic homolog: Insights from molecular dynamics simulations

    SciTech Connect

    Colombo, G.; Merz, K.M. Jr.

    1999-07-28

    This report examines the origin of the high-temperature (250 K) behavior of a thermophilic mutant enzyme (labeled at 5-3H5; see Zhao and Arnold Prot. Eng. 1999, 12, 47--53) derived from subtilisin E by eight amino acid substitutions. Through the use of molecular dynamics (MD) simulations, the authors have provided molecular-level insights into how point mutations can affect protein structure and dynamics. From simulations the authors observed a reduced rmsd in several key regions, an increased overall flexibility, an increase in the number of hydrogen bonds, and an increase in the number of stabilizing interactions in the thermophilic system. It was shown that it is not a necessary requirement that thermophilic enzymes be less flexible than their mesophilic counterparts at low temperatures. However, thermophilic enzymes must retain their three-dimensional structures and flexibility at high temperatures in order to retain activity. Furthermore, the authors have been able to point out the effects of some of the single substitutions. Even if it is not possible yet to give general rules for rational protein design, the authors are able to make some predictions on how a protein should be stabilized in order to be thermophilic. In particular, the authors suggest that a promising strategy toward speeding up the design of thermally stable proteins would be to identify fluxional regions within a protein through the use of MD simulations (or suitable experiments). Presumably these regions allow for autocatalytic reactions to occur and are also involved in allowing water to gain access to the interior of the protein and initiate protein unfolding. These fluxional regions could also adversely affect the positioning of the catalytic machinery, thereby decreasing catalytic efficiency. Thus, once these locations have been identified, focused directed evolution studies could be designed that stabilize these fluxional regions.

  13. Nitrogen Removal from Micro-Polluted Reservoir Water by Indigenous Aerobic Denitrifiers

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Zhou, Na; Guo, Lin; Di, Shi-Yu; Zhou, Zi-Zhen

    2015-01-01

    Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20–26 °C and a dissolved oxygen concentration of 3–7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 104 to 2 × 107 cfu/mL and from 7.75 × 103 to 5.5 × 105 cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite accumulation in either system. Our results show that aerobic denitrifying bacteria remain highly active after domestication and demonstrate the applicability of such organisms in the bioremediation of oligotrophic ecosystems. PMID:25867475

  14. Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers.

    PubMed

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Zhou, Na; Guo, Lin; Di, Shi-Yu; Zhou, Zi-Zhen

    2015-01-01

    Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20-26 °C and a dissolved oxygen concentration of 3-7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 10(4) to 2 × 10(7) cfu/mL and from 7.75 × 10(3) to 5.5 × 10(5) cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite accumulation in either system. Our results show that aerobic denitrifying bacteria remain highly active after domestication and demonstrate the applicability of such organisms in the bioremediation of oligotrophic ecosystems. PMID:25867475

  15. Formation of aerobic granular sludge under adverse conditions: low DO and high ammonia.

    PubMed

    Zhang, Sheng-Hua; Zhang, Xiao-Hu; Lv, Lu; Wang, Qing; Jiang, Qipei

    2013-04-01

    In this study, two adverse environments: low dissolved oxygen (DO) and high ammonia concentration, were employed to investigate the morphology, interspecies quorum sensing, extracellular polymers (EPS) characterization and microbial communities in the formation of aerobic granular sludge. Results showed that low DO could promote filamentous bacterial outgrowth. Under high ammonia concentration aerobic granular sludge (AGS) could still be cultivated, although it was looser and lighter than the control group. During the early stage of the AGS cultivation process, Al-2 activity reached a peak value in all three reactors, and ultrasonic pre-treatment was not beneficial to the release of Al-2. During AGS formation, the production of polysaccharide exhibited increases from 12.2% to 40.3%, 49.6%, and 29.3%. And PS in R2 was the highest as the result of sludge bulking. PS/PN was 1.5 to approximately 8 in the three reactors. Three-dimensional EEM fuorescence spectroscopy variation indicated the change of protein in EPS, and the highest intensity of Peak T1 was obtained. The location shift of Peak T1 was not obvious, and Peaks A, C, and T2 shifted toward longer wavelengths (red shift) of 5 to approximately 60 nm, or shorter wavelengths (blue shift) of 10 to approximately 25 nm on the emission scale and/or excitation scale in all three reactors. This provided spectral information on the chemical structure changes. Bacteria in R3 had the highest species diversity, and all bacteria in beta-Proteobacteria were identified as genus Thauera, which suggested that simultaneous nitrification and denitrification occurred in R3. The filamentous bacteria in seed sludge and R2 were species-richer. There was a low abundance of filamentous bacteria in R1 and R3, which contributed to the granule structure stability. PMID:24620612

  16. Aerobic metabolism underlies complexity and capacity

    PubMed Central

    Koch, Lauren G; Britton, Steven L

    2008-01-01

    The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

  17. Surface changes in mild steel coupons from the action of corrosion-causing bacteria.

    PubMed

    Obuekwe, C O; Westlake, D W; Cook, F D; William Costerton, J

    1981-03-01

    Changes which occur on the surface of mild steel coupons submerged in cultures of an Fe(III)-reducing bacterium, isolated from corroded pipe systems carrying crude oil, were studied microscopically to investigate the interaction between the corrosion-causing bacterium and the corroding mild steel coupon. Under micro-aerobic conditions and in the absence of the bacteria, a dense, crystalline, amorphous coat formed on the surface of the steel coupons. In the presence of bacteria the surface coat was extensively removed, exposing the bare metal to the environment. After about 2 weeks of exposure, the removal of the surface coating was followed by colonization of the metal surface by the bacteria. Colonization was mediated by fibrous, exopolysaccharidic material formed by the bacteria. Extension of studies to other bacteria isolated from crude oil and corroded pipes reveals that the formation of exopolysaccharide fibers and possession of adherent properties are common characteristics of bacteria from crude oil systems. PMID:16345735

  18. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  19. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L. (Clinton, TN)

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  20. Adaptation of Psychrophilic and Psychrotrophic Sulfate-Reducing Bacteria to Permanently Cold Marine Environments

    PubMed Central

    Isaksen, M. F.; Jorgensen, B. B.

    1996-01-01

    The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6(deg)C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0(deg)C. The rates of sulfate reduction were measured by the (sup35)SO(inf4)(sup2-) tracer technique at different experimental temperatures in sediment slurries. In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate environments. In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19(deg)C during short-term incubations. However, over a 1-week incubation, the highest respiration rate was observed at 12.5(deg)C. Growth of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction. The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments. The results from sediment incubations were compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain ltk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28(deg)C in short-term incubations, even though it could not grow at temperatures above 24(deg)C. Furthermore, this strain showed its highest growth yield between 0 and 12(deg)C. In contrast, the mesophilic strain ak30 respired and grew optimally and showed its highest growth yield at 30 to 35(deg)C. PMID:16535228

  1. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment.

    PubMed

    Liu, Yali; Kang, Xiaorong; Li, Xin; Yuan, Yixing

    2015-08-01

    Lab-scale experiment was conducted to investigate the formation and characteristics of aerobic granular sludge for biological nutrient removal of slaughterhouse wastewater. Experimental results showed that removal performances of chemical oxygen demand (COD), ammonia and phosphate were enhanced with sludge granulation, and their removal efficiencies reached 95.1%, 99.3% and 83.5%, respectively. The aerobic granular sludge was matured after 90days cultivation, and protein-like substances were the main components. Simultaneously, the mass ratio of proteins and polysaccharides (PN/PS) was enhanced to 2.5 from 1.7. The granules with particle sizes of 0.6-1.2 and 1.2-1.8mm, accounting for 69.6%, were benefit for the growth of ammonia oxidizing bacteria (AOB) and nitrate oxidizing bacteria (NOB), and corresponding specific oxygen demand rates (SOUR) of AOB and NOB were 31.4 and 23.3mgO2/gMLSSh, respectively. PMID:25777064

  2. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method. PMID:23872893

  3. Aerobic methanotrophic communities at the Red Sea brine-seawater interface.

    PubMed

    Abdallah, Rehab Z; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F; Bajic, Vladimir B; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free-living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  4. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. PMID:25682559

  5. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  6. Lactic Acid Bacteria

    NSDL National Science Digital Library

    This on-line exercise is focused on lactic acid bacteria, a group of related bacteria that produce lactic acid as a result of carbohydrate fermentation. It includes a protocol for the enrichment of lactic acid bacteria from enriched samples (like yogurt, sauerkraut, decaying plant matter, and tooth plaque). Three parameters are measured: growth, culture diversity, and pH. The exercise also includes instructions for the isolation of some of these bacteria by using the streak-plate method.

  7. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO?-N/L, aerobic P-uptake and oxidation of intercellular poly-?-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO?-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  8. cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1.

    PubMed

    Hamada, Masakaze; Toyofuku, Masanori; Miyano, Tomoki; Nomura, Nobuhiko

    2014-11-01

    For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions. PMID:25182494

  9. cbb3-Type Cytochrome c Oxidases, Aerobic Respiratory Enzymes, Impact the Anaerobic Life of Pseudomonas aeruginosa PAO1

    PubMed Central

    Hamada, Masakaze; Toyofuku, Masanori; Miyano, Tomoki

    2014-01-01

    For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions. PMID:25182494

  10. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect

    Kim, Dong-Hoon [Wastes Energy Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1, Duckmyoung-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

  11. Bacteria: More Than Pathogens

    NSDL National Science Digital Library

    Trudy Wassenaar (; )

    2002-07-01

    The issue-focused, peer-reviewed article reveals that there are more bacteria on Earth than there are humans. Bacteria: inhabit every environment on the planet, playing a key ecological role, can be good for our health -- for example, by helping us digest food, and can cause disease even though the human body is not the natural host for many bacteria.

  12. Bacteria: Friend or Foe?

    NSDL National Science Digital Library

    David Brock (Roland Park Public School; )

    2003-01-10

    This lesson explores "good" and "bad" bacteria. Students can draw "Wanted!" bacteria mug shots, create composting trials and designs, produce a skit involving a boastful virus and bacterium, experiment with soil and ordinary objects in the lab, write a news story about an outbreak, complete a multiple-choice bacteria quiz and more!

  13. Aerobic Degradation of Mercaptosuccinate by the Gram-Negative Bacterium Variovorax paradoxus Strain B4 ? †

    PubMed Central

    Carbajal-Rodríguez, Irma; Stöveken, Nadine; Satola, Barbara; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2011-01-01

    The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate. PMID:21075928

  14. Bacteria Are Everywhere!

    NSDL National Science Digital Library

    AMPS GK-12 Program,

    Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.

  15. Can sludge dewatering reactivate microorganisms in mesophilically digested anaerobic sludge? Case of belt filter versus centrifuge.

    PubMed

    Erkan, M; Sanin, F D

    2013-01-01

    The anaerobic digestion process that successfully reduces the organic content of sludge is one of the most common alternatives to meet pathogen reduction requirements for particular classes of biosolids. However, recently it was reported that, much higher densities of indicator bacteria were measured in dewatered cake samples compared to samples collected after anaerobic digestion. Additionally, this increase was commonly observed after centrifugation but not after belt filter dewatering. Several hypotheses were tested to explain this occurrence; however, much of the attention was given to the reactivation of the indicator bacteria which might enter a viable but non-culturable state (VBNC) during digestion. The objective of this research is to examine sludge samples from 5 different full-scale treatment plants in order to observe the effect of dewatering processes on the reactivation potential of indicator bacteria. The bacterial enumerations were performed by both Standard Culturing Methods (SCM) and quantitative polymerase chain (qPCR) on samples collected after digestion and dewatering. Results obtained by SCM indicated that in two investigated treatment plants operating belt filter dewatering, an average 0.6 log decrease was observed after the dewatering process. However, 0.7-1.4 log increases were observed immediately after centrifuge dewatering for the other three treatment plants. On the other hand, qPCR results gave 0.1-1.9 log higher numbers compared to SCM. Comparative evaluation of results obtained by two analytical methods for five treatment plants indicates that the differences observed might be originating from both reactivation of VBNC bacteria and amplification of DNA from dead cells found in the sludge. PMID:23141737

  16. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m?3·d?1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  17. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  18. Comparison of the mesophilic cellulosome?producing Clostridium cellulovorans genome with other cellulosome?related clostridial genomes

    PubMed Central

    Tamaru, Yutaka; Miyake, Hideo; Kuroda, Kouichi; Nakanishi, Akihito; Matsushima, Chiyuki; Doi, Roy H.; Ueda, Mitsuyoshi

    2011-01-01

    Summary Clostridium cellulovorans, an anaerobic and mesophilic bacterium, degrades native substrates in soft biomass such as corn fibre and rice straw efficiently by producing an extracellular enzyme complex called the cellulosome. Recently, we have reported the whole?genome sequence of C. cellulovorans comprising 4220 predicted genes in 5.10?Mbp [Y. Tamaru et?al., (2010) J. Bacteriol., 192: 901–902]. As a result, the genome size of C. cellulovorans was about 1?Mbp larger than that of other cellulosome?producing clostridia, mesophilic C. cellulolyticum and thermophilic C. thermocellum. A total of 57 cellulosomal genes were found in the C. cellulovorans genome, and they coded for not only carbohydrate?degrading enzymes but also a lipase, peptidases and proteinase inhibitors. Interestingly, two novel genes encoding scaffolding proteins were found in the genome. According to KEGG metabolic pathways and their comparison with 11 Clostridial genomes, gene expansion in the C. cellulovorans genome indicated mainly non?cellulosomal genes encoding hemicellulases and pectin?degrading enzymes. Thus, by examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced cellulosome?producing Clostridium strains for industrial applications such as biofuel production. PMID:21255373

  19. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter.

    PubMed

    Westerholm, Maria; Roos, Stefan; Schnürer, Anna

    2010-08-01

    A mesophilic, syntrophic acetate-oxidizing bacterium, designated strain Sp3(T), was isolated from sludge from a mesophilic methanogenic digestor operating at a high ammonium concentration (6.4 g L(-1) NH(4)(+)-N). The strain showed acetate-oxidizing ability in cocultivation with a hydrogen-consuming methanogen. Comparative 16S rRNA gene sequence analysis confirmed that strain Sp3(T) belonged to the Firmicutes-Clostridia class. The most closely related species was Thermacetogenium phaeum (16S rRNA gene sequence identity 92%). Strain Sp3(T) used ethanol, betaine and lactate as carbon and electron sources and showed growth between 25 and 40 degrees C and pH 6.0 and 8.0. Based on the phylogenetic position and the physiological characteristics of strain Sp3(T), this new syntrophic, acetate-oxidizing bacterium is proposed as the new genus and species Syntrophaceticus schinkii, with Sp3(T) (=JCM 16669(T)) as the type strain. An isolate (strain Esp=JCM 16670) with high 16S rRNA gene sequence identity (99%) to syntrophic acetate-oxidizing Clostridium ultunense was also retrieved from the methanogenic digestor. PMID:20546311

  20. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 {sup o}C

    SciTech Connect

    Ferrer, Ivet, E-mail: ivet.ferrer@upc.ed [Environmental Engineering Division, Department of Hydraulic, Maritime and Environmental Engineering. Technical University of Catalonia, C/ Jordi Girona 1-3, E-08034 Barcelona (Spain); Palatsi, Jordi [GIRO Technological Centre, Rambla Pompeu Fabra 1, E-08100 Mollet del Valles, Barcelona (Spain); Campos, Elena [Laboratory of Environmental Engineering, Centre UdL-IRTA, Rovira Roure 191, E-25198 Lleida (Spain); Flotats, Xavier [GIRO Technological Centre, Rambla Pompeu Fabra 1, E-08100 Mollet del Valles, Barcelona (Spain); Department of Agrifood Engineering and Biotechnology, Technical University of Catalonia, Parc Mediterrani de la Tecnologia Edifici D-4, E-08860 Castelldefels, Barcelona (Spain)

    2010-10-15

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 {sup o}C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 {sup o}C and 55 {sup o}C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH{sub 4}/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH{sub 4}/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  1. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungo; Cisar, Craig J

    2015-07-01

    Falatic, JA, Plato, PA, Holder, C, Finch, D, Han, K, and Cisar, CJ. Effects of kettlebell training on aerobic capacity. J Strength Cond Res 29(7): 1943-1947, 2015-This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V[Combining Dot Above]O2max in the KB group. The average increase was 2.3 ml·kg·min, or approximately a 6% gain. There was no significant change in V[Combining Dot Above]O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning. PMID:26102260

  2. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-11-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  3. Methane-Derived Hydrogen in Lipids Produced by Aerobic Methanotrophs

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Jahnke, L. L.; Schimmelmann, A.; Hayes, J. M.

    2001-12-01

    Combined hydrogen- and carbon-isotopic analyses of methane often provide important clues about its origin. Unfortunately, methane is not preserved in the geologic record so these analyses can only examine trapped or actively produced methane. The lipids of microorganisms that consume methane potentially record its isotopic composition, and are accessible throughout most of the geologic record. Those lipids therefore represent a potential means for examining the characteristics of methane released into the oceans over geologic history. We have examined the hydrogen-isotopic relationships between methane and lipids in the aerobic methanotroph Methylococcus capsulatus using cultures in which the D/H ratio of supplied water and methane were controlled independently. Resulting ? D values were measured for a range of fatty acids, sterols, and hopanols using isotope-ratio-monitoring gas chromatography/mass spectrometry. We estimate that 31 +/- 2% of hydrogen in every lipid we examined is derived from methane, regardless of whether cultures were harvested in exponential or stationary phase. The biochemical pathways responsible for the transfer of hydrogen from methane to lipids are not fully understood. Isotope fractionation associated with the utilization of methane (i.e., ? lipid/methane) averages 0.986 for fatty acids and 0.789 for isoprenoid lipids. For water, fractionation (? lipid/water) averages 0.938 for fatty acids and 0.831 for isoprenoid lipids. Given typical ? D values for seawater (0%) and thermogenic `dry' methane (-150‰ ), fatty acids from M. capsulatus should have ? D values near -95‰ , and isoprenoids should have ? D values near -215‰ . Using ? Dmethane = -300‰ , a value near the lower limit of those for biogenic methanes, we predict ? D values for methanotroph fatty acids and isoprenoid lipids of -140 and -260‰ , respectively. It appears possible that D/H measurements of lipids from methanotrophic bacteria will provide useful hydrogen-isotopic information about methane that has been entirely consumed.

  4. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  5. Water aerobics in pregnancy: cardiovascular response, labor and neonatal outcomes

    Microsoft Academic Search

    Erica P Baciuk; Rosa I Pereira; Jose G Cecatti; Angelica F Braga; Sergio R Cavalcante

    2008-01-01

    BACKGROUND: To evaluate the association between water aerobics, maternal cardiovascular capacity during pregnancy, labor and neonatal outcomes. METHODS: A randomized, controlled clinical trial was carried out in which 34 pregnant women were allocated to a water aerobics group and 37 to a control group. All women were submitted to submaximal ergometric tests on a treadmill at 19, 25 and 35

  6. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space. PMID:20058738

  7. ORIGINAL PAPER Characterization of multiple novel aerobic polychlorinated

    E-print Network

    Craft, Christopher B.

    ORIGINAL PAPER Characterization of multiple novel aerobic polychlorinated biphenyl (PCB of bioremediation as an effective tool for cleanup of PCB-contaminated soils. Keywords Aerobic biodegradation Á Bioremediation Á Chlorobenzene Á PCBs Á Polychlorinated biphenyls Introduction The manufacture, use and disposal

  8. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  9. EFFECTS OF CORN SILAGE INOCULANTS ON AEROBIC STABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic stability of corn silage can be a major problem for farmers particularly in warm weather. Silage inoculants, while the most common type of silage additive, have not been consistently effective at improving aerobic stability. This study investigated new and proposed inoculant products over ...

  10. Bacteria: Fossil Record

    NSDL National Science Digital Library

    This description of the fossil record of bacteria focuses on one particular group of bacteria, the cyanobacteria or blue-green algae, which have left a fossil record that extends far back into the Precambrian. The oldest cyanobacteria-like fossils known are nearly 3.5 billion years old and are among the oldest fossils currently known. Cyanobacteria are larger than most bacteria and may secrete a thick cell wall. More importantly, cyanobacteria may form large layered structures, called stromatolites (if more or less dome-shaped) or oncolites (if round). The site also refers to pseudomorphs of pyrite and siderite, and a group of bacteria known as endolithic. Two links are available for more information. One provides information on the discovery of possible remains of bacteria-like organisms on a meteorite from Mars and the other has a research report on fossilized filamentous bacteria and other microbes, found in Cretaceous amber.

  11. Monitoring beef carcass surface microbial contamination with a luminescence-based bacterial phosphatase assay.

    PubMed

    Kang, Dong-Hyun; Siragusa, Gregory R

    2002-01-01

    A commercially available microbial phosphatase test kit (Fast Contamination Indicator; FCI) was evaluated as a rapid method for estimating microbial contamination levels on beef carcass tissues. A set of actual beef carcass surface sample swabs (n = 70) was tested using the assay as a means to rapidly (10 min) monitor carcass swab sample microbial contamination. A regression equation was developed in experiment 1 and tested on an independent population. There was agreement between this assay and the conventional plating method for total aerobic mesophilic bacteria (r = 0.93). The predicted total mesophilic aerobic bacteria count generated from the fitted regression line (predicted log10 CFU/cm2 = 0.7505 x log10 FCI microbial phosphatase test values + 0.6726) showed a high correlation with actual aerobic mesophilic total counts (r = 0.88). The FCI test offers a simple and rapid method to estimate microbial contamination levels on beef carcasses. PMID:11808806

  12. Bacteria and lignin degradation

    Microsoft Academic Search

    Jing Li; Hongli Yuan; Jinshui Yang

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material. It is degraded and\\u000a modified by bacteria in the natural world, and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.\\u000a Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling, erosion, and cavitation. With the advantages\\u000a of immense environmental

  13. TSSWCB Bacteria-Related Projects

    E-print Network

    Wythe, Kathy

    2007-01-01

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL... Creek: A TMDL Project for Bacteria ? Lower San Antonio River: A TMDL Project for Bacteria ? Upper San Antonio River: A TMDL Project for Bacteria ? Trinity River: A TMDL Project for Bacteria ? Upper Oyster Creek: A TMDL Project for Bacteria...

  14. TSSWCB Bacteria-Related Projects 

    E-print Network

    Wythe, Kathy

    2007-01-01

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL... Creek: A TMDL Project for Bacteria ? Lower San Antonio River: A TMDL Project for Bacteria ? Upper San Antonio River: A TMDL Project for Bacteria ? Trinity River: A TMDL Project for Bacteria ? Upper Oyster Creek: A TMDL Project for Bacteria...

  15. Introduction to Bacteria

    NSDL National Science Digital Library

    DiscoverySchool.com

    2007-12-12

    This science site has students research how bacteria move, where they live, and how they reproduce; learn how bacteria can be helpful or harmful; and create a design illustrating what they have learned about bacteria. Included in the lesson plan are the objectives, needed materials and Web sites, procedures, discussion questions, evaluation, extensions, suggested reading, and vocabulary. Teachers can link to Teaching Tools to create custom worksheets, puzzles, and quizzes. A printable version of the lesson plan can be downloaded. The video Bacteria, Viruses and Allergies can be purchased and comprehension questions and answers can be downloaded.

  16. The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    PubMed Central

    Spring, Stefan; Lünsdorf, Heinrich; Fuchs, Bernhard M.; Tindall, Brian J.

    2009-01-01

    Background There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. Methodology/Principal Findings Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71T. Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71T cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3–2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71T could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. Conclusions/Significance In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71T we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71T (?=?DSM 17192T?=?NBRC 104960T). PMID:19287491

  17. The fish myotome is composed of both aerobic and anaerobic muscle. The aerobic or red muscle is used to power

    E-print Network

    Coughlin, David J.

    409 The fish myotome is composed of both aerobic and anaerobic muscle. The aerobic or red muscle of their red muscle. These patterns are associated with differences in body bending kinematics (Coughlin, 2002 with different anterior- posterior patterns of muscle contraction kinetics (Coughlin, 2002). For instance

  18. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates

    NASA Astrophysics Data System (ADS)

    Patterson, B. M.; Aravena, R.; Davis, G. B.; Furness, A. J.; Bastow, T. P.; Bouchard, D.

    2013-10-01

    A field-based investigation was conducted at a contaminated site where the vadose zone was contaminated with a range of chlorinated hydrocarbons. The investigation consisted of groundwater and multilevel soil-gas monitoring of a range of contaminants and gases, along with isotope measurements and microbiology studies. The investigation provided multiple lines of evidence that demonstrated aerobic biodegradation of vinyl chloride (VC) was occurring in the vadose zone (i) above the on-site source zone, and (ii) above the downgradient off-site groundwater plume location. Data from both the on-site and off-site locations were consistent in showing substantially greater (an order of magnitude greater) rates of VC removal from the aerobic vadose zone compared to more recalcitrant contaminants trichloroethene (TCE) and tetrachloroethene (PCE). Soil gas VC isotope analysis showed substantial isotopic enrichment of VC (?13C - 5.2 to - 10.9‰) compared to groundwater (?13C - 39.5‰) at the on-site location. Soil gas CO2 isotope analysis at both locations showed that CO2 was highly isotopically depleted (?13C - 28.8 to - 33.3‰), compared to soil gas CO2 data originating from natural sediment organic matter (?13C = - 14.7 to - 21.3‰). The soil gas CO2 ?13C values were consistent with near-water table VC groundwater ?13C values (- 36.8 to - 39.5‰), suggesting CO2 originating from aerobic biodegradation of VC. Bacteria that had functional genes (ethene monooxygenase (etnC) and epoxyalkane transferase (etnE) involved in ethene metabolism and VC oxidation were more abundant at the source zone where oxygen co-existed with VC. The distribution of VC and oxygen vadose zone vapour plumes, together with long-term changes in soil gas CO2 concentrations and temperature, provided information to elucidate the factors controlling aerobic biodegradation of VC in the vadose zone. Based on the overlapping VC and oxygen vadose zone vapour plumes, aerobic vapour biodegradation rates were independent of substrate (VC and/or oxygen) concentration. The high correlation (R = 0.962 to 0.975) between CO2 concentrations and temperature suggested that aerobic biodegradation of VC was controlled by bacterial activity that was regulated by the temperature within the vadose zone. When assessing a contaminated site for possible vapour intrusion into buildings, accounting for environmental conditions for aerobic biodegradation of VC in the vadose zone should improve the assessment of environmental risk of VC intrusion into buildings, enabling better identification and prioritisation of contaminated sites to be remediated.

  19. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    SciTech Connect

    Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W. (Duke)

    2008-10-27

    We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

  20. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer

    Microsoft Academic Search

    Siegfried E. Vlaeminck; Katleen Dierick; Nico Boon; Willy Verstraete

    2007-01-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and\\u000a anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of\\u000a this study was to verify putative mutual benefits for aggregated AerAOB\\u000a and AnAOB in a stagnant freshwater environment. In an ammonium fed water\\u000a column, the biological oxygen consumption rate was, on average, 76 kg\\u000a O-2 ha(-1)day(-1). As the oxygen transfer

  1. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  2. Thermo-resistance Acquisition of A Mesophilic Bacterium with The Aid of Vector Particles Originating from Thermophiles

    NASA Astrophysics Data System (ADS)

    Sugitate, T.; Inaba, N.; Kurusu, Y.; Hoaki, T.; Chiura, H. X.

    2004-12-01

    The present study was aimed to examine whether virus-like particles (VLPs) would be able to transfer and express the thermo-resistance gene of thermophilic microbes in the mesophilic auxotrophic Escherichia coli AB1157 mutant. A hyper-thermophilic archaea, Thermococcus kodakaraensis B41, that was isolated from the Suiyo Seamount APSK06 boring core, released particles (KD-VLPs) during culture. Transduction towards recipient E. coli AB1157 was carried out using KD-VLP as the gene transfer mediator, in order to examine the lethal effect and thermo-resistant gene transfer capability of the particle. The colony forming ability of the cells was examined in 7 % of gelrite supplemented-LB plates (LB-gelrite plates) at 50, 56, and 70 ° C. Regardless of UV irradiation, KD-VLP showed a reduced efficiency of plating (EOP) of recipient viable cell population to ca 65 %. Four colonies were formed in LB-gelrite plates at 50 ° C, which were named as KD-E-Trans, and the gene transfer frequency was estimated to be 5.12 × 10-8 cfu/particle. Obtained KD-E-Trans was cultured in LB liquid medium employing the same high temperature conditions. The cells grew 1.6 ˜ 6 fold of the inocula in 13 days at all the examined temperatures, and the generation time of the transductants were as follows: ca 28 hours at 50 ° C, ca 73 hours at 56 ° C, ca 266 hours at 70 ° C. Thus, the gene transfer of thermo-resistance to mesophilic E. coli from another Domain with the aid of KD-VLPs was demonstrated.

  3. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    PubMed

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  4. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  5. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.

    PubMed

    Chen, Chih-Yu; Chen, Tzu-Yu; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) can, besides running on wastewater, also derive energy directly from certain aquatic plants. However, few studies have focussed on electricity generation using aerobic anodes. This study presents a comparison of the MFC performances of an anaerobic-anode MFC (ana-MFC) and an aerobic-anode MFC (aa-MFC), and shows their individual conditions for optimal operation. Results show that the maximum power density of 7.07 +/- 0.45 mW/m2 for the ana-MFC occurred at 500 omega, whereas the aa-MFC had a maximum power density of 2.34 +/- 0.16 mW/m2 at 2200 omega. The ana-MFC generally achieved high electricity generation, and the aa-MFC achieved relatively high electricity generation when fed with a diluted substrate. In the ana-MFC, the optimal substrate for electricity generation was glucose (fermentable substrate); however, glucose and acetic acid (non-fermentable substrate) were both suitable substrates for the aa-MFC. The optimal gas retention times of the ana-MFC and the aa-MFC were 9 and 120 s, respectively. This retention time is an important limiting factor of electricity generation for the ana-MFC. The aa-MFCs fed with different substrates exhibited non-significant differences between bacterial communities. We observed the relative diversities of bacterial communities in the ana-MFC fed with various substrates. The results of denaturing gradient gel electrophoresis analysis suggest that Ochrobactrum intermedium, Delftia acidovorans, and Citrobacterfreundii may be potential electrogenic bacteria. To our knowledge, this is the first study comparing the MFC performances of anaerobic and aerobic anodes. PMID:24600867

  6. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (?excit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  7. Aerobic Biodegradation of Phenols: A Comprehensive Review

    Microsoft Academic Search

    Taghreed Al-Khalid; Muftah H. El-Naas

    2012-01-01

    Phenol and its derivatives are hazardous pollutants that are highly toxic even at low concentrations. The management of wastewater containing high concentrations of phenols represents major economical and environmental challenges to most industries. Biotechnology has been very effective in dealing with major environmental challenges through utilizing different types of bacteria and biocatalysts to develop innovative processes for the biodegradation, biotreatment,

  8. THE MITOCHONDRIA OF BACTERIA

    Microsoft Academic Search

    STUART MUDD

    1953-01-01

    Recent evidence from the biochemical, the genetic and the morphologic study of bacteria, in that chronological order, has indicated essential similarities of the bacterial cell to the cells of higher organisms. Recognition in bacteria of a large category of cytoplasmic granules as possessing characteristics which strongly sug- gest that they are the functional equivalents of the mitochondria of anirnaE and

  9. Bacteria turn tiny gears

    SciTech Connect

    None

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  10. Aerobic Exercise in People with Multiple Sclerosis

    PubMed Central

    Thompson, Mary; Medley, Ann

    2013-01-01

    The aims of this study were to explore the feasibility of structured aerobic exercise followed by a period of unstructured physical activity and determine the impact of such exercise on cognition, mood, and quality of life in people with multiple sclerosis (MS). A convenience sample of 9 individuals with relapsing-remitting MS performed 30 minutes of aerobic exercise (upper- and lower-extremity ergometry and treadmill ambulation) twice weekly for 8 weeks, followed by 3 months of unstructured physical activity. Eight participants completed the intervention and posttest; 6 returned for the 3-month follow-up. Cardiovascular fitness, cognition, mood (measured with the Beck Depression Inventory–II; BDI-II), and quality of life (measured with the Multiple Sclerosis Quality of Life–54; MSQOL-54) were assessed. Participants completed 27.9 minutes of exercise per session, with an 85.1% attendance rate. Evaluation using the Wilcoxon signed rank test revealed no deleterious effects and improved results on the BDI-II and MSQOL-54 mental subscale. Analysis of change scores using the one-sample t test revealed that the BDI-II and MSQOL-54 were changed from zero after structured exercise, but only the BDI-II maintained improvement after unstructured physical activity. Further analysis of BDI-II subscales revealed that improvement occurred only in the Somato-Affective subscale. In this study, program feasibility was demonstrated in several ways. There were no declines in cognitive function over the 5-month period. Despite unchanged cognitive function, participants may value the improved mood enough to continue both the structured and unstructured physical activity. The role of unstructured physical activity in concert with periodic structured exercise programs merits further investigation. PMID:24453776

  11. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.

    PubMed

    Doucleff, Michaeleen; Chen, Baoyu; Maris, Ann E; Wemmer, David E; Kondrashkina, Elena; Nixon, B Tracy

    2005-10-21

    Only a few transcriptional regulatory proteins have been characterized in extremely hyperthermophilic organisms, and most function as repressors. Structural features of the NtrC1 protein from the hyperthermophilic bacterium Aquifex aeolicus suggested that this protein functions similarly to the sigma(54)-polymerase activator DctD of Sinorhizobium meliloti. Here, we demonstrate that NtrC1 is an enzyme that hydrolyzes ATP to activate initiation of transcription by sigma(54)-holoenzyme. New structural data, including small-angle solution scattering data and the crystal structure of the phosphorylated receiver domain, show that NtrC1 uses a signal transduction mechanism very similar to that of DctD to control assembly of its AAA+ ATPase domain. As for DctD, the off-state of NtrC1 depends upon a tight dimer of the receiver domain to repress oligomerization of an intrinsically competent ATPase domain. Activation of NtrC1 stabilizes an alternative dimer configuration of the receiver domain that is very similar to the on-state dimers of the DctD and FixJ receiver domains. This alternative dimer appears to relieve repression of the ATPase domain by disrupting the off-state dimerization interface along the helical linker region between receiver and ATPase domains. Bacterial enhancer binding proteins typically have two linker sequences, one between N-terminal regulatory and central ATPase domains, and one between the central ATPase and C-terminal DNA binding domains. Sequence analyses reveal an intriguing correlation between the negative regulation mechanism of NtrC1 and DctD, and a structured N-terminal linker and unstructured C-terminal one; conversely, the very different, positive mechanism present in NtrC protein occurs in the context of an unstructured N-terminal linker and a structured C-terminal one. In both cases, the structured linkers significantly contribute to the stability of the off-state dimer conformation. These analyses also raise the possibility that a structured linker between N-terminal regulatory and central output domains is used frequently in regulatory proteins from hyperthermophilic organisms. PMID:16169010

  12. Anaerobic and aerobic cleavage of the steroid core ring structure by Steroidobacter denitrificans[S

    PubMed Central

    Wang, Po-Hsiang; Leu, Yann-Lii; Ismail, Wael; Tang, Sen-Lin; Tsai, Ching-Yen; Chen, Hsing-Ju; Kao, Ann-Tee; Chiang, Yin-Ru

    2013-01-01

    The aerobic degradation of steroids by bacteria has been studied in some detail. In contrast, only little is known about the anaerobic steroid catabolism. Steroidobacter denitrificans can utilize testosterone under both oxic and anoxic conditions. By conducting metabolomic investigations, we demonstrated that S. denitrificans adopts the 9,10-seco-pathway to degrade testosterone under oxic conditions. This pathway depends on the use of oxygenases for oxygenolytic ring fission. Conversely, the detected degradation intermediates under anoxic conditions suggest a novel, oxygenase-independent testosterone catabolic pathway, the 2,3-seco-pathway, which differs significantly from the aerobic route. In this anaerobic pathway, testosterone is first transformed to 1-dehydrotestosterone, which is then reduced to produce 1-testosterone followed by water addition to the C-1/C-2 double bond of 1-testosterone. Subsequently, the C-1 hydroxyl group is oxidized to produce 17-hydroxy-androstan-1,3-dione. The A-ring of this compound is cleaved by hydrolysis as evidenced by H218O-incorporation experiments. Regardless of the growth conditions, testosterone is initially transformed to 1-dehydrotestosterone. This intermediate is a divergence point at which the downstream degradation pathway is governed by oxygen availability. Our results shed light into the previously unknown cleavage of the sterane ring structure without oxygen. We show that, under anoxic conditions, the microbial cleavage of steroidal core ring system begins at the A-ring. PMID:23458847

  13. Reactivation characteristics of stored aerobic granular sludge using different operational strategies.

    PubMed

    Yuan, Xiangjuan; Gao, Dawen; Liang, Hong

    2012-06-01

    Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up. PMID:22072196

  14. Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater.

    PubMed

    Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Andaya, Christina; Vainberg, Simon; Michalsen, Mandy M; Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Eaton, Hillary; Istok, Jonathan D

    2015-02-01

    The potential for bioaugmentation with aerobic explosive degrading bacteria to remediate hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated aquifers was demonstrated. Repacked aquifer sediment columns were used to examine the transport and RDX degradation capacity of the known RDX degrading bacterial strains Gordonia sp. KTR9 (modified with a kanamycin resistance gene) Pseudomonas fluorescens I-C, and a kanamycin resistant transconjugate Rhodococcus jostii RHA1 pGKT2:Km+. All three strains were transported through the columns and eluted ahead of the conservative bromide tracer, although the total breakthrough varied by strain. The introduced cells responded to biostimulation with fructose (18 mg L(-1), 0.1 mM) by degrading dissolved RDX (0.5 mg L(-1), 2.3 µM). The strains retained RDX-degrading activity for at least 6 months following periods of starvation when no fructose was supplied to the column. Post-experiment analysis of the soil indicated that the residual cells were distributed along the length of the column. When the strains were grown to densities relevant for field-scale application, the cells remained viable and able to degrade RDX for at least 3 months when stored at 4 °C. These results indicate that bioaugmentation may be a viable option for treating RDX in large dilute aerobic plumes. PMID:25503243

  15. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    PubMed

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates). PMID:25487809

  16. Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column.

    PubMed

    Kim, Moonil; Han, Dukkyu; Cui, Fenghao; Bae, Wookeun

    2013-01-01

    The treatment of textile wastewater is difficult because of its recalcitrant organic content. The biological removal of recalcitrant organics requires a long retention time for microbial growth. Activated sludge was immobilized in a polyethylene glycol pellet to allow for sufficient sludge retention time. The pellets were filled in an aerobic cell-immobilized pellet column (CIPC) reactor in order to investigate the removal of recalcitrant organics from textile wastewater. A textile wastewater effluent treated by a conventional activated sludge reactor was used as a target wastewater. The chemical oxygen demand (COD) removal efficiency of the aerobic CIPC reactor at various empty bed contact times was in the range of 42.2-60.5%. Half of the input COD was removed in the lower part (bottom 25% of the reactor volume) of the reactor when the organic loading rate was less than 1.5 kg COD/(m(3)•d). About 15-30% of the input COD was removed in the remaining part of the column reactor. The COD removed in this region was limitedly biodegradable. The biodegradation of recalcitrant organics could be carried out by the interactional functions of the various bacteria consortia by using a cell-immobilization process. The CIPC process could effectively treat textile wastewater using a short retention time because the microorganisms that degrade limitedly biodegradable organics were dominant in the reactor. PMID:23656958

  17. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean.

    PubMed

    Zheng, Qiang; Liu, Yanting; Steindler, Laura; Jiao, Nianzhi

    2015-04-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) represent a widespread functional bacterial group defined by their obligate aerobic and facultative photoheterotrophic abilities. They are an active part of the marine microbial community as revealed by a large number of previous investigations. Here, we made an in-depth comparison of AAPB community structures in the subsurface water and the upper twilight zone of the western Pacific Ocean using high-throughput sequencing based on the pufM gene. Approximately, 100 000 sequences, grouped into 159 OTUs (94% cut-off value), included 44 and 24 OTUs unique to the subsurface and the upper twilight zone, respectively; 92 OTUs were common to both subsurface and twilight zone, and 3 OTUs were found in all samples. Consistent with previous studies, AAPB belonging to the Gammaproteobacteria were the dominant group in the whole water column, followed by the alphaproteobacterial AAPB. Comparing the relative abundance distribution patterns of different clades, an obvious community-structure separation according to deeper or shallower environment could be observed. Sulfitobacter-like, Loktanella-like, Erythrobacter-like, Dinoroseobacter-like and Gamma-HIMB55-like AAPB preferred the high-light subsurface water, while Methylobacterium-like, 'Citromicrobium'-like, Roseovarius-like and Bradyrhizobium-like AAPB, the dim light environment. PMID:25724533

  18. [Effect of temperature on the Pb2+ biosorption with aerobic granules].

    PubMed

    Yao, Lei; Ye, Zheng-Fang; Wang, Zhong-You; Ni, Jin-Ren

    2009-06-15

    Experimental studies were conducted on the effect of temperature on the Pb2+ biosorption with aerobic granules seeding with floccular activated sludge. The results showed that the aerobic granules manly comprised the elements of C, H, N, O and P. According to the elemental compositions of the microbial granules, the corresponding empirical formula of the granules can be determined as C5.7 H10.9 O3.9 NS0.04. ESEM results showed many coccoid bacteria were visiable on the granule surface with porous structure. Both Freundlich and Langmuir isotherm equations could describe the biosorption process well (R2 > 0.914)under various temperature (20-40 degrees C). The maximum biosorption capacity (Q(max)) increased from 80.65 mg x g(-1) (20 degrees C) to 97.09 mg x g(-1) (40 degrees C). The values of thermodynamic parameters (deltaG < 0, deltaH > 0, deltaS > 0) indicated the biosorption process was spontaneous and endothermic in nature. Moreover, the Fourier transform infrared spectroscopy (FTIR) results demonstrated that such active groups as -OH, -COOH and P = O were involved in Pb2+ biosorption but nothing to do with nitrogen-containing groups. PMID:19662860

  19. Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere.

    PubMed

    Ji, Bin; Wang, Hongyu; Yang, Kai

    2014-04-01

    A continuous-upflow submerged biofilter packed with ceramsite was constructed for nitrate removal under an aerobic atmosphere. Pseudomonas stutzeri X31, an aerobic denitrifier isolate, was added to the bioreactor as an inoculum. The influent NO3(-)-N concentrations were 63.0-73.8 mg L(-1). The best results were achieved when dissolved oxygen level was 4.6 mg L(-1) and C/N ratio was 4.5. The maximum removal efficiencies of carbon oxygen demand (COD) and NO3(-)-N were 94.04% and 98.48%, respectively at 30°C, when the hydraulic load was 0.75 m h(-1). The top section of the bioreactor possessed less biofilm but higher COD and NO3(-)-N removal rates than the bottom section. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) technique combined with electron microscopic examination indicated P. stutzeri X31 and Paracoccus versutus were the most dominant bacteria. Amoeba sp., Vorticella sp., Philodina sp., and Stephanodiscus sp. were also found in the bioreactor. PMID:24594672

  20. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended. PMID:25855365

  1. Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions.

    PubMed

    Gallmetzer, Martin; Meraner, Joachim; Burgstaller, Wolfgang

    2002-05-01

    Succinate is an interesting chemical for industries producing food and pharmaceutical products, surfactants, detergents and biodegradable plastics. Succinate is produced mainly by a mixed-acid fermentation process using anaerobically growing bacteria. However, succinate excretion is also widespread among fungi. In this article we report results on the intracellular concentration and the excretion of succinate by Penicillium simplicissimum under aerobic and anaerobic conditions. The intracellular concentration of succinate increased slightly with the specific growth rate and strongly if the respiratory chain was inhibited by sodium azide or anaerobic conditions (N(2)). A strong increase of succinate excretion was observed if the respiratory chain was inhibited. It is suggested that succinate synthesis under functional (sodium azide) or environmental (N(2)) anaerobic conditions occurs via the reductive part of the tricarboxylic acid cycle. Succinate is then excreted because the oxidative part of the tricarboxylic acid cycle is inactive. A possible role of succinate synthesis in the regeneration of NAD ('fumarate respiration') is discussed. PMID:12044678

  2. Aerobic degradation of bisphenol-A and its derivatives in river sediment.

    PubMed

    Chang, Bea-Ven; Liu, Jing-Hua; Liao, Chien-Sen

    2014-01-01

    This study investigated the aerobic degradation ofbisphenol-A (BPA) and the derivatives bisphenol-B (BPB), bisphenol-F (BPF), tetrabromobisphenol-A (TBBPA), and tetrachlorobisphenol-A (TCBPA) in river sediment. The degradation rates of BPA and BPF were enhanced by adding brij 30, brij 35, rhamnolipid, surfactin, or crude enzyme; a higher degradation rate was observed with crude enzyme than with the other additives. The degradation rates of BPA and its derivatives (BPAs) in the sediment were BPF > BPA > BPB > TCBPA > TBBPA. Different BPAs affected the changes in the microbial community in the sediment. Sediment fractions with larger particle sizes demonstrated higher degradation rates. Different sediment particle sizes affected the changes in the microbial communities. Pseudomonas sp. may be the dominant bacteria in the process of degradation of BPAs in river sediment. PMID:24600882

  3. DIVERSITY OF CULTURABLE HETEROTROPHIC AEROBIC BACTERIA IN PRISTINE STREAM BED SEDIMENTS. (R824786)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment

    Microsoft Academic Search

    James I. Prosser; Graeme W. Nicol

    2008-01-01

    Summary Traditionally, organisms responsible for major biogeochemical cycling processes have been deter- mined by physiological characterization of environ- mental isolates in laboratory culture. Molecular techniques have, however, confirmed the widespread occurrence of abundant bacterial and archaeal groups with no cultivated representative, making it difficult to determine their ecosystem function. Until recently, ammonia oxidation, the first step in the glo- bally

  5. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (10{sup 7} final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  6. Radiometric detection of some food-borne bacteria.

    PubMed

    Previte, J J

    1972-10-01

    Studies on detection of bacteria by radiometric techniques have been concerned primarily with aerobic species in clinical specimens. The data presented here are related to detection of aerobic and anaerobic species that are of significance in foods, by measurement of (14)CO(2) evolved from the metabolism of (14)C-glucose. Salmonella typhimurium and Staphylococcus aureus were inoculated into tryptic soy broth containing 0.0139 muCi of (14)C glucose/ml of medium. Detection times ranged from 10 to 3 hr for inocula of 10(0) to 10(4) cells/ml of broth. Heat-shocked spores of Clostridium sporogenes or C. botulinum were incubated in tryptic soy broth supplemented with Thiotone and NaHCO(3). The medium was rendered anaerobic with N(2). Spores were detected when 0.0833 muCi of labeled glucose was available/ml of medium but not when 0.0139 muCi of glucose was present/ml. The spores required 3 to 4 hr longer for detection than did comparable numbers of aerobic vegetative cells. The results demonstrate the importance of availability of sufficient label in the media and the potential of the application of this technique for sterility testing of foods. PMID:4564040

  7. BLOOD GROUP ACTIVITY OF GRAM-NEGATIVE BACTERIA

    PubMed Central

    Springer, Georg F.; Williamson, Peter; Brandes, William C.

    1961-01-01

    Distribution of blood group A, B, and H(O) activities among 282 aerobic Gram-negative bacteria, many isolated from the blood of patients, has been studied. Almost half of these bacteria were found to be blood group active. About 10 per cent of the organisms exhibited high, disproportional activities, which in some instances approached those of crude human blood group mucoids. No significant, specific D (Rho), M, or N activity was found in approximately 70 members of the Enterobacteriaceae. An attempt was made to correlate the observed activity of a given organism of known O somatic antigen with its monosaccharide components. The presence of those sugars which account for the specificity of human blood group mucoids was noted. The bearing of these findings on the origin of human anti-A and anti-B isoantibodies has been mentioned. PMID:19867191

  8. Beta-lactamase-producing bacteria in head and neck infection.

    PubMed

    Brook, I

    1988-04-01

    We have summarized our experience in recovery of beta-lactamase-producing bacteria (BLPB) in head and neck infection (HNI). These HNI include conjunctivitis, serous and chronic otitis media, cholesteatoma, chronic mastoiditis, chronic sinusitis, adenoiditis, recurrent tonsillitis in children and adults, peritonsillar abscess, and retropharyngeal abscess. Beta-lactamase-producing bacteria were found in 262 (51%) of 513 patients with HNI; 72% had aerobic BLPB and 57% had anaerobic BLPB. The infections, where these organisms were most frequently recovered, were adenoiditis (85% of patients), tonsillitis in adults (82%) and children (74%), retropharyngeal abscess (71%), and chronic otitis media (57%). The predominant BLPB were Staphylococcus aureus (49% of patients with BLPB), the Bacteroides-melaninogenicus group (28%), the Bacteroides fragilis group (20%), Pseudomonas aeruginosa (13%), Hemophilus influenzae (5%), and Branhamella catarrhalis (3%). The high incidence of recovery of BLPB in head and neck infections may have important implications on the antimicrobial management of these infections. PMID:3258396

  9. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.

    PubMed

    Amorim, Catarina L; Maia, Alexandra S; Mesquita, Raquel B R; Rangel, António O S S; van Loosdrecht, Mark C M; Tiritan, Maria Elizabeth; Castro, Paula M L

    2014-03-01

    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 ?M. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seem to be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrification was inhibited. The activity of phosphate accumulating organisms was affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levels within ca. 1 month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to ?- and ?-branch of the Proteobacteria phylum. The capacity of the system to return to its initial conditions after withdrawal of the FQ compounds in the inlet stream, reinforced its robustness to deal with wastewaters containing organic pollutants. PMID:24361707

  10. Setting Times of Resilon and Other Sealers in Aerobic and Anaerobic Environments

    Microsoft Academic Search

    Benjamin A. Nielsen; William J. Beeler; Christina Vy; J. Craig Baumgartner

    2006-01-01

    Eleven sealers, including Resilon sealer, were mixed according to manufacturer’s instructions. Setting times were determined in both aerobic and anaerobic environments. Two samples of each sealer were mixed and placed in the following conditions: (a) uncovered in an aerobic incubator; (b) covered with a glass cover-slip in the aerobic incubator; (c) covered with phosphate buffered saline in an aerobic incubator;

  11. The effects of shear force on the formation, structure and metabolism of aerobic granules

    Microsoft Academic Search

    J.-H. Tay; Q.-S. Liu; Y. Liu

    2001-01-01

    The effect of shear force on aerobic granulation was studied in four column-type, sequential aerobic sludge blanket reactors. Hydrodynamic turbulence caused by upflow aeration served as the main shear force in the systems. Results showed that aerobic granulation was closely associated with the strength of shear force. Compact and regular aerobic granules were formed in the reactors with a superficial

  12. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-01

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD. PMID:25923144

  13. Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli.

    PubMed

    Cui, Daizong; Li, Guofang; Zhao, Dan; Zhao, Min

    2015-03-01

    It is widely accepted that the addition of redox mediators increases the decolorization rates of azo dyes by bacterial strains under anaerobic conditions. However, little information exists about whether quinoid redox mediators can enhance the performance of aerobic azo dye decolorization. In the present study, quinone-mediated decolorization of different azo dyes by whole cells and cell extracts from the Escherichia coli strain CD-2 under aerobic conditions were investigated. The results demonstrated that reduction rates of different azo dyes were greatly increased when quinone compounds were used as redox mediators. Compared with menadione, 2-hydroxy-1,4-naphthoquinone (lawsone) was more effective at aiding azo dye degradation and the optimum concentration for lawsone is 0.1 mM. Strain CD-2 and the anthraquinone were co-immobilized by entrapment in different polymeric matrices. The co-immobilized beads exhibited good catalytic activity for azo dye degradation and kept stable during successive repeated experiments. The mechanism of the quinone-mediated reduction showed that although whole cells incubated with quinones could significantly increase the rate of decolorization of azo dyes, the quinone compounds did not directly promote azoreductase activity. According to the survey, this is the first report to confirm that the addition of quinoid redox mediators to bacteria increased decolorization under aerobic conditions. PMID:25323408

  14. Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India

    Microsoft Academic Search

    Harmesh Sahay; Surendra Singh; Rajeev Kaushik; Anil K. Saxena; Dilip K. Arora

    2011-01-01

    Culture dependent phenotypic characterization and 16S rDNA based phylogenetic analyses were applied to study the aerobic halophilic\\u000a bacterial population present in the Pulicat brackish-water Lake of India. Five different media were employed for isolation\\u000a of bacteria. A total of 198 morphotypes were recovered, purified and screened for salt tolerance in nutrient agar medium amended\\u000a with 5–25% NaCl. Based on 16S

  15. Diversity of Endospore-forming Bacteria in Soil: Characterization and Driving Mechanisms

    Microsoft Academic Search

    Ines Mandic-Mulec; James I. Prosser

    \\u000a The diversity of aerobic spore-forming bacteria in soil was traditionally determined by characterization of laboratory isolates.\\u000a This approach demonstrated considerable physiological diversity, which reflects the wide variety of soil ecosystem functions\\u000a carried out by these organisms. The application of cultivation-independent molecular techniques has now transformed studies\\u000a of soil bacterial diversity and uncovered much higher diversity in spore-formers than was previously

  16. Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments

    Microsoft Academic Search

    Hee-Sung Bae; Wan-Taek Im; Yuichi Suwa; James M. Lee; Sung-Taik Lee; Young-Keun Chang

    2009-01-01

    Although, there have been many published bacterial strains aerobically degrading the heterocyclic amine compounds, only one\\u000a strain to date has been reported to degrade pyrrolidine under denitrifying conditions. In this study, denitrifying bacteria\\u000a degrading pyrrolidine and piperidine were isolated from diverse geological and ecological origins through selective enrichment\\u000a procedures. Based on the comparative sequence results of 16S rRNA genes, 30

  17. Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters

    Microsoft Academic Search

    Franco Baldi; Marco Filippelli; Gregory J. Olson

    1989-01-01

    One hundred six strains of aerobic bacteria were isolated from the Fiora River which drains an area of cinnabar deposits in southern Tuscany, Italy. Thirty-seven of the strains grew on an agar medium containing 10?g\\/ml Hg (as HgCl2) with all of these strains producing elemental mercury. Seven of the 37 strains also degraded methylmercury. None of 106 sensitive and resistant

  18. Antibiotic resistance in Gram negative bacteria isolated from Aksu River in (Kahramanmaras ¸) Turkey

    Microsoft Academic Search

    Sevil TOROGLU; Hatice KORKMAZ

    2005-01-01

    A total 67 strains were isolated from five different stations of Aksu River. Total aerobic bacteria number in the river was determined as 2 x 10 7 CFU\\/mL and fecal coliforms were determined >1100 MPN\\/100 mL. Strains of Enterobacteriaceae (66 isolates), representative of the human and animal commensal flora, and Pseudomonas sp. (1 isolate) were selected for antibiotic susceptibility testing.

  19. Occurrence of histamine and histamine-forming bacteria in salted mackerel in Taiwan

    Microsoft Academic Search

    Yung-Hsiang Tsai; Chueh-Yueh Lin; Shiou-Chung Chang; Hwi-Chang Chen; Hsien-Feng Kung; Cheng-I Wei; Deng-Fwu Hwang

    2005-01-01

    Thirty-three samples of salted mackerel sold in retail markets and supermarkets in Taiwan were tested to determine the occurrence of histamine and histamine-forming bacteria. The numbers of aerobic plate count (APC) in all samples were below the Taiwanese regulatory level of 6.47logcfu\\/g. The levels of pH, salt content, and total coliform in all samples ranged from 5.7 to 6.4, 5.0

  20. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina.

    PubMed

    Ruiz, Dante; Ruiza, Dante; Agaras, Betina; de Werra, Patrice; de Werrab, Patrice; Wall, Luis G; Valverde, Claudio

    2011-12-01

    Many seeds carry endophytes, which ensure good chances of seedling colonization. In this work, we have studied the seed-borne bacterial flora of rice varieties cultivated in the northeast of Argentina. Surface-sterilized husked seeds of the rice cultivars CT6919, El Paso 144, CAMBA, and IRGA 417 contained an average of 5×10(6) CFU/g of mesophilic and copiotrophic bacteria. Microbiological, physiological, and molecular characterization of a set of 39 fast-growing isolates from the CT6919 seeds revealed an important diversity of seed-borne mesophiles and potential plant probiotic activities, including diazotrophy and antagonism of fungal pathogens. In fact, the seed-borne bacterial flora protected the rice seedlings against Curvularia sp. infection. The root colonization pattern of 2 Pantoea isolates from the seeds was studied by fluorescence microscopy of the inoculated axenic rice seedlings. Both isolates strongly colonized the site of emergence of the lateral roots and lenticels, which may represent the entry sites for endophytic spreading. These findings suggest that rice plants allow grain colonization by bacterial species that may act as natural biofertilizers and bioprotectives early from seed germination. PMID:22203552

  1. Aerobic gram-negative bacillary pneumonia

    Microsoft Academic Search

    Stephen Parodi; Matthew Bidwell Goetz

    2002-01-01

    Gram-negative bacilli (GNB) are a common cause of severe hospital-acquired pneumonia. Due to changes in the health care environment\\u000a and selective antimicrobial pressure, these bacteria also are becoming a more common cause of pneumonia in venues outside\\u000a of the traditional hospital setting and are increasingly resistant to antimicrobial agents. Risk factors for acquisition of\\u000a GNB allow the clinician to efficiently

  2. Effect of Intracellular Expression of Antimicrobial Peptide LL-37 on Growth of Escherichia coli Strain TOP10 under Aerobic and Anaerobic Conditions

    PubMed Central

    Liu, Wei; Dong, Shi Lei; Xu, Fei; Wang, Xue Qin; Withers, T. Ryan

    2013-01-01

    Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cell morphology to a filamentous phenotype. Further examination of the E. coli cell division protein FtsZ revealed that LL-37 did not interact with FtsZ. Moreover, intracellular expression of LL-37 results in the enhanced production of reactive oxygen species (ROS), causing lethal membrane depolarization under aerobic conditions. Additionally, the membrane permeability was increased after intracellular expression of LL37 under both aerobic and anaerobic conditions. Transcriptomic analysis revealed that intracellular LL-37 mainly affected the expression of genes related to energy production and carbohydrate metabolism. More specifically, genes related to oxidative phosphorylation under both aerobic and anaerobic growth conditions were affected. Collectively, our current study demonstrates that intracellular expression of LL-37 in E. coli can inhibit growth under aerobic and anaerobic conditions. While we confirmed that the generation of ROS is a bactericidal mechanism for LL-37 under aerobic growth conditions, we also found that the intracellular accumulation of cationic LL-37 influences the redox and ion status of the cells under both growth conditions. These data suggest that there is a new AMP-mediated bacterial killing mechanism that targets energy metabolism. PMID:23856776

  3. Aerobic Exercise Can Help Curb Asthma, Study Shows

    MedlinePLUS

    ... fullstory_153039.html Aerobic Exercise Can Help Curb Asthma, Study Shows Brazilian research found better airway function ... really get the heart pumping may help ease asthma in people with the respiratory condition, a new ...

  4. Aerobic capacity is correlated with the ranking of boxers.

    PubMed

    Bruzas, Vidas; Stasiulis, Arvydas; Cepulenas, Algirdas; Mockus, Pranas; Statkeviciene, Birute; Subacius, Vitalijus

    2014-08-01

    The goal was to assess the aerobic capacity of boxers and its relation with sport mastery. Participants were 12 boxers from the Lithuanian national team (VO?max - 58.03 ± 3.00 ml/kg/min) of different weight classes. Their sport mastery ranking was established according to their achieved results during the last years of participation in amateur boxing contests. In a graduated treadmill running test, the boxers' aerobic capacity indices were established. Running speed at first and second ventilatory thresholds, VO?max, and maximal oxygen pulse had moderate to strong correlations with the boxers' sport mastery ranking. Aerobic capacity is an important fitness component of boxers in all weight categories. Special attention should be paid to development of cardiac capacity in the boxers' training processes, as with aerobic power and anaerobic threshold training. PMID:25153738

  5. Sugar fatty acid ester surfactants: Structure and ultimate aerobic biodegradability

    Microsoft Academic Search

    Irene J. A. Baker; Barry Matthews; Hector Suares; Irena Krodkiewska; D. Neil Furlong; Franz Grieser; Calum I. Drummond

    2000-01-01

    Ultimate aerobic biodegradabilities of an array of sugar ester surfactants were determined by International Standards Organisation\\u000a method 7827, “Water Quality—Evaluation in an Aqueous Medium of the Aerobic Biodegradability of Organic Compounds, Method by\\u000a Dissolved Organic Carbon” (1984). The surfactants were nonionic sugar esters with different-sized sugar head groups (formed\\u000a from glucose, sucrose, or raffinose) and different lengths and numbers of

  6. Effect of yoga on aerobic and anaerobic power of muscles.

    PubMed

    Balasubramanian, B; Pansare, M S

    1991-10-01

    Aerobic Power (VO2 max) and anaerobic power were estimated in medical students before and after six weeks of yogic training. A significant increase in aerobic power and a significant decrease in anaerobic power was observed. This may be due to conversion of some of the Fast Twitch (F.T.) muscle fibres into Slow Twitch fibres (S.T.) during yogic training. PMID:1812108

  7. Cultivation Media for Bacteria

    NSDL National Science Digital Library

    American Society For Microbiology

    2009-12-08

    Common bacteriological culture media (tryptic soy agar, chocolate agar, Thayer-Martin agar, MacConkey agar, eosin-methylene blue agar, hektoen agar, mannitol salt agar, and sheep blood agar) are shown uninoculated and inoculated with bacteria.

  8. Bleach vs. Bacteria

    MedlinePLUS

    ... the University of Michigan. In a series of experiments, her team showed that hypochlorous acid causes bacterial ... produced by almost all organisms, from bacteria to humans, may be one of the oldest molecular chaperones ...

  9. Bacteria in shear flow

    E-print Network

    Marcos, Ph.D. Massachusetts Institute of Technology

    2011-01-01

    Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

  10. How honey kills bacteria

    Microsoft Academic Search

    P. H. S. Kwakman; A. A. te Velde; L. de Boer; D. Speijer; C. M. J. E. Vandenbroucke-Grauls; S. A. J. Zaat

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were

  11. Ecophysiology of Magnetotactic Bacteria

    Microsoft Academic Search

    Dennis A. Bazylinski; Timothy Williams

    Magnetotactic bacteria are a physiologically diverse group of prokaryotes whose main common features\\u000a are the biomineralization of magnetosomes and magnetotaxis, the passive alignment and active motility along\\u000a geomagnetic field lines. Magnetotactic bacteria exist in their highest numbers at or near the oxic–anoxic\\u000a interfaces (OAI) of chemically stratified aquatic habitats that contain inverse concentration gradients\\u000a of oxidants and reductants. Few species are

  12. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  13. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  14. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-09-15

    Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation. PMID:25151236

  15. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  16. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ?10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (?57 to ?28‰), and it contrasts with the less variable but strongly 13C-depleted (?40 to ?45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  17. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  18. Protein Dynamics and Stability: The Distribution of Atomic Fluctuations in Thermophilic and Mesophilic Dihydrofolate Reductase Derived Using Elastic Incoherent Neutron Scattering

    SciTech Connect

    Meinhold, Lars [University of Heidelberg; Clement, David [University of Waikato, New Zealand; Tehei, M [University of Waikato, New Zealand; Daniel, R. M. [University of Waikato, New Zealand; Finney, J.L. [University College, London; Smith, Jeremy C [ORNL

    2008-11-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two.

  19. Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester--assessment of variable loadings on system performance.

    PubMed

    Grimberg, S J; Hilderbrandt, D; Kinnunen, M; Rogers, S

    2015-02-01

    Single and two-phase operations were compared at mesophilic operating conditions using a digester system consisting of three 5-m(3) reactors treating food waste generated daily within the university campus kitchens. When normalizing the methane production to the daily feedstock characteristics, significantly greater methane was produced during two-phase mesophilic digestion compared to the single-stage operation (methane yield of 380 vs 446-L CH4 kg VS(-1); 359 vs 481-L CH4 kg COD(-1) removed for single vs two stage operation). The fermentation reactor could be maintained reliably even under very low loading rates (0.79±0.16 kg COD m(-3) d(-1)) maintaining a steady state pH of 5.2. PMID:25266683

  20. Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion.

    PubMed

    Silvestre, G; Fernández, B; Bonmatí, A

    2015-10-01

    The effect of adding crude glycerine during continuous sewage sludge anaerobic digestion was investigated under thermophilic and mesophilic temperatures. Addition of CGY at thermophilic temperature range showed a negative impact on stability and performance of the process, even at low doses. The extreme pH values of CGY, together with the rapid release of VFA, causes SS alkalinity fail to control pH drop. On the contrary, at mesophilic temperature range the process performs steadily, with 148% increase in methane production when CGY represented 1% v/v of the influent (27% of influent COD). Further CGY percentages did not show any added improvement; the biomass shift, due to a high C/N ratio, could explain this behaviour. Results suggested that CGY can be used as co-substrate of SS anaerobic digestion though, depending on the characteristics of CGY, and on operational conditions, different parameters should be taken into account to achieve a steady and consistent operation. PMID:26143573

  1. Assessment of the microbiological quality of meals sampled at the meal serving units of a military hospital in Ankara, Turkey

    Microsoft Academic Search

    Hasan Ayç?çek; Belgin Sarimehmeto?lu; Serdar Çakiro?lu

    2004-01-01

    The purpose of this study was to determine the microbiological quality of hot meals and salads sampled at the meal serving units of a military hospital in Ankara, Turkey. Five hundred and thirty food samples were collected between September 2001 and October 2002 and examined for aerobic mesophilic bacteria, coliforms, Escherichia coli, coagulase positive staphylococci (CNS), Salmonella spp., Clostridium perfringens,

  2. Distribution of airborne microorganisms in commercial pork slaughter processes

    Microsoft Academic Search

    R. A. Pearce; J. J. Sheridan; D. J. Bolton

    2006-01-01

    The objective of this research was to determine the prevalence and distribution of airborne bacterial contamination, with particular reference to Escherichia coli and Salmonella, at a number of stages in a pork slaughtering plant. Air samples (impaction and sedimentation) were recovered from seven locations before and during operations in a commercial pork processing plant. Aerobic mesophilic bacteria, E. coli counts

  3. Characterization of microorganisms in Argentinean honeys from different sources

    Microsoft Academic Search

    Miriam O. Iurlina; Rosalia Fritz

    2005-01-01

    Seventy polyfloral honeys including commercial samples obtained from supermarkets, harvested from apiaries and purchased in bulk were initially examined for total antibacterial activity. From each sample, numbers of aerobic mesophilic bacteria, total coliforms, moulds and yeasts were determined and the presence of Salmonella spp., Shigella spp., Clostridium sulfite-reducers, Paenibacillus larvae and Bacillus spp. was investigated. Moisture content, pH and total

  4. Effects of antifungal agent and packaging material on microflora of Kashar cheese during storage period

    Microsoft Academic Search

    I??l Var; Zerrin Erginkaya; Mehmet Güven; Bülent Kabak

    2006-01-01

    In this study, the effects of antimicrobial agent (natamycin) and packaging materials (PVC, Sperdex-Ref. 99017) on the microbiological properties of Kashar cheese during ripening period were investigated. Natamycin and packaging materials had no effect on the total aerobic mesophilic bacteria, yeast and lipolytic microorganism counts. However, natamycin had showed inhibitory effect on the proteolytic microorganisms by itself and combined with

  5. Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors.

    PubMed

    Frascari, Dario; Fraraccio, Serena; Nocentini, Massimo; Pinelli, Davide

    2013-01-01

    A novel aerobic/anaerobic/aerobic treatment was implemented in batch reactors containing aquifer materials from a site contaminated by tetrachloroethylene (PCE), trichloroethylene (TCE), vinyl chloride (VC), 1,1,2-trichloroethane (1,1,2-TCA) and chloroform (CF). Consortia grown aerobically on methane, propane, n-pentane and n-hexane completely biodegraded the chlorinated solvent mixture, via aerobic cometabolism of VC, CF, TCE and 1,1,2-TCA, followed by PCE reductive dechlorination (RD) to 1,2-cis-dichlorothylene (cis-DCE) or TCE, and cis-DCE/TCE cometabolism in a further aerobic phase. n-Hexane was the best substrate. No electron donor was supplied for RD, which likely utilized cellular material produced during the aerobic phase. Chloride release was stoichiometric with chlorinated solvent biodegradation. According to the Lepidium sativum ecotoxicity test, a decreased toxicity was observed with propane, n-pentane and n-hexane, but not methane. A kinetic study of PCE RD allowed to estimate the PCE maximum specific rate (0.57 ± 0.07 mg mg(protein)(-1) day(-1)) and half-saturation constant (6.7 ± 1.5 mg L(-1)). PMID:23201903

  6. The effects of aerobic/anoxic period sequence on aerobic granulation and COD/N treatment efficiency.

    PubMed

    Er?an, Yusuf Ça?atay; Erguder, Tuba Hande

    2013-11-01

    The effects of period sequence (anoxic-aerobic and aerobic-anoxic) on aerobic granulation from suspended seed sludge, and COD, N removal efficiencies were investigated in two sequencing batch reactors. More stable granules with greater sizes (1.8-3.5mm) were developed in R1 (anoxic-aerobic sequence). Yet, no significant difference was observed between the reactors in terms of removal efficiencies. Under optimum operational conditions, 92-95% COD, 89-90% TAN and 38-46% total nitrogen removal efficiencies were achieved. The anoxic-aerobic period sequence (R1) resulted in almost complete denitrification during anoxic periods while aerobic-anoxic sequence (R2) led to nitrate accumulation due to limited-carbon source and further granule disintegration. NH3-N concentration of 15-28 mg/L was found to inhibit COD removal up to 30%. This study also revealed the inhibitory sulfide production during anoxic periods. Sulfate concentration of 52.6-70.2mg/L was found to promote sulfate reduction and sulfide generation (0.24-0.62 mg/L) which, together with free-ammonia, inhibited TAN oxidation by 10-50%. PMID:24045202

  7. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-15

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  8. Host-Bacteria Crosstalk at the Dentogingival Junction

    PubMed Central

    Pöllänen, M. T.; Laine, M. A.; Ihalin, R.; Uitto, V.-J.

    2012-01-01

    The dentogingival junction is of crucial importance in periodontal host defense both structurally and functionally. Oral bacteria exert a constant challenge to the host cells and tissues at the dentogingival junction. The host response is set up to eliminate the pathogens by the innate and adaptive defense mechanisms. In health, the commensal bacteria and the host defense mechanisms are in a dynamic steady state. During periodontal disease progression, the dental bacterial plaque, junctional epithelium (JE), inflammatory cells, connective tissue, and bone all go through a series of changes. The tissue homeostasis is turned into tissue destruction and progression of periodontitis. The classical study of Slots showed that in the bacterial plaque, the most remarkable change is the shift from gram-positive aerobic and facultatively anaerobic flora to a predominantly gram-negative and anaerobic flora. This has been later confirmed by several other studies. Furthermore, not only the shift of the bacterial flora to a more pathogenic one, but also bacterial growth as a biofilm on the tooth surface, allows the bacteria to communicate with each other and exert their virulence aimed at favoring their growth. This paper focuses on host-bacteria crosstalk at the dentogingival junction and the models studying it in vitro. PMID:22899931

  9. Inactivation of Murine Norovirus 1 and Bacteroides fragilis Phage B40-8 by Mesophilic and Thermophilic Anaerobic Digestion of Pig Slurry ?

    PubMed Central

    Baert, Leen; De Gusseme, Bart; Boon, Nico; Verstraete, Willy; Debevere, Johan; Uyttendaele, Mieke

    2010-01-01

    Mesophilic (37°C) and thermophilic (52°C) anaerobic digestion of pig slurry induced at least a 4-log decrease in murine norovirus 1, used as a surrogate virus for porcine norovirus, after 13 and 7 days, respectively. Bacteroides fragilis phage B40-8, employed as a universal viral model, was lowered by 2.5 log after 7 days. The viral titer declined due to temperature and matrix effects. PMID:20080994

  10. Distinct metal dependence for catalytic and structural functions in the l-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus

    Microsoft Academic Search

    Dong-Woo Lee; Eun-Ah Choe; Seong-Bo Kim; Soo-Hyun Eom; Young-Ho Hong; Sang-Jae Lee; Han-Seung Lee; Dong-Yun Lee; Yu-Ryang Pyun

    2005-01-01

    l-Arabinose isomerase (AI) catalyzes the isomerization of l-arabinose to l-ribulose. It can also convert d-galactose to d-tagatose at elevated temperatures in the presence of divalent metal ions. The araA genes, encoding AI, from the mesophilic bacterium Bacillus halodurans and the thermophilic Geobacillus stearothermophilus were cloned and overexpressed in Escherichia coli, and the recombinant enzymes were purified to homogeneity. The purified

  11. A novel l -aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l -aspartate production

    Microsoft Academic Search

    Yinxia Li; Norika Kawakami; Henry Joseph Oduor Ogola; Hiroyuki Ashida; Takahiro Ishikawa; Hitoshi Shibata; Yoshihiro Sawa

    2011-01-01

    l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported.\\u000a In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a

  12. A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic l-arabinose isomerases: The effects of divalent metal ions on protein stability at elevated temperatures

    Microsoft Academic Search

    Dong-Woo Lee; Young-Ho Hong; Eun-Ah Choe; Sang-Jae Lee; Seong-Bo Kim; Han-Seung Lee; Jong-Won Oh; Hae-Hun Shin; Yu-Ryang Pyun

    2005-01-01

    To gain insight into the structural stability of homologous homo-tetrameric l-arabinose isomerases (AI), we have examined the isothermal guanidine hydrochloride (GdnHCl)-induced unfolding of AIs from mesophilic Bacillus halodurans (BHAI), thermophilic Geobacillus stearothermophilus (GSAI), and hyperthermophilic Thermotoga maritima (TMAI) using circular dichroism spectroscopy. The GdnHCl-induced unfolding of the AIs can be well described by a two-state reaction between native tetramers and

  13. Performance of aerobic granular sludge at variable circulation rate in anaerobic-aerobic conditions.

    PubMed

    Harun, Hasnida; Anuar, Aznah Nor; Ujang, Zaini; Rosman, Noor Hasyimah; Othman, Inawati

    2014-01-01

    Aerobic granular sludge (AGS) has been applied to treat a broad range of industrial and municipal wastewater. AGS can be developed in a sequencing batch reactor (SBR) with alternating anaerobic-aerobic conditions. To provide anaerobic conditions, the mixed liquor is allowed to circulate in the reactor without air supply. The circulation flow rate of mixed liquor in anaerobic condition is the most important parameter of operation in the anaerobic-AGS processes. Therefore, this study investigates the effect of circulation rate on the performance of the SBR with AGS. Two identical reactors namely R1 and R2 were operated using fermented soy sauce wastewater at circulation rate of 14.4 and 36.0 l/h, respectively. During the anaerobic conditions, the wastewater was pumped out from the upper part of the reactor and circulated back into the bottom of the reactor for 230 min. A compact and dense AGS was observed in both reactors with a similar diameter of 2.0 mm in average, although different circulation rates were adopted. The best reactor performance was achieved in R2 with chemical oxygen demand removal rate of 89%, 90% total phosphorus removal, 79% ammonia removal, 10.1 g/l of mixed liquor suspended solids and a sludge volume index of 25 ml/g. PMID:24901619

  14. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J., (Edited By); Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  15. Acidiphilium angustum sp. nov. Acidiphilium facilis sp. nov. and Acidiphilium vubrum sp. nov. : Acidophilic Heterotrophic Bacteria Isolated from Acidic Coal Mine Drainage

    Microsoft Academic Search

    PAUL L. WICHLACZ; RICHARD F. UNZ; THOMAS A. LANGWORTHY

    Acidophilic heterotrophic bacteria recovered from samples of water and sediment collected from acidic mine drainage streams were compared nutritionally, genetically, and morphologically. All 37 bacterial strains examined were rod shaped, motile, gram negative, and strictly aerobic, utilized citric acid and Tween 80 as sole carbon sources, and were unable to grow at or above pH 6.0. The ultrastructure of representative

  16. Structural prediction and comparative docking studies of psychrophilic ?- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes

    PubMed Central

    Kumar, Ponnada Suresh; Pulicherla, KK; Ghosh, Mrinmoy; Kumar, Anmol; Rao, KRS Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active ?-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active ?-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active ?-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic ?-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes. PMID:21769193

  17. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration.

    PubMed

    Fernández, J; Pérez, M; Romero, L I

    2010-08-01

    The anaerobic mesophilic degradation of municipal waste has been studied in discontinuous lab-reactors with two different initial concentrations of OFMSW: R20, with 931.1mg DOC/L (20% TS), and R30, with 1423.4 mg DOC/L (30% TS). The anaerobic digestion process was favoured when it was carried on material with a total solids content of 20% in comparison to a similar process with 30% TS. A higher level of organic matter, in terms of DOC and VFA, 18.18% and 8.09% respect, was removed in the system with the lower amount of solids. The kinetics parameters showed higher active biomass and a higher coefficient for the production of methane at the lower loading. The highest maximum specific growth rate for the microorganisms (mu(MAX)) in the reactors with 20% TS, a value of 0.192 d(-1), was achieved in comparison to 0.131 d(-1) in the reactors with 30% TS. The inverse of the F:M ratio was higher in the R20 system with a value of 0.0104 (cf. 0.0006 in R30) and, as a result, the R30 system required longer hydrolytic and acidogenic stages. X(V0)/Y(X/S) and the yield coefficient for product generation (alpha(P/S)) were higher, by around 53%, for the R20 digester. PMID:20362435

  18. A comparative study of ultrasonic pretreatment and an internal recycle for the enhancement of mesophilic anaerobic digestion.

    PubMed

    Muller, Christopher D; Abu-Orf, Mohammad; Blumenschein, Charles D; Novak, John T

    2009-12-01

    The objective of this study was to investigate the use of ultrasonic energy in an internal recycle and pretreatment mode of operation relative to a conventional mode of mesophilic anaerobic digestion. The primary focus was to determine if using ultrasonics in a pretreatment mode and in an internal recycle line produced changes in performance relative to each other and the control. Using a relatively low-energy sonication system, the data showed that the addition of ultrasonic energy, in either a recycle line or as a pretreatment technology, improved anaerobic digestion efficiency for waste-activated sludge. There was a 13 to 21% increase in biogas yield and an increase in total and volatile solids destruction of 3 to 10.3 additional percentage points, depending on the ultrasonic dose and location. Dewatering of the biosolids following ultrasonic treatment was poorer, as measured by an increase in the optimum polymer conditioning dose. The addition of ultrasonics to the digestion systems generated a more stable biosolids product, with a 2 to 58% reduction in organo-sulfur gas production from dewatered biosolids cakes. PMID:20099624

  19. The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion.

    PubMed

    Orzi, Valentina; Scaglia, Barbara; Lonati, Samuele; Riva, Carlo; Boccasile, Gabriele; Alborali, Giovanni Loris; Adani, Fabrizio

    2015-09-01

    Mesophilic anaerobic digestion (MAD) produces renewable energy, but it also plays a role in reducing the impact of digestates, both by reducing odor and pathogen content. Ten full-scale biogas plants characterized by different plant designs (e.g. single digesters, parallel or serial digesters), plant powers (ranging from 180 to 999kWe), hydraulic retention time (HRT) (ranging between 20 to 70days) and feed mixes were monitored and odors and pathogens were observed in both ingestates and digestates. Results obtained indicated that MAD reduced odors (OU) from, on average, OUingestate=99,106±149,173OUm(-2)h(-1) (n=15) to OUdigestate=1106±771OUm(-2)h(-1) (n=15). Pathogens were also reduced during MAD both because of ammonia production during the process and competition for substrate between pathogens and indigenous microflora, i.e. Enterobacteriaceae from 6.85?10(3)±1.8?10(1) to 1.82?10(1)±3.82?10(1); fecal Coliform from 1.82?10(4)±9.09 to 2.45?10(1)±3.8?10(1); Escherichia coli from 8.72?10(3)±2.4?10(1) to 1.8?10(1)±2.94?10(1); Clostridium perfringens from 6.4?10(4)±7.7 to 5.2?10(3)±8.1 (all data are expressed as CFUg(-1)ww). Plants showed different abilities to reduce pathogen indicators, depending on the pH value and toxic ammonia content. PMID:25925189

  20. The effect of transient loading on the performance of a mesophilic anaerobic contact reactor at constant feed strength.

    PubMed

    Sentürk, Elif; Ince, Mahir; Engin, Guleda Onkal

    2012-12-15

    Anaerobic contact reactor is a high rate anaerobic process consisting of an agitated reactor and a solids settling tank for recycling. It was proved earlier that this type of reactor design offers highly efficient performance in the conversion of organic matter to biogas. In this study, the effect of transient loading on reactor performance in terms of a number of key intermediates and parameters such as, COD removal, pH and alkalinity change, VFAs, effluent MLSS concentration and biogas efficiency over time was examined. For this purpose, a step increase of organic loading rate from 3.35kg COD/m(3)day to 15.61kg COD/m(3)day was employed. The hydraulic retention time decreased to a value of 8.42h by an increase in the influent flow-rate during the transient loading. It was observed that the mesophilic anaerobic contact reactor (MACR) was quite resistant to large transient shocks. The reactor recovered back to its baseline performance only in 15h after the shock loading was stopped. Hence, it can be concluded that this type of reactor design has a high potential in treating food processing wastewaters with varying flow characteristics. PMID:22960727

  1. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor.

    PubMed

    Tawfik, A; El-Qelish, M

    2012-06-01

    This study was carried out to assess the impact of organic loading rate (OLR) on the performance of mesophilic anaerobic baffled reactor (ABR) for H(2) production from a co-digestion of municipal food waste and kitchen wastewater. The reactor was operated at different organic loading rates (OLRs) of 29, 36 and 47 g COD(total)/Ld. The hydraulic retention time (HRT) was kept constant at 1.6d. The results showed that increasing the OLR from 29 to 36 g COD(total)/Ld, leads to a significant (p ? 0.01) drop in the H(2) production from 6.0±0.5 to 5.4±1.04 L H(2)/d, respectively. However, the H(2) production remained at the same level of 5.3±1.04 L H(2)/d at increasing the OLR from 36 to 47 g COD(total)/Ld. The H(2) generation was mainly due to conversion of COD (57%) and carbohydrate (81%). Protein and lipids conversion represents only 23.3% and 4.1% respectively for H(2) production. PMID:22446053

  2. Performance and microbial community profiles in an anaerobic reactor treating with simulated PTA wastewater: from mesophilic to thermophilic temperature.

    PubMed

    Li, Xiang-kun; Ma, Kai-li; Meng, Ling-wei; Zhang, Jie; Wang, Ke

    2014-09-15

    Performance and microbial community profiles in a hybrid anaerobic reactor treating synthetic PTA wastewater (contained the major pollutants terephthalate and benzoate) were studied over 220 days from 33 °C to 52 °C. Results indicated that PTA treatment process was highly sensitive to temperature variations in terms of COD removal. Operation at 37 °C showed the best performance as well as the most diverse microbial community revealed by 16S rRNA gene clone library and T-RFLP (terminal restriction fragment length polymorphism). Finally, the anaerobic process achieved a total COD removal of 77.4%, 91.9%, 87.4% and 66.1% at 33, 37, 43 and 52 °C. While the corresponding TA removal were 77.6%, 94.0%, 89.1% and 60.8%, respectively. Sequence analyses revealed acetoclastic Methanosaeta was preponderant at 37 °C, while hydrogenotrophic genera including Methanobrevibacter and Methanofollis were more abundant at other temperatures. For bacterial community, 16 classes were identified. The largely existent Syntrophorhabdus members (belonging to ?-Proteobacteria) at 37 °C was likely to play an important role in mesophilic anaerobic wastewater treatment system contained terephthalate. Meanwhile, ?-Proteobacteria seemed to be favored in an anaerobic system higher than 43 °C. PMID:24952270

  3. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities.

    PubMed

    Symsaris, Evangelos C; Fotidis, Ioannis A; Stasinakis, Athanasios S; Angelidaki, Irini

    2015-06-30

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion (AD) process. Additionally, the influence of DCF, TCS, and NP on the relative abundance of the methanogenic populations was investigated. Results obtained demonstrated that, in terms of methane production, SI inoculum was more resistant to the toxicity effect of DCF, TCS, and NP, compared to the MI inoculum. The IC50 values were 546, 35, and 363 mg L(-1) for SI inoculum and 481, 32, and 74 mg L(-1) for MI inoculum for DCF, TCS, and NP, respectively. For both inocula, higher biomass concentrations reduced the toxic effect of TCS (higher methane production up to 64%), contrary to DCF, where higher biomass loads decreased methane yield up to 31%. Fluorescence in situ hybridization analysis showed that hydrogenotrophic methanogens were more resistant to the inhibitory effect of DCF, TCS, and NP compared to aceticlastic methanogens. PMID:25768988

  4. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor.

    PubMed

    Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio

    2015-09-01

    Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N- [Formula: see text]  L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N- [Formula: see text]  L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy. PMID:26001281

  5. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  6. Field Tests for Evaluating the Aerobic Work Capacity of Firefighters

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Gavhed, Désirée; Malm, Christer

    2013-01-01

    Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter’s ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters’ aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (rs?=??0.65 and ?0.63, p<0.01, respectively). Absolute (mL·min?1) and relative (mL·kg?1·min?1) maximal aerobic capacity was correlated to all but one of the work tasks (rs?=??0.79 to 0.55 and ?0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters’ work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s·kg?1), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter’s aerobic work capacity. PMID:23844153

  7. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  8. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse.

    PubMed

    Mota, V T; Araújo, T A; Amaral, M C S

    2015-07-01

    Vinasse is the main liquid waste from ethanol production, and it has a considerable pollution potential. Biological treatment is a promising alternative to reduce its organic load. The aim of this study was to analyze the biodegradation of sugarcane juice vinasse in aerobic and anaerobic conditions. The content of carbohydrates, proteins and volatile fatty acids was evaluated. Vinasse samples showed a high biodegradability (>96.5 %) and low percentage of inert chemical oxygen demand (COD) (<3.2 %) in both aerobic and anaerobic conditions. The rates of substrate utilization were slightly higher in aerobic reactors, but COD stabilization occurred simultaneously in the anaerobic reactors, confirming its suitability for anaerobic digestion. Inert COD in anaerobic conditions was lower than in aerobic conditions. On the other hand, COD from metabolic products in the anaerobic reactors was higher than in the aerobic ones, indicating an increased release of soluble microbial products (SMPs) by anaerobic microorganisms. The results indicated that carbohydrates were satisfactorily degraded and protein-like substances were the major components remaining after biological degradation of vinasse. PMID:25957273

  9. Behavioral management of exercise: contracting for aerobic points.

    PubMed

    Wysocki, T; Hall, G; Iwata, B; Riordan, M

    1979-01-01

    Behavioral contracting was used to encourage physical exercise among college students in a multiple-baseline design. Subjects deposited items of personal value with the experimenters, which they could earn back on fulfillment of two types of contract contingencies. Subjects selected weekly aerobic point criteria, which they could fulfill by exercising in the presence of other subjects. In addition, subjects contracted to observe and record the exercise of other subjects and to perform an independent reliability observation once each week, with both of these activities monitored by the experimenters. Results indicated that the contract contingencies produced increases in the number of aerobic points earned per week for seven of eight subjects, that the aerobic point system possesses several advantages as a dependent variable for behavioral research on exercise, and that inexperienced observers could be quickly trained to observe exercise behavior and to translate those observations into their aerobic point equivalents. Finally, in a followup questionnaire completed 12 months after the end of the study, seven of the eight subjects reported that they were earning more aerobic points per week than had been the case during the baseline condition of this experiment. PMID:468748

  10. ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Daniel T. Agymang; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The optimum pH for fuel biodegradation ranged from 6 to 7. These findings suggest that bacteria have adapted to water-saturated karst systems with a variety of active and passive transport mechanisms.

  11. Isolation and characterization of polymeric galloyl-ester-degrading bacteria from a tannery discharge place.

    PubMed

    Franco, A R; Calheiros, C S C; Pacheco, C C; De Marco, P; Manaia, C M; Castro, P M L

    2005-11-01

    The culturable bacteria colonizing the rhizosphere of plants growing in the area of discharge of a tannery effluent were characterized. Relative proportions of aerobic, denitrifying, and sulfate-reducing bacteria were determined in the rhizosphere of Typha latifolia, Canna indica, and Phragmites australis. Aerobic bacteria were observed to be the most abundant group in the rhizosphere, and plant type did not seem to influence the abundance of the bacterial types analyzed. To isolate bacteria able to degrade polyphenols used in the tannery industry, enrichments were conducted under different conditions. Bacterial cultures were enriched with individual polyphenols (tannins Tara, Quebracho, or Mimosa) or with an undefined mixture of tannins present in the tannery effluent as carbon source. Cultures enriched with the effluent or Tara tannin were able to degrade tannic acid. Six bacterial isolates purified from these mixed cultures were able to use tannic acid as a sole carbon source in axenic culture. On the basis of 16S ribosomal DNA sequence analysis, these isolates were closely related to organisms belonging to the taxa Serratia, Stenotrophomonas maltophilia, Klebsiella oxytoca, Herbaspirillum chlorophenolicum, and Pseudomonas putida. PMID:16341641

  12. Distribution of airborne microorganisms in commercial pork slaughter processes.

    PubMed

    Pearce, R A; Sheridan, J J; Bolton, D J

    2006-03-15

    The objective of this research was to determine the prevalence and distribution of airborne bacterial contamination, with particular reference to Escherichia coli and Salmonella, at a number of stages in a pork slaughtering plant. Air samples (impaction and sedimentation) were recovered from seven locations before and during operations in a commercial pork processing plant. Aerobic mesophilic bacteria, E. coli counts and the incidence of Salmonella in the air were determined. Most sample locations which provided high impaction counts also provided high sedimentation counts. Before commencement of operations, there were no significant differences in aerobic mesophilic bacteria obtained from the sample locations. However, within 2 h of the commencement of operations, aerobic mesophilic bacteria in the wet room (3.14 log10 cfu/m3) were significantly higher (P < 0.05) than those in the clean room (2.66 log10 cfu/m3) and chiller (2.34 log10 cfu/m3). By the afternoon, similar aerobic mesophilic bacteria counts were recovered in the wet and clean rooms, although counts in both of these areas were significantly higher (P > 0.05) than in the chiller. In general there were no significant differences in E. coli counts between rooms (wet room, clean room and chiller) and these did not increase during the production day. Salmonella were detected at the locations of the dehairing and evisceration operations. Aerobic mesophilic bacteria in the air within the abattoir increased as production proceeded. In addition the air within the abattoir contained organisms such as Salmonella and E. coli. Positive correlations (P < 0.05-P < 0.001) between impaction and sedimentation samples were found suggesting that air may be an important source of carcass contamination. PMID:16376447

  13. Four weeks of training with different aerobic workload distributions--effect on aerobic performance.

    PubMed

    Clemente Suárez, Vicente Javier; González-Ravé, Jose M

    2014-01-01

    Although numerous authors have studied the effect of different training procedures on athlete's resistance performance, there are no studies on how the improvement of aerobic resistance is affected by the distribution of training loads. This research sets out to analyse the effectiveness on aerobic activity of distributions with a constant load (CON) and with increments in intensity (INC) over a 4-week period. A total of 30 athletes took part in the analysis (38.7 ± 9.8 years; 174.7 ± 6.5 cm; 72.0 ± 9.8 kg). They were divided into 3 groups of 10 each. One group followed a training plan with a CON distribution and another with an INC distribution. Both groups performed at the same volume and intensity, the only difference between them being the distribution of load over the 4 weeks. The third group trained with a free load distribution during this time. Improvement in VO2max and ventilatory thresholds (VT1 and VT2) was analysed before and after the 4-week training period. There was no modification of the VO2max in any of the training programmes. The FRE and INC groups showed a significant decrease (p<0.05) in their VO2 in VT1, and in the CON group there was a significant reduction (p<0.05) in heart rate in VT2. These results show how training periodisation produces different improvement on performance and demonstrate the effectiveness of periodisated programmes, because periodisated programmes obtain equal or higher adaptations with lower training volumes than non-periodisated programmes. PMID:24444193

  14. Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR).

    PubMed

    Sirianuntapiboon, Suntud; Yommee, Suriyakit

    2006-01-01

    A moving bio-film (MB), made from the inner tube of used tyres was applied in a conventional-aerobic-SBR for increasing the system efficiency and quality of bio-sludge due to good sedimentation (the density of 1.925+/-0.21 g/cm(3)), non-biodegradability and re-usability of the media without any regeneration. The total bio-sludge mass of the MB-aerobic-SBR was about 30% higher than that of the conventional-aerobic-SBR resulting in a reduction of the F/M value of the system and amount of suspended bio-sludge waste. The amount of suspended bio-sludge waste, SVI and SRT of the MB-aerobic-SBR under a low organic loading of 80+/-9.3g BOD(5)/m(3)-d were 1,485+/-146 mg/d, 51+/-3.7 ml/g and 10.1+/-5.1 days, respectively while they were 1,800+/-152 mg/d, 69+/-4.0 ml/g and 8.3+/-5.3 days, respectively in the conventional-aerobic-SBR. The BOD(5), TKN and TP removal efficiencies of the MB-aerobic-SBR were about 1-2, 2-3 and 10-12% higher, respectively, than that of the conventional-aerobic-SBR. Also, the BOD(5) and COD removal efficiencies of the MB-aerobic-SBR were higher than 95% even when the system was operated with synthetic wastewater containing 800 mg/l BOD(5) under a very low HRT of 1.5 days (organic loading of 528+/-50.8 g BOD(5)/m(3)-d). The effluent BOD(5), COD, total kjeldahl nitrogen, total phosphorus and suspended solids of the MB-aerobic-SBR under a high organic loading of 528+/-50.8 g BOD(5)/m(3)-d were 45+/-5.1, 37+/-3.6, 4.1+/-1.0, 1.5+/-0.80 and 41+/-2mg/l, respectively. PMID:16046049

  15. Aerobic biological activated carbon (BAC) treatment of a phenolic wastewater

    SciTech Connect

    Wei Lin; Weber, A.S. (State Univ. of New York, Buffalo (United States))

    1992-05-01

    Organic removal rates achieved in the aerobic BAC process were comparable to rates typically reported for traditional aerobic fixed-film systems. When operated at organic loading rates lower than 0.03 g COD/g GAC-d and air as the oxygen source, greater than 90% COD removal and 99% phenol removal was achieved. At higher organic loading rates, oxygen limitations resulted in less than optimal performance. Observed oxygen limitations were mitigated by the use of pure oxygen. Long-term stability of operation of the BAC process was excellent with one aerobic BAC column operated under the same conditions in excess of 260 days. During that time, consistent column performance was achieved without the need to provide supplemental carbon or carbon regeneration. System biomass yields ranged from 0.05 to 0.30 g VSS/g COD removed and increased with effluent COD concentration.

  16. A rheological approach to analyze aerobic granular sludge.

    PubMed

    Ma, Yun-Jie; Xia, Cheng-Wang; Yang, Hai-Yang; Zeng, Raymond J

    2014-03-01

    Aerobic granular sludge is one promising biotechnology in wastewater treatment. Despite intensive researches on granular architecture and strategies to improve treatment efficiency, there are still some elusive material parameters needed to stimulate the granulation process. The main aim of this study was to evaluate aerobic granular sludge innovatively using the universal rheology methodology, in terms of processability or quality and texture. Steady shear and oscillatory measurements were performed. Basic rheological characterization showed that aerobic granular sludge was a shear-thinning Herschel-Bulkley fluid with yield pseudoplasticity. Meanwhile, granular sludge presented characterized viscoelastic behaviors in dynamic sweeps highlighting its superiority to flocculent sludge. Furthermore, a Wagner-type constitutive model incorporating a relaxation and damping function was introduced and able to describe the time-dependent and non-linear viscoelastic behaviors. This study could make a further step on predicting rheological properties, helping improve the actual sludge treatment process and the operation of sludge dewatering. PMID:24374128

  17. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled.

    PubMed

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning. PMID:20446872

  18. Monitoring the dynamics of syntrophic ?-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic ?-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic ?-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic ?-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic ?-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid ?-oxidization potential of anaerobic digester communities. PMID:25873606

  19. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins.

    PubMed

    Gaucher, Eric A; Thomson, J Michael; Burgan, Michelle F; Benner, Steven A

    2003-09-18

    Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life. PMID:13679914

  20. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

    NASA Technical Reports Server (NTRS)

    Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A.

    2003-01-01

    Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.

  1. Sexual isolation in bacteria

    Microsoft Academic Search

    Jacek Majewski

    2001-01-01

    Bacteria exchange genes rarely but are promiscuous in the choice of their genetic partners. Inter-specific recombination has the advantage of increasing genetic diversity and promoting dissemination of novel adaptations, but suffers from the negative effect of importing potentially harmful alleles from incompatible genomes. Bacterial species experience a degree of 'sexual isolation' from genetically divergent organisms ^ recombination occurs more frequently

  2. Aquatic Bacteria Samples

    USGS Multimedia Gallery

    On April 20, 2010, the BP Deepwater Horizon drilling platform collapsed and sank in the Gulf of Mexico, causing one of the largest oil spills in history. One of the big dilemmas in responding to the oil spil is how to clean up the oil itself. One way currently under research is to use bacteria that ...

  3. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  4. Gram-Positive Bacteria Are Potent Inducers of Monocytic Interleukin-12 (IL-12) while Gram-Negative Bacteria Preferentially Stimulate IL-10 Production

    PubMed Central

    Hessle, Christina; Andersson, Bengt; Wold, Agnes E.

    2000-01-01

    Interleukin-10 (IL-10) and IL-12 are two cytokines secreted by monocytes/macrophages in response to bacterial products which have largely opposite effects on the immune system. IL-12 activates cytotoxicity and gamma interferon (IFN-?) secretion by T cells and NK cells, whereas IL-10 inhibits these functions. In the present study, the capacities of gram-positive and gram-negative bacteria to induce IL-10 and IL-12 were compared. Monocytes from blood donors were stimulated with UV-killed bacteria from each of seven gram-positive and seven gram-negative bacterial species representing both aerobic and anaerobic commensals and pathogens. Gram-positive bacteria induced much more IL-12 than did gram-negative bacteria (median, 3,500 versus 120 pg/ml at an optimal dose of 25 bacteria/cell; P < 0.001), whereas gram-negative bacteria preferentially stimulated secretion of IL-10 (650 versus 200 pg/ml; P < 0.001). Gram-positive species also induced stronger major histocompatibility complex class II-restricted IFN-? production in unfractionated blood mononuclear cells than did gram-negative species (12,000 versus 3,600 pg/ml; P < 0.001). The poor IL-12-inducing capacity of gram-negative bacteria was not remediated by addition of blocking anti-IL-10 antibodies to the cultures. No isolated bacterial component could be identified that mimicked the potent induction of IL-12 by whole gram-positive bacteria, whereas purified LPS induced IL-10. The results suggest that gram-positive bacteria induce a cytokine pattern that promotes Th1 effector functions. PMID:10816515

  5. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer.

    PubMed

    Critchley, K; Rudolph, D L; Devlin, J F; Schillig, P C

    2014-12-15

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5m/day. NO3-(15)N and NO3-(18)O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer. PMID:25461888

  6. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-20

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48?Gyr ago, but within the 160?Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48?Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology. PMID:22012395

  7. Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

    PubMed Central

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-01-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages. PMID:25656205

  8. Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

    E-print Network

    Slavov, Nikolai

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting ...

  9. ENGINEERING AND ECONOMIC ASSESSMENT OF AUTOHEATED THERMOPHILIC AEROBIC DIGESTION WITH AIR AERATION

    EPA Science Inventory

    A major disadvantage of aerobic digestion is that it requires long detention times, particularly in colder climates, to insure adequate stabilization. Autoheated thermophilic aerobic digestion (ATAD) offers the potential to decrease the required detention time. ATAD takes advanta...

  10. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    NASA Astrophysics Data System (ADS)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon of the chernozem and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon of the chernozem was maximal from the 14th to the 22nd day of the experiment. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly confirmed the chitinolytic activity of these bacteria.

  11. Electrochemical inactivation of paper mill bacteria with mixed metal oxide electrode.

    PubMed

    Särkkä, Heikki; Vepsäläinen, Mikko; Pulliainen, Martti; Sillanpää, Mika

    2008-08-15

    In this study electrochemical inactivation of selected bacteria living in paper mill circulating waters was investigated. Three aerobic bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at a mixed metal oxide (MMO) electrode in 3 min. The influence of parameters, such as current density and initial pH or chloride concentration of synthetic paper machine water (SPW) on the inactivation efficiency were studied. Increasing current density and initial chloride concentration of SPW increased the inactivation rate but change of pH value did not have significant influence on the inactivation rate. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite. Electrochemical oxidation showed good performance for inactivation these primary biofilm forming bacteria species with improved current efficiency by higher initial chloride concentrations. PMID:18206301

  12. Identification of Enterobacter bacteria as saxitoxin producers in cattle's rumen and surface water from Venezuelan Savannahs.

    PubMed

    Sevcik, C; Noriega, J; D'Suze, G

    2003-09-15

    We have previously shown that a paralytic toxin able to block sodium channels in nerve is associated with a cattle disease known as bovine paraplegic syndrome (BPS) [Toxicon. 31 (1993) 1581]. We have now identified this as saxitoxin (STX) using HPLC by either the methods of [Toxicon. 31 (1993) 1581], or [Toxicon. 25 (1987) 1105]. In recent experiments we were able to collect and cultivate facultative anaerobic bacteria growing on rumen, grass and ponds of corrals with high incidence of BPS; the cultured bacteria produce compounds indistinguishable from STX under both HPLC procedures described above. Two species of the Enterobacter genus (E. asburiae and E. cloacae) and a strain of Klebsiella pneumoniae, were identified using standard biochemical criteria as well as gas chromatography of bacterial lipids. All these bacteria produced STX in aerobic cultures. PMID:14505935

  13. Three Activities: Bacteria Study, Micro Study, and Bacteria Killers

    NSDL National Science Digital Library

    This resource provides a problem-based activity on risk assessment of environmental health issues. The lesson consists of three related activities: Bacteria Study, Micro Study and Bacteria Killers. "Bacteria Study" gives students hands-on experience with the concepts of epidemiology. "Micro Study" has students sketch, observe, and compare different types of bacteria that can grow in moist conditions. "Bacteria Killers" has students determine what kills bateria, especially in common household products. Detailed instructions are provided for each activity. This resource is free to download. Users must first create a login with ATEEC's website to access the file.

  14. Neutrophil Extracellular Traps Kill Bacteria

    Microsoft Academic Search

    Volker Brinkmann; Ulrike Reichard; Christian Goosmann; Beatrix Fauler; Yvonne Uhlemann; David S. Weiss; Yvette Weinrauch; Arturo Zychlinsky

    2004-01-01

    Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two

  15. News and Research Good Bacteria

    E-print Network

    West, Stuart

    News and Research Good Bacteria Part 2 Article 13 Click here for Probiotics Basics Cooperation Is A No-brainer For Symbiotic Bacteria 9-4-2003 Humans may learn cooperation in kindergarten, but what about bacteria, whose behavior is preprogrammed by their DNA? Some legume plants, which rely

  16. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    Myers, TR, Schneider, MG, Schmale, MS, and Hazell, TJ. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res 29(6): 1592-1600, 2015-This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise. PMID:25486302

  17. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System

    Microsoft Academic Search

    Yossi Tal; Joy E. M. Watts; Harold J. Schreier

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aqua- culture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and

  18. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    Microsoft Academic Search

    D. Georgiou; A. Aivasidis

    2006-01-01

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran®) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace

  19. Effects of Deposit-Feeding Macrofauna on Benthic Bacteria, Viruses, and Protozoa in a Silty Freshwater Sediment

    Microsoft Academic Search

    Claudia Wieltschnig; Ulrike R. Fischer; Branko Velimirov; Alexander K. T. Kirschner

    2008-01-01

    In microcosm experiments, we simultaneously tested the effects of increased numbers of deposit-feeding macrofauna (chironomids,\\u000a oligochaetes and cladocerans) on the standing stock, activities and interactions of heterotrophic bacteria, viruses, and bacterivorous\\u000a protozoa (heterotrophic nanoflagellates and ciliates) in the aerobic layer of a silty littoral freshwater sediment. On average,\\u000a bacterial secondary production was stimulated between 11 and 29% by all macrofaunal

  20. Histamine-producing bacteria in blue scad (Decapterus maruadsi) and their abilities to produce histamine and other biogenic amines.

    PubMed

    Hu, Yue; Huang, Zhiyong; Chen, Xia

    2014-08-01

    Using decarboxylation medium and 16S rDNA sequence analysis, histamine-producing bacteria (HPB) in blue scad (Decapterus maruadsi) were isolated and identified, and the histamine-producing abilities of the isolated HPB were determined. Nine mesophilic strains (H1-H9) isolated from the muscle of blue scad were identified as the genera of HPB, including Arthrobacter bergeri (H1), Pseudomonas sp. (H2, H5 and H6), Psychrobacter sp. (H3), Shewanella baltica (H4 and H7), and Aeromonas salmonicida (H8 and H9), respectively. Results showed that most of the HPB strains were weak on histamine formation (13.0-20.4 mg/l), except for the H8 strain with the ability of producing 115 mg of histamine/l in trypticase soy broth containing 1.0 % L-histidine. As the strongest HPB in blue scad, bacterial strain H8 also presented a strong ability to produce other biogenic amines, such as putrescine, cadaverine, spermidine, spermine, tyramine and tryptamine. Therefore, the H8 strain identified as the genus of A. salmonicida was the dominant mesophilic HPB strain for producing histamine and other biogenic amines in blue scad at room temperature. PMID:24668182

  1. Predatory prokaryotes: Predation and primary consumption evolved in bacteria

    PubMed Central

    Guerrero, Ricardo; Pedrós-Alió, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 ?m wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 × 1.5 ?m) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptations for the origin of intracellular organelles. Images PMID:11542073

  2. Predatory prokaryotes: predation and primary consumption evolved in bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Pedros-Alio, C.; Esteve, I.; Mas, J.; Chase, D.; Margulis, L.

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.

  3. Risk factors for wound infection in health care facilities in Buea, Cameroon: aerobic bacterial pathogens and antibiogram of isolates

    PubMed Central

    Kihla, Akoachere Jane-Francis Tatah; Ngunde, Palle John; Evelyn, Mbianda Soupsop; Gerard, Nkwelang; Ndip, Roland Ndip

    2014-01-01

    Introduction Wound infection is a significant clinical challenge in hospitals in developing countries where proper healthcare delivery is hampered by limited resources. This study investigated the antibiotic susceptibility pattern of bacteria causing wound infection and risk factors for infection among hospitalized patients in Buea, Cameroon, to generate findings which could drive reformation of policies on infection control. Methods Aerobic bacteria were isolated from 212 swabs collected from patients with clinically diagnosed infected wounds. Risk factors for wound infection were investigated. Antibiotic susceptibility of isolates was determined by disk diffusion technique. The Chi-square test was employed to determine significant differences in isolation and distribution of organisms in various specimens. Differences were considered significant at P < 0.05. Results Twelve bacteria species were isolated from 169 (79.7%) specimens. Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae, the predominant isolates in all wound types exhibited a high preponderance of multidrug resistant strains. High rate of infection was attributed to lack of constant water supply and breakdown of sterilization equipment during the study period. Highest diversity of pathogens occurred in open wounds. There were no significant differences (P>0.05) in isolation of pathogens with respect to age, gender and wound type. Co-existing morbidity increased risk of wound infection. Isolates were susceptible to fluoroquinolones and resistant to oxacillin. Conclusion Wound infection with resistant bacteria constitutes a significant cause of morbidity in the study area. Findings reiterate the need to strengthen infection control and drug dispensing policies, and greater collaboration between microbiologists and medical practioners to stem the spread of resistant bacteria. PMID:25360190

  4. Setting Times of Resilon and Other Sealers in Aerobic and Anaerobic Environments

    Microsoft Academic Search

    Benjamin A. Nielsen; William J. Beeler; Christina Vy; J. Craig Baumgartner

    Eleven sealers, including Resilon sealer, were mixed according to manufacturer's instructions. Setting times were determined in both aerobic and anaerobic envi- ronments. Two samples of each sealer were mixed and placed in the following conditions: (a) uncovered in an aerobic incubator; (b) covered with a glass cover-slip in the aerobic incubator; (c) covered with phosphate buff- ered saline in an

  5. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: Kinetic and equilibrium studies

    Microsoft Academic Search

    Xue-Fei Sun; Shu-Guang Wang; Xian-Wei Liu; Wen-Xin Gong; Nan Bao; Bao-Yu Gao; Hua-Yong Zhang

    2008-01-01

    Batch experiments were conducted to study the biosorption characteristics of a cationic dye, Malachite Green (MG), onto aerobic granules. Effects of pH, aerobic granule dosage, contact time and solution temperature on MG biosorption by aerobic granules were evaluated. Simultaneity the thermodynamic analysis was also performed. The results showed that alkaline pH was favorable for the biosorption of MG and chemisorption

  6. LACTATE, NOT PYRUVATE, IS NEURONAL AEROBIC GLYCOLYSIS END PRODUCT: AN IN VITRO ELECTROPHYSIOLOGICAL STUDY

    E-print Network

    Cooper, Robin L.

    LACTATE, NOT PYRUVATE, IS NEURONAL AEROBIC GLYCOLYSIS END PRODUCT: AN IN VITRO ELECTROPHYSIOLOGICAL Abstract--For over 60 years, a distinction has been made between aerobic and anaerobic glycolysis based, in the brain, both aerobic and anaerobic glycolysis terminate with the forma- tion of lactate from pyruvate

  7. Aerobic biological treatment of black table olive washing wastewaters: effect of an ozonation stage

    Microsoft Academic Search

    Jesus Beltran-Heredia; Joaquin Torregrosa; Joaquin R. Dominguez; Juan Garcia

    2000-01-01

    The present work is a study of oxidative degradation of the organic matter present in the washing waters from the black table olive industry. Pollutant organic matter reduction was studied by an aerobic biological process and by the combination of two successive steps: ozonation pretreatment followed by aerobic biological degradation. In the single aerobic biological process, the evolution of biomass

  8. Aerobic treatment of black olive wastewater and the effect of an ozonation stage

    Microsoft Academic Search

    F. J. Benitez; J. Beltran-Heredia; J. Torregrosa; J. R. Dominguez

    1999-01-01

    The reduction of the pollutant organic matter present in wastewaters generated in the black olive production process is studied by an aerobic degradation, and by the combination of two successive steps: an ozonation pretreatment followed by an aerobic degradation. In the single aerobic process, in addition to the biomass evolution which is followed during each experiment, the removal of the

  9. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO/sub 2/ to methanogenesis in cattle waste at 40 and 60/sup 0/C

    SciTech Connect

    Mackie, R.I.; Bryant, M.P.

    1981-06-01

    The quantitative contribution of fatty acids and CO/sub 2/ to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60/sup 0/C under identical loading conditions. In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 ..mu..M/min to a peak (49 ..mu..M/min. Acetate turnover in the mesophilic digester increased fron 15 to 40 ..mu..M/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 ..mu..M/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 ..mu..M/min) was similar in both digestors. The proportion of CH/sub 4/ produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO/sub 2/ reduction was 24 to 19% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH/sub 4/ produced. Counts of fatty acid-degrading bacteria were related to their turnover activity.

  10. Lipoprotein sorting in bacteria.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and ?-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  11. Reanimation of Ancient Bacteria

    SciTech Connect

    Russell Vreeland

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  12. Bacteria, food, and cancer

    PubMed Central

    Rooks, Michelle G.

    2011-01-01

    Gut microbes are essential components of the human organism—helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer to promoting its initiation and progression. Gut bacteria are greatly influenced by diet and in this review we explore evidence that they may be the missing piece that explains how dietary intake influences cancer risk, and discuss possible prevention and treatment strategies. PMID:21876723

  13. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  14. Use of a replica-plate assay for the rapid assessment of salivary protein-bacteria interactions.

    PubMed

    Tseng, C C; Scannapieco, F A; Levine, M J

    1992-02-01

    A replica-plate assay was used to screen for the interaction of salivary molecules with dental plaque bacteria. Bacterial colonies cultured from supragingival plaque on sheep-blood (SB) agar were replica-plated onto nitrocellulose membranes overlaying SB or mitis-salivarius agar. Membranes with attached colonies were removed and incubated with 125I-amylase or 125I-proline-rich glycoprotein (PRG). Positive interactions were detected by autoradiography. Only strains of Streptococcus gordonii and Actinomyces viscosus bound amylase, and strains of A. viscosus bound PRG. The results suggest that amylase and PRG bind to selected species of aerobic dental plaque bacteria. PMID:1382259

  15. Enrichment and identification of methane-oxidizing bacteria by using down-flow hanging sponge bioreactors under low methane concentration

    Microsoft Academic Search

    Masashi Hatamoto; Yusuke Koshiyama; Tomonori Kindaichi; Noriatsu Ozaki; Akiyoshi Ohashi

    Aerobic methanotrophs in soils are an important biological sink for atmospheric methane but bacteria oxidizing atmospheric\\u000a methane largely resist isolation. Here, we enriched methane-oxidizing bacteria in continuous down-flow hanging sponge (DHS)\\u000a bioreactors under low methane concentration (ca. 200 ppmv) at pH 8 and 5.5, from neutral and acidic garden soil inoculum.\\u000a After 3–4 months of enrichment cultivation, pmoA gene-based community analysis and kinetic

  16. Evidence for protection of nitrogenase from O(2) by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus.

    PubMed

    Dong, Z; Zelmer, C D; Canny, M J; McCully, M E; Luit, B; Pan, B; Faustino, R S; Pierce, G N; Vessey, J K

    2002-08-01

    Gluconacetobacter diazotrophicus is an endophytic diazotroph of sugarcane which exhibits nitrogenase activity when growing in colonies on solid media. Nitrogenase activity of G. diazotrophicus colonies can adapt to changes in atmospheric partial pressure of oxygen (pO(2)). This paper investigates whether colony structure and the position of G. diazotrophicus cells in the colonies are components of the bacterium's ability to maintain nitrogenase activity at a variety of atmospheric pO(2) values. Colonies of G. diazotrophicus were grown on solid medium at atmospheric pO(2) of 2 and 20 kPa. Imaging of live, intact colonies by confocal laser scanning microscopy and of fixed, sectioned colonies by light microscopy revealed that at 2 kPa O(2) the uppermost bacteria in the colony were very near the upper surface of the colony, while the uppermost bacteria of colonies cultured at 20 kPa O(2) were positioned deeper in the mucilaginous matrix of the colony. Disruption of colony structure by physical manipulation or due to 'slumping' associated with colony development resulted in significant declines in nitrogenase activity. These results support the hypothesis that G. diazotrophicus utilizes the path-length of colony mucilage between the atmosphere and the bacteria to achieve a flux of O(2) that maintains aerobic respiration while not inhibiting nitrogenase activity. PMID:12177323

  17. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  18. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs). PMID:25678296

  19. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.

    PubMed

    Rodríguez, Elisa; Lopes, Alexandre; Fdz-Polanco, María; Stams, Alfons J M; García-Encina, Pedro A

    2012-03-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (?-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration. PMID:21861082

  20. The use of ultrasound and gamma-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures.

    PubMed

    Lafitte-Trouqué, S; Forster, C F

    2002-09-01

    The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment. PMID:12139327