Science.gov

Sample records for aerobic mesophilic bacteria

  1. Survival, injury and inactivation of Escherichia coli 0157:H7, salmonella and aerobic mesophilic bacteria in apple juice and cider amended with nisin-edta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...

  2. Growth parameters of Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA.

    PubMed

    Ukuku, Dike O; Zhang, Howard; Huang, Lihan

    2009-05-01

    The effect of nisin (0 or 300 IU/mL), ethylenediamine tetraacetic acid (EDTA, 20 mM), and nisin (300 IU)-EDTA (20 mM) on growth parameters, including lag period (LP) and generation time, of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. in the presence or absence of aerobic mesophilic bacteria of apple cider during storage at 5 degrees C for up to 16 days or 23 degrees C for 16 h was investigated. The growth data were analyzed and fitted to the modified Gompertz model. The LP values for aerobic mesophilic bacteria of apple cider (control) and those amended with EDTA and nisin during storage at 5 degrees C were 1.61, 1.76, and 5.45 days, respectively. In apple cider stored at 23 degrees C for 16 h, the LP values for the same bacteria and treatment were 3.24, 3.56, and 5.85 h, respectively. The LP values for E. coli O157:H7 determined in the presence of aerobic mesophilic bacteria of apple cider stored at 23 degrees C for 16 h was 1.48 h, while populations for L. monocytogenes and Salmonella in the same cider declined. In sterile apple cider left at 23 degrees C for 16 h, the LP values for E. coli O157:H7, Salmonella, and L. monocytogenes averaged 2.74, 2.37, and 3.16 h, respectively. The generation time for these pathogens were 0.402, 0.260, and 0.187 log (CFU/mL)/h, respectively. Addition of nisin and EDTA combination caused a decline in lag phase duration and the populations for all pathogens tested, suggesting possible addition of this additive to freshly prepared apple cider to enhance its microbial safety and prevent costly recalls. PMID:19415973

  3. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. PMID:26314017

  4. Growth parameters of escherichia coli O157:H7, salmonella and listeria monocytogenes and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of nisin (0 or 300 IU), Ethylenediamine Tetraacetic Acid (EDTA, 20 mM) and (nisin 300 IU+ EDTA 20 mM) on growth parameters; including lag period (LP) and growth rate (GR) of Escherichia coli O157:H7, L. monocytogenes and Salmonella spp. in the presence or absence of aerobic mesophilic bac...

  5. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria

    PubMed Central

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P.; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable. PMID:25918721

  6. Effect of chlorine, sodium chloride, trisodium phosphate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface.

    PubMed

    Favier, G L; Escudero, M E; de Guzman, A M

    2001-10-01

    Eggshell sanitizing practices are necessary to improve microbiological safety of fresh hen eggs and their products. In this work, the effects of 100 mg/liter free chlorine (chl), 3% sodium chloride (NaCl), 1, 5, and 12% trisodium phosphate (TSP) in wash solutions, and UVR (ultraviolet radiation; 4.573 microW/cm2) were studied at different times on uninoculated and Yersinia enterocolitica-inoculated eggs. On uninoculated eggs, the best results were obtained with 100 mg/liter chlorine and UV exposure for >25 min, with reductions of 1.28 and 1.60 log cycles, respectively, compared to the average bacterial count (4.55 log CFU/egg) on the control (untreated eggs). On Y. enterocolitica-inoculated eggs, highest reductions of the average bacterial count (7.35 log CFU/egg) were obtained with 5 and 12% TSP and 100 mg/liter chl. The decrease obtained with 12% TSP (3.74-log reduction) was significantly higher (P < 0.05) than those obtained with the remaining treatments. Y. enterocolitica was more resistant to UVR than the eggshell natural mesophilic aerobic microflora, except when low inoculum (4.39 log CFU/egg) was assayed. Changes in eggshell microstructure were measured by the blue lake staining method. The presence of Yersinia and Salmonella in eggshell natural flora was also investigated. PMID:11601717

  7. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  8. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  9. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  10. The elimination of Salmonella typhimurium in sewage sludge by aerobic mesophilic stabilization and lime hydrated stabilization.

    PubMed

    Plachá, Iveta; Venglovský, Ján; Maková, Zuzana; Martinéz, José

    2008-07-01

    This study observed the effects of two methods, aerobic mesophilic stabilization and lime hydrated stabilization of sewage sludge upon the survival of Salmonella typhimurium. Raw (primary) sludges from the mechanical biological municipal sewage treatment plant were used. Aerobic stabilization and lime hydrated stabilization were carried out in a laboratory fermentor. Aerobic stabilization was carried out in the mesophilic temperature range (from 25.70+/-0.40 to 37.82+/-1.38 degrees C). Lime hydrated was used at an amount of 10 kg/m(3) for the stabilization. Sludge samples were inoculated with a broth culture of S. typhimurium. Quantitative and qualitative examinations of the presence of S. typhimurium were carried out. Aerobic mesophilic stabilization caused elimination S. typhimurium within 48 h. The T(90) value of S. typhimurium was 6.66+/-0.20 h. During the lime hydrated stabilization pH values significantly increased from 5.66+/-0.07 to 12.12+/-0.02 (P<0.01). S. typhimurium was inactivated within 1h and the T(90) value was 0.19+/-0.01 h. Our study confirmed that the treatment of sewage sludge with lime hydrated was significantly more effective than the aerobic mesophilic stabilization, (P<0.01). PMID:17931859

  11. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:14640233

  12. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. PMID:26760266

  13. [The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].

    PubMed

    Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S

    2005-01-01

    The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated. PMID:16119855

  14. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. PMID:23685650

  15. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  16. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  17. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  18. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    PubMed

    Arnosti, C; Repeta, D J

    1994-03-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapidly and specifically hydrolyzed at alpha(1,6) linkages by pullulanase enzymes, most likely type II pullulanase. Although isolated pullulanase enzymes have been shown to hydrolyze pullulan completely to maltotriose (S. H. Brown, H. R. Costantino, and R. M. Kelly, Appl. Environ. Microbiol. 56:1985-1991, 1990; M. Klingeberg, H. Hippe, and G. Antranikian, FEMS Microbiol. Lett. 69:145-152, 1990; R. Koch, P. Zablowski, A. Spreinat, and G. Antranikian, FEMS Microbiol. Lett. 71:21-26, 1990), the smallest carbohydrate detected in the bacterial cultures consisted of two maltotriose units linked through one alpha(1,6) linkage. Either the final hydrolysis step was closely linked to substrate uptake, or specialized porins similar to maltoporin might permit direct transport of large oligosaccharides into the bacterial cell. This is the first report of pullulanase activity among mesophilic marine bacteria. The combination of GPC and NMR could easily be used to assess other types of extracellular enzyme activity in bacterial cultures. PMID:8161177

  19. Use of mesophilic and thermophilic bacteria for the improvement of copper extraction from a low-grade ore

    NASA Astrophysics Data System (ADS)

    Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.

    2011-04-01

    Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.

  20. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species

    PubMed Central

    Pankowski, Jarosław A.; Puckett, Stephanie M.

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5′ end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  1. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species.

    PubMed

    Pankowski, Jarosław A; Puckett, Stephanie M; Nano, Francis E

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5' end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  2. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-01

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  3. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  4. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria.

    PubMed

    Peters, J; Giudici-Orticoni, M T; Zaccai, G; Guiral, M

    2013-07-01

    Various models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria. The results permitted to extract a hierarchy of dynamic flexibility and atomic resilience within the samples, which correlated with the organization of proteins in bioenergetics complexes and the functionality of the membranes. PMID:23880731

  5. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  6. Soil and sediment bacteria capable of aerobic nitrate respiration.

    PubMed Central

    Carter, J P; Hsaio, Y H; Spiro, S; Richardson, D J

    1995-01-01

    Several laboratory strains of gram-negative bacteria are known to be able to respire nitrate in the presence of oxygen, although the physiological advantage gained from this process is not entirely clear. The contribution that aerobic nitrate respiration makes to the environmental nitrogen cycle has not been studied. As a first step in addressing this question, a strategy which allows for the isolation of organisms capable of reducing nitrate to nitrite following aerobic growth has been developed. Twenty-nine such strains have been isolated from three soils and a freshwater sediment and shown to comprise members of three genera (Pseudomonas, Aeromonas, and Moraxella). All of these strains expressed a nitrate reductase with an active site located in the periplasmic compartment. Twenty-two of the strains showed significant rates of nitrate respiration in the presence of oxygen when assayed with physiological electron donors. Also isolated was one member of the gram-positive genus Arthrobacter, which was likewise able to respire nitrate in the presence of oxygen but appeared to express a different type of nitrate reductase. In the four environments studied, culturable bacteria capable of aerobic nitrate respiration were isolated in significant numbers (10(4) to 10(7) per g of soil or sediment) and in three cases were as abundant as, or more abundant than, culturable bacteria capable of denitrification. Thus, it seems likely that the corespiration of nitrate and oxygen may indeed make a significant contribution to the flux of nitrate to nitrite in the environment. PMID:7487017

  7. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  8. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals. PMID:12238371

  9. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica. PMID:216188

  10. Poplar lignin decomposition by gram-negative aerobic bacteria

    SciTech Connect

    Odier, E.; Janin, G.; Monties, B.

    1981-02-01

    Eleven gram-negative aerobic bacteria (Pseudomonadaceae and Neisseriaceae) out of 122 soil isolates were selected for their ability to assimilate poplar dioxane lignin without a cosubstrate. Dioxane lignin and milled wood lignin degradation rates ranged between 20 and 40% of initial content after 7 days in mineral medium, as determined by a loss of absorbance at 280 nm; 10 strains could degrade in situ lignin, as evidenced by the decrease of the acetyl bromide lignin content of microtome wood sections. No degradation of wood polysaccharides was detected. Lignin biodegradation by Pseudomonas 106 was confirmed by 14CO2 release from labeled poplar wood, although in lower yields compared with results obtained through chemical analysis based on acetyl bromide residual lignin determination. (Refs. 31).

  11. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  12. In-vitro activity of newer quinolones against aerobic bacteria.

    PubMed

    Auckenthaler, R; Michéa-Hamzehpour, M; Pechère, J C

    1986-04-01

    Nalidixic and five newer 4-quinolones, ciprofloxacin, enoxacin, norfloxacin, ofloxacin and pefloxacin were tested against 576 recent clinical aerobic bacterial isolates. The 4-quinolones were regularly active (MIC90 less than 4 mg/l) against the following bacteria: Staphylococcus aureus, S. epidermidis, S. saprophyticus, different Enterobacteriaceae, Haemophilus influenzae, Campylobacter jejuni, Pseudomonas aeruginosa, Agrobacter spp., Aeromonas spp., Plesiomonas spp., Neisseria meningitidis. Other bacteria were usually intermediately susceptible or resistant: different streptococci, Listeria monocytogenes, Nocardia asteroides, P. maltophilia, Achromobacter xylosoxydans and Alcaligenes denitrificans. Ciprofloxacin was the most potent compound, followed by ofloxacin and pefloxacin, norfloxacin and enoxacin being less active. All the 4-quinolones were much more active than nalidixic acid. The MBC/MIC ratios of the 4-quinolones were between 1 and 2 with a majority of strains, and between 2 and 3 with Streptococcus agalactiae, Str. faecalis and L. monocytogenes. A two- to eight-fold increase of MIC was observed by increasing the inoculum 10,000-fold with most of the strains tested. Susceptible bacterial population of Klebsiella pneumoniae, Enterobacter cloacae, Serratia marcescens and P. aeruginosa contained more clones resistant to nalidixic acid (10(4) to 10(8) at four times the MIC) than to 4-quinolones (10(5) to 10(9) at four times the MIC). Supplementing the media with MgSO4 produced smaller inhibition zone diameters with a disc diffusion method than those obtained with non-supplemented agar, with all quinolone or strains. Less regular effect, or no effect was obtained after supplementation with ZnSO4 or Ca(NO3)2. PMID:2940214

  13. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples. PMID:20819367

  14. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  15. Velvet pad surface sampling of anaerobic and aerobic bacteria: an in vitro laboratory model.

    PubMed Central

    Raahave, D; Friis-Møller, A

    1982-01-01

    Velvet pads have been evaluated in an experimental, laboratory model, simulating intraoperative sampling of Staphylococcus epidermis, Escherichia coli and Bacteroides fragilis. After sampling, the pad was placed in a transport medium and kept in an anaerobic atmosphere, before being shaken and rinsed, followed by anaerobic and aerobic culture. This technique permitted quantitatively high recoveries of the test bacteria. Velvet pad sampling could be a measure to determine the density of aerobic and anaerobic bacteria during operation in an effort to predict the risk of postoperative wound sepsis. Images PMID:6757273

  16. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.

    PubMed

    Cibis, Edmund; Ryznar-Luty, Agnieszka; Krzywonos, Małgorzata; Lutosławski, Krzysztof; Miśkiewicz, Tadeusz

    2011-07-01

    The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse. PMID:21367516

  17. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    PubMed Central

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  18. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre

    PubMed Central

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2006-01-01

    The abundance of aerobic anoxygenic phototrophic (AAP) bacteria, cyanobacteria, and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific Gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic Ocean but only 5% or less in the Pacific Ocean. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp. In contrast, Prochlorococcus spp. outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP bacterial genera (Erythrobacter and Roseobacter spp.). Concentrations of bacteriochlorophyll a (BChl a) were low (∼1%) compared to those of chlorophyll a in the North Atlantic. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, the pigment content of AAP bacteria approached that of Prochlorococcus in shelf break water. Our results suggest that AAP bacteria can be quite abundant in some oceanic regimes and that their distribution in the water column is consistent with phototrophy. PMID:16391092

  19. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  20. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    PubMed

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations. PMID:25725076

  1. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    PubMed Central

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  2. Genes that move the window of viability of life: lessons from bacteria thriving at the cold extreme: mesophiles can be turned into extremophiles by substituting essential genes.

    PubMed

    de Lorenzo, Víctor

    2011-01-01

    Whether occurrence of life at the physicochemical extremes results from the entire adaptation of organisms to such settings or it originates from the action of a few genes has been debated for a long time. Recent evidence suggests that a limited number of functions suffice to change the predilection of microorganisms for radically different environmental scenarios. For instance, expression of a few genes from cold-loving bacteria in mesophilic hosts allows them to grow at much lower temperatures and become heat-sensitive. This has been exploited not only for constructing Escherichia coli strains able to grow at 5-10 °C (and thus optimised as hosts for heterologous gene expression) but also for designing vaccines based on temperature-sensitive pathogens. Occurrence of genes/functions that reframe the windows of viability may also ask for a revision of some concepts in microbial ecology and may provide new tools for engineering bacteria with a superior biotechnological performance. PMID:21072830

  3. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production.

    PubMed

    Garcia-Chaves, Maria C; Cottrell, Matthew T; Kirchman, David L; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophs that despite their low abundances have been hypothesized to play an ecologically and biogeochemically important role in aquatic systems. Characterizing this role requires a better understanding of the in situ dynamics and activity of AAP bacteria. Here we provide the first assessment of the single-cell activity of freshwater AAP bacteria and their contribution to total bacterial production across lakes spanning a wide trophic gradient, and explore the role of light in regulating AAP activity. The proportion of cells that were active in leucine incorporation and the level of activity per cell were consistently higher for AAP than for bulk bacteria across lakes. As a result, AAP bacteria contributed disproportionately more to total bacterial production than to total bacterial abundance. Interestingly, although environmentally driven patterns in activity did not seem to differ largely between AAP and bulk bacteria, their response to light did, and exposure to light resulted in increases in the proportion of active AAP bacteria with no clear effect on their cell-specific activity. This suggests that light may play a role in the activation of AAP bacteria, enabling these photoheterotrophs to contribute more to the carbon cycle than suggested by their abundance. PMID:26771928

  4. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  5. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice.

    PubMed

    Panhwar, Q A; Radziah, O; Zaharah, A R; Sariah, M; Razi, I Mohd

    2011-09-01

    Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP. PMID:22319876

  6. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  7. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  8. Survival of anaerobic and aerobic bacteria in a nonsupportive gassed transport system.

    PubMed Central

    Chow, A W; Cunningham, P J; Guze, L B

    1976-01-01

    Survival of anaerobic and aerobic bacteria in a commercially available, non-supportive, gassed (oxygen-free) transport container (Anaport) was evaluated quantitatively. Saline-suspended obligate anaerobes survived significantly better in the gassed container in aerobic control tubes (P less than 0.025, t test), and counts were virtually unchanged after 8 h of holding. Similarly, initial counts and relative proportions of a mixture of Bacteroides fragilis and Staphylococcus aureus were maintained for 72 h. The value of the gassed transport system was less apparent when microorganisms were suspended in nutrient broth. The major advantage of the gassed transport system appears to be for holding of specimens collected by saline irrigation. PMID:1254710

  9. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.

    PubMed

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-07-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0 CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

  10. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.

    PubMed

    Chen, Po-Wen; Ku, Yu-We; Chu, Fang-Yi

    2014-10-01

    Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use. PMID:24916115

  11. Recovery of anaerobic, facultative, and aerobic bacteria from clinical specimens in three anaerobic transport systems.

    PubMed Central

    Helstad, A G; Kimball, J L; Maki, D G

    1977-01-01

    With aspirated specimens from clinical infections, we evaluated the recovery of anaerobic, aerobic, and facultative bacteria in three widely used transport systems: (i) aspirated fluid in a gassed-out tube (FGT), (ii) swab in modified Cary and Blair transport medium (SCB), and (iii) swab in a gassed-out tube (SGT). Transport tubes were held at 25 degrees C and semiquantitatively sampled at 0, 2, 24, and 48 h. Twenty-five clinical specimens yielded 75 anaerobic strains and 43 isolates of facultative and 3 of aerobic bacteria. Only one anaerobic isolate was not recovered in the first 24 h, and then, only in the SGT. At 48 h, 73 anaerobic strains (97%) were recovered in the FGT, 69 (92%) in the SCB, and 64 (85%) in the SGT. Two problems hindered the recovery of anaerobes in the SCB and SGT systems: first die-off of organisms, as evidenced by a decrease in colony-forming units of 20 strains (27%) in the SCB and 25 strains (33%) in the SGT, as compared with 7 strains (9%) in the FGT, over 48 h; and second, overgrowth of facultative bacteria, more frequent with SCB and SGT. The FGT method was clearly superior at 48 h to the SCB and SGT systems in this study and is recommended as the preferred method for transporting specimens for anaerobic culture. PMID:328525

  12. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. PMID:26461264

  13. The effect of bacteria, enzymes and inulin on fermentation and aerobic stability of corn silage

    PubMed Central

    Peymanfar, S; Kermanshahi, RK

    2012-01-01

    Background and Objectives Ensiling is a conservation method for forage crops. It is based on the fact that anaerobe lactic acid bacteria (LAB) convert watersoluble carbohydrates into organic acids. Therefore, pH decreases and the forage is preserved. The aim of this study was to isolate special kinds of lactic acid bacteria from silage and to study the effect of bacteria, inulin and enzymes as silage additives on the fermentation and aerobic stability of the silage. Materials and Methods The heterofermentative LAB were isolated from corn silages in Broujerd, Iran and biochemically characterized. Acid tolerance was studied by exposure to acidic PBS and growth in bile salt was measured by the spectrophotometric method. Results The results of molecular analysis using 16SrDNA sequences showed that the isolates belonged to Lactobacillus and Enterococcus genera. To enhance stability in acidic environment and against bile salts, microencapsulation with Alginate and Chitosan was used. The Lactobacillus plantarum strains were used as control. The inoculants (1 × 107 cfu/g) alone or in combination with inulin or in combination with enzymes were added to chopped forages and ensiled in 1.5-L anaerobic jars. Conclusion Combination of the isolates Lactobacillus and Enterococcus with inulin and enzymes can improve the aerobic stability of corn silage. PMID:23205249

  14. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T

    PubMed Central

    Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-01-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  15. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.

    PubMed

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  16. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  17. Evaluation of the 3M™ Petrifilm™ Rapid Aerobic Count Plate for the Enumeration of Aerobic Bacteria: Collaborative Study, First Action 2015.13.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2016-05-01

    The 3M™ Petrifilm™ Rapid Aerobic Count (RAC) Plate is a sample-ready culture medium system containing dual-sensor indicator technology for the rapid quantification of aerobic bacteria in food products. The 3M Petrifilm RAC Plate was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 3 (Aerobic Plate Count) for the enumeration of aerobic bacteria in raw easy-peel shrimp and the Standard Methods for the Examination of Dairy Products (SMEDP) Chapter 6 (Standard Plate Count Method) for the enumeration of aerobic bacteria in pasteurized skim milk and instant nonfat dry milk (instant NFDM). The 3M Petrifilm RAC Plate was evaluated using a paired study design in a multilaboratory collaborative study following current AOAC validation guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; and high 1000-10 000 CFU/g) were evaluated for naturally occurring aerobic microflora for each matrix. For raw easy-peel shrimp, duplicate 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at both 32 and 35°C. Pasteurized skim milk 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at 32°C, and instant NFDM 3M Petrifilm RAC Plates were enumerated after 48 ± 3 h incubation at 32°C. No statistical difference was observed between 3M Petrifilm RAC Plate and FDA BAM or SMEDP reference methods for each contamination level. PMID:27297837

  18. Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge.

    PubMed

    Margot, Jonas; Lochmatter, Samuel; Barry, D A; Holliger, Christof

    2016-01-01

    Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l(-1) in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs. PMID:26877039

  19. Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Zheng, Qiang; Zhang, Rui; Koblížek, Michal; Boldareva, Ekaterina N.; Yurkov, Vladimir; Yan, Shi; Jiao, Nianzhi

    2011-01-01

    Background Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. Methodology/Principal Findings Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. Conclusions/Significance Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria. PMID:21949847

  20. Induction of bphA, Encoding Biphenyl Dioxygenase, in Two Polychlorinated Biphenyl-Degrading Bacteria, Psychrotolerant Pseudomonas Strain Cam-1 and Mesophilic Burkholderia Strain LB400

    PubMed Central

    Master, Emma R.; Mohn, William W.

    2001-01-01

    We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gmr fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30°C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7°C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15°C was approximately five times less than the level in LB400-1 grown at 30°C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria. PMID:11375179

  1. In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Fortuna, M; Caselli, F; Scalise, G

    2000-06-01

    The in vitro susceptibilities of 90 clinical isolates of gram-positive and gram-negative aerobic bacteria to six cationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated by two broth microdilution methods. The first method was performed according to the procedures outlined by the National Committee for Clinical Laboratory Standards for bacteria that grow aerobically, while the second was performed according to the procedures recently proposed by the R. E. W. Hancock laboratory for testing antimicrobial peptides. Overall, the first method produced MICs two- and fourfold higher than the second method. PMID:10817731

  2. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary.

    PubMed

    Cottrell, Matthew T; Ras, Josephine; Kirchman, David L

    2010-07-01

    Photoheterotrophic microbes use organic substrates and light energy to satisfy their demand for carbon and energy and seem to be well adapted to eutrophic estuarine and oligotrophic oceanic environments. One type of photoheterotroph, aerobic anoxygenic phototrophic (AAP) bacteria, is especially abundant in particle-rich, turbid estuaries. To explore questions regarding the controls of these photoheterotrophic bacteria, we examined their abundance by epifluorescence microscopy, concentrations of the light-harvesting pigment, bacteriochlorophyll a (BChl a) and the diversity of pufM and 16S ribosomal RNA (rRNA) genes in the Chesapeake Bay. Concentrations of BChl a varied substantially, much more so than AAP bacterial abundance, along the estuarine salinity gradient. The BChl a concentration was correlated with turbidity only when oceanic and estuarine waters were considered together. Concentrations of BChl a and BChl a quotas were higher in particle-associated than in free-living AAP bacterial communities and appear to reflect physiological adaptation, not different AAP bacterial communities; pufM genes did not differ between particle-associated and free-living communities. In contrast, particle-associated and free-living bacterial communities were significantly different, on the basis of the analysis of 16S rRNA genes. The BChl a quota of AAP bacteria was not correlated with turbidity, suggesting that pigment synthesis varies in direct response to particles, not light attenuation. The AAP bacteria seem to synthesize more BChl a when dissolved and particulate substrates are available than when only dissolved materials are accessible, which has implications for understanding the impact of substrates on the level of photoheterotrophy compared with heterotrophy in AAP bacteria. PMID:20182527

  3. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  4. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies. PMID:27052863

  5. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of No-treatment, Water, and three sanitizers. Sanitizers were Hydrogen ...

  6. Comparison between Rinse and Crush-and-Rub Sampling for Aerobic Bacteria Recovery from Hatching Eggs after Sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatments with sanitizers. Eggs were arranged into 5 treatments consisting of three sanitizers, Water, and No-treatment. Sanitizers were Hydrogen...

  7. Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron

    PubMed Central

    Back, Alexandre; Irlinger, Françoise

    2012-01-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

  8. An initial investigation into the ecology of culturable aerobic postmortem bacteria.

    PubMed

    Chun, Lauren P; Miguel, Marcus J; Junkins, Emily N; Forbes, Shari L; Carter, David O

    2015-12-01

    Postmortem microorganisms are increasingly recognized for their potential to serve as physical evidence. Yet, we still understand little about the ecology of postmortem microbes, particularly those associated with the skin and larval masses. We conducted an experiment to characterize microbiological and chemical properties of decomposing swine (Sus scrofa domesticus) carcasses on the island of Oahu, Hawaii, USA, during June 2013. Bacteria were collected from the head, limb, and larval mass during the initial 145h of decomposition. We also measured the pH, temperature, and oxidation-reduction potential of larval masses in situ. Bacteria were cultured aerobically on Standard Nutrient Agar at 22°C and identified using protein or genetic signals. Carcass decomposition followed a typical sigmoidal pattern and associated bacterial communities differed by sampling location and time since death, although all communities were dominated by phyla Actinobacteria, Firmicutes, and Proteobacteria. Larval masses were reducing environments (~-200mV) of neutral pH (6.5-7.5) and high temperature (35°C-40°C). We recommend that culturable postmortem and larval mass microbiology and chemistry be investigated in more detail, as it has potential to complement culture-independent studies and serve as a rapid estimate of PMI. PMID:26654073

  9. Distribution and Physiology of Aerobic Bacteria Containing Bacteriochlorophyll a on the East and West Coasts of Australia †

    PubMed Central

    Shiba, Tsuneo; Shioi, Yuzo; Takamiya, Ken-Ichiro; Sutton, David C.; Wilkinson, Clive R.

    1991-01-01

    Aerobic heterotrophic bacteria containing bacteriochlorophyll were isolated from specimens from a wide variety of marine environments on the west (Shark Bay, Lake Clifton, Lake Heyward, and Perth) and east (near Townsville and Brisbane) coasts of Australia. The bacteria were found in a high proportion (10 to 30%) of the total heterotrophic bacterial strains isolated from marine algae, seagrasses, stromatolites, the epiphytes on stromatolites, seawater, and sands; in some cases they constituted up to 49% of the total. This is much higher than the previous report of 6% from Japan. A high percentage, 13%, was also found in the seawater of Hamelin Pool, at Shark Bay, where the salinity was 66%. The number of these bacteria was generally low in seawater and sands, with a few exceptions. There were no aerobic bacteriochlorophyll-containing bacteria on sponges or corals. The isolated strains were orange or pink, and most had absorption maxima around 800 and 850 to 870 nm, the latter range being the absorption of bacteriochlorophyll a in vivo. The maximum bacteriochlorophyll content was 1 nmol/mg (dry weight) of bacterial cells. Most of the bacteria did not grow phototrophically under anaerobic conditions in a broth medium containing succinate. Cells and cell extracts grown under aerobic conditions had photochemical activities such as reversible photooxidations of the reaction center and cytochrome(s). Some strains showed denitrifying activity. The optimal salinity for bacterial growth varied between strains. PMID:16348398

  10. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  11. Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms

    PubMed Central

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2−, NO3−, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 μm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 μm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

  12. Rapid high-throughput assessment of aerobic bacteria in complex samples by fluorescence-based oxygen respirometry.

    PubMed

    O'Mahony, Fiach C; Papkovsky, Dmitri B

    2006-02-01

    A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given. PMID:16461677

  13. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  14. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker.

    PubMed

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  15. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  16. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  17. Organic Osmolytes in Aerobic Bacteria from Mono Lake, an Alkaline, Moderately Hypersaline Environment

    PubMed Central

    Ciulla, R. A.; Diaz, M. R.; Taylor, B. F.; Roberts, M. F.

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress. PMID:16535487

  18. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat.

    PubMed Central

    Nold, S C; Kopczynski, E D; Ward, D M

    1996-01-01

    The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities. PMID:8899976

  19. Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds

    PubMed

    Rontani; Bonin; Volkman

    1999-01-01

    This paper describes the production of isoprenoid wax esters during the aerobic degradation of 6,10,14-trimethylpentadecan-2-one and phytol by four bacteria (Acinetobacter sp. strain PHY9, Pseudomonas nautica [IP85/617], Marinobacter sp. strain CAB [DSMZ 11874], and Marinobacter hydrocarbonoclasticus [ATCC 49840]) isolated from the marine environment. Different pathways are proposed to explain the formation of these compounds. In the case of 6,10, 14-trimethylpentadecan-2-one, these esters result from the condensation of some acidic and alcoholic metabolites produced during the biodegradation, while phytol constitutes the alcohol moiety of most of the esters produced during growth on this isoprenoid alcohol. The amount of these esters formed increased considerably in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. Although conflicting evidence exists regarding the stability of these esters in sediments, it seems likely that, under some conditions, bacterial esterification can enhance the preservation potential of labile compounds such as phytol. PMID:9872783

  20. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  1. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  2. Drug resistance and molecular epidemiology of aerobic bacteria isolated from puerperal infections in Bangladesh.

    PubMed

    Ahmed, Salma; Kawaguchiya, Mitsuyo; Ghosh, Souvik; Paul, Shyamal Kumar; Urushibara, Noriko; Mahmud, Chand; Nahar, Kamrun; Hossain, Mohammad Akram; Kobayashi, Nobumichi

    2015-06-01

    Puerperal infection is a common complication during postnatal period in developing countries. Bacterial species, drug resistance, and genetic characteristics were investigated for a total of 470 isolates from puerperal infections in Bangladesh for a 2-year period (2010-2012). The most common species was Escherichia coli (n=98), followed by Enterococcus faecalis (n=54), Staphylococcus haemolyticus (n=33), Proteus mirabilis (n=32), Staphylococcus aureus (n=27), Klebsiella pneumoniae (n=22), and Enterobacter cloacae (n=21). S. aureus and Acinetobacter baumannii were isolated at a higher frequency from wound infections after cesarean section, while E. coli, E. cloacae, and K. pneumoniae were isolated from community-acquired endometritis and urinary tract infections. Resistance to third-generation cephalosporins was frequent for Enterobacteriacae, and was mainly mediated by blaCTX-M-1 group beta-lactamases. The CTX-M gene in E. coli from the four phylogroups was identified as blaCTX-M-15, and phylogroup B2 isolates with blaCTX-M-15 were classified into ST131 with O25b allele, harboring aac(6')-Ib-cr and various virulence factors. Carbapenemase genes blaNDM-1 and blaNDM-7 were identified in one isolate each of phylogroup A E. coli. Methicillin-resistant S. aureus isolates had type IV or V SCCmec, including isolates of ST361 (CC672), which is related to an emerging ST672 clone in the Indian subcontinent. This study revealed the recent epidemiological status of aerobic bacteria causing puerperal infections in Bangladesh, providing useful information to improve clinical practice and infection control. PMID:25555043

  3. Functional Relationship Between Phytoplankton and Aerobic Anoxygenic Photosynthetic Bacteria: Modes of Coexistence

    NASA Astrophysics Data System (ADS)

    Kolber, Z. S.; Haffa, A.; Klimov, D.

    2006-12-01

    Aerobic Anoxygenic Photosynthetic Bacteria (AAPs) are ubiquitously distributed in the upper ocean. Although they contain bacteriochlorophyll a (BChla), the main absorption bands in the near UV (370 nm) and infrared (800-850 nm) make this pigment impractical in light harvesting below the first few meters of the water column. Instead, they utilize carotenoids as major light harvesting pigments. Since these carotenoids absorb in the 430-550 nm range, phytoplankton and AAPs utilize a similar portion of the available light spectrum. As AAPs cannot utilize water as the electron donor, they transfer electrons between a range of organic/inorganic electron donors and electron acceptors, thus significantly participating in the redox cycle in the upper ocean. We have measured the vertical distribution and photosynthetic properties of both phytoplankton and AAPs in a highly oligotrophic region 800 km SW of Monterey Bay (34N, 129W), and we have consistently observed the presence of a BChla maximum about 30 to 40 meters above the chlorophyll maximum, indicating that phytoplankton and AAPs occupy different ecological niches in the water column. However, the abundance of AAPs generally displayed a maximum at dawn and a minimum at the dusk, indicating a high level of mortality. This diel cycle was observed in 5 micron and 3 micron size fractions, indicating active grazing by small protists. Incubation experiments with natural, mixed population of AAPs and phytoplankton results in an unusually high accumulation of AAPs in DCMU-treated samples, indicating that pigmented protists do contribute significantly to AAP grazing in a tightly-controlled microbial loop. On the other hand, AAP incubations in pure cultures indicate that they biomineralize sulfur, thus affecting the sulfur cycle. All of these observations indicate that the role of AAPs in the upper ocean ecology is defined by their relationship with phototrophic and heterotrophic communities, rather than by their relative

  4. [Antimicrobial susceptibility of clinical isolates of aerobic Gram-positive cocci and anaerobic bacteria in 2006].

    PubMed

    Yamaguchi, Takahiro; Yoshida, Isamu; Itoh, Yoshihisa; Tachibana, Mineji; Takahashi, Choichiro; Kaku, Mitsuo; Kanemitsu, Keiji; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Baba, Hisashi; Matsuo, Shuji; Asari, Seishi; Toyokawa, Masahiro; Matsuoka, Kimiko; Kusano, Nobuchika; Nose, Motoko; Murase, Mitsuharu; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2010-12-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (26 species, 1022 strains) and anaerobic bacteria (23 species, 184 strains) isolated from clinical specimens in 2006 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 53.0% and 65.8%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 micrcog/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 87.6%. Ceftriaxone, cefpirome, cefepime, carbapenem antibiotics, VCM, teicoplanin, linezolid(LZD) and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 10.9% of E. faecalis strains or 3.5% of E. faecium strains showed intermediate or resistant to LZD. 24.4% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM were under 1 microg/mL, suggesting that VCM had excellent activity against C. difficile. Carbapenems showed good activity against Peptococcaceae, Bacteroides spp., and Prevotella spp. However since several strains of Bacteroides fragilis showed resistant to carbapenems and the susceptibility of this species should be well-focused in the future. PMID:21425596

  5. [Antimicrobial susceptibility of clinical isolates of aerobic gram-positive cocci and anaerobic bacteria in 2008].

    PubMed

    Yoshida, Isamu; Yamaguchi, Takahiro; Kudo, Reiko; Fuji, Rieko; Takahashi, Choichiro; Oota, Reiko; Kaku, Mitsuo; Kunishima, Hiroyuki; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Fujita, Shinichi; Matsuo, Shuji; Kono, Hisashi; Asari, Seishi; Toyokawa, Masahiro; Kusano, Nobuchika; Nose, Motoko; Horii, Toshinobu; Tanimoto, Ayako; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2012-02-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (25 genus or species, 1029 strains) and anaerobic bacteria (21 genus or species, 187 strains) isolated from clinical specimens in 2008 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 59.6% and 81.2%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM), linezolid (LZD) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 microg/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 92.0% that was highest among our previous reports. Cefpirome, carbapenems, VCM, teicoplanin (TEIC), LZD and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 15.9% of E. faecalis strains and 1.2% of E. faecium strains showed intermediate to LZD. 17.1% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM was under 1 microg/mL, suggesting that VCM had excellent activity. Carbapenems showed good activity against Clostridiales, Bacteroides spp., and Prevotella spp., but one strain of Bacteroides fragilis showed resistant to carbapenems. And so, the susceptibility of this species should be well-focused in the future at detecting continuously. PMID:22808693

  6. Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products.

    PubMed

    Coton, M; Denis, C; Cadot, P; Coton, E

    2011-04-01

    The microbial quality and safety of surimi seafood products was assessed by studying the prevalence and biodiversity of aerobic spore-forming bacteria at the beginning and end of shelf life in 100 surimi samples. Low levels of total flora and sporulated flora were numerated at the beginning of storage, however, residual spores were detected in the majority of samples during storage. Furthermore, for 34 samples, total flora counts>10(4) CFU/g were observed at the end of shelf life which could lead to non-compliance with good practice recommendations or product spoilage. In total, 460 strains were isolated, fingerprinted by M13-PCR and grouped into 98 different clusters. Representative strains were then identified at the species level via 16S rRNA gene sequencing. Overall, dominant species belonged to Bacillus simplex, Bacillus subtilis and Bacillus licheniformis; while B. simplex, B. subtilis as well as Sporosarcina aquimarina were clearly the dominant species found in samples with higher total flora counts. Amylolytic and proteolytic activities were very frequent amongst tested strains (80 and 92.5%, respectively). Heat resistance parameters of 4 strains in a surimi-based medium were determined. B. simplex and B. subtilis strains were the most heat resistant (δ(96 °C)= 27.6 and 23.3 min and z(T)=8.6 and 7.9, respectively) which can explain their dominance in surimi samples exhibiting higher microbial counts. The heat resistance data obtained can now be used to model thermal destruction of strains using predictive microbiology tools (Sym'Previus). PMID:21315981

  7. Increased salinity improves the thermotolerance of mesophilic nitrification.

    PubMed

    Courtens, Emilie N P; Boon, Nico; De Schryver, Peter; Vlaeminck, Siegfried E

    2014-05-01

    Nitrification is a well-studied and established process to treat ammonia in wastewater. Although thermophilic nitrification could avoid cooling costs for the treatment of warm wastewaters, applications above 40 °C remain a significant challenge. This study tested the effect of salinity on the thermotolerance of mesophilic nitrifying sludge (34 °C). In batch tests, 5 g NaCl L(-1) increased the activity of aerobic ammonia-oxidizing bacteria (AerAOB) by 20-21 % at 40 and 45 °C. For nitrite-oxidizing bacteria (NOB), the activity remained unaltered at 40 °C, yet decreased by 83 % at 45 °C. In a subsequent long-term continuous reactor test, temperature was increased from 34 to 40, 42.5, 45, 47.5 and 50 °C. The AerAOB activity showed 65 and 37 % higher immediate resilience in the salt reactor (7.5 g NaCl L(-1)) for the first two temperature transitions and lost activity from 45 °C onwards. NOB activity, in contrast to the batch tests, was 37 and 21 % more resilient in the salt reactor for the first two transitions, while no difference was observed for the third temperature transition. The control reactor lost NOB activity at 47.5 °C, while the salt reactor only lost activity at 50 °C. Overall, this study demonstrates salt amendment as a tool for a more efficient temperature transition for mesophilic sludge (34 °C) and eventually higher nitrification temperatures. PMID:24526362

  8. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. PMID:25974213

  9. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice.

    PubMed

    Panhwar, Qurban Ali; Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  10. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  11. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  12. Validation of the Peel Plate™ AC for Detection of Total Aerobic Bacteria in Dairy and Nondairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Hammack, Thomas; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ AC (aerobic count) is a low-profile plastic 47 mm culture dish with adhesive top that contains a dried standard plate count medium with oxidation/reduction indicator triphenyl tetrazolium chloride (TTC) that turns red with dehydrogenase enzyme activity of growing aerobic bacteria. The method provides a conventional quantitative count with simple rehydration and incubation for 48 ± 3 h at 35 ± 1°C for most food matrixes and 32 ± 1°C for 48 ± 3 h for dairy products. Dairy matrixes claimed and supported with total aerobic count data are whole milk, skim milk, chocolate milk (2% fat), light cream (20% fat), pasteurized whole goat milk, ultra-high temperature pasteurized milk, nonfat dried milk, lactose-reduced milk, strawberry milk, raw cow milk, raw goat milk, raw sheep milk, condensed skim milk, and vanilla ice cream. Food matrixes claimed for aerobic count detection are raw ground beef, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for aerobic count in dairy products: whole milk, skim milk, chocolate milk, and light cream. The method was also independently evaluated for aerobic count in food matrixes: ground beef and sponge rinse from stainless steel surfaces. In the matrix study, each matrix was assessed separately at each contamination level in comparison to an appropriate reference method. Colony counts were determined for each level and then log10-transformed. The transformed data were evaluated for repeatability, mean comparison between methods with 95% confidence interval (CI), and r(2). A CI range of (-0.5, 0.5) on the mean difference was used as the acceptance criterion to establish significant statistical differences between methods. The evaluations demonstrate that the Peel Plate AC provides no statistical differences across most of the matrixes with r(2) > 0

  13. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  14. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria

    PubMed Central

    Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

    2013-01-01

    Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

  15. Isolation of culturable aerobic bacteria and evidence of Kerstersia gyiorum from the blowhole of captive Yangtze finless porpoises.

    PubMed

    Wan, Xiaoling; McLaughlin, Richard William; Zhou, Junying; Hao, Yujiang; Zheng, Jinsong; Wang, Ding

    2016-08-01

    Bacterial respiratory illnesses are problematic in aquatic mammals such as the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP), which is now at a critically endangered status. Yet little is known about the bacteria inhabiting the respiratory tract of YFPs. In this study, we preliminarily characterized the culturable aerobic bacteria from blow samples of captive YFPs. The bacterial diversity was assessed through cultivation by direct exhalation onto Columbia blood agar plates and identification of representative isolates through 16S rRNA gene sequence analysis. In total, eleven bacterial species belonging to four phyla Proteobacteria (71 %), Firmicutes (25 %), Bacteroidetes (3 %) and Actinobacteria (1 %) were identified. Most of these isolates were opportunistic pathogens found in respiratory illnesses in humans and animals. We also reported the first case of Kerstersia gyiorum isolated from an animal. This work provides a preliminary assessment of the bacteria present in the respiratory tract of captive YFPs, which will be an important first step in elucidating the roles of normal microbiota in maintaining respiratory health of YFPs. This study also points out the necessity of future long-term monitoring of blowhole microorganisms in the YFPs and making emergency preparedness plans for respiratory tract infections. These measures can aid in assessing the pathogenic risk of the critically endangered YFP populations. PMID:27251558

  16. Effects of maturity stage and lactic acid bacteria on the fermentation quality and aerobic stability of Siberian wildrye silage.

    PubMed

    Li, Ping; Bai, Shiqie; You, Minghong; Shen, Yixin

    2016-09-01

    It is difficult to make good quality of silage from alpine gramineous from the Qinghai Tibetan plateau. The effects of lactic acid bacteria (LAB) on the fermentation quality and aerobic stability of Siberian wildrye silage were studied in southeast of the Qinghai Tibetan plateau. Siberian wildrye materials were freshly cut at the sprouting stage, flowering stage, and milky stage. Silage was prepared by using a small-scale silage fermentation system (bag silos). Lactobacillus plantarum (LP, 5 × 10(8) cfu/kg FM), Lactobacillus buchneri (LB, 5 × 10(8) cfu/kg FM) and their mixture (LP+LB, 5 × 10(8) cfu/kg FM) as silage additives were separately added to ensiled forages, and no additive served as control (CK). These bag silos were kept at room temperature (<15°C), and the silage qualities were analyzed after 60 days of ensiling. The number of indigenous LAB on fresh materials was less than that of yeasts and molds, and LAB species showed specification adapted to low temperature. LAB inoculated silages had lower (P < 0.05) pH value, NH 3-N/TN and butyric acid content compared with control silage. Silage treated with LB had higher contents of acetic acid, propionic acid, WSC and CP. However, the aerobic stability of silages inoculated with LAB did not differ significantly between stages (P > 0.05). When fermentation characteristics, chemical composition, and aerobic stability were considered, treatment with L. plantarum resulted in high quality of Siberian wildrye silage harvested at the flowering stage in the alpine region. PMID:27625768

  17. Recalcitrance of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) to cometabolic degradation by pure cultures of aerobic and anaerobic bacteria.

    PubMed

    Megharaj, M; Jovcic, A; Boul, H L; Thiele, J H

    1997-08-01

    Pure cultures of aerobic and anaerobic bacteria capable of oxidation and reductive dehalogenation of chloroethylenes, and aerobic bacteria involved in biodegradation of polychlorinated biphenyls (PCBs) were screened for their ability to cometabolize the persistent pollutant 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE). Bacterial cultures expressing methane monooxygenase (Methylosinus trichosporium), propane monooxygenase (Mycobacterium vaccae) and biphenyl 2,3-dioxygenase enzymes (Pseudomonas fluorescens and Rhodococcus globerulus), as well as bacteria reductively dechlorinating chloroethylenes (Acetobacterium woodii and Clostridium butyricum) could not degrade DDE. Cell-free extracts of M. trichosporium, M. vaccae, P. fluorescens and R. globerulus were also unable to transform DDE, indicating that cell wall and membrane diffusion barriers were not biodegradation limiting. These studies suggest that these bacteria can not degrade DDE, even when provided with cosubstrates that induce chlorophenyl- and dichloroethylene-group transforming enzymes. PMID:9294241

  18. Radioassay for Hydrogenase Activity in Viable Cells and Documentation of Aerobic Hydrogen-Consuming Bacteria Living in Extreme Environments

    PubMed Central

    Schink, Bernhard; Lupton, F. S.; Zeikus, J. G.

    1983-01-01

    An isotopic tracer assay based on the hydrogenase-dependent formation of tritiated water from tritium gas was developed for in life analysis of microbial hydrogen transformation. This method allowed detection of bacterial hydrogen metabolism in pure cultures or in natural samples obtained from aquatic ecosystems. A differentiation between chemical-biological and aerobic-anaerobic hydrogen metabolism was established by variation of the experimental incubation temperature or by addition of selective inhibitors. Hydrogenase activity was shown to be proportional to the consumption or production of hydrogen by cultures of Desulfovibrio vulgaris, Clostridium pasteurianum, and Methanosarcina barkeri. This method was applied, in connection with measurements of free hydrogen and most-probable-number enumerations, in aerobic natural source waters to establish the activity and document the ecology of hydrogen-consuming bacteria in extreme acid, thermal, or saline environments. The utility of the assay is based in part on the ability to quantify bacterial hydrogen transformation at natural hydrogen partial pressures, without the use of artificial electron acceptors. PMID:16346288

  19. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant.

    PubMed

    Li, Lili; Ye, Lei; Zhang, Sen; Meng, Hecheng

    2016-06-01

    Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. PMID:27100915

  20. Abundance, depth distribution, and composition of aerobic bacteriochlorophyll a-producing bacteria in four basins of the central Baltic Sea.

    PubMed

    Salka, Ivette; Moulisová, Vladimíra; Koblízek, Michal; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2008-07-01

    The abundance, vertical distribution, and diversity of aerobic anoxygenic phototrophic bacteria (AAP) were studied at four basins of the Baltic Sea. AAP were enumerated by infrared epifluorescence microscopy, and their diversity was analyzed by using pufM gene clone libraries. In addition, numbers of CFU containing the pufM gene were determined, and representative strains were isolated. Both approaches indicated that AAP reached maximal abundance in the euphotic zone. Maximal AAP abundance was 2.5 x 10(5) cells ml(-1) (11% of total prokaryotes) or 1.0 x 10(3) CFU ml(-1) (9 to 10% of total CFU). Environmental pufM clone sequences were grouped into 11 operational taxonomic units phylogenetically related to cultivated members of the Alpha-, Beta-, and Gammaproteobacteria. In spite of varying pufM compositions, five clones were present in all libraries. Of these, Jannaschia-related clones were always found in relative abundances representing 25 to 30% of the total AAP clones. The abundances of the other clones varied. Clones potentially affiliated with typical freshwater Betaproteobacteria sequences were present at three Baltic Sea stations, whereas clones grouping with Loktanella represented 40% of the total cell numbers in the Gotland Basin. For three alphaproteobacterial clones, probable pufM phylogenetic relationships were supported by 16S rRNA gene analyses of Baltic AAP isolates, which showed nearly identical pufM sequences. Our data indicate that the studied AAP assemblages represented a mixture of marine and freshwater taxa, thus characterizing the Baltic Sea as a "melting pot" of abundant, polyphyletic aerobic photoheterotrophic bacteria. PMID:18502937

  1. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  2. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-03-01

    In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

  3. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Yurkov, Vladimir; Beatty, J. Thomas

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described. PMID:16349490

  4. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  5. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients

    PubMed Central

    Ashour, Hossam M; El-Sharif, Amany

    2009-01-01

    Background Nosocomial infections pose significant threats to hospitalized patients, especially the immunocompromised ones, such as cancer patients. Methods This study examined the microbial spectrum of gram-negative bacteria in various infection sites in patients with leukemia and solid tumors. The antimicrobial resistance patterns of the isolated bacteria were studied. Results The most frequently isolated gram-negative bacteria were Klebsiella pneumonia (31.2%) followed by Escherichia coli (22.2%). We report the isolation and identification of a number of less-frequent gram negative bacteria (Chromobacterium violacum, Burkholderia cepacia, Kluyvera ascorbata, Stenotrophomonas maltophilia, Yersinia pseudotuberculosis, and Salmonella arizona). Most of the gram-negative isolates from Respiratory Tract Infections (RTI), Gastro-intestinal Tract Infections (GITI), Urinary Tract Infections (UTI), and Bloodstream Infections (BSI) were obtained from leukemic patients. All gram-negative isolates from Skin Infections (SI) were obtained from solid-tumor patients. In both leukemic and solid-tumor patients, gram-negative bacteria causing UTI were mainly Escherichia coli and Klebsiella pneumoniae, while gram-negative bacteria causing RTI were mainly Klebsiella pneumoniae. Escherichia coli was the main gram-negative pathogen causing BSI in solid-tumor patients and GITI in leukemic patients. Isolates of Escherichia coli, Klebsiella, Enterobacter, Pseudomonas, and Acinetobacter species were resistant to most antibiotics tested. There was significant imipenem -resistance in Acinetobacter (40.9%), Pseudomonas (40%), and Enterobacter (22.2%) species, and noticeable imipinem-resistance in Klebsiella (13.9%) and Escherichia coli (8%). Conclusion This is the first study to report the evolution of imipenem-resistant gram-negative strains in Egypt. Mortality rates were higher in cancer patients with nosocomial Pseudomonas infections than any other bacterial infections. Policies restricting

  6. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    PubMed

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-01

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. PMID:26542569

  7. Isolation and characterization of poly(3-hydroxybutyrate)-producing bacteria from aerobic sludge.

    PubMed

    Zheng, Bingxin; Lu, Jianjiang; Tong, Yanbin; Li, Hongling; Chen, Qianqian

    2015-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable and environmentally friendly natural polymers. In this study, we isolated a bacterium strain capable of synthesizing PHAs from the aerobic sludge of a sewage treatment plant. The bacterium was identified as Burkholderia cepacia via physiological and biochemical tests as well as 16S rDNA sequence analysis. Strain WN-H41 produced PHAs, which was identified as P3HB. These PHAs have a number average molecular weight of 2.6 × 10(4) Da, a polydispersity index (PDI) of 2.4, and its thermal properties include a glass transition temperature of 1 °C, a melting temperature of 171 °C, and a decomposition temperature of 280 °C. These properties indicate that P3HB produced by WN-H41 has a high purity and good thermal stability. PMID:25304488

  8. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature. PMID:9464387

  9. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  10. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau. PMID:25494579

  11. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection. PMID:23805543

  12. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes. PMID:12675610

  13. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.

    PubMed

    Findlay, Margaret; Smoler, Donna F; Fogel, Samuel; Mattes, Timothy E

    2016-04-01

    Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC. PMID:26918370

  14. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  15. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota.

    PubMed

    Kozlowski, Jessica A; Stieglmeier, Michaela; Schleper, Christa; Klotz, Martin G; Stein, Lisa Y

    2016-08-01

    Chemolithotrophic ammonia-oxidizing bacteria and Thaumarchaeota are central players in the global nitrogen cycle. Obligate ammonia chemolithotrophy has been characterized for bacteria; however, large gaps remain in the Thaumarchaeotal pathway. Using batch growth experiments and instantaneous microrespirometry measurements of resting biomass, we show that the terrestrial Thaumarchaeon Nitrososphaera viennensis EN76(T) exhibits tight control over production and consumption of nitric oxide (NO) during ammonia catabolism, unlike the ammonia-oxidizing bacterium Nitrosospira multiformis ATCC 25196(T). In particular, pulses of hydroxylamine into a microelectrode chamber as the sole substrate for N. viennensis resulted in iterative production and consumption of NO followed by conversion of hydroxylamine to nitrite. In support of these observations, oxidation of ammonia in growing cultures of N. viennensis, but not of N. multiformis, was inhibited by the NO-scavenger PTIO. When based on the marginal nitrous oxide (N2O) levels detected in cell-free media controls, the higher levels produced by N. multiformis were explained by enzyme activity, whereas N2O in N. viennensis cultures was attributed to abiotic reactions of released N-oxide intermediates with media components. Our results are conceptualized in a pathway for ammonia-dependent chemolithotrophy in Thaumarchaea, which identifies NO as an essential intermediate in the pathway and implements known biochemistry to be executed by a proposed but still elusive copper enzyme. Taken together, this work identifies differences in ammonia-dependent chemolithotrophy between bacteria and the Thaumarchaeota, advances a central catabolic role of NO only in the Thaumarchaeotal pathway and reveals stark differences in how the two microbial cohorts contribute to N2O emissions. PMID:26882267

  16. Population Changes in Enteric Bacteria and Other Microorganisms During Aerobic Thermophilic Windrow Composting1

    PubMed Central

    Savage, Jacob; Chase, Theodore; Macmillan, James D.

    1973-01-01

    Composting of wastes from swine feeding operations was studied. The effects of the frequency of turning the wastes and addition of straw to improve the physical structure were studied to determine the most effective technique to rapidly increase the temperature and, consequently, destroy coliforms and Salmonella. Four different treatments were studied; the results showed that, with addition of 5% (wt/wt) straw and mechanical turning of the compost 20 times per week, the temperature reached 60 C within 3 days and enteric bacteria were destroyed within 14 days. Images PMID:4203338

  17. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.

    PubMed

    Woo, Hannah L; Hazen, Terry C; Simmons, Blake A; DeAngelis, Kristen M

    2014-02-01

    Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, β-d-glucosidase, cellobiohydrolase, β-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated β-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. PMID:24238986

  18. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability▿

    PubMed Central

    Xiao, Na; Jiao, Nianzhi

    2011-01-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634

  19. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.

    PubMed

    Yuan, S J; Pehkonen, S O

    2007-09-01

    Microbiologically influenced corrosion (MIC) of stainless steel 304 by a marine aerobic Pseudomonas bacterium in a seawater-based medium was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM was used to observe in situ the proliferation of a sessile Pseudomonas cell by binary fission. The development of a biofilm on the coupon surface and the extent of corrosion damage beneath the biofilm after various exposure times were also characterized by AFM. Results showed that the biofilm formed on the coupon surface increased in thickness and heterogeneity with time, and thus resulting in the occurrence of extensive micro-pitting corrosion; whilst the depth of pits increased linearly with time. The XPS results confirmed that the colonization of Pseudomonas bacteria on the coupon surface induced subtle changes in the alloy elemental composition in the outermost layer of surface films. The most significant feature resulting from microbial colonization on the coupon surface was the depletion of iron (Fe) and the enrichment of chromium (Cr) content as compared to a control coupon exposed to the sterile medium, and the enrichment of Cr increased with time. These compositional changes in the main alloying elements may be correlated with the occurrence of extensive micropitting corrosion on the surface. PMID:17582747

  20. Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods.

    PubMed

    Qian, Yang; Kando, Christine Kere; Thorsen, Line; Larsen, Nadja; Jespersen, Lene

    2015-11-01

    Autoinducer-2 (AI-2) is a quorum-sensing (QS) molecule which mediates interspecies signaling and affects various bacterial behaviors in food fermentation. Biosynthesis of AI-2 is controlled by S-ribosylhomocysteine lyase encoded by the luxS gene. The objective of this study was to investigate production of AI-2 by aerobic endospore-forming bacteria (AEB) isolated from the West African alkaline fermented seed products Mantchoua and Maari. The study included 13 AEB strains of Bacillus subtilis, B. cereus, B. altitudinis, B. amyloliquefaciens, B. licheniformis, B. aryabhattai, B. safensis, Lysinibacillus macroides and Paenibacillus polymyxa. All the tested strains harbored the luxS gene and all strains except for P. polymyxa B314 were able to produce AI-2 during incubation in laboratory medium. Production of AI-2 by AEB was growth phase dependent, showing maximum activity at the late exponential phase. AI-2 was depleted from the culture medium at the beginning of the stationary growth phase, indicating that the tested AEB possess a functional AI-2 receptor that internalizes AI-2. This study provides the evidences of QS system in Bacillus spp. and L. macroides and new knowledge of AI-2 production by AEB. This knowledge contributes to the development of QS-based strategies for better control of alkaline fermentation. PMID:26449556

  1. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  2. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    PubMed Central

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  3. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    PubMed Central

    Dey, Satarupa; Paul, A.K.

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

  4. Alleviation of toxic hexavalent chromium using indigenous aerobic bacteria isolated from contaminated tannery industry sites.

    PubMed

    Pandey, Siddhartha; Singh, Nitin Kumar; Bansal, Ankur Kumar; Arutchelvan, V; Sarkar, Sudipta

    2016-07-01

    In the last decade, much attention has been paid to bioremediation of Cr(VI) using various bacterial species. Cr(VI) remediation by indegeneous bacteria isolated from contaminated sites of a tannery industry located in Tamil Nadu, India, was investigated in this study. Three Cr(VI) resistant bacterial strains (TES-1, TEf-1, and TES-2) were isolated and selected based on their Cr(VI) reduction ability in minimal salt medium. Among these three bacterial strains, TES-1 was found to be most efficient in bioreduction, while TES-2 was only found to be Cr(VI) resistant and showed negligible bioreduction, whereas TEf-1 was observed to be most Cr(VI) tolerant. Potential for bioremediation of TES-1 and TEf-1 was further investigated at different concentrations of Cr(VI) in the range of 50 to 350 mg L(-1). TEf-1 showed prominent synchronous growth throughout the experiment, whereas TES-1 took a longer acclimatization time. Minimum inhibitory concentrations (MIC) of Cr(VI) for TES-1 and TEf-1 were approximated as 600 mg L(-1) and 750 mg L(-1), respectively. The kinetic behavior of Cr(VI) reduction by TES-1 and TEf-1 exhibited zero- and first-order removal kinetics for Cr(VI), respectively. The most efficient strain TES-1 was identified as Streptomyces sp. by gene sequencing of 16S rRNA. PMID:26458110

  5. A Reference Broth Microdilution Method for Dalbavancin In Vitro Susceptibility Testing of Bacteria that Grow Aerobically.

    PubMed

    Koeth, Laura M; DiFranco-Fisher, Jeanna M; McCurdy, Sandra

    2015-01-01

    Antimicrobial susceptibility testing (AST) is performed to assess the in vitro activity of antimicrobial agents against various bacteria. The AST results, which are expressed as minimum inhibitory concentrations (MICs) are used in research for antimicrobial development and monitoring of resistance development and in the clinical setting for antimicrobial therapy guidance. Dalbavancin is a semi-synthetic lipoglycopeptide antimicrobial agent that was approved in May 2014 by the Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections caused by Gram-positive organisms. The advantage of dalbavancin over current anti-staphylococcal therapies is its long half-life, which allows for once-weekly dosing. Dalbavancin has activity against Staphylococcus aureus (including both methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA]), coagulase-negative staphylococci, Streptococcus pneumoniae, Streptococcus anginosus group, β-hemolytic streptococci and vancomycin susceptible enterococci. Similar to other recent lipoglycopeptide agents, optimization of CLSI and ISO broth susceptibility test methods includes the use of dimethyl sulfoxide (DMSO) as a solvent when preparing stock solutions and polysorbate 80 (P80) to alleviate adherence of the agent to plastic. Prior to the clinical studies and during the initial development of dalbavancin, susceptibility studies were not performed with the use of P-80 and MIC results tended to be 2-4 fold higher and similarly higher MIC results were obtained with the agar dilution susceptibility method. Dalbavancin was first included in CLSI broth microdilution methodology tables in 2005 and amended in 2006 to clarify use of DMSO and P-80. The broth microdilution (BMD) procedure shown here is specific to dalbavancin and is in accordance with the CLSI and ISO methods, with step-by-step detail and focus on the critical steps added for clarity. PMID:26381422

  6. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  7. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures.

    PubMed

    Winkler, Mari K H; Kleerebezem, Robbert; Kuenen, J Gijs; Yang, Jingjing; van Loosdrecht, Mark C M

    2011-09-01

    A cyclic anaerobic/aerobic bubble column reactor was run for 420 days to study the competition for nitrite between nitrite oxidizing bacteria (NOB) and anaerobic ammonium oxidizing bacteria (Anammox) at low temperatures. An anaerobic feeding period with nitrite and ammonium in the influent followed by an aerated period was applied resulting in a biomass specific conversion rate of 0.18 ± 0.02 [gN(2) - N · gVSS(-1)· day(-1)] when the dissolved oxygen concentration was maintained at 1.0 mgO(2) · L(-1). An increase in white granules was observed in the reactor which were mainly located at the top of the settled sludge bed, whereas red granules were located at the bottom. FISH, activity tests, and qPCR techniques revealed that red biomass was dominated by Anammox bacteria and white granules by NOB. Granules from the top of the sludge bed were smaller and therefore had a higher aerobic volume fraction, a lower density, and consequently a slower settling rate. Sludge was manually removed from the top of the settled sludge bed to selectively remove NOB which resulted in an increased overall biomass specific N-conversion rate of 0.32 ± 0.02 [gN(2) - N · gVSS(-1) · day(-1)]. Biomass segregation in granular sludge reactors gives an extra opportunity to select for specific microbial groups by applying a different SRT for different microbial groups. PMID:21744798

  8. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

    PubMed Central

    Li, Y.; Wang, F.; Nishino, N.

    2016-01-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  9. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration.

    PubMed

    Li, Y; Wang, F; Nishino, N

    2016-04-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  10. Dynamics of development of aerobic and anaerobic bacteria during aeration of an oil-bearing stratum to enhance oil recovery

    SciTech Connect

    Belyaev, S.S.

    1983-03-01

    The distribution and activity of microorganisms in ground formations has been studied in order to assess their use and regulation during oil field exploitation. Experiments were performed on water-flooded oil fields of the Tatar ASSR and revealed some regularity in the distribution of aerobic and anaerobic microflora. Wells were opened after 3, 28 and 68 days after flooding with aerated water supplemented with nitrogen and phosphate salts. Activation of aerobes results in oxidation of residual oil (not released over 3 years of exploitation). The products (CO/sub 2/ fatty acids) of oxidation promote oil recovery. In the longer experiments anaerobic processes, especially methanogenesis from CO/sub 2/ were enhanced.

  11. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest. PMID:25844460

  12. Bacterial gene import and mesophilic adaptation in archaea

    PubMed Central

    López-García, Purificación; Zivanovic, Yvan; Deschamps, Philippe; Moreira, David

    2015-01-01

    It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages — including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) — independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles. PMID:26075362

  13. The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European Arctic seas but does not favor endemism

    PubMed Central

    Lehours, Anne-Catherine; Jeanthon, Christian

    2015-01-01

    Despite an increasing number of studies over the last 15 years, aerobic anoxygenic photoheterotrophic (AAP) bacteria remain a puzzling functional group in terms of physiology, metabolism, and ecology. To contribute to a better knowledge of their environmental distribution, the present study aims at analyzing their diversity and structure at the boundary between the Norwegian, Greenland, and Barents Seas. The polymorphism of a marker gene encoding a sub-unit of the photosynthetic apparatus (pufM gene) was analyzed and attempted to be related to environmental parameters. The Atlantic or Arctic origin of water masses had a strong impact on the AAP bacterial community structure whose populations mostly belonged to the Alpha- and Gammaproteobacteria. A majority (>60%) of pufM sequences were affiliated to the Gammaproteobacteria reasserting that this class often represents the major component of the AAP bacterial community in oceanic regions. Two alphaproteobacterial groups dominate locally suggesting that they can constitute key players in this marine system transiently. We found that temperature is a major determinant of alpha diversity of AAP bacteria in this marine biome with specific clades emerging locally according to the partitioning of water masses. Whereas we expected specific AAP bacterial populations in this peculiar and newly explored ecosystem, most pufM sequences were highly related to sequences retrieved elsewhere. This observation highlights that the studied area does not favor AAP bacteria endemism but also opens new questions about the truthfulness of biogeographical patterns and on the extent of AAP bacterial diversity. PMID:26191046

  14. Iodide Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a 129I-Contaminated Aquifer at the Savannah River Site, South Carolina ▿

    PubMed Central

    Li, Hsiu-Ping; Brinkmeyer, Robin; Jones, Whitney L.; Zhang, Saijin; Xu, Chen; Schwehr, Kathy A.; Santschi, Peter H.; Kaplan, Daniel I.; Yeager, Chris M.

    2011-01-01

    129I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a 129I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 μM I−). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 μM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H2O2, was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I− concentration (up to 10 μM I−), and increased at pH values of <6. Overall, the data indicate that I− accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of 129I and to the biogeochemical cycling of iodine over geologic time. PMID:21278282

  15. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  16. Abundance, Depth Distribution, and Composition of Aerobic Bacteriochlorophyll a-Producing Bacteria in Four Basins of the Central Baltic Sea▿ †

    PubMed Central

    Salka, Ivette; Moulisová, Vladimíra; Koblížek, Michal; Jost, Günter; Jürgens, Klaus; Labrenz, Matthias

    2008-01-01

    The abundance, vertical distribution, and diversity of aerobic anoxygenic phototrophic bacteria (AAP) were studied at four basins of the Baltic Sea. AAP were enumerated by infrared epifluorescence microscopy, and their diversity was analyzed by using pufM gene clone libraries. In addition, numbers of CFU containing the pufM gene were determined, and representative strains were isolated. Both approaches indicated that AAP reached maximal abundance in the euphotic zone. Maximal AAP abundance was 2.5 × 105 cells ml−1 (11% of total prokaryotes) or 1.0 × 103 CFU ml−1 (9 to 10% of total CFU). Environmental pufM clone sequences were grouped into 11 operational taxonomic units phylogenetically related to cultivated members of the Alpha-, Beta-, and Gammaproteobacteria. In spite of varying pufM compositions, five clones were present in all libraries. Of these, Jannaschia-related clones were always found in relative abundances representing 25 to 30% of the total AAP clones. The abundances of the other clones varied. Clones potentially affiliated with typical freshwater Betaproteobacteria sequences were present at three Baltic Sea stations, whereas clones grouping with Loktanella represented 40% of the total cell numbers in the Gotland Basin. For three alphaproteobacterial clones, probable pufM phylogenetic relationships were supported by 16S rRNA gene analyses of Baltic AAP isolates, which showed nearly identical pufM sequences. Our data indicate that the studied AAP assemblages represented a mixture of marine and freshwater taxa, thus characterizing the Baltic Sea as a “melting pot” of abundant, polyphyletic aerobic photoheterotrophic bacteria. PMID:18502937

  17. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  18. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  19. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    PubMed

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P < 0.001) and 48 h (30/36 vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

  20. INACTIVATION OF ENTERIC PATHOGENS DURING AEROBIC DIGESTION OF WASTEWATER SLUDGE

    EPA Science Inventory

    The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...

  1. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo—Brazil)

    PubMed Central

    Cuadrat, Rafael R. C.; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M. R.

    2016-01-01

    Abstract Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  2. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil).

    PubMed

    Cuadrat, Rafael R C; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M R

    2016-02-01

    Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  3. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    PubMed

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. PMID:21868146

  4. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  5. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  6. Genome Sequence of Leuconostoc mesenteroides subsp. cremoris Strain T26, Isolated from Mesophilic Undefined Cheese Starter

    PubMed Central

    Kot, W. P.; Hansen, L. H.; Sørensen, S. J.; Broadbent, J. R.; Vogensen, F. K.; Ardö, Y.

    2014-01-01

    Leuconostoc is the main group of heterofermentative bacteria found in mesophilic dairy starters. They grow in close symbiosis with the Lactococcus population and are able to degrade citrate. Here we present a draft genome sequence of Leuconostoc mesenteroides subsp. cremoris strain T26. PMID:24903867

  7. Matrix Extension Study: Validation of the Compact Dry TC Method for Enumeration of Total Aerobic Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Jewell, Keith; Green, Becky; Limbum, Rob; Fernandez, Maria Cristina; Salfinger, Yvonne; Chen, Yi

    2016-01-01

    A validation study was conducted to extend the matrix claim for the Nissui Compact Dry Total Count (TC), Performance Tested Method(s)(SM) (PTM) Certification No. 010404, to cooked chicken, lettuce, frozen fish, milk powder, and pasteurized whole milk. The method was originally certified by the AOAC Research Institute Performance Tested Method(s)(SM) Program for raw meat products. The Compact Dry TC is a ready-to-use dry media sheet that is rehydrated by adding 1 mL of diluted sample. A total aerobic colony count can be determined in the sample following 48 h of incubation. Matrix extension studies were conducted by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology Limited), Chipping Campden, UK. Single-laboratory data were collected for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Fourteen laboratories participated in the collaborative study. The Compact Dry TC was tested at two time points, 48 ± 3 h and 72 ± 3 h and compared with the current International Organization for Standardization (ISO) method at the time of the study, ISO 4833:2003 (this standard is withdrawn and has been replaced by: ISO 4833-1:2013 and ISO 4833-2:2013), Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of microorganisms-Colony-count technique at 30°C. The data were logarithmically transformed and evaluated for repeatability (plus reproducibility for pasteurized milk), RSD of repeatability (plus RSD of reproducibility for milk), r(2), and mean difference between methods with 95% confidence interval (CI). A CI outside of (-0.5 to 0.5) on the log10 mean difference was used as the criterion to establish significant statistical difference between methods. No significant differences were found between the Compact Dry TC 48 and 72 h time points, with the exception of one contamination level of cooked chicken and one contamination level of dry milk

  8. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. PMID:27387251

  9. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.

    PubMed

    Burtscher, Carola; Wuertz, Stefan

    2003-08-01

    A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37 degrees C and 24 h in Rappaport Vassiliadis medium at 43 degrees C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples

  10. Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching from Aerobic Respiration to Denitrification

    PubMed Central

    Hassan, Junaid; Bergaust, Linda L.; Wheat, I. David; Bakken, Lars R.

    2014-01-01

    In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e−-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (, h−1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With  = 0.005 h−1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting (fraction of the cells recruited to denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’: switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia

  11. Adequacy of Petrifilm™ Aerobic Count plates supplemented with de Man, Rogosa & Sharpe broth and chlorophenol red for enumeration of lactic acid bacteria in salami.

    PubMed

    de Castilho, Natália Parma Augusto; Okamura, Vivian Tiemi; Camargo, Anderson Carlos; Pieri, Fábio Alessandro; Nero, Luís Augusto

    2015-12-01

    The present study aimed to assess the performance of alternative protocols to enumerate lactic acid bacteria (LAB) in salami. Fourteen cultures and two mixed starter cultures were plated using six protocols: 1) Petrifilm™ Aerobic Count (AC) with MRS broth and chlorophenol red (CR), incubated under aerobiosis or 2) under anaerobiosis, 3) MRS agar with CR, 4) MRS agar with bromocresol purple, 5) MRS agar at pH5.7, and 6) All Purpose Tween agar. Samples of salami were obtained and the LAB microbiota was enumerated by plating according protocols 1, 2, 3 and 5. Regression analysis showed a significant correlation between the tested protocols, based on culture counts (p<0.05). Similar results were observed for salami, and no significant differences of mean LAB counts between selected protocols (ANOVA, p>0.05). Colonies were confirmed as LAB, indicating proper selectivity of the protocols. The results showed the adequacy of Petrifilm™ AC supplemented with CR for the enumeration of LAB in salami. PMID:26291606

  12. Menadione-catalyzed luminol chemiluminescence assay for the rapid detection of viable bacteria in foods under aerobic conditions.

    PubMed

    Kawasaki, S; Yamashoji, S; Asakawa, A; Isshiki, K; Kawamoto, S

    2004-12-01

    A menadione-catalyzed luminol chemiluminescence assay was developed for the rapid detection and estimation of viable bacteria in foods. The principle of this assay is based on the extracellular menadione-catalyzed active oxygen spieces (O2- and H2O2) generated by the activity of NAD(P)H:menadione oxidoreductase in viable cells. This luminol chemiluminescence assay requires 10 min for the incubation of cells with menadione and then 2 s for the measurement of chemiluminescence intensity after an injection of luminol solution without the treatment of cell lysis. This method was evaluated using liquid food samples of milk, vegetable juice, green tea, and coffee spiked with Escherichia coli ATCC 25922. The study result revealed that E. coli contamination at 1 to 10 CFU/ml in these foods could be detected after incubation at 37 degrees C for 7 h in an enrichment medium; however, the green tea and coffee samples requires filtration. This method could be a useful tool for the rapid evaluation of microbial food contamination. PMID:15633684

  13. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    PubMed

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments. PMID:25187151

  14. Transfer and expression of mesophilic plasmic-mediated degradative capacity in a psychrotrophic bacterium

    SciTech Connect

    Kolenc, R.J.; Inniss, W.E.; Glick, B.R.; Robinson, C.W.; Mayfield, C.I.

    1988-03-01

    A psychrotrophic bacterium, originally isolated from a natural aquatic environment, was characterized and identified as Pseudomonas putida Q5 for use as a representative recipient for biodegradative genes from a mesophilic microorganism. The TOL plasmid pWWO of the mesophile P. putida PaW1 was successfully transferred by conjugation to the naturally isolated psychrotroph P. putida Q5, as shown by plasmid analysis by agarose gel electrophoresis. Expression of the genes encoded by the mesophilic TOL plasmid in the psychrotroph was shown by the fact that the transconjugant (designated P. putida Q5T) had the capacity to degrade and utilize toluate (1000 mg/liter) as a sole source of carbon at temperatures as low as 0/sup 0/C. Comparison of growth rates over a wide temperature range (0 to 30/sup 0/C) indicated that the physiological activity of the transconjugant was not reduced and that the plasmid DNA from the mesophile and its encoded enzymes functioned effectively in the psychrotroph at temperatures well below those at which the mesophile could grow. The production and demonstrated functioning of P. putida Q5T illustrates the possibility of developing specific degradative capacities in bacteria which can readily function at low temperatures in chemically contaminated environments or in industrial waste water treatment systems.

  15. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  16. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. PMID:20627391

  17. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China.

    PubMed

    Sadiq, Faizan A; Li, Yun; Liu, TongJie; Flint, Steve; Zhang, Guohua; He, GuoQing

    2016-01-18

    Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future. PMID:26555161

  18. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems.

    PubMed

    Marneri, Matina; Mamais, Daniel; Koutsiouki, Efi

    2009-04-14

    The scope of the study presented in this paper is to determine the fate of the filamentous bacteria Gordona amarae and Microthrix parvicella in anaerobic digestion operating under mesophilic and thermophilic conditions. In order to detect and quantify foaming bacteria in the anaerobic digesters, a fluorescent in situ hybridization (FISH) method was developed and applied. This paper presents the results of a laboratory-scale study that involved the operation of four lab-scale anaerobic digestion systems operating in the mesophilic (35 degrees C) and thermophilic (55 degrees C) temperature ranges at 20 days' detention time. According to the FISH counts of G. amarae and M. parvicella, it appears that thermophilic conditions resulted in a higher destruction of both filamentous bacteria, averaging approximately 97% and 94% for the single thermophilic digester and the dual thermophilic/mesophilic system, respectively. Within the context of this study, the overall performance of the four different anaerobic digestion systems was evaluated in terms of biogas production per mass of volatile solids destroyed, COD destruction, sludge dewaterability and foaming characteristics. The dual stage systems used in this study outperformed the single stage digesters. PMID:19507434

  19. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2−), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  20. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  1. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L

    2013-07-01

    Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

  2. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  3. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  4. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    PubMed

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  5. Effect of sand and shaking duration on the recovery of aerobic bacteria, coliforms, and Escherichia coli from prechill broiler whole carcass rinsates.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to determine the effect of added sand and shaking duration on the recovery of bacteria from broiler carcasses using the whole carcass rinse (WCR) method. In each of 4 replications, 12 eviscerated broiler carcasses were obtained from a commercial processing plant prior to ...

  6. Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture.

    PubMed

    Karahan, A G; Başyiğit Kiliç, G; Kart, A; Sanlidere Aloğlu, H; Oner, Z; Aydemir, S; Erkuş, O; Harsa, S

    2010-01-01

    In this study, 2 different starter culture combinations were prepared for cheesemaking. Starter culture combinations were formed from 8 strains of lactic acid bacteria. They were identified as Lactococcus lactis ssp. lactis (2 strains), Lactobacillus plantarum (5 strains), and Lactobacillus paraplantarum (1 strain) by amplified fragment length polymorphism analysis. The effects of these combinations on the physicochemical and microbiological properties of Beyaz cheeses were investigated. These cheeses were compared with Beyaz cheeses that were produced with a commercial starter culture containing Lc. lactis ssp. lactis and Lc. lactis ssp. cremoris as control. All cheeses were ripened in brine at 4 degrees C for 90 d. Dry matter, fat in dry matter, titratable acidity, pH, salt in dry matter, total N, water-soluble N, and ripening index were determined. Sodium dodecyl sulfate-PAGE patterns of cheeses showed that alpha(S)-casein and beta-casein degraded slightly during the ripening period. Lactic acid bacteria, total mesophilic aerobic bacteria, yeast, molds, and coliforms were also counted. All analyses were repeated twice during d 7, 30, 60, and 90. The starter culture combinations were found to be significantly different from the control group in pH, salt content, and lactobacilli, lactococci, and total mesophilic aerobic bacteria counts, whereas the cheeses were similar in fat, dry matter content, and coliform, yeast, and mold counts. The sensory analysis of cheeses indicated that textural properties of control cheeses presented somewhat lower scores than those of the test groups. The panelists preferred the tastes of treatment cheeses, whereas cheeses with starter culture combinations and control cheeses had similar scores for appearance and flavor. These results indicated that both starter culture combinations are suitable for Beyaz cheese production. PMID:20059897

  7. The aerobic and anaerobic bacteriology of perirectal abscesses.

    PubMed Central

    Brook, I; Frazier, E H

    1997-01-01

    The microbiology of perirectal abscesses in 144 patients was studied. Aerobic or facultative bacteria only were isolated in 13 (9%) instances, anaerobic bacteria only were isolated in 27 (19%) instances, and mixed aerobic and anaerobic flora were isolated in 104 (72%) instances. A total of 325 anaerobic and 131 aerobic or facultative isolates were recovered (2.2 anaerobic isolates and 0.9 aerobic isolates per specimen). The predominant anaerobes were as follows: Bacteroides fragilis group (85 isolates), Peptostreptococcus spp. (72 isolates), Prevotella spp. (71 isolates), Fusobacterium spp. (21 isolates), Porphyromonas spp. (20 isolates), and Clostridium spp. (15 isolates). The predominant aerobic and facultative bacteria were as follows: Staphylococcus aureus (34 isolates), Streptococcus spp. (28 isolates), and Escherichia coli (19 isolates). These data illustrate the polymicrobial aerobic and anaerobic microbiology of perirectal abscesses. PMID:9350771

  8. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. PMID:26101964

  9. Prevalence of bacteria and absence of anisakid parasites in raw and prepared fish and seafood dishes in Spanish restaurants.

    PubMed

    Sospedra, I; Rubert, J; Soriano, J M; Mañes, J; Fuentes, M V

    2015-03-01

    This study evaluated the presence of bacteria and anisakid parasites in 45 samples of raw anchovies in vinegar, a dish widely eaten in Spain, and in 227 samples of cooked fish and cephalopods served in Spanish food service establishments. Our analysis showed that, according to European and Spanish regulation, 14 to 30% of the prepared fish and cephalopod dishes exceeded the maximum allowable level for mesophilic aerobic counts, and 10 to 40% of these samples exceeded the allowable levels for Enterobacteriaceae. None of the studied samples showed evidence of anisakid parasites, Escherichia coli, Staphylococcus aureus, Salmonella, or Listeria monocytogenes. These results indicate that application of hazard analysis and critical control points, food safety training courses, and routine inspections in compliance with current European and Spanish legislation help protect consumer health. PMID:25719890

  10. [Comparative characteristics of free-living ultramicroscopical bacteria obtained from extremal biotopes].

    PubMed

    Suzina, N E; Esikova, T Z; Oleinikov, R R; Gafarov, B; Shorokhov, A P; Polivtseva, V N; Ross, D V; Abashina, T N; Duda, V I; Boronin, A M

    2015-01-01

    We isolated 50 strains of free-living ultrasmall bacteria with a cell volume that varies from 0.02 to 1.3 microm3 from a range of extremal natural biotopes, namely permafrost soils, oil slime, soils, lake silt, thermal swamp moss, and the skin integuments of the clawed frog, Xenopus laevis. Of them, 15 isolates, characterized by a cell size of less than 0.1 microm3 and a genome size from 1.5 to 2.4 Mb, were subsumed to ultramicrobacteria belonging to different philogenetic groups (Alphaproteobacteria, Bacteroidetes, Actinobacteria) and genera (Kaistia, Chryseobacterium, Microbacterium, Leucobacter, Leifsonia, and Agrococcus) of the Bacteria domain. They are free-living mesophilic heterotrophic aerobic bacteria. The representatives of Kaistia and Chryseobacterium genera were capable of facultative parasitism on other species of chemo-organotrophic bacteria and cyanobacteria. The ultramicrobacteria differed in their morpholgy, cell ultrastructural organization, and physiological and biochemical features. According to the fine structure of their cell walls, the isolates were subdivided into two groups, namely Gram-positive and Gram-negative forms. PMID:26027350

  11. Search for uro-genital tract infections in patients with symptoms of prostatitis. Studies on aerobic and strictly anaerobic bacteria, mycoplasmas, fungi, trichomonads and viruses.

    PubMed

    Mårdh, P A; Colleen, S

    1975-01-01

    Seventy-nine patients with symptoms of nonacute prostatitis and 20 healthy volunteers were examined for uro-genital tract infection with bacteria, mycoplasmas, fungi, trichomonads and viruses. No differences in the results of the bacterial cultures were found between the patients and the controls. In only a few cases were established urinary tract pathogens found, but in no instance were these findings reproducible in later specimens. The cultures of the expressed prostatic fluids and the samples of semen gave no information of the occurrence of bacteria over and above that obtainable from examination of the urethral specimens. Significant bacteriuria was not found in any of the patients. Though Neisseria gonorrhoeae could not be isolated from any of the subjects, immunofluorescent studies revealed such organisms in seminal fluid in 8% of the patients. Nine of the patients had 1 to 3 years been considered successfully treated for gonorrhoea. Five of these nine patients were still found to harbour gonococci, as judged from the immunofluorescent studies. Corynebacterium vaginale was recovered in an equally low frequency (5%) from the patients and the volunteers. There was no significant difference in the incidence of T-mycoplasmas between the patients (46%) and the controls (35%), while Mycoplasma hominis was only found in the patients (10%). Trichomonas vaginalis could not be detected in wet smears of expressed prostatic fluid in any of the subjects, but could be cultured from one such specimen. Metacycline treatment (performed according the double blind cross-over technique) was studied for effects on the bacterial flora. In about 10% of the patients, an earlier not observed relative dominance of gram-negative rods was found on the cultures made after the therapy. Candida albicans was only isolated from the patients. It was found more often after (24%) than before the (15%) treatment. Complement-fixing antibodies to N. gonorrhoeae, cytomegalovirus and Chlamydia

  12. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  13. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    PubMed Central

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  14. Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.

    PubMed

    Ziembińska-Buczyńska, A; Banach, A; Bacza, T; Pieczykolan, M

    2014-12-01

    Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in

  15. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge.

    PubMed

    Coelho, Nuno Miguel Gabriel; Droste, Ronald L; Kennedy, Kevin J

    2011-04-01

    The effects of microwave (MW) pretreatment, staging and digestion temperature on anaerobic digestion were investigated in a setup of ten reactors. A mesophilic reactor was used as a control. Its performance was compared to single-stage mesophilic and thermophilic reactors treating pretreated and non-pretreated sludge, temperature-phased (TPAD) thermophilic-mesophilic reactors treating pretreated and non-pretreated sludge and thermophilic-thermophilic reactors also treating pretreated and non-pretreated sludge. Four different sludge retention times (SRTs) (20, 15, 10 and 5 d) were tested for all reactors. Two-stage thermo-thermo reactors treating pretreated sludge produced more biogas than all other reactors and removed more volatile solids. Maximum volatile solids (VS) removal was 53.1% at an SRT of 15 d and maximum biogas increase relative to control was 106% at the shortest SRT tested. Both the maximum VS removal and biogas relative increase were measured for a system with thermophilic acidogenic reactor and thermophilic methanogenic reactor. All the two-stage systems treating microwaved sludge produced sludge free of pathogen indicator bacteria, at all tested conditions even at a total system SRT of only 5 d. MW pretreatment and staging reactors allowed the application of very short SRT (5 d) with no significant decrease in performance in terms of VS removal in comparison with the control reactor. MW pretreatment caused the solubilization of organic material in sludge but also allowed more extensive hydrolysis of organic material in downstream reactors. The association of MW pretreatment and thermophilic operation improves dewaterability of digested sludge. PMID:21470653

  16. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  17. Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor.

    PubMed

    Bohn, I; Björnsson, L; Mattiasson, B

    2007-08-01

    The effect of a temperature decrease from 33 degrees C to 12 degrees C was investigated for anaerobic digestion of crop residues. A laboratory-scale reactor (R0) was inoculated with mesophilic sludge and operated as continuously stirred fed-batch system at temperatures of 12 degrees C, 18 degrees C and 33 degrees C. Changes in the microbial populations of the sludge were followed by means of fluorescence in situ hybridization analysis. Methane was produced in R0 at all temperatures. Stable long-term operation at 18 degress C was achieved yielding 151 mlCH4 gVS(added(-1) at a rate of 108 mlCH4 l(R)(-1)d(-1) once the microbial populations of the sludge had adapted to this temperature. After operation at 18 degrees C, the contents of R0 was mixed and distributed into three smaller reactors, which were operated at 18 degrees C (R18), 25 degrees C (R25) and 37 degrees C (R37), respectively. Methane production rates for R37 and R25 were 366 and 310 mlCH4 l(R)(-1)d(-1), respectively, which were higher than the 215 mlCH4 l(R)(-1)d(-1) obtained in R0 when this was operated at 33 degrees C. Hydrolysis was found to decrease when temperature was decreased and especially below 25 degrees C. At temperatures below 16 degrees C, acidogenesis and methanogenesis were the rate-limiting steps. Adaptation of the mesophilic sludge to 18 degrees C was indicated by an increase in the ratio of Bacteria to total prokaryotes (sum of Archaea and Bacteria). This was thought to be caused by enrichment of Bacteria in the sludge, which appeared to be an important adaptation mechanism. During the adaptation, the Methanomicrobiales and Methanosarcinaceae populations increased relative to the total Archaea population whereas the Methanosaeta population decreased. The population changes were reflected by reactor performance. PMID:17879853

  18. STUDIES OF METHANOGENIC BACTERIA IN SLUDGE

    EPA Science Inventory

    Methanogenic bacteria were isolated from mesophilic anaerobic digesters. The isolates were able to utilize H2 and CO2 acetate, formate and methanol, but were not able to metabolize propionate and butyrate. It was shown the propionate and butyrate are not substrates for methanogen...

  19. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp.

    PubMed

    Tukacs-Hájos, Annamária; Pap, Bernadett; Maróti, Gergely; Szendefy, Judit; Szabó, Piroska; Rétfalvi, Tamás

    2014-08-01

    Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed. PMID:24926601

  20. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  1. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México

    PubMed Central

    de la Fuente-Salcido, Norma M; Castañeda-Ramírez, José Cristobal; García-Almendárez, Blanca E; Bideshi, Dennis K; Salcedo-Hernández, Rubén; Barboza-Corona, José E

    2015-01-01

    Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0–4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions. PMID:26405529

  2. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México.

    PubMed

    de la Fuente-Salcido, Norma M; Castañeda-Ramírez, José Cristobal; García-Almendárez, Blanca E; Bideshi, Dennis K; Salcedo-Hernández, Rubén; Barboza-Corona, José E

    2015-09-01

    Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0-4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions. PMID:26405529

  3. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    PubMed

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems. PMID:25194839

  4. Role of flm Locus in Mesophilic Aeromonas Species Adherence

    PubMed Central

    Gryllos, Ioannis; Shaw, Jonathan G.; Gavín, Rosalina; Merino, Susana; Tomás, Juan M.

    2001-01-01

    The adherence mechanism of Aeromonas caviae Sch3N to HEp-2 cells was initially investigated through four mini-Tn5 mutants that showed a 10-fold decrease in adherence. These mutants lost motility, flagella, and their lipopolysaccharide (LPS) O antigen (O-Ag). Three genes, flmB-neuA-flmD, were found to be interrupted by the transposon insertions; additionally, two other genes, one lying upstream (flmA) and one downstream (neuB), were found to be clustered in the same operon. While the flmA and flmB genes were present in all mesophilic Aeromonas spp. (A. hydrophila, A. caviae, A. veronii bv. veronii, and A. veronii bv. sobria) tested, this was not the case for the neuA-flmD-neuB genes. Construction and characterization of flmB insertion mutants in five other mesophilic Aeromonas strains revealed the loss of motility, flagella, and adherence but did not alter the LPS composition of these strains. Taking the above findings into consideration, we conclude (i) that flagella and possibly the LPS O-Ag are involved in the adherence of the mesophilic Aeromonas to human epithelial cells; (ii) flmA and flmB are genes widely distributed in the mesophilic Aeromonas and are involved in flagella assembly, and thus adherence; and (iii) in A. caviae Sch3N the flmA and flmB genes are found in a putative operon together with neuA, flmD, and neuB and are involved in LPS O-Ag biosynthesis and probably have a role in flagellum assembly. PMID:11119490

  5. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been

  6. Aerobic and anaerobic microbiology of infections after trauma in children.

    PubMed Central

    Brook, I

    1998-01-01

    OBJECTIVE: To review the recovery of aerobic and anaerobic bacteria from infections after trauma in children over a 20 year period. METHODS: Only specimens that were studied for both aerobic and anaerobic bacteria were included in the analysis. They were collected from seven separate centres in which the microbiology laboratories only accepted specimens that were properly collected without contamination and were submitted in appropriate transport media. Anaerobes and aerobic bacteria were cultured and identified using standard techniques. Clinical records were reviewed to identify post-trauma patients. RESULTS: From 1974 to 1994, 175 specimens obtained from 166 children with trauma showed bacterial growth. The trauma included blunt trauma (71), lacerations (48), bites (42), and open fractures (5). Anaerobic bacteria only were isolated in 38 specimens (22%), aerobic bacteria only in 51 (29%), and mixed aerobic-anaerobic flora in 86 (49%); 363 anaerobic (2.1/specimen) and 158 aerobic or facultative isolates (0.9/specimen) were recovered. The predominant anaerobic bacteria included Peptostreptococcus spp (115 isolates), Prevotella spp (68), Fusobacterium spp (52), B fragilis group (42), and Clostridium spp (21). The predominant aerobic bacteria included Staph aureus (51), E coli (13), Ps aeruginosa (12), Str pyogenes (11) and Klebsiella pneumoniae (9). Principal infections were: abscesses (52), bacteraemia (3), pulmonary infections (30, including aspiration pneumonia, tracheostomy associated pneumonia, empyema, and ventilator associated pneumonia), wounds (36, including cellulitis, post-traumatic wounds, decubitus ulcers, myositis, gastrostomy and tracheostomy site wounds, and fasciitis), bites (42, including 23 animal and 19 human), peritonitis (4), osteomyelitis (5), and sinusitis (3). Staph aureus and Str pyogenes were isolated at all sites. However, organisms of the oropharyngeal flora predominated in infections that originated from head and neck wounds and

  7. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  8. Semi-continuous mesophilic anaerobic digester performance under variations in solids retention time and feeding frequency.

    PubMed

    Manser, Nathan D; Mihelcic, James R; Ergas, Sarina J

    2015-08-01

    The goal of this research was to understand the effect of solids retention time (SRT) and feeding frequency on the performance of anaerobic digesters used to recover bioenergy from swine waste. Semi-continuous mesophilic anaerobic digesters were operated at varying SRTs and feeding frequencies. Performance metrics included biogas and methane production rates, biomass robustness and functionality and removals of volatile solids, soluble chemical oxygen demand, the fecal-indicator bacteria Escherichia coli, and the human pathogen Salmonella. Biochemical methane formation potential and specific methanogenic activity assays were used to demonstrate biomass robustness and functionality. Results indicated that anaerobic digesters fed weekly had higher average methane yields (0.20 vs. 0.18m(3)CH4/kg-VSadded), specific methanogenic activities (40 vs. 35ml/day), and fecal indicator bacteria destruction (99.9% vs. 99.4%) than those fed every-other day. Salmonella, soluble COD, and VS destruction did not change with varied feeding frequency; however, higher removals were observed with longer SRT. PMID:25965953

  9. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    PubMed

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process. PMID:26841233

  10. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  11. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  12. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  13. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology.

    PubMed

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-09-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  14. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology

    PubMed Central

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-01-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  15. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    USGS Publications Warehouse

    Jaisi, D.P.; Eberl, D.D.; Dong, H.; Kim, J.

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65??C) were the most favorable conditions forthe formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  16. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  17. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.

    PubMed

    Guo, Xiaohui; Wang, Cheng; Sun, Faqian; Zhu, Weijing; Wu, Weixiang

    2014-01-01

    Thermophilic and mesophilic anaerobic digestion reactors (TR and MR) using food waste as substrate were compared with emphasis on microbial responses to increasing organic loading rate (OLR). At OLR ranging from 1.0 to 2.5 g VS L(-1) d(-1), MR exhibited more stable performance compared to TR in terms of methane yield. Amplicons pyrosequencing results revealed the distinct microbial dynamics in the two reactors. Primarily, MR had greater richness and evenness of bacteria species. With OLR elevated, larger shifts of bacterial phylogeny were observed in MR; Methanosaeta dominated in archaeal community in MR while Methanothermobacter and Methanoculleus were favored in TR. The high functional redundancy in bacterial community integrated with acetoclastic methanogenesis in MR resulted in its better performance; whereas delicate interactions between hydrogen-producer and hydrogenotrophic methanogens in TR were much more prone to disruption. These results are conductive to understanding the microbial mechanisms of low methane yield during food waste anaerobic digestion. PMID:24316484

  18. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. PMID:24656488

  19. Psychrophilic and mesophilic fungi in frozen food products.

    PubMed

    KUEHN, H H; GUNDERSON, M F

    1963-07-01

    The mold flora of certain frozen pastries and chicken pies was investigated. Molds were determined qualitatively or quantitatively, or both, by preparing pour plates of the blended product and incubating the plates at various temperatures. The mesophilic fungal flora developed on plates incubated at 10 and 20 C, whereas psychrophilic fungi were obtained on plates incubated at 0 and 5 C. About 2,000 cultures of fungi, representing about 100 different species, were isolated from various products. Four different brands of blueberry, two brands of cherry pastries, two brands of apple, and one brand of raspberry pastries were examined. In addition, two brands of chicken pies were studied. Blueberry pastries had a much higher total fungal population than the other products, although different brands of blueberry pastries varied considerably. Blueberry pastries had from 347 to 1,586 psychrophilic fungi per g. Cherry pastries had about 70 to 110 psychrophiles per g, and apple pastries had 19 to 92 psychrophiles per g. Chicken pies contained very few psychrophilic fungi, about 15 per g. Aureobasidium pullulans was recovered most frequently. About 90% of the psychrophilic fungi found in blueberry products was A. pullulans. Depending upon the brand of cherry pastry, either Phoma spp. or A. pullulans was the most common fungus present. Apple pastries also displayed brand variation, but were unique in having many mesophilic aspergilli. This genus was generally absent from other products. The Penicillium content of apple pastries was also rather high; 50% of the psychrophilic flora was represented by this genus. The psychrophilic fungal flora of chicken pies was composed primarily of penicillia (50%) and Chrysosporium pannorum (46%). PMID:13927344

  20. Experimental evolution of a facultative thermophile from a mesophilic ancestor.

    PubMed

    Blaby, Ian K; Lyons, Benjamin J; Wroclawska-Hughes, Ewa; Phillips, Grier C F; Pyle, Tyler P; Chamberlin, Stephen G; Benner, Steven A; Lyons, Thomas J; Crécy-Lagard, Valérie de; Crécy, Eudes de

    2012-01-01

    Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor (Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains. PMID:22020511

  1. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    PubMed

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus. PMID:25921720

  2. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  3. Glucose-sensing proteins from mesophilic and thermophilic bacteria as new tools in diabetes monitoring

    NASA Astrophysics Data System (ADS)

    D'Auria, S.; Rossi, Mose; Lakowicz, Joseph R.

    2001-05-01

    We developed a new method of glucose sensing using inactive forms of glucose oxidase from Aspergillus niger and glucose dehydrogenase from the thermophilic microorganism Thermoplasma acidophilum. Glucose oxidase was rendered inactive by removal of the FAD cofactor. The resulting apo- glucose oxidase still binds glucose as observed from a decrease in its intrinsic tryptophan fluorescence. 8- Anilino-1-naphthalene sulfonic acid (ANS) was found to bind spontaneously to apo-glucose oxidase as seen from an enhancement of the ANS fluorescence. The steady state intensity of the bound ANS decreased 25% upon binding of glucose, and the mean lifetime of the bound ANS decreased about 40%. These spectral changes occurred with a midpoint from 10 to 20 mM glucose, which is comparable to the Ko of holo-glucose oxidase. These results suggest that apo- glucose oxidase can be used as a reversible non-consuming sensor for glucose.

  4. A novel biological sulfate reduction method using hydrogenogenic carboxydotrophic mesophilic bacteria.

    PubMed

    Sinharoy, Arindam; Manikandan, N Arul; Pakshirajan, Kannan

    2015-09-01

    Sulfate reduction by carbon monoxide (CO) utilizing anaerobic biomass from a large scale upflow anaerobic sludge blanket reactor was studied. Anaerobic mixed microbial consortia from five different sources were initially examined for their biological CO conversion potential. Among the different biomass, the biomass from an upflow anaerobic sludge blanket reactor treating domestic wastewater, located in Kavoor, Karnataka, India, showed a maximum CO conversion efficiency. The effect of three main culture parameters, i.e. inoculum volume, initial CO concentration and temperature on simultaneous CO conversion and sulfate reduction was assessed employing the Taguchi experimental design technique. A maximum CO conversion of 85.62% and a maximum sulfate reduction of 50.65% were achieved. Furthermore, the experimental data was fitted to substrate inhibition models reported in the literature. Among the different models, Monods and Haldane kinetic models were found most suitable to describe the kinetics of biomass growth and CO removal by the anaerobic biomass. PMID:26081625

  5. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  6. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  7. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  8. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  9. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  10. Incidence and identification of mesophilic Aeromonas spp. from retail foods.

    PubMed

    Neyts, K; Huys, G; Uyttendaele, M; Swings, J; Debevere, J

    2000-11-01

    Sixty-eight food samples were examined for the presence of mesophilic Aeromonas species both qualitatively and quantitatively. Aeromonads were isolated from 26% of the vegetable samples, 70% of the meat and poultry samples and 72% of the fish and shrimps. Numbers of motile aeromonads present in the food samples varied from <10(2) cfu g(-1) to >10(5) cfu g(-1). GLC analysis of FAMEs was used to identify a selection of presumptive Aeromonas colonies to fenospecies or genomic species level. Aeromonas strains belonging to the Aer. caviae complex, which also includes the potentially pathogenic genospecies HG4, were mostly isolated from vegetables but were also found in meat, poultry and fish. In addition, three strains of the virulent taxon Aer. veronii biovar sobria HG8 were isolated from poultry and minced meat. All members of the Aer. hydrophila complex, predominant in the fish, meat and poultry samples, were classified in the non-virulent taxon HG3. Although the significance of Aeromonas in foods remains undefined, the isolation of Aeromonas HG4 and HG8 strains from a variety of retail foods may indicate that these products can act as possible vehicles for the dissemination of food-borne Aeromonas gastroenteritis. PMID:11069637

  11. Psychrophilic, mesophilic, and thermophilic triosephosphate isomerases from three clostridial species.

    PubMed Central

    Shing, Y W; Akagi, J M; Himes, R H

    1975-01-01

    Triosephosphate isomerase was purified to homogeneity as judged by analytical gel electrophoresis from clostridium sp. strain 69, clostridium pasteurianum, and C. thermosaccharolyticum, which grow optimally at 18, 37, and 55 C, respectively. Comparative studies on these purified proteins showed that they had the same molecular weight (53,000) and subunit molecular weight (26,500). They were equally susceptible to the active site-directed inhibitor, glycidol phosphate. However, their temperature and pH optima, as well as their stabilities to heat, urea, and sodium dodecyl sulfate, differed. The proteins also had different mobilities in acrylamide gel electrophoresis. This difference in ionic character was also reflected in the elution behavior of the enzymes from hydroxyapatite and in the isoelectric points determined by isoelectric focusing in acrylamide gel. The amino acid composition of these proteins showed that the thermophilic enzyme contains a greater amount of proline than the other enzymes. The ratio of acidic amino acids to basic amino acids was 1.79, 1.38, and 1.66 for the thermophilic mesophilic and psychrophilic enzymes, respectively. This is consistent with the relative isoelectric point values of these three enzymes. Images PMID:235509

  12. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature. PMID:26359182

  13. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop. PMID:26139241

  14. Taxonomy of Aerobic Marine Eubacteria

    PubMed Central

    Baumann, Linda; Baumann, Paul; Mandel, M.; Allen, Richard D.

    1972-01-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  15. Taxonomy of aerobic marine eubacteria.

    PubMed

    Baumann, L; Baumann, P; Mandel, M; Allen, R D

    1972-04-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  16. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  17. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  18. Lipid Biomarkers Indicating Aerobic Methanotrophy at Ancient Marine Methane- Seeps

    NASA Astrophysics Data System (ADS)

    Birgel, D.; Peckmann, J.

    2007-12-01

    The inventory of lipid biomarkers of a number of ancient methane-seep limestones has been studied over the last decade. The molecular fingerprints of the chemosynthesis-based microbial communities tend to be extremely well-preserved in these limestones. The key process at seeps is the anaerobic oxidation of methane, performed by consortia of sulfate-reducing bacteria and methanotrophic archaea. Compounds preserved within modern and ancient seep settings comprise C-13-depleted lipid biomarkers. Besides the occurrence of C-13- depleted isoprenoids (archaea) and n-alkyl-chains (bacteria), C-13-depleted hopanoids have been reported in seep limestones. Here, lipid biomarker data are presented from three ancient methane-seep limestones embedded in Miocene and Campanian strata. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. In a Miocene limestone, 3-beta-methylated hopanoids were found (delta C-13: -100 per mil). Most likely, 3-beta-methylated hopanepolyols, prevailing in aerobic methanotrophs were the precursor lipids. In another Miocene limestone, a series of C-13-depleted 4-methylated steranes (lanostanes; -80 to -70 per mil) is derived from aerobic methanotrophs. Lanosterol is the most likely precursor of lanostanes, known to be produced by aerobic methanotrophs, some of which are outstanding among bacteria in having the capacity to produce steroids. In a Campanian seep limestone a suite of conspicuous secohexahydrobenzohopanes (-110 to -107 per mil) is found. These hopanoids probably represent early degradation products of seep-endemic aerobic methanotrophs. This interpretation is supported by the presence of "regular" hopanoids that can be discriminated from the unusual secohexahydrobenzohopanes by only moderately low delta C-13 values (-49 to -42 per mil). Structural and carbon isotope data reveal that aerobic methanotrophy is more common at ancient methane- seeps than previously noticed. Our data indicate that

  19. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  20. New Routes for Aerobic Biodegradation of Dimethylsulfoniopropionate

    PubMed Central

    Taylor, Barrie F.; Gilchrist, Darrin C.

    1991-01-01

    Dimethylsulfoniopropionate (DMSP), an osmolyte in marine plants, is biodegraded by cleavage of dimethyl sulfide (DMS) or by demethylation to 3-methiolpropionate (MMPA) and 3-mercaptopropionate (MPA). Sequential demethylation has been observed only with anoxic slurries of coastal sediments. Bacteria that grew aerobically on MMPA and DMSP were isolated from marine environments and phytoplankton cultures. Enrichments with DMSP selected for bacteria that generated DMS, whereas MMPA enrichments selected organisms that produced methanethiol (CH3SH) from either DMSP or MMPA. A bacterium isolated on MMPA grew on MMPA and DMSP, but rapid production of CH3SH from DMSP occurred only with DMSP-grown cells. Low levels of MPA accumulated during growth on MMPA, indicating demethylation as well as demethiolation of MMPA. The alternative routes for DMSP biodegradation via MMPA probably impact on net DMS fluxes to the marine atmosphere. PMID:16348607

  1. An ancient divergence among the bacteria. [methanogenic phylogeny

    NASA Technical Reports Server (NTRS)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  2. Sequenced anaerobic-aerobic treatment of high strength, strong nitrogenous landfill leachates.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A

    2004-01-01

    As a first step in treatment of high strength, strong nitrogenous landfill leachates (total COD--9.66-20.56 g/l, total nitrogen 780-1,080 mg/l), the performance of laboratory UASB reactors has been investigated under sub-mesophilic (19+/-3 degrees C) and psychrophilic (10+/-2 degrees C) conditions. Under hydraulic retention time (HRT) of around 1.2 days, when the average organic loading rate (OLR) was around 8.5 g COD/l/day, the total COD removal accounted for 71% (on average) for sub-mesophilic regime. The psychrophilic treatment conducted under the average HRT of 2.44 days and the average OLR of 4.2 g COD/l/day showed an average total COD removal of 58% giving effluents more suitable for subsequent biological nitrogen removal. Both anaerobic regimes were quite efficient for elimination of heavy metals by concomitant precipitation in the form of insoluble sulphides inside the sludge. The subsequent submesophilic aerobic-anoxic treatment of submesophilic anaerobic effluents led to only 75% of total inorganic N removal due to COD deficiency for denitrification created by too efficient anaerobic step. On the contrary, psychrophilic anaerobic effluents (richer in COD compared to the submesophilic ones) were more suitable for subsequent aerobic-anoxic treatment giving the total N removal of 95 and 92% at 19 and 10 degrees C, respectively. PMID:15137438

  3. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases

    PubMed Central

    Katoulis, Alexandros C.; Koumaki, Dimitra; Liakou, Aikaterini I.; Vrioni, Georgia; Koumaki, Vasiliki; Kontogiorgi, Dimitra; Tzima, Korina; Tsakris, Athanasios; Rigopoulos, Dimitris

    2015-01-01

    Introduction Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease of unclear etiology. The role of bacteria in the pathogenesis of disease remains controversial. Materials and Methods Specimens were obtained from 22 HS patients by direct percutaneous needle aspiration. The collected material was cultured in aerobic and anaerobic conditions, and sensitivity tests were performed. Results Of the 22 patients, 32% were culture negative and 68% were culture positive. A total of 16 isolates was obtained, 14 aerobic and 2 anaerobic. Aerobic bacteria were present in 86% of the specimens, whereas only anaerobic bacteria were isolated in 7%. The predominant aerobic species were Proteus mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis. The isolated anaerobic bacteria were Dermacoccus nishinomiyaensis and Propionibacterium granulosum. Conclusion A variety of aerobic and anaerobic bacteria was isolated from the HS lesions of our patients. In contrast to previous studies, fewer patients were found to be culture positive, and Staphylococcus aureus was isolated in only 1 of them. More studies are necessary to elucidate the controversial role of bacteria in the pathogenesis of HS. PMID:27170935

  4. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  5. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  6. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  7. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. PMID:24291796

  8. Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions.

    PubMed

    Cea-Barcia, Glenda; Moreno, Gloria; Buitrón, Germán

    2015-01-01

    The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed. PMID:26465311

  9. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  10. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  11. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  12. Trade-off between mesophilic and thermophilic denitrification: rates vs. sludge production, settleability and stability.

    PubMed

    Courtens, Emilie N P; Vlaeminck, Siegfried E; Vilchez-Vargas, Ramiro; Verliefde, Arne; Jauregui, Ruy; Pieper, Dietmar H; Boon, Nico

    2014-10-15

    The development of thermophilic nitrogen removal strategies will facilitate sustainable biological treatment of warm nitrogenous wastewaters. Thermophilic denitrification was extensively compared to mesophilic denitrification for the first time in this study. Two sequential batch reactors (SBR) at 34 °C and 55 °C were inoculated with mesophilic activated sludge (26 °C), fed with synthetic influent in a first phase. Subsequently, the carbon source was switched from acetate to molasses, whereas in a third phase, the nitrate source was fertilizer industry wastewater. The denitrifying sludge maintained its activity at 55 °C, resulting in an immediate process start-up, obtaining nitrogen removal rates higher than 500 mg N g(-1) VSS d(-1) in less than one week. Although the mesophilic SBR showed twice as high specific nitrogen removal rates, the maximum thermophilic denitrifying activity in this study was nearly 10 times higher than the activities reported thus far. The thermophilic SBR moreover had a 73% lower sludge volume index, a 45% lower sludge production and a higher resilience towards a change in carbon source compared with the mesophilic SBR. The higher resilience was potentially related to a higher microbial diversity and evenness of the thermophilic community at the end of the synthetic feeding period. The thermophilic microbial community showed a higher similarity over the different feeding periods implying a more stable community. Overall, this study showed the capability of mesophilic denitrifiers to maintain their activity after a large temperature increase. Existing mesophilic process systems with cooling for the treatment of warm wastewaters could thus efficiently be converted to thermophilic systems with low sludge production and good settling properties. PMID:25007305

  13. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    PubMed

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)aerobic). Furthermore, this division was not based on the reactive oxygen species (ROS) level or the interaction energy (Ebinding) value, which represents the affinity between SAs and dihydropteroate synthase (dhps) but rather on the total binding energy. Furthermore, SAs with greatly similar structures were categorized into different groups. This deep insight into the difference between aerobic and anaerobic toxicities will benefit environmental science, and the results of this study will serve as a reference for the risk assessment of chemicals in the environment. PMID:26748048

  14. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria

    PubMed Central

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K.; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J.; Misra, Anup K.; Chakraborty, Ranadhir; Nanda, Ashish K.; Mukhopadhyay, Subhra K.; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0–8.5 pH) mid-temperature (55–85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml−1 vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D

  15. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria.

    PubMed

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J; Misra, Anup K; Chakraborty, Ranadhir; Nanda, Ashish K; Mukhopadhyay, Subhra K; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding

  16. Study examines sulfate-reducing bacteria activity

    SciTech Connect

    McElhiney, J.E.; Hardy, J.A.; Rizk, T.Y.; Stott, J.F.D.; Eden, R.D.

    1996-12-09

    Low-sulfate seawater injection can reduce the potential of an oil reservoir turning sour because of sulfate-reducing bacteria. Sulfate-reducing bacteria (SRB) convert sulfate ions in seawater used in waterflooding into sulfide with the concomitant oxidation of a carbon source. A recent study at Capcis investigated the efficiency of SRB under various conditions of sulfate limitation. This study was conducted in a flowing bioreactor at 2,000 psia with different temperature zones (mesophilic 35 C and thermophilic 60--80 C). The study mixed microfloral populations derived from real North Sea-produced fluids, and included an active population of marine methanogenic bacteria present to provide competition for the available carbon sources. In general, results showed that SRB continue to convert sulfate to sulfide in stoichiometric quantities without regard to absolute concentrations. The paper discusses the results and recommends nanofiltration of seawater for ``sweet`` reservoirs.

  17. Differentiation of Methanosaeta concilii and Methanocarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy

    SciTech Connect

    Rocheleau, S.; Greer, C.W.; Cantin, C.; Laramee, L.; Guiot, S.R.; Lawrence, J.R.

    1999-05-01

    Oligonucleotide probes, designed from genes coding for 16S rRNA, were developed to differentiate Methanosaeta concilii, Methanosarcina barkeri, and mesophilic methanogens. All M. concilii oligonucleotide probes (designated MS1, MS2, and MS5) hybridized specifically with the target DNA, but MS5 was the most specific M. concilii oligonucleotide probe. Methanosarcina barkeri oligonucleotide probes (designated MB1, MB3, and MB4) hybridized with different Methanosarcina species. The MB4 probe specifically detected Methanosarcina barkeri, and the MB3 probe detected the presence of al mesophilic Methanosarcina species. These new oligonucleotide probes facilitated the identification, localization, and quantification of the specific relative abundance of M. concilii and Methanosarcina barkeri, which play important roles in methanogenesis. The combined use of fluorescent in situ hybridization with confocal scanning laser microscopy demonstrated that anaerobic granule topography depends on granule origin and feeding. Protein-fed granules showed no layered structure with a random distribution of M. concilii. In contrast, a layered structure developed in methanol-enriched granules, where M. barkeri growth was induced in an outer layer. This outer layer was followed by a layer composed of M. concilii, with an inner core of M. concilii and other bacteria.

  18. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  19. Use of mild irradiation doses to control pathogenic bacteria on meat trimmings for production of patties aiming at provoking minimal changes in quality attributes.

    PubMed

    Xavier, Ma de la Paz; Dauber, Cecilia; Mussio, Paula; Delgado, Enrique; Maquieira, Ana; Soria, Alejandra; Curuchet, Ana; Márquez, Rosa; Méndez, Carlos; López, Tomás

    2014-11-01

    The objectives of the present work were to assess the use of moderate doses of gamma irradiation (2 to 5 kGy) and to reduce the risk of pathogen presence without altering the quality attributes of bovine trimmings and of patties made of irradiated trimmings. Microbiological indicators (coliforms, Pseudomonas spp and mesophilic aerobic counts), physicochemical indicators (pH, color and tiobarbituric acid) and sensory changes were evaluated during storage. 5 kGy irradiation doses slightly increased off flavors in patties. Two pathogenic markers (Listeria monocytogenes and Escherichia coli O157:H7) were inoculated at high or low loads to trimming samples which were subsequently irradiated and lethality curves were obtained. Provided that using irradiation doses ≤2.5 kGy are used, reductions of 2 log CFU/g of L. monocytogenes and 5 log CFU/g of E. coli O157:H7 are expected. It seems reasonable to suppose that irradiation can be successfully employed to improve the safety of frozen trimmings when initial pathogenic bacteria burdens are not extremely high. PMID:25042241

  20. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor. PMID:25267355

  1. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    NASA Astrophysics Data System (ADS)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  2. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  3. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    PubMed

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study. PMID:26111600

  4. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2015-10-01

    The aim of this study was to evaluate biocide susceptibility in mesophilic and psychrotrophic pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which was representative of the region. To determine biocide resistance in pseudomonads, we determined for the first time the epidemiological cut-off values (ECOFFs) of benzalkonium, cetrimide, chlorhexidine, hexachlorophene, P3 oxonia, polyhexamethylene guanidine hydrochloride (PHMG), topax 66 and triclosan being generally very similar in different Pseudomonas spp. with some exceptions. Thus, resistance of pseudomonads was mainly shown to triclosan, and in lesser extent to cetrimide and benzalkonium chloride depending on the species, however they were highly susceptible to industrial formulations of biocides. By means of statistical analysis, positive correlations between antibiotics, biocides and both antimicrobials in pseudomonads were detected suggesting a co- or cross resistance between different antimicrobials in goat and lamb slaughterhouse environment. Cross-resistance between biocides and antibiotics in pseudomonads were especially detected between PHMG or triclosan and different antibiotics depending on the biocide and the population type. Thus, the use of those biocides as disinfectant in slaughterhouse zones must be carefully evaluated because of the selection pressure effect of antimicrobials on the emergence of resistant bacteria which could be spread to the consumer. It is noteworthy that specific industrial formulations such as topax 66 and oxonia P3 showed few correlations with antibiotics (none or 1-2 antibiotics) which should be taken into consideration for disinfection practices in goat and lamb slaughterhouse. PMID:26187825

  5. Exopolysaccharide-producing mesophilic lactic cultures for preparation of fat-free Dahi - an Indian fermented milk.

    PubMed

    Behare, Pradip; Singh, Rameshwar; Singh, Rudrapratap P

    2009-02-01

    Forty seven exopolysaccharide (EPS) producing mesophilic lactic acid bacteria have been isolated from Dahi and raw milk and selected cultures were evaluated for their influence on rheological and sensory properties of fat-free Dahi. Two isolates namely B-6 and KT-24 that showed promising technological attributes were identified as Lc. lactis subsp. lactis strains. B-6 produced 184+/-2 mg/l EPS in deproteinized whey medium compared with 193+/-1 mg/l by KT-24. EPS produced by B-6 was a heteropolysaccharide (consisting of glucose and mannose, 1:7 x 4) with molecular weight of 3.0x104 Da whereas KT-24 EPS was a homopolysaccharide (rhamnose) having molecular weight of 4.5x104 Da. Both EPS producing cultures showed significant changes in rheological and sensory properties of fat-free Dahi. Dahi prepared by these cultures was more viscous, adhesive, sticky, showed lower susceptibility to whey separation, and received higher sensory scores than Dahi prepared with non-EPS producing culture. PMID:19121242

  6. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    PubMed

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. PMID:25534040

  7. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE PAGESBeta

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  8. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION. PHASE 2. STEADY STATE STUDIES

    EPA Science Inventory

    A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  9. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC DIGESTION - PHASE II. STEADY STATE STUDIES

    EPA Science Inventory

    A study of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions was conducted. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  10. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    PubMed Central

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  11. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. PMID:26700755

  12. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    PubMed

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. PMID:27155428

  13. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  14. Petrifilm plates for enumeration of bacteria counts in goat milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...

  15. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  16. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting.

    PubMed

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2016-04-19

    Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VSaero h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change. PMID:27045933

  17. Mesophilic and Thermophilic Cultures Used in Traditional Cheesemaking.

    PubMed

    Johnson, Mark E

    2013-10-01

    Most cheese varieties require acidification of milk by a select group of bacteria called starters. They ferment lactose to lactic acid and in so doing aid the cheesemaker in developing the desired texture as well as acidity of the cheese. However, while other microorganisms play the major role in flavor development of cheese, it is the starter that sets the stage for quality cheese manufacture. Starters were traditionally derived from the native microflora of the milk, but this practice is almost unheard of today. With the advent of better hygienic milking practices and industrialized cheesemaking, there was a need for more uniformity and reliable sources of the starter culture. Today's starters are produced by companies specializing in their production as well as in the development of new strains for cheesemakers. The choice of starter for the manufacture of a specific cheese is dictated by the cheesemaking protocol, but it is also governed by the need to produce cheese with desired physical attributes. The properties of the starter that make it possible to do so help drive innovation in developing new potential choices in starter cultures. Indeed, the demands for predictable and reliable rates and extent of acidification of milk for cheesemaking and flavor development are as key for successful cheesemaking today with artisanal cheesemakers as they are for larger, more industrial-scale cheesemakers. PMID:26184811

  18. Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera.

    PubMed

    Crespo-Medina, Melitza; Chatziefthimiou, Aspassia; Cruz-Matos, Ramaydalis; Pérez-Rodríguez, Ileana; Barkay, Tamar; Lutz, Richard A; Starovoytov, Valentin; Vetriani, Costantino

    2009-06-01

    A mesophilic, aerobic, facultatively chemolithoautotrophic bacterium, designated strain EPR70(T), was isolated from hydrothermal fluids from diffuse-flow vents on the East Pacific Rise at degrees 50' N 10 degrees 17' W. Cells were Gram-negative rods, approximately 0.8-1.0 microm long and 0.3-0.5 microm wide. Strain EPR70(T) grew at 20-40 degrees C (optimum 30-35 degrees C), 1-25 % NaCl (optimum 2.5 %) and pH 5.0-7.5 (optimum pH 5.5). The shortest generation time observed for strain EPR70(T) was 42 min. Growth occurred under aerobic chemolithoautotrophic conditions in the presence of thiosulfate and CO(2). Strain EPR70(T) grew heterotrophically with acetate or n-alkanes as sole carbon and energy sources, and in complex artificial seawater medium. Nitrate was not used as an electron acceptor. The G+C content of the genomic DNA was 64 mol%. Phylogenetic analysis of the 16S rRNA gene indicated that this organism is a member of the class Gammaproteobacteria, with Salinisphaera shabanensis E1L3A(T) as its closest relative (94 % sequence similarity). On the basis of phylogenetic analyses based on 16S rRNA, rbcL and alkB genes and physiological analysis, it is proposed that the organism represents a novel species within the genus Salinisphaera, for which the name Salinisphaera hydrothermalis sp. nov. is proposed. The type strain is EPR70(T) (=DSM 21483(T) =JCM 15514(T)). PMID:19502342

  19. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  20. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn.

    PubMed

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  1. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    PubMed

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments. PMID:25704477

  2. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity?

    PubMed

    Krakat, Niclas; Schmidt, Stefan; Scherer, Paul

    2010-09-01

    The present long-term study (about 1,100 days) monitored the diversity of methanogens during the mesophilic, anaerobic digestion of beet silage. Six fermentor samples were analyzed by ribosomal RNA gene restriction analysis, fluorescence in situ hybridization, and fluorescence microscopy. Hydrogenotrophic methanogens dominated within the population in all samples analyzed. Multidimensional scaling revealed that a rapid decrease in hydraulic retention time resulted in increased species richness, which in turn led to slightly higher CH(4) yields. PMID:20675458

  3. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  4. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    PubMed

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

  5. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. PMID:26868156

  6. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    PubMed

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  7. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    PubMed

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. PMID:26507125

  8. A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.

    PubMed

    Zheng, Meiru; Liao, B Q

    2014-01-01

    A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

  9. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream. PMID:16784199

  10. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. PMID:26348286

  11. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    NASA Astrophysics Data System (ADS)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  12. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    PubMed

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  13. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  14. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    SciTech Connect

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-11-15

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})

  15. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  16. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  17. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  18. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran

    PubMed Central

    RoushanZadeh, S; Eskandari, M. H.; Shekarforoush, S. S.; Hosseini, A

    2014-01-01

    Morphological, biochemical and molecular characteristics were studied to identify dominant lactic acid bacteria (LAB), isolated from traditional yoghurts produced by tribes of Iran. From 60 yoghurt samples, a total of 137 LAB isolates were determined, in which 66 and 71 were identified as lactic acid cocci and bacilli, respectively. Biochemical tests showed the occurrence of 9.76% mesophilic homofermentative, 10.98% mesophilic hetrofermentative, 26.83% thermophilic homofermentative and 47.56% mesophilic homofermentative cocci. As for lactic acid bacilli, mesophilic facultative hetrofermentative (26%); thermophilic obligate homofermentative (56%); mesophilic obligate hetrofermentative (18%) were found. Genetically the presence of the following species were verified: E. faecium; E. faecalis; E. durans; L. lactis subsp. lactis; St. thermophilus; Lb. delbruecki subsp. bulgaricus; Lb. brevis; Lb. diolivorans; Lb. helveticus; Lb. jensenii; Lb. plantarum. 9% of the Lactobacillus isolates showed incompatible results between phenotypic and genotypic characteristics. From the cocci isolates, 38.46% showed identical results between phylogenetic characteristics. The current study constitutes the first step in the designing process of LAB starter cultures, to protect the typical organoleptic characteristics of traditional yoghurt. The results could also be used to introduce new starter cultures for commercial use. PMID:27175129

  19. Quantification of loosely associated and tightly associated bacteria on broiler carcass skin using swabbing, stomaching, and grinding methods.

    PubMed

    Singh, P; Lee, H C; Chin, K B; Ha, S D; Kang, I

    2015-12-01

    This research was conducted to quantify bacterial populations after swabbing or stomaching, followed by grinding the swabbed or stomached broiler skins. For each of 3 replications, 3 eviscerated broilers were randomly taken from a processing line in a local broiler processing plant. Ten swabs and 10 stomachs per bird were conducted on the left- and the right-side skins (10×7 cm), respectively, which were then finally ground. Results indicated that mesophilic aerobic bacteria (MAB) in the first swabbed sample were significantly lower than those in the first stomached sample (P<0.05), with no difference seen for the remaining sampling times (P>0.05). During 10 swabbings followed by final grinding, 8, 9, and 83% of MAB were detected after the first swabbing, after the second through 10th swabbings, and after final grinding of the skin, respectively. During 10 stomachings followed by the final grinding, 17, 18, and 65% of MAB were detected after the first stomaching, after the second through 10th stomachings, and after final grinding of the skin, respectively. Escherichia coli (E. coli) and coliforms were significantly higher in the first stomaching than those in the first swabbing (P<0.05), with no difference seen between the 2 sampling methods for the rest sampling times (P>0.05). Populations of E. coli and coliforms decreased step-wisely from the highest after grinding to the intermediate after first and second sampling, and to the least after 10th sampling (P<0.05), regardless of swabbing or grinding. In this study, less than 35% of MAB seemed loosely associated in the skin of eviscerated broiler, whereas more than 65% of MAB looked tightly associated, which were not recovered by stomaching or swabbing even 10 times but were recovered by grinding the skin. PMID:26467007

  20. Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria and Archaea

    PubMed Central

    Kashefi, Kazem; Tor, Jason M.; Nevin, Kelly P.; Lovley, Derek R.

    2001-01-01

    Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibility that dissimilatory metal-reducing microorganisms can reductively precipitate gold from solution. PMID:11425752

  1. Response of the jejunal mucosa of dogs with aerobic and anaerobic bacterial overgrowth to antibiotic therapy.

    PubMed Central

    Batt, R M; McLean, L; Riley, J E

    1988-01-01

    Dogs with naturally occurring aerobic or anaerobic bacterial overgrowth have been examined before and after antibiotic therapy in order to assess reversibility of damage to the jejunal mucosa. Histological changes in peroral jejunal biopsies were relatively minor before and after treatment, but sucrose density gradient centrifugation revealed specific biochemical abnormalities that responded to antibiotic therapy. Aerobic overgrowth was initially associated with a marked loss of the main brush border component of alkaline phosphatase activity; this recovered following treatment, suggesting that aerobic bacteria may cause reversible damage to the hydrophobic region of the brush border membrane. In contrast, anaerobic overgrowth was initially associated with a marked reduction in brush border density, indicative of a considerable fall in the glycoprotein-to-lipid ratio of the membrane. Density increased from 1.17 to 1.21 g/ml after antibiotic therapy, consistent with recovery from this relatively severe damage to the brush border caused by anaerobic bacteria. Reductions in soluble and peroxisomal catalase activities which could compromise mucosal protection against free radicals in dogs with aerobic overgrowth, and a loss of particulate malate dehydrogenase activity indicative of mitochondrial disruption in dogs with anaerobic overgrowth, were also reversed after treatment. These findings indicate that aerobic and anaerobic bacterial overgrowth can result in contrasting but potentially reversible damage to the jejunal mucosa which would not be detected by conventional investigative procedures. PMID:3371716

  2. Mesophilic Lactic Acid Bacteria Diversity Encountered in Brazilian Farms Producing Milk with Particular Interest in Lactococcus lactis Strains.

    PubMed

    Luiz, L M P; Chuat, V; Madec, M N; Araújo, E A; de Carvalho, A F; Valence, F

    2016-10-01

    The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment. PMID:27356514

  3. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  4. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  5. Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability?

    PubMed

    Labatut, Rodrigo A; Angenent, Largus T; Scott, Norman R

    2014-04-15

    A long-term comparative study using continuously-stirred anaerobic digesters (CSADs) operated at mesophilic and thermophilic temperatures was conducted to evaluate the influence of the organic loading rate (OLR) and chemical composition on process performance and stability. Cow manure was co-digested with dog food, a model substrate to simulate a generic, multi-component food-like waste and to produce non-substrate specific, composition-based results. Cow manure and dog food were mixed at a lower - and an upper co-digestion ratio to produce a low-fiber, high-strength substrate, and a more recalcitrant, lower-strength substrate, respectively. Three increasing OLRs were evaluated by decreasing the CSADs hydraulic retention time (HRT) from 20 to 10 days. At longer HRTs and lower manure-to-dog food ratio, the thermophilic CSAD was not stable and eventually failed as a result of long-chain fatty acid (LCFA) accumulation/degradation, which was triggered by the compounded effects of temperature on reaction rates, mixing intensity, and physical state of LCFAs. At shorter HRTs and upper manure-to-dog food ratio, the thermophilic CSAD marginally outperformed the biomethane production rates and substrate stabilization of the mesophilic CSAD. The increased fiber content relative to lipids at upper manure-to-dog food ratios improved the stability and performance of the thermophilic process by decreasing the concentration of LCFAs in solution, likely adsorbed onto the manure fibers. Overall, results of this study show that stability of the thermophilic co-digestion process is highly dependent on the influent substrate composition, and particularly for this study, on the proportion of manure to lipids in the influent stream. In contrast, mesophilic co-digestion provided a more robust and stable process regardless of the influent composition, only with marginally lower biomethane production rates (i.e., 7%) for HRTs as short as 10 days (OLR = 3 g VS/L-d). PMID:24530545

  6. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.

    PubMed

    Ziemba, Christopher; Peccia, Jordan

    2011-10-15

    The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against

  7. Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Saravanan, D.

    2013-04-01

    Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

  8. Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria

    PubMed Central

    Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong

    2012-01-01

    Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil. PMID:23028421

  9. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria.

    PubMed

    Gong, Xiao-Cui; Liu, Ze-Shen; Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong

    2012-01-01

    Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if "endogenous" bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the "exogenous" bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil. PMID:23028421

  10. Swimming bacteria power microscopic gears

    PubMed Central

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. PMID:20080560

  11. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  12. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  13. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    PubMed

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  14. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  15. Elimination of bacteria from dogs with antibiotics*

    PubMed Central

    Hayes, Norman R.; van der Waaij, D.; Cohen, Bennett J.

    1974-01-01

    The effect of oral administration of neomycin cephalothin or kanamycin cephalothin on the aerobic intestinal bacterial flora, was studied in dogs maintained under isolation conditions in a conventional animal room. The dogs were successfully freed of aerobic bacteria with both combinations within two to seven days after the start of antibiotic treatment, and were maintained bacteria free for up to 21 days. Decontamination was attained more rapidly in dogs that were bathed in hexachlorophene surgical soap before and during the first and third days of antibiotic treatment. There was no evidence of toxicity from either of the antibiotic combinations. These results indicate that, as with mice and monkeys, decontamination of dogs with oral antibiotics is feasible. The technique is of potential value in preventing endogenous bacterial infections in canine experimental studies involving use of immunosuppressive agents. PMID:4529233

  16. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  17. Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter.

    PubMed

    Foesel, Bärbel U; Gössner, Anita S; Drake, Harold L; Schramm, Andreas

    2007-12-01

    A Gram-negative, strictly aerobic, diplococcoid bacterium (strain D2-3(T)) was isolated from the biofilter of a recirculating marine aquaculture system. Phylogenetic analysis of the 16S rRNA gene sequence of D2-3(T) indicated that the new organism occupied a novel lineage within the alpha-1 subclass of Proteobacteria and was related to the genera Rhodothalassium, Azospirillum, Craurococcus, Acidiphilium, and Tistrella. The highest sequence similarity (90.8%) of the 16S rRNA gene sequence of D2-3(T) was to that of Candidatus "Alysiosphaera europaea". D2-3(T) was mesophilic, heterotrophic, required sea salt, and had a pH optimum of 8.0. Growth in the presence of light resulted in the formation of pink colonies, a 25% increased cell yield, and a slightly increased growth rate. D2-3(T) contained carotenoids and low amounts of bacteriochlorophyll a. Membranes of D2-3(T) contained b-type cytochromes. The G+C content of the DNA was 60.3+/-0.1mol%. Phylogenetic, morphological, physiological, and biochemical analyses demonstrated that D2-3(T) represented a new aerobic phototrophic genus, for which the name Geminicoccus roseus gen. nov., sp. nov. is proposed for the type species (D2-3(T)=DSM 18922(T)=ATCC BAA-1445(T)). PMID:17643894

  18. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    PubMed

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  19. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  20. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge.

    PubMed

    Gagliano, M C; Braguglia, C M; Gallipoli, A; Gianico, A; Rossetti, S

    2015-05-01

    Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations. PMID:24875310

  1. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge.

    PubMed

    Hidaka, Taira; Wang, Feng; Togari, Taketo; Uchida, Tsutomu; Suzuki, Yutaka

    2013-12-01

    In local cities, many small sewage and waste treatment facilities are operated independently. To encourage processing by anaerobic digestion at a centralized sewage treatment plant (STP), high-solid sewage sludge is helpful because it reduces the energy and cost required for transporting the sludge from other STPs. Mesophilic and thermophilic anaerobic digestion of sewage sludge at total solids concentrations (TS) of 7.5% and 10% were evaluated using laboratory-scale continuous reactors. Under the mesophilic condition, sewage sludge of 10% TS was successfully treated. Under the thermophilic condition, sewage sludge of 7.5% TS was not successfully treated when the total ammonia concentration was over 2000 mg N/L. Batch experiments showed that it takes a few weeks for the methane fermentation activity to recover after being inhibited. The effectiveness of adding easily biodegradable organic matter was confirmed. These results show that high-solid sewage sludge is suitable for small facilities by controlling the operating conditions. PMID:24096284

  2. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    PubMed

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry. PMID:24350470

  3. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium

    PubMed Central

    Dinamarca, Jorge; Shlyk-Kerner, Oksana; Kaftan, David; Goldberg, Eran; Dulebo, Alexander; Gidekel, Manuel; Gutierrez, Ana; Scherz, Avigdor

    2011-01-01

    Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43°C but only at elevated CO2 (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated QA−→QB electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO2 concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant PMID:22216094

  4. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues.

    PubMed

    Kinnunen, H V; Koskinen, P E P; Rintala, J

    2014-03-01

    This paper studies methane production using a marine microalga, Nannochloropsis sp. residue from biodiesel production. Residue cake from Nannochloropsis, oils wet-extracted, had a methane potential of 482LCH4kg(-1) volatile solids (VS) in batch assays. However, when dry-extracted, the methane potential of residue cake was only 194LCH4kg(-1) VS. In semi-continuous reactor trials with dry-extracted residue cake, a thermophilic reactor produced 48% higher methane yield (220LCH4kg(-1)VS) than a mesophilic reactor (149LCH4kg(-1)VS). The thermophilic reactor was apparently inhibited due to ammonia with organic loading rate (OLR) of 2kgVSm(-3)d(-1) (hydraulic retention time (HRT) 46d), whereas the mesophilic reactor performed with OLR of 3kgVSm(-3)d(-1) (HRT 30d). Algal salt content did not inhibit digestion. Additional methane (18-33% of primary digester yield) was produced during 100d post-digestion. PMID:24462882

  5. Study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate

    SciTech Connect

    Van Zyl, W.H.

    1985-09-01

    The cellulases that strains of Streptomyces albogrisolus, S. nitrosporeus, and Micromonospora melanosporea produce when grown on untreated ballmilled bagasse were investigated. Optimum conditions for extracellular cellulase production and activity were determined to be growth at pH 6.7-7.4 and 25-35 degrees C for 4-5 days and assay at pH 5.0-6.0 and 45-55 degrees C, respectively. The endoglucanases were thermally stable at 50 degrees C, but the Avicelases had a half-life of approximately 24 hours at this temperature. Nearly half of the endoglucanases and almost all of the Avicelases were absorbed on ballmilled bagasse after 15 minutes incubation at 50 degrees C. The ..beta..-glucosidases were found to be mainly intracellular or cell wall bound. These mesophilic actinomycetes concomitantly produced xylanases and ..beta..-xylosidases with cellulases that, apart from cellobiose and glucose, also release xylose from bagasse. This feature may be advantageous in the commercial application of the enzymes of mesophilic actinomycetes for the saccharification of natural cellulosic substrates.

  6. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  7. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  8. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  9. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  10. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    PubMed

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  11. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  12. Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetables.

    PubMed

    Vescovo, M; Torriani, S; Orsi, C; Macchiarolo, F; Scolari, G

    1996-08-01

    Five psychrotrophic strains of lactic acid bacteria (Lactobacillus casei, Lact. plantarum and Pediococcus spp.) were isolated from 22 samples of commercial salads. These strains were shown to inhibit Aeromonas hydrophila, Listeria monocytogenes, Salmonella typhimurium and Staphylococcus aureus on MRS agar, in salads and in juice prepared from vegetable salads. Lactobacillus casei IMPCLC34 was most effective in reducing total mesophilic bacteria and the coliform group; Aer. hydrophila, Salm. typhimurium and Staph. aureus disappeared after 6 d of storage, while the counts for L. monocytogenes remained constant. The potential application of antimicrobial-producing lactic acid bacteria as biopreservatives of ready-to-use vegetables is suggested. PMID:8760320

  13. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  14. Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date

    SciTech Connect

    Zhaxybayeva, Olga; Swithers, Kristen S; Foght, Julia; Green, Anna G.; Bruce, David; Detter, J. Chris; Han, Cliff; Teshima, Hazuki; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Ivanova, N; Pati, Amrita; Land, Miriam L; Dlutek, Marlena; Doolittle, W. Ford; Noll, Kenneth M; Nesbo, Camilla

    2012-01-01

    Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell-cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene - a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.

  15. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    PubMed

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors. PMID:27390036

  16. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions.

    PubMed

    Shi, Jian; Wang, Zhongjiang; Stiverson, Jill A; Yu, Zhongtang; Li, Yebo

    2013-05-01

    Reactor performance and microbial community dynamics were investigated during solid state anaerobic digestion (SS-AD) of corn stover at mesophilic and thermophilic conditions. Thermophilic SS-AD led to faster and greater reductions of cellulose and hemicelluloses during the first 12 days compared to mesophilic SS-AD. However, accumulation of volatile fatty acids (VFAs) was 5-fold higher at thermophilic than mesophilic temperatures, resulting in a large pH drop during days 6-12 in the thermophilic reactors. Culture-based enumeration revealed 10-50 times greater populations of cellulolytic and xylanolytic microbes during thermophilic SS-AD than mesophilic SS-AD. DGGE analysis of PCR amplified 16S rRNA genes showed dynamic shifts, especially during the thermophilic SS-AD, of bacterial and archaeal communities over the 38 days of SS-AD as a result of acclimation of the initial seed microbial consortia to the lignocellulosic feedstock. The findings of this study can guide future studies to improve efficiency and stability of SS-AD. PMID:23567733

  17. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH.

    PubMed

    Liu, Xiaoguang; Dong, Bin; Dai, Xiaohu

    2013-11-01

    This study investigated the effect of pH (uncontrolled, 8.0, 10.0 and 12.0) and temperature (mesophilic, thermophilic and extreme thermophilic) on hydrolysis and acidification of dewatered sludge in 7-day batch fermentation experiment. Solublization of COD, protein and carbohydrates as well as concentration and composition of VFAs were investigated. Sludge hydrolysis was enhanced with higher pH and temperature. The maximum SCOD, soluble protein and carbohydrates was observed at pH 12.0 at extreme thermophilic condition. The maximum VFAs yield was obtained at thermophilic and was 2.15 times that at mesophilic condition, but it took more time to reach the maximum. The VFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the prevalent product in most cases except for uncontrolled pH and pH 8.0 at mesophilic condition. The methane production was as follows: pH 8.0>pH 10.0>uncontrolled (0.015)>pH 12.0; mesophilic>thermophilic>extreme thermophilic. PMID:24077155

  18. Seven N-terminal Residues of a Thermophilic Xylanase Are Sufficient to Confer Hyperthermostability on Its Mesophilic Counterpart

    PubMed Central

    Zhang, Shan; He, Yongzhi; Yu, Haiying; Dong, Zhiyang

    2014-01-01

    Xylanases, and especially thermostable xylanases, are increasingly of interest for the deconstruction of lignocellulosic biomass. In this paper, the termini of a pair of xylanases, mesophilic SoxB and thermophilic TfxA, were studied. Two regions in the N-terminus of TfxA were discovered to be potentially important for the thermostability. By focusing on Region 4, it was demonstrated that only two mutations, N32G and S33P cooperated to improve the thermostability of mesophilic SoxB. By introducing two potential regions into SoxB in combination, the most thermostable mutant, M2-N32G-S33P, was obtained. The M2-N32G-S33P had a melting temperature (Tm) that was 25.6°C higher than the Tm of SoxB. Moreover, M2-N32G-S33P was even three-fold more stable than TfxA and had a Tm value that was 9°C higher than the Tm of TfxA. Thus, for the first time, the mesophilic SoxB “pupil” outperformed its thermophilic TfxA “master” and acquired hyperthermostability simply by introducing seven thermostabilizing residues from the extreme N-terminus of TfxA. This work suggested that mutations in the extreme N-terminus were sufficient for the mesophilic xylanase SoxB to acquire hyperthermostability. PMID:24498158

  19. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites.

    PubMed

    Schlosser, Olivier; Robert, Samuel; Debeaupuis, Catherine

    2016-05-01

    Non-hazardous waste landfilling has the potential to release biological agents into the air, notably mould spores. Some species, such as Aspergillus fumigatus, may be a cause of concern for at-risk nearby residents. However, air concentration in the surrounding environment of non-hazardous waste landfill sites is poorly documented. An extensive sampling programme was designed to investigate the relationship between culturable mesophilic moulds and A. fumigatus concentrations in air and distance downwind of non-hazardous waste landfill sites. On-site and off-site repeated measurements were performed at four landfill sites during cold and warm seasons. A high-flow air-sampler device was selected so as to allow peak concentration measurement. Linear mixed-effects models were used to explain variability in the concentrations in air over time and across sites, seasons, instantaneous meteorological conditions and discharged waste tonnage. Concentrations of mesophilic moulds and A. fumigatus at off-site upwind sampling locations were compared with concentrations at each of the downwind sampling locations. At the tipping face location, peak concentration reached 480,000CFUm(-3) for mesophilic moulds and 9300CFUm(-3) for A. fumigatus. Compared with upwind background levels, these concentrations were, on average, approximately 20 and 40 times higher respectively. A steep decline in the concentration of both mesophilic moulds and A. fumigatus was observed between the tipping face location and the downwind property boundary (reduction by 77% and 84% respectively), followed by a low decline leading to a 90% and 94% reduction in concentration at 200m from the property boundary and beyond. With the 200m and 500m downwind sampling point values added together, the 97.5th percentile of concentration was 6013CFUm(-3) and 87CFUm(-3) for mesophilic moulds and A. fumigatus, respectively. Other determining factors were the discharged waste tonnage, the season, instantaneous temperature

  20. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  1. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  2. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  3. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  4. Complete Type III Secretion System of a Mesophilic Aeromonas hydrophila Strain

    PubMed Central

    Vilches, Silvia; Urgell, Cecilia; Merino, Susana; Chacón, Matilde R.; Soler, Lara; Castro-Escarpulli, Graciela; Figueras, Maria Jose; Tomás, Juan M.

    2004-01-01

    We have investigated the existence and genetic organization of a functional type III secretion system (TTSS) in a mesophilic Aeromonas strain by initially using the Aeromonas hydrophila strain AH-3. We report for the first time the complete TTSS DNA sequence of an Aeromonas strain that comprises 35 genes organized in a similar disposition as that in Pseudomonas aeruginosa. Using several gene probes, we also determined the presence of a TTSS in clinical or environmental strains of different Aeromonas species: A. hydrophila, A. veronii, and A. caviae. By using one of the TTSS genes (ascV), we were able to obtain a defined insertion mutant in strain AH-3 (AH-3AscV), which showed reduced toxicity and virulence in comparison with the wild-type strain. Complementation of the mutant strain with a plasmid vector carrying ascV was fully able to restore the wild-type toxicity and virulence. PMID:15528564

  5. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time.

    PubMed

    Wei, Liang-Liang; Zhao, Qing-Liang; Hu, Kai; Lee, Duu-Jong; Xie, Chun-Mei; Jiang, Jun-Qiu

    2011-01-01

    To operate an anaerobic digester at low hydraulic retention time (HRT) is welcome in practice. This study characterized the extracellular biological organic matter (EBOM) and supernatant organics for a sewage sludge digested in a lab-scale mesophilic digester (5 l) running at an HRT of 20, 15 or 10 d. The hydrophilic and hydrophobic acid fractions were the principal components in the sludge EBOM. The hydrolysis rates for hydrophobic acid fraction related EBOM at 10 d HRT and that of hydrophilic fraction related proteins in supernatant at 20 d HRT limited the anaerobic processes. Improved hydrolysis of soluble hydrophilic fraction assisted improving digester performance at 20 d HRT. To shorten digestion HRT, efficiency of hydrophobic acid fraction hydrolysis has to be practiced. PMID:21126748

  6. Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1.

    PubMed

    Abada, Emad Abd El-Moniem

    2008-04-15

    Using Bacillus stearothermophilus AB-1 isolated from air, the production of lipase was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, xylose, tryptophan, alanine, phenylalanine and potassium nitrate were found to be the best. During cultivation, the strain secreted most of its lipase content after 48 h. In particular, the lipase produced in the culture broth showed 300 U mL(-1) when cultivated at optimal temperature and pH of 35 degrees C and 7.5, respectively. The enzyme was purified using 60% ammonium sulfate precipitation and sephadex G200 column chromatography. The enzyme was stable up to 40 degrees C and in the range of pH 7-8. This research reports for the first time the characterization of mesophilic lipase from Bacillus stearothermophilus AB-1 isolated from air. PMID:18819547

  7. Effect of leachate recirculation on mesophilic anaerobic digestion of food waste.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-03-01

    The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis. PMID:22088957

  8. High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium

    SciTech Connect

    Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada

    2009-10-07

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

  9. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  10. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures.

    PubMed

    Pandey, Pramod K; Soupir, Michelle L

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  11. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers

    PubMed Central

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5′-untranslated region (5′-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5′-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  12. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.

    PubMed

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  13. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia

    PubMed Central

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.

    2014-01-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  14. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    PubMed

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  15. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

    PubMed

    Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

    2014-06-01

    An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

  16. Draft Genome Sequence of Leptolinea tardivitalis YMTK-2, a Mesophilic Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Ward, Lewis M; Hemp, James; Pace, Laura A; Fischer, Woodward W

    2015-01-01

    We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration. PMID:26586893

  17. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  18. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  19. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  20. Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common

    PubMed Central

    2013-01-01

    Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694

  1. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.

    PubMed

    Del Pozo, R; Diez, V

    2005-03-01

    An integrated anaerobic-aerobic fixed-film pilot-scale reactor with arranged media was fed during 166 days with slaughterhouse wastewater. Operation temperature was 25 degrees C and the anaerobic-aerobic volume ratio was decreased from 4:1 to 3:2 and finally to 2:3. Overall organic matter removal efficiencies of 93% were achieved for an average organic loading rate of 0.77 kg COD/m3 d, and nitrogen removal efficiencies of 67% were achieved for nitrogen loading rates of 0.084 kg N/m3 d. The high internal recirculation associated to the air-lift effect linked to the aeration of a part of the reactor section caused high mixing between the anaerobic and aerobic zones, so that most organic matter was removed aerobically. The nitrification process achieved an efficiency of 91% for nitrogen loads of 0.15 kg N/m3 d when the anaerobic-aerobic volume ratio was 2:3 and was limited by dissolved oxygen concentration below 3 mg/l. The influence of the heterotrophic biomass growing in the outer biofilm was checked. Denitrification only implied the 12-34% of the total nitrogen removal and was limited by dissolved oxygen concentration in the anaerobic zone above 0.5 mg/l caused by the mixing regime. Most removed nitrogen was employed in synthesis of heterotrophic bacteria. PMID:15766966

  2. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge.

    PubMed

    Pronk, M; Abbas, B; Al-Zuhairy, S H K; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2015-06-01

    When aerobic granular sludge is applied for industrial wastewater treatment, different soluble substrates can be present. For stable granular sludge formation on volatile fatty acids (e.g. acetate), production of storage polymers under anaerobic feeding conditions has been shown to be important. This prevents direct aerobic growth on readily available chemical oxygen demand (COD), which is thought to result in unstable granule formation. Here, we investigate the impact of acetate, methanol, butanol, propanol, propionaldehyde, and valeraldehyde on granular sludge formation at 35 °C. Methanogenic archaea, growing on methanol, were present in the aerobic granular sludge system. Methanol was completely converted to methane and carbon dioxide by the methanogenic archaeum Methanomethylovorans uponensis during the 1-h anaerobic feeding period, despite the relative high dissolved oxygen concentration (3.5 mg O2 L(-1)) during the subsequent 2-h aeration period. Propionaldehyde and valeraldehyde were fully disproportionated anaerobically into their corresponding carboxylic acids and alcohols. The organic acids produced were converted to storage polymers, while the alcohols (produced and from influent) were absorbed onto the granular sludge matrix and converted aerobically. Our observations show that easy biodegradable substrates not converted anaerobically into storage polymers could lead to unstable granular sludge formation. However, when the easy biodegradable COD is absorbed in the granules and/or when the substrate is converted by relatively slow growing bacteria in the aerobic period, stable granulation can occur. PMID:25616527

  3. Phototrophic bacteria and their role in the biogeochemical sulfur cycle

    NASA Technical Reports Server (NTRS)

    Trueper, H. G.

    1985-01-01

    An essential step that cannot be bypassed in the biogeochemical cycle of sulfur today is dissimilatory sulfate reduction by anaerobic bacteria. The enormous amounts of sulfides produced by these are oxidized again either anaerobically by phototrophic bacteria or aerobically by thiobacilli and large chemotrophic bacteria (Beggiatoa, Thiovulum, etc.). Phototrophic bacteria use sulfide, sulfur, thiosulfate, and sulfite as electron donors for photosynthesis. The most obvious intermediate in their oxidative sulfur metabolism is a long chain polysulfide that appears as so called sulfur globules either inside (Chromatiaceae) or outside (Ectothiorhodospiraceae, Chlorobiaceae, and some of the Rhodospirillaceae) the cells. The assimilation of sulfur compounds in phototrophic bacteria is in principle identical with that of nonphototrophic bacteria. However, the Chlorobiaceae and some of the Chromatiaceae and Rhodospirillaceae, unable to reduce sulfate, rely upon reduced sulfur for biosynthetic purposes.

  4. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  5. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females. PMID:22080322

  6. Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms.

    PubMed

    Yang, Yang; Zhou, Dandan; Xu, Zhengxue; Li, Aijun; Gao, Hang; Hou, Dianxun

    2014-06-01

    In this study, the possibility of using backwashed biofilm as seed in an aerobic granular sludge continuous-flow airlift fluidized bed (CAFB) reactor was investigated. After the addition of the inoculated backwashed biofilm, the start-up period of this reactor fed with municipal wastewater was reduced to 25 days, and aerobic granulation and stabilization were enhanced. At steady state, the chemical oxygen demand (COD) removal efficiency and nitrification efficiency were as high as 80-90 and 60 %, respectively. The CAFB was operated continuously and totally for 90 days, and its performance was much more stable when compared with system inoculated with activated sludge. Microbial distribution analyzed by fluorescence in situ hybridization (FISH) showed that the nitrite-oxidizing bacteria (NOB) and ammonium-oxidizing bacteria (AOB) were compatible with heterotrophic bacteria and distributed evenly throughout the granules. Such unique population distribution might be attributed to the low COD level and abundant dissolved oxygen in the entire granule as simulated by the mathematic models. Moreover, scanning electron microscopy revealed broad holes in the granules, which might promote the mass transfer of the nutrients from the surface to the center and enable simultaneous COD removal and nitrification. In conclusion, backwashed biofilm is an alternative seed of the conventional flocculent activated sludge in the aerobic granular sludge system to enhance carbonaceous oxidization and nitrification. PMID:24643735

  7. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between april 2003 and march 2004].

    PubMed

    Shinagawa, Nagao; Fuchimoto, Sadayoshi; Sueda, Taijiro; Hiyama, Eizo; Takesue, Yoshio; Murakami, Yoshiaki; Ooge, Hiroki; Uemura, Kenichiro; Mizuno, Isamu; Tsumura, Hiroaki; Hirata, Koichi; Katsuramaki, Tadashi; Mizukuchi, Tohru; Ushijima, Yasuhide; Ushida, Tomohiro; Aikawa, Naoki; Yo, Kikuo; Takayama, Tadatoshi; Sato, Takeshi; Kato, Koumei; Yura, Jiro; Manabe, Tadao; Takeyama, Hiromitsu; Wakasugi, Takehiro; Taniguchi, Masaaki; Yokoyama, Takashi; Takeuchi, Hitoshi; Yasui, Yoshimasa; Mashita, Keiji; Ikeda, Seiyo; Yasunami, Yoichi; Ryu, Shinichiro; Ishikawa, Syu; Mizuno, Akira; Kubo, Shoji; Suehiro, Shigefumi; Fujimoto, Mikio; Higaki, Kazuyuki; Tanimura, Hiroshi; Taniguchi, Katsutoshi; Tsuji, Takeshi; Ohnishi, Hironobu; Yamaue, Hiroki; Kawai, Manabu; Tanaka, Noriaki; Iwagaki, Hiromi; Kimura, Hideyuki

    2007-04-01

    Tendency of isolated bacteria from infections in abdominal surgery during the period from April 2005 to March 2006 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 384 strains including 18 strains of Candida spp. were isolated from 161 (70.3%) of 229 patients with surgical infections. One hundred and ninty-five strains were isolated from primary infections, and 171 strains were isolated from postoperative infections. From primary infections, aerobic Gram-negative bacteria and aerobic Gram-positive bacteria were predominant, while aerobic Gram-positive bacteria were predominant from postoperative infections. The isolation rate of aerobic Gram-positive bacteria, such as Enterococcus spp. and Staphylococcus aureus were higher from both types of infections. Among anaerobic Gram-positive bacteria, the isolation rate of Peptostreptococcus spp. was the highest from both types of infections. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Pseudomonas aeruginosa, Klebsiella spp. in this order, and from postoperative infections, E. coli was the most predominantly isolated, followed by Klebsiella pneumoniae and P. aeruginosa. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroides fragilis group was the highest from both primary and postoperative infections. In this series, we noticed no vancomycin-resistant Gram-positive cocci, nor multidrug-resistant P. aeruginosa. But cefazolin-resistant E. coli producing extended spectrum fl-lactamase was seen in 5.0 per cents. We should be carefully followed up the facts that the increasing isolation rates of B. fragilis group and Bilophila wadsworthia which were resistant to both penicillins and cephems. PMID:17612256

  8. [Surface layers of methanotrophic bacteria].

    PubMed

    Khmelenina, V N; Suzina, N E; Trotsenko, Iu A

    2013-01-01

    Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conicalstructures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide 'CorA'/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase 'CorB'/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore, methanobactin. Importantly, no 'CorA'/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed. PMID:25509389

  9. Bacteria in chronic maxillary sinusitis.

    PubMed

    Karma, P; Jokipii, L; Sipilä, P; Luotonen, J; Jokipii, A M

    1979-07-01

    Sixty-one chronically inflamed maxillary sinuses produced 131 bacterial strains from mucosal pieces that were taken during a Caldwell-Luc operation and cultured aerobically and anaerobically. Sinus secretions showed only 62 and nasal secretions 106 bacterial strains. Fourteen mucosal strains, including 11 Haemophilus influenzae, grew heavily. None of 24 mucosal anaerobes showed heavy growth. Of 52 antral mucosae with culturable bacteria, 37 disclosed mixed and 15 pure growth. The bacteriological characteristics of the diseased sinus and the nose did not correlate. The duration or extent of the disease, the macroscopic appearance of the diseased sinus, or the presence or absence of allergy were unrelated to bacteriological findings, except that H influenzae was concentrated in purulent sinuses. Intraoperative culture of antral mucosa seems to give the most reliable picture of the bacteriological condition in chronic maxillary sinusitis. PMID:313206

  10. Aerobic and anaerobic PCB biodegradation in the environment

    SciTech Connect

    Abramowicz, D.A.

    1995-06-01

    Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxin like toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. 27 refs., 1 fig., 1 tab.

  11. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  12. Comparison of sidestream treatment technologies: post aerobic digestion and Anammox.

    PubMed

    Bauer, Heidi; Johnson, Thomas D; Johnson, Bruce R; Oerke, David; Graziano, Steven

    2016-01-01

    Post aerobic digestion (PAD) and anaerobic ammonium oxidation (Anammox) are sidestream treatment technologies which are both excellent options for the reduction of nitrogen recycled back to the liquid stream without the need for supplemental carbon or alkalinity. However, the achievement of this goal is where the similarities between the two technologies end. PAD is an advanced digestion process where aerobic digestion is designed to follow anaerobic digestion. Other benefits of PAD include volatile solids reduction, odor reduction, and struvite formation reduction. Anammox harnesses a specific species of autotrophic bacteria that can help achieve partial nitritation/deammonification. Other benefits of Anammox include lower energy consumption due to requiring less oxygen compared with conventional nitrification. This manuscript describes the unique benefits and challenges of each technology. Example installations are presented with a narrative of how and why the technology was selected. A whole plant simulator is used to compare and contrast the mass balances and net present value costs on an 'apples to apples' basis. The discussion includes descriptions of conditions under which each technology would potentially be the most beneficial and cost-effective against a baseline facility without sidestream treatment. PMID:27232417

  13. Enzymes and genes involved in aerobic alkane degradation

    PubMed Central

    Wang, Wanpeng; Shao, Zongze

    2013-01-01

    Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation. PMID:23755043

  14. Estuarine ecology of phenanthrene-degrading bacteria

    NASA Astrophysics Data System (ADS)

    Guerin, William F.; Jones, Galen E.

    1989-08-01

    Phenanthrene degrading bacteria were ubiquitously distributed in waters and sediments of the Great Bay Estuary, NH, as determined using a 14C-phenanthrene mineralization assay. Similar activities were observed in water samples collected in March and June when these were incubated at 18 °C even though ambient water temperatures were 1-4 °C and 10-22 °C, respectively. This observation indicated the constant presence of a mesophilic phenanthrene-degrading bacterial population in the estuary. Among water samples, the highest biodegradation activities were associated with samples collected downstream from a dredging operation which introduced high concentrations of coal tar PAH (polycyclic aromatic hydrocarbons) into the Cocheco River, and in areas receiving PAH from pleasure and commercial boating activities. Mid-estuarine maxima in biodegradation activity during both sampling trips suggested adaptation of the microbial flora to the salinities prevailing in the low turnover, high residence time portion of the Estuary at the time of sampling. Despite the hydrophobicity of phenanthrene, no correlation between biodegradation rates and particulate matter concentrations were observed. Similarly, concentrations of nutrients and dissolved and particulate organic matter correlated poorly with biodegradation rates. Better agreements between 14C-phenanthrene mineralization potentials and plate counts on a phenanthrene/toluene agar (PTA) medium were observed. Phenanthrene biodegradative activities and numbers of culturable bacteria growing on PTA were governed by the degree of previous exposure to PAH.

  15. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  16. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  17. Aerobic Dance for Children: Resources and Recommendations.

    ERIC Educational Resources Information Center

    Wood, Denise A.

    1986-01-01

    Aerobic dance classes may be safe for older children, but are inappropriate for children in the fourth grade and under. Programs for these children should emphasize creativity. Resources for program development are given. (MT)

  18. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  19. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

  20. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  1. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    NASA Astrophysics Data System (ADS)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  2. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  3. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR).

    PubMed

    Zhu, Liang; Lv, Mei-le; Dai, Xin; Zhou, Jia-heng; Xu, Xiang-yang

    2013-07-01

    The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and β-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge. PMID:23685649

  4. Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass.

    PubMed

    Sheets, Johnathon P; Ge, Xumeng; Li, Yebo

    2015-03-01

    Switchgrass is an attractive feedstock for biogas production via anaerobic digestion (AD). Many studies have used switchgrass for liquid anaerobic digestion (L-AD), but few have used switchgrass for solid-state anaerobic digestion (SS-AD). Limited air exposure to the reactor headspace has been adopted in commercial scale anaerobic digesters for different applications. However, little research has examined the effect of limited air exposure on biogas production during SS-AD. In this study, the effects of air exposure and total solids (TS) content on SS-AD performance were evaluated under mesophilic (36±1°C) and thermophilic (55±0.3°C) conditions. Limited air exposure did not significantly influence the methane yield during SS-AD. Thermophilic SS-AD had greater methane yields (102-145LCH4kg(-1)VSadded) than mesophilic SS-AD (88-113LCH4kg(-1)VSadded). Both mesophilic SS-AD (73-136GJ) and thermophilic SS-AD (2-95GJ) produced positive net energy based on a theoretical 'garage-type' SS-AD digester operating in a temperate climate. PMID:25618499

  5. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Mamais, Daniel; Lekkas, Themistokles D

    2014-06-01

    The removal of endocrine disrupting compounds (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) was studied in three lab-scale anaerobic digestion (AD) systems; a single-stage mesophilic, a single-stage thermophilic and a two-stage thermophilic/mesophilic. All micropollutants underwent microbial degradation. High removal efficiency (>80%) was calculated for diclofenac, ibuprofen, naproxen and ketoprofen; whereas triclosan, bisphenol A and the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate were moderately removed (40-80%). NSAIDs removal was not affected by the type of AD system used; whereas slightly higher EDCs removal was observed in two-stage system. In this system, most microcontaminants were removed in thermophilic digester. Biotransformation of NP1EO and NP was affected by the temperature applied to bioreactors. Under mesophilic conditions, higher removal of NP1EO and accumulation of NP was noticed; whereas the opposite was observed under thermophilic conditions. For most analytes, higher specific removal rates were calculated under thermophilic conditions and 20 days SRT. PMID:24768891

  6. Mathematical models and bacterial communities for ammonia toxicity in mesophilic anaerobes not acclimated to high concentrations of ammonia.

    PubMed

    Park, Seyong; Cui, Fenghao; Mo, Kyung; Kim, Moonil

    2016-01-01

    In this study, we evaluated ammonia toxicity in mesophilic anaerobic digestion at various pH values and total ammonia nitrogen (TAN) concentrations. We performed anaerobic toxicity assays (ATAs) to evaluate the toxicity effects of TAN and pH on mesophilic anaerobic digestion. Modeling based on the results of the ATAs indicated that the specific methanogenic activity (SMA) decreased by 30% at a TAN concentration higher than 3.0 g/L compared to a TAN concentration of 0 g/L. In addition, the highest SMA for a given TAN level (0.5-10.0 g/L) was observed at a pH of around 7.6. The results of bacterial community analyses showed that the diversity and richness of microorganisms with increasing TAN concentration were decreased. Chloroflexi and Synergistetes were the dominant phyla at TAN concentrations less than 3.0 g/L, and Firmicutes was the dominant phylum at TAN concentrations higher than 3.0 g/L, implying that the ammonia toxicity concentration may influence the kind of dominant species. In conclusion, to start a stable mesophilic anaerobic digestion concerning ammonia toxicity, a TAN concentration less than 3.0 g/L is preferable. PMID:27533868

  7. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding

    PubMed Central

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

  8. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.

    PubMed

    Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung

    2014-10-01

    Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability. PMID:24931334

  9. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.

    PubMed

    Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan

    2015-04-01

    A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65%, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30%. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline. PMID:25384695

  10. Accelerated Biodegradation of Agriculture Film Based on Aromatic-Aliphatic Copolyester in Soil under Mesophilic Conditions.

    PubMed

    Šerá, Jana; Stloukal, Petr; Jančová, Petra; Verney, Vincent; Pekařová, Silvie; Koutný, Marek

    2016-07-20

    A study was conducted on the biodegradation of aromatic-aliphatic copolyester-based agricultural film in soil at 25 °C. The polymer is known to be biodegradable under composting conditions although rather recalcitrant under mesophilic conditions. The material investigated comprised of the copolyester filled with approximately 25% of starch containing biodegradable plasticizers, and its behavior was compared to the corresponding material without the filler. Mineralization followed by CO2 production merely reached the point of about 6% after 100 days of incubation in the pure copolyester film, whereas the value of around 53% was recorded for the filled copolyester film, which exceeded the readily biodegradable starch filler content in the material by more than 20% and could be accounted for biodegradation of the copolyester. It was suggested that the accelerated copolyester biodegradation in the starch-filled material was most likely explained by the increase in the active surface area of the material available for the microbial attack after biodegradation of the filler. The results were supported by changes in molecular weight distributions of the copolyester and observations made by several microscopic techniques. These findings encourage further development of biodegradable agricultural films based on this material. PMID:27367168

  11. Effects of ultrasonic pretreatment on sludge dewaterability and extracellular polymeric substances distribution in mesophilic anaerobic digestion.

    PubMed

    Shao, Liming; Wang, Guanzhao; Xu, Huacheng; Yu, Guanghui; He, Pinjing

    2010-01-01

    Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec x L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p < 0.01) and the PN/PS ratio (R2 = 0.84, p < 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB-EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 > 0.66, p < 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability. PMID:20614793

  12. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment.

    PubMed

    Wei, Yufang; Li, Xiujin; Yu, Liang; Zou, Dexun; Yuan, Hairong

    2015-12-01

    Biological and chemical pretreatment methods using liquid fraction of digestate (LFD), ammonia solution (AS), and NaOH were compared in the process of mesophilic anaerobic co-digestion of cattle manure and corn stover. The results showed that LFD pretreatment could achieve the same effect as the chemical pretreatment (AS, NaOH) at the performance of anaerobic digestion (AD). Compared with the untreated corn stover, the cumulative biomethane production (CBP) and the volatile solid (VS) removal rate of three pretreatment methods were increased by 25.40-30.12% and 14.48-16.84%, respectively, in the co-digestion of cattle manure and corn stover. T80 was 20-37.14% shorter than that of the control test (35 ± 1 days). LFD pretreatment not only achieved the same effect as chemical pretreatment, but also reduced T80 and improved buffer capacity of anaerobic digestion system. Therefore, this study provides meaningful insight for exploring efficient pretreatment strategy to stabilize and enhance AD performance for practical application. PMID:26409855

  13. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  14. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin

    2013-08-15

    Effects of single and dual stage (acidogenic-methanogenic) mesophilic anaerobic digestion (AD) of kitchen waste (KW) was evaluated at hydraulic retention times (HRTs) of 20, 15, 12 and 9 d with and without thermal microwave (MW) pretreatment (145 °C). Anaerobic acidification in terms of acid accumulation was superior compared to microaerophilic acidification. Maximum anaerobic acidification of KW was determined to occur with an HRT of 2 d which was then selected for the acidification stage. The dual stage AD system fed with untreated KW produced the maximum biogas and volatile solids (VS) stabilization efficiencies at the shortest HRT of 9 d. Conversely, for free liquid resulting from MW pretreatment of KW the two stage reactor at 20 d HRT produced three fold more methane compared with the untreated free liquid control. However, MW pretreatment and AD of the free liquid fraction only, was not a sustainable treatment option. For KW, staging of the AD process had a greater positive impact on waste stabilization and methane yield compared to single stage reactors or MW pretreatment. KW can be characterized as being a readily biodegradable solid waste; concomitantly it is recommended that digester staging without MW pretreatment be employed to maximize methane yield and production. PMID:23648266

  15. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

  16. Producing high-strength liquor from mesophilic batch acidification of chicken manure.

    PubMed

    Abendroth, Christian; Wünsche, Erik; Luschnig, Olaf; Bürger, Christoph; Günther, Thomas

    2015-03-01

    This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10 gVS L⁻¹ and 20 gVS L⁻¹; the pH value remained high (pH 6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10 gVS L⁻¹ there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. PMID:25672618

  17. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure.

    PubMed

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lee, Duu-Jong; Lei, Zhongfang; Zhang, Yi; Tay, Joo Hwa

    2013-05-01

    Effects of initial pH (3-12) on mesophilic hydrolysis and acidification reactions of swine manure was studied. The initial pH changed the microbial community in the suspension so as to affect hydrolysis and acidification reactions on swine manure. At pH 10-12 the Clostridium alkalicellum and/or Corynebacterium humireducens were enriched and the soluble chemical oxygen demand (SCOD), total volatile fatty acids (VFAs), proteins and carbohydrates from manure were increased in quantities. In particular, at pH 10 the VFA concentration peaked at 13,600 mg-COD/L, with acetate and propionate accounting for 71.8% of the total VFAs. Acidic environment facilitates release of ammonium from manure. The Butyricimonas sp. was found existing at initial pH 5 which led to accumulated quantities of butyrate. Initial pH adjustment was revealed to be an effective way to manipulate rates and end products of hydrolysis and acidification of swine manure. PMID:23567695

  18. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    SciTech Connect

    Mendes, Carlos Esquerre, Karla Matos Queiroz, Luciano

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  19. Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.

    PubMed

    Kurtböke, D I; Neller, R J; Bellgard, S E

    2007-08-01

    The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones. PMID:17578635

  20. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes.

    PubMed

    Mazola, Yuliet; Guirola, Osmany; Palomares, Sucel; Chinea, Glay; Menéndez, Carmen; Hernández, Lázaro; Musacchio, Alexis

    2015-09-01

    Arabidopsis thaliana cell wall invertase 1 (AtcwINV1) and Thermotoga maritima β-fructosidase (BfrA) are among the best structurally studied members of the glycoside hydrolase family 32. Both enzymes hydrolyze sucrose as the main substrate but differ strongly in their thermal stability. Mesophilic AtcwINV1 and thermophilic BfrA have divergent sequence similarities in the N-terminal five bladed β-propeller catalytic domain (31 %) and the C-terminal β-sandwich domain (15 %) of unknown function. The two enzymes were subjected to 200 ns molecular dynamics simulations at 300 K (27 °C) and 353 K (80 °C). Regular secondary structure regions, but not loops, in AtcwINV1 and BfrA showed no significant fluctuation differences at both temperatures. BfrA was more rigid than AtcwINV1 at 300 K. The simulation at 353 K did not alter the structural stability of BfrA, but did increase the overall flexibility of AtcwINV1 exhibiting the most fluctuating regions in the β-propeller domain. The simulated heat treatment also increased the gyration radius and hydrophobic solvent accessible surface area of the plant enzyme, consistent with the initial steps of an unfolding process. The preservation of the conformational rigidity of BfrA at 353 K is linked to the shorter size of the protein loops. Shortening of BfrA loops appears to be a key mechanism for thermostability. PMID:26267297

  1. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development

    PubMed Central

    2013-01-01

    Background Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. Results Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. Conclusion We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants. PMID:23587418

  2. Importance of storage time in mesophilic anaerobic digestion of food waste.

    PubMed

    Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing

    2016-07-01

    Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. PMID:27372120

  3. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    PubMed

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities. PMID:27562592

  4. Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field.

    PubMed

    Geymonat, Estefanía; Ferrando, Lucía; Tarlera, Silvana E

    2011-11-01

    A novel methanotroph, designated strain E10(T), was isolated from a rice paddy field in Uruguay. Strain E10(T) grew on methane and methanol as sole carbon and energy sources. Cells were Gram-negative, non-motile, non-pigmented, slightly curved rods showing type I intracytoplasmic membranes arranged in stacks. The strain was neutrophilic and mesophilic; optimum growth occurred at 30-35 °C with no growth above 37 °C. The strain possessed only a particulate methane monooxygenase (pmoA). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was most closely related to the moderately thermophilic strains Methylocaldum szegediense OR2(T) (91.6 % sequence similarity) and Methylococcus capsulatus Bath (91.5 %). Comparative sequence analysis of pmoA genes also confirmed that strain E10(T) formed a new lineage among the genera Methylocaldum and Methylococcus with 89 and 84 % derived amino acid sequence identity to Methylococcus capsulatus Bath and Methylocaldum gracile VKM-14L(T), respectively. The DNA G+C content was 63.1 mol% and the major cellular fatty acid was C(16 :0) (62.05 %). Thus, strain E10(T) (=JCM 16910(T) = DSM 23452(T)) represents the type strain of a novel species within a new genus, for which the name Methylogaea oryzae gen. nov., sp. nov. is proposed. PMID:21131502

  5. Microbial community dynamics in batch high-solid anaerobic digestion of food waste under mesophilic conditions.

    PubMed

    Yi, Jing; Dong, Bin; Xue, Yonggang; Li, Ning; Gao, Peng; Zhao, Yuxin; Dai, Lingling; Dai, Xiaohu

    2014-02-28

    Microbial community shifts, associated with performance data, were investigated in an anaerobic batch digester treating high-solid food waste under mesophilic conditions using, a combination of molecular techniques and chemical analysis methods. The batch process was successfully operated with an organic removal efficiency of 44.5% associated with a biogas yield of 0.82 L/g VSremoval. Microbial community structures were examined by denaturing gel gradient electrophoresis. Clostridium and Symbiobacterium organisms were suggested to be mainly responsible for the organic matter catabolism in hydrolysis and acidogenesis reactions. The dynamics of archaeal and methanogenic populations were monitored using real-time PCR targeting 16S rRNA genes. Methanosarcina was the predominant methanogen, suggesting that the methanogenesis took place mainly via an aceticlastic pathway. Hydrogenotrophic methanogens were also supported in high-solid anaerobic digestion of food waste through syntrophism with syntrophic bacterium. Microbial community shifts showed good agreement with the performance parameters in anaerobic digestion, implying the possibility of diagnosing a high-solid anaerobic digestion process by monitoring microbial community shifts. On the other hand, the batch results could be relevant to the start-up period of a continuous system and could also provide useful information to set up a continuous operation. PMID:24150490

  6. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    PubMed

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems. PMID:26877027

  7. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils.

    PubMed

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (Sj) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a > or =70% S(SM) similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P > 0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces. PMID:15448922

  8. Effects of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber.

    PubMed

    Kannangara, T; Utkhede, R S; Paul, J W; Punja, Z K

    2000-11-01

    Three composts were tested for their ability to suppress root and stem rot caused by the soil borne fungal pathogen Fusarium oxysporum f. sp. radicis-cucumerinum (FORC) on cucumber. Two of the composts were prepared from separated dairy solids either by windrow (WDS) or vermicomposting (VMC) while the third, obtained from International Bio-Recovery (IBR), was prepared from vegetable refuse using aerobic digestion. Three sets of potting mixes were prepared by mixing the composts with sawdust at varying ratios, and seeded with cucumber cv. Corona. After 14 days of growth in the greenhouse, inoculum of FORC (20 mL of 5 x 10(6) micro-conidia per mL) was applied to each pot at three different times (14, 21, and 35 days). In unamended inoculated pots, the pathogen caused stunted growth and reduced flowers. Amendment of WDS in the potting mix suppressed these symptoms, while VMC and IBR had no effect. All three composts reduced the FORC colony forming units (cfu) at the end of the experiment (10 weeks). There was a large increase of fluorescent bacteria near the vicinity of roots particularly in WDS amended potting mixes. When water extracts of the composts were plated onto acidified potato dextrose agar (APDA), only IBR contained a potent thermostable inhibitor to FORC. This inhibitor was removed by activated charcoal but was not partitioned into petroleum ether at acid, basic, or neutral pH. Inhibition of FORC by IBR was not due to electrical conductivity or trace elements in the compost. Contrasting effectiveness of the WDS and VMC made from the same waste suggests that composting method can influence the disease suppression properties of the finished compost. PMID:11109490

  9. Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2006-11-01

    Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental

  10. Aerobic bacterial flora of nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica.

    PubMed

    Santoro, Mario; Hernández, Giovanna; Caballero, Magaly

    2006-12-01

    Bacteriological examination of 70 nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica was performed to investigate nasal and cloacal aerobic bacteria. A total of 325 bacterial isolates were obtained, including 10 Gram-negative and three Gram-positive genera. Two hundred thirty-nine were Gram-negative and 86 were Gram-positive isolates. Klebsiella pneumoniae was the most common microbe identified in turtle samples: 27/70 (38.5%) in cloacal, and 33/70 (47.1%) in nasal samples. The Enterobacteriaceae family, including Enterobacter agglomerans, E. cloacae, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, and Serratia marcescens, was the largest Gram-negative group of bacteria recovered and comprised 127 of 239 (53.1%) of the Gram-negative isolates. Staphylococcus species was the largest Gram-positive bacteria group, including S. aureus, S. cromogenes, S. epidermis, and S. intermedius, and made up 63 of 86 (73.2%) of the Gram-positive isolates recovered. The results of this study demonstrate that the aerobic bacterial flora of nesting green turtles at Tortuguero National Park is composed of a very wide spectrum of bacteria, including several potential pathogens. PMID:17315444

  11. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  12. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. PMID:27085396

  13. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil▿†

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Min, Deullae; Kim, Jin-Seog; Rijpstra, W. Irene C.; Sinninghe Damsté, Jaap S.; Kim, Geun-Joong; Madsen, Eugene L.; Rhee, Sung-Keun

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [13C]bicarbonate assimilation assay showed stoichiometric incorporation of 13C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to “Candidatus Nitrosopumilus maritimus” revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N2O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated “Candidatus Nitrosoarchaeum koreensis.” PMID:22003023

  14. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.

    PubMed

    Kim, S G; Bae, H S; Lee, S T

    2001-10-01

    The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria. PMID:11685371

  15. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  16. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  17. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors.

    PubMed

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-08-01

    Micropowder (20-250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  18. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back.

    PubMed

    Melo, Ana M P; Teixeira, Miguel

    2016-03-01

    Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. PMID:26546715

  19. Archaeal-like chaperonins in bacteria.

    PubMed

    Techtmann, Stephen M; Robb, Frank T

    2010-11-23

    Chaperonins (CPN) are ubiquitous oligomeric protein machines that mediate the ATP-dependent folding of polypeptide chains. These chaperones have not only been assigned stress response and normal housekeeping functions but also have a role in certain human disease states. A longstanding convention divides CPNs into two groups that share many conserved sequence motifs but differ in both structure and distribution. Group I complexes are the well known GroEL/ES heat-shock proteins in bacteria, that also occur in some species of mesophilic archaea and in the endosymbiotic organelles of eukaryotes. Group II CPNs are found only in the cytosol of archaea and eukaryotes. Here we report a third, divergent group of CPNs found in several species of bacteria. We propose to name these Group III CPNs because of their distant relatedness to both Group I and II CPNs as well as their unique genomic context, within the hsp70 operon. The prototype Group III CPN, Carboxydothermus hydrogenoformans chaperonin (Ch-CPN), is able to refold denatured proteins in an ATP-dependent manner and is structurally similar to the Group II CPNs, forming a 16-mer with each subunit contributing to a flexible lid domain. The Group III CPN represent a divergent group of bacterial CPNs distinct from the GroEL/ES CPN found in all bacteria. The Group III lineage may represent an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage. An analysis of their functional and structural characteristics may provide important insights into the early history of this ubiquitous family of proteins. PMID:21057109

  20. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:12794293

  1. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  2. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  3. Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures.

    PubMed

    Kim, Su Jung; Joo, Ji Eun; Jeon, Sang Duck; Hyeon, Jeong Eun; Kim, Seung Wook; Um, Young Soon; Han, Sung Ok

    2016-05-01

    This is the first study for therrmostable mutants of mesophilic endoglucanase EngZ from Clostridium cellulovorans using by site-directed mutagenesis. K94R, S365P and their double mutant K94R/S365P had a wide range of active temperatures (30-60°C). In addition, the optimal temperature of K94R/S365P was increased by 7.5°C. K94R/S365P retained 78.3% relative activity at 70°C, while the wild type retained only 5.8%. Especially, K94R/S365P remained 45.1-fold higher activity than the wild type at 70°C. In addition, K94R/S365P was 3.1-fold higher activity than the wild type at 42.5°C, which is the optimal temperature of the wild type. K94R/S365P showed also stimulated in 2.5-fold lower concentration of CaCl2 and delayed aggregation temperature in the presence of CaCl2 compared to the wild type. In pH stability, K94R/S365P was not influenced, but the optimum pH was transferred from pH 7 to pH 6. In long-term hydrolysis, K94R/S365P reduced the newly released reducing sugar yields after 12h reaction; however, the yields consistently increased until 72h. Finally, the total reducing sugar of K94R/S365P was 5.0-fold higher than the wild type at 50°C, pH6. EngZ (K94R/S365P) can support information to develop thermostability of GH9 endoglucanase with a high catalytic efficiency as the potential industrial bioprocess candidate. PMID:26808019

  4. Stability and activity of mesophilic subtilisin E and its thermophilic homolog: Insights from molecular dynamics simulations

    SciTech Connect

    Colombo, G.; Merz, K.M. Jr.

    1999-07-28

    This report examines the origin of the high-temperature (250 K) behavior of a thermophilic mutant enzyme (labeled at 5-3H5; see Zhao and Arnold Prot. Eng. 1999, 12, 47--53) derived from subtilisin E by eight amino acid substitutions. Through the use of molecular dynamics (MD) simulations, the authors have provided molecular-level insights into how point mutations can affect protein structure and dynamics. From simulations the authors observed a reduced rmsd in several key regions, an increased overall flexibility, an increase in the number of hydrogen bonds, and an increase in the number of stabilizing interactions in the thermophilic system. It was shown that it is not a necessary requirement that thermophilic enzymes be less flexible than their mesophilic counterparts at low temperatures. However, thermophilic enzymes must retain their three-dimensional structures and flexibility at high temperatures in order to retain activity. Furthermore, the authors have been able to point out the effects of some of the single substitutions. Even if it is not possible yet to give general rules for rational protein design, the authors are able to make some predictions on how a protein should be stabilized in order to be thermophilic. In particular, the authors suggest that a promising strategy toward speeding up the design of thermally stable proteins would be to identify fluxional regions within a protein through the use of MD simulations (or suitable experiments). Presumably these regions allow for autocatalytic reactions to occur and are also involved in allowing water to gain access to the interior of the protein and initiate protein unfolding. These fluxional regions could also adversely affect the positioning of the catalytic machinery, thereby decreasing catalytic efficiency. Thus, once these locations have been identified, focused directed evolution studies could be designed that stabilize these fluxional regions.

  5. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. PMID:23116231

  6. Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7).

    PubMed Central

    Cavedon, K; Leschine, S B; Canale-Parola, E

    1990-01-01

    An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants. Images PMID:2376560

  7. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification.

    PubMed Central

    Rainey, F A; Ward, N L; Morgan, H W; Toalster, R; Stackebrandt, E

    1993-01-01

    Small subunit rDNA sequences were determined for 20 species of the genera Acetogenium, Clostridium, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobium, and Thermobacteroides, 3 non-validly described species, and 5 isolates of anaerobic thermophilic bacteria, providing a basis for a phylogenetic analysis of these organisms. Several species contain a version of the molecule significantly longer than that of Escherichia coli because of the presence of inserts. On the basis of normal evolutionary distances, the phylogenetic tree indicates that all bacteria investigated in this study with a maximum growth temperature above 65 degrees C form a supercluster within the subphylum of gram-positive bacteria that also contains Clostridium thermosaccharolyticum and Clostridium thermoaceticum, which have been previously sequenced. This supercluster appears to be equivalent in its phylogenetic depth to the supercluster of mesophilic clostridia and their nonspore-forming relatives. Several phylogenetically and phenotypically coherent clusters that are defined by sets of signature nucleotides emerge within the supercluster of thermophiles. Clostridium thermobutyricum and Clostridium thermopalmarium are members of Clostridium group I. A phylogenetic tree derived from transversion distances demonstrated the artificial clustering of some organisms with high rDNA G+C moles percent, i.e., Clostridium fervidus and the thermophilic, cellulolytic members of the genus Clostridium. The results of this study can be used as an aid for future taxonomic restructuring of anaerobic sporogenous and asporogenous thermophillic, gram-positive bacteria. PMID:7687600

  8. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  9. [Anaerobic-aerobic infection in acute appendicitis].

    PubMed

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  10. Aerobic biodegradation of trichloroethene without auxiliary substrates.

    PubMed

    Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

    2014-08-01

    Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. PMID:24793109

  11. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  12. Comparative study of normal and sensitive skin aerobic bacterial populations

    PubMed Central

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-01-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  13. Comparative study of normal and sensitive skin aerobic bacterial populations.

    PubMed

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-12-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  14. [Phylogenetic analysis of bacteria of extreme ecosystems].

    PubMed

    Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A

    2014-01-01

    Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses. PMID:25007437

  15. Dispersal of non-sporeforming anaerobic bacteria from the skin.

    PubMed Central

    Benediktsdóttir, E.; Hambraeus, A.

    1982-01-01

    Dispersal of non-sporeforming anaerobic bacteria was studied. Skin samples were taken from the subjects, and dispersed from different parts of the body was examined. The number of anaerobic bacteria dispersed was not correlated to their density on the surface of skin area exposed. The highest density of anaerobic bacteria on the skin was found in the face and upper trunk, but the highest yield of anaerobic bacteria dispersed came from the lower trunk. The dominant anaerobic bacteria dispersed were Propionibacterium acnes, but Propionibacterium avidum, Propionibacterium granulosum and Gram-positive cocci were also isolated from the dispersal samples. Peptococcus magnus was the most common coccus isolated. For the less frequently isolated bacteria, the best correlation was found between the perineal flora and airborne bacteria. A comparison was also made of bacterial dispersal by naked and dressed subjects. The dispersal of both aerobic and anaerobic bacteria was higher when the subjects were dressed in conventional operating theatre cotton clothing than when they were naked. The increased dispersal of anaerobic bacteria when the subjects were dressed was mainly due to increased dispersal of Propionibacterium sp. PMID:6806353

  16. Aerobic granulation and nitrogen removal with the effluent of internal circulation reactor in start-up of a pilot-scale sequencing batch reactor.

    PubMed

    Wei, Dong; Si, Wei; Zhang, Yongfang; Qiao, Zhuangming; Yao, Zhenxing; Zhao, Wei; Zhao, Jie; Chen, Guodong; Wei, Qin; Du, Bin

    2012-11-01

    Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO(2) (-)-N/NO (x) (-) -N) were between 84.6 and 99.1 %. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32 °C) and free ammonia (FA) concentration. After 50 days' running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96 %, respectively. The maximum nitrogen removal efficiency of 83.1 % was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0 mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater. PMID:22562444

  17. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  18. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  19. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions.

    PubMed

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C12E9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C12E9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C12E9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C12E9, C12E8, C12E7 and C12E6. Apart from the substrate, the homologues C12E8, C12E7 and C12E6, being metabolites of C12E9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C12E8COOH, C12E7COOH, C12E6COOH and C12E5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C12E9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. PMID:27037882

  20. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, Tonie E.; Yuill, Thomas M.

    1998-01-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

  1. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  2. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: a pilot scale study.

    PubMed

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-01

    The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35°C), thermophilic (55°C) and temperature phased (65+55°C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m(3)d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m(3)/kgVS(fed) at 35, 55, and 65+55°C, respectively. The extreme thermophilic reactor working at 65°C showed a high hydrolytic capability and a specific yield of 0.33 g COD (soluble) per gVS(fed). The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor. PMID:22305642

  3. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion.

    PubMed

    Hollister, Emily B; Forrest, Andrea K; Wilkinson, Heather H; Ebbole, Daniel J; Tringe, Susannah G; Malfatti, Stephanie A; Holtzapple, Mark T; Gentry, Terry J

    2012-01-01

    The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55 °C), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes. PMID:22761870

  4. Mesophilic and Thermophilic Conditions Select for Unique but Highly Parallel Microbial Communities to Perform Carboxylate Platform Biomass Conversion

    PubMed Central

    Hollister, Emily B.; Forrest, Andrea K.; Wilkinson, Heather H.; Ebbole, Daniel J.; Tringe, Susannah G.; Malfatti, Stephanie A.; Holtzapple, Mark T.; Gentry, Terry J.

    2012-01-01

    The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55°C), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes. PMID:22761870

  5. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. PMID:25682559

  6. Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii.

    PubMed

    Gudynaite-Savitch, Loreta; Gretes, Michael; Morgan-Kiss, Rachael M; Savitch, Leonid V; Simmonds, John; Kohalmi, Susanne E; Hüner, Norman P A

    2006-04-01

    Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii DeltapetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii DeltapetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b ( 6 ) /f complexes and exhibited lower light saturated rates of O(2) evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments. PMID:16425016

  7. Fecal-coliform bacteria in extended-aeration plant sludge

    SciTech Connect

    Anderson, M.; Kester, G.; Arant, S.

    1998-07-01

    The concentration of fecal-coliform bacteria in sludge from extended-aeration plants was analyzed for compliance with new state and federal land application requirements. This study was initiated to determine if additional digestion would be necessary for plants to meet the new pathogen standards of less than 2 million CFU per gm of solids. Sludge was found to contain less than 2 million fecal coliform bacteria/gm of sludge as a result of a combination or aerobic digestion and/or long term storage.

  8. Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia)

    NASA Astrophysics Data System (ADS)

    Merinero, Raúl; Ruiz-Bermejo, Marta; Menor-Salván, César; Lunar, Rosario; Martínez-Frías, Jesús

    2012-07-01

    The primary geochemical process at methane seeps is anaerobic oxidation of methane (AOM), performed by methanotrophic archaea and sulfate-reducing bacteria (SRB). The molecular fingerprints (biomarkers) of these chemosynthetic microorganisms can be preserved in carbonates formed through AOM. However, thermal maturity and aerobic degradation can change the original preserved compounds, making it difficult to establish the relation between AOM and carbonate precipitation. Here we report a study of amino acid and lipid abundances in carbonate matrices of aerobically altered pipes recovered from the seafloor of the Gulf of Cadiz (SW Iberian Peninsula). This area is characterized by a complex tectonic regime that supports numerous cold seeps. Studies so far have not determined whether the precipitation of carbonate pipes in the Gulf of Cadiz is a purely chemical process or whether microbial communities are involved. Samples from this site show signs of exposure to oxygenated waters and of aerobic alteration, such as oxidation of authigenic iron sulfides. In addition, the degradation index, calculated from the relative abundance of preserved amino acids, indicates aerobic degradation of organic matter. Although crocetane was the only lipid identified from methanotrophic archaea, the organic compounds detected (n-alkanes, regular isoprenoids and alcohols) are compatible with an origin from AOM coupled with bacterial sulfate reduction (BSR) and subsequent aerobic degradation. We establish a relation among AOM, BSR and pipe formation in the Gulf of Cadiz through three types of analysis: (1) stable carbon and oxygen isotopic composition of carbonate minerals; (2) carbonate microfabrics; and (3) mineralogical composition. Our results suggest that carbonate pipes may form through a process similar to the precipitation of vast amounts of carbonate pavements often found at cold seeps. Our approach suggests that some organic compound patterns, in combination with additional

  9. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these

  10. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    PubMed

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. PMID:27108212

  11. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  12. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  13. [Cultivation of aerobic granular sludge with municipal wastewater and studies on its characteristics under the continuous flow].

    PubMed

    Niu, Shu; Duan, Bai-Chuan; Zhang, Zuo-Li; Liu, Shi-Feng; Zhang, Jia-Ming; Wang, Cong; Zhou, Dan-Dan

    2013-03-01

    The aerobic granular sludge was cultivated successfully in a continuous-flow airlift aerobic granular sludge fluidized bed (CAFB), with low-concentration municipal sewage as the influent and flocculent activated sludge as the seeding sludge. The formation, characteristics and the biological diversity of the aerobic granules in the CAFB were investigated and analyzed. Experimental results showed that many dense and compact granules with diameter of 800-1 000 microm were formed as early as the 6th days operation. At the start-up stage, sludge volume index (SVI) decreased to 35 mL x g(-1), the mixed liquor suspended solid (MLSS) concentration increased to 6000 mg x L(-1), and the mass fraction of extracellular polymeric substances increased significantly. The granules presented a good biological diversity and high biomass contents at the steady running stage. The aerobic granules were basically composed of coccid and bacillus as observed by the scanning electron microscope. A large number of voids and channels were found to be located on the surface of the granules. The removal rate of COD maintained at 70% -75% at the steady stage of CAFB running, and the effluent COD concentrations were 70 mg x L(-1). At the 32nd day of operation, filamentous bacteria grew apparently and sludge bulking happened. Above results showed the CAFB aerobic granules formed rapidly, and performed a good ability on the pollutant removal. However, more work is necessary on the steady running of this novel bioreactor in the future. PMID:23745405

  14. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  15. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  16. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60

  17. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  18. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  19. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  20. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  1. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  2. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  3. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  4. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  5. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  6. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  7. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  8. Selecting anti-microbial treatment of aerobic vaginitis.

    PubMed

    Donders, Gilbert G G; Ruban, Katerina; Bellen, Gert

    2015-05-01

    Aerobic vaginitis (AV) is a vaginal infectious condition which is often confused with bacterial vaginosis (BV) or with the intermediate microflora as diagnosed by Nugent's method to detect BV on Gram-stained specimens. However, although both conditions reflect a state of lactobacillary disruption in the vagina, leading to an increase in pH, BV and AV differ profoundly. While BV is a noninflammatory condition composed of a multiplex array of different anaerobic bacteria in high quantities, AV is rather sparely populated by one or two enteric commensal flora bacteria, like Streptococcus agalactiae, Staphylocuccus aureus, or Escherichia coli. AV is typically marked by either an increased inflammatory response or by prominent signs of epithelial atrophy or both. The latter condition, if severe, is also called desquamative inflammatory vaginitis. As AV is per exclusionem diagnosed by wet mount microscopy, it is a mistake to treat just vaginal culture results. Vaginal cultures only serve as follow-up data in clinical research projects and are at most used in clinical practice to confirm the diagnosis or exclude Candida infection. AV requires treatment based on microscopy findings and a combined local treatment with any of the following which may yield the best results: antibiotic (infectious component), steroids (inflammatory component), and/or estrogen (atrophy component). In cases with Candida present on microscopy or culture, antifungals must be tried first in order to see if other treatment is still needed. Vaginal rinsing with povidone iodine can provide rapid relief of symptoms but does not provide long-term reduction of bacterial loads. Local antibiotics most suitable are preferably non-absorbed and broad spectrum, especially those covering enteric gram-positive and gram-negative aerobes, like kanamycin. To achieve rapid and short-term improvement of severe symptoms, oral therapy with amoxyclav or moxifloxacin can be used, especially in deep dermal vulvitis and

  9. Activity of Microorganisms in Acid Mine Water I. Influence of Acid Water on Aerobic Heterotrophs of a Normal Stream

    PubMed Central

    Tuttle, Jon H.; Randles, C. I.; Dugan, P. R.

    1968-01-01

    Comparison of microbial content of acid-contaminated and nonacid-contaminated streams from the same geographical area indicated that nonacid streams contained relatively low numbers of acid-tolerant heterotrophic microorganisms. The acid-tolerant aerobes survived when acid entered the stream and actually increased in number to about 2 × 103 per ml until the pH approached 3.0. The organisms then represented the heterotrophic aerobic microflora of the streams comprised of a mixture of mine drainage and nonacid water. A stream which was entirely acid drainage did not have a similar microflora. Most gram-positive aerobic and anaerobic bacteria died out very rapidly in acidic water, and they comprised a very small percentage of the microbial population of the streams examined. Iron- and sulfur-oxidizing autotrophic bacteria were present wherever mine water entered a stream system. The sulfur-oxidizing bacteria predominated over iron oxidizers. Ecological data from the field were verified by laboratory experiments designed to simulate stream conditions. PMID:5650063

  10. Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Liu, You-Sheng; Peng, Fu-Qiang; He, Liang-Ying

    2013-09-17

    Natural and synthetic progestagens in the environment have become a concern due to their adverse effects on aquatic organisms. Laboratory studies were performed to investigate aerobic biodegradation of norgestrel by bacteria from activated sludge in comparison with progesterone, and to identify their degradation products and biotransformation pathways. The degradation of norgestrel followed first order reaction kinetics (T1/2 = 12.5 d), while progesterone followed zero order reaction kinetics (T1/2 = 4.3 h). Four and eight degradation products were identified for norgestrel and progesterone, respectively. Six norgestrel-degrading bacterial strains (Enterobacter ludwigii, Aeromonas hydrophila subsp. dhakensis, Pseudomonas monteilii, Comamonas testosteroni, Exiguobacterium acetylicum, and Chryseobacterium indologenes) and one progesterone-degrading bacterial strain (Comamonas testosteroni) were successfully isolated from the enrichment culture inoculated with aerobic activated sludge. To our best knowledge, this is the first report on the biodegradation products and degrading bacteria for norgestrel under aerobic conditions. PMID:23952780

  11. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    PubMed

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  12. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  13. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 {sup o}C

    SciTech Connect

    Ferrer, Ivet; Campos, Elena; Flotats, Xavier

    2010-10-15

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 {sup o}C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 {sup o}C and 55 {sup o}C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH{sub 4}/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH{sub 4}/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  14. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  15. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions.

    PubMed

    Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Angelidaki, Irini

    2015-10-20

    This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4 production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted from the total sequences. The relative abundance of archaeal community markedly increased upon H2 addition with Methanoculleus as dominant genus. The increase of hydrogenotrophic methanogens and syntrophic Desulfovibrio and the decrease of aceticlastic methanogens indicate a H2-mediated shift toward the hydrogenotrophic pathway enhancing biogas upgrading. Moreover, Thermoanaerobacteraceae were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens in absence of aceticlastic methanogenesis. PMID:26390125

  16. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. PMID:24926605

  17. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    PubMed

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  18. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

    PubMed

    Gruhn, Marvin; Frigon, Jean-Claude; Guiot, Serge R

    2016-01-01

    This study compared the acidogenic fermentation of Scenedesmus sp.-AMDD at laboratory-scale, under mesophilic (35°C) and thermophilic conditions (55°C). Preliminary batch tests were performed to evaluate best conditions for volatile fatty acid (VFA) production from microalgal biomass, with respect to the inoculum, pH and nutrients. The use of bovine manure as inoculum, the operating pH of 4.5 and the addition of a nutrient mix, resulted in a high VFA production of up to 222mgg(-1) total volatile solid (TVS), with a butyrate share of 27%. Both digesters displayed similar hydrolytic activity with 0.38±0.02 and 0.42±0.03 g soluble chemical oxygen demand (COD)g(-1) TVS for the digesters operated at 35 and 55°C, respectively. Mesophilic conditions were more favorable for VFA production, which reached 171±5, compared to 88±12 mg soluble CODg(-1) TVS added under thermophilic conditions (94% more). It was shown that in both digesters, butyrate was the predominant VFA. PMID:26551650

  19. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    PubMed

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. PMID:24412592

  20. Adaptation of Psychrophilic and Psychrotrophic Sulfate-Reducing Bacteria to Permanently Cold Marine Environments

    PubMed Central

    Isaksen, M. F.; Jorgensen, B. B.

    1996-01-01

    The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6(deg)C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0(deg)C. The rates of sulfate reduction were measured by the (sup35)SO(inf4)(sup2-) tracer technique at different experimental temperatures in sediment slurries. In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate environments. In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19(deg)C during short-term incubations. However, over a 1-week incubation, the highest respiration rate was observed at 12.5(deg)C. Growth of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction. The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments. The results from sediment incubations were compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain ltk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28(deg)C in short-term incubations, even though it could not grow at temperatures above 24(deg)C. Furthermore, this strain showed its highest growth yield between 0 and 12(deg)C. In contrast, the mesophilic strain ak30 respired and grew optimally and showed its highest growth yield at 30 to 35(deg)C. PMID:16535228

  1. Effects of Storage in an Anaerobic Transport System on Bacteria in Known Polymicrobial Mixtures and in Clinical Specimens

    PubMed Central

    Hill, Gale B.

    1978-01-01

    An anaerobic transport system (ATS) which provides for catalytic removal of oxygen was evaluated by using in vitro-prepared polymicrobial mixtures of logphase bacteria and clinical specimens. Inoculated swabs were stored at room temperature in (i) aerobic, (ii) anaerobic glove box, and (iii) ATS environments, and bacteria were quantitated after 2, 24, 48, and 72 h. Bacteria in a three-part mixture of Bacteroides fragilis, Peptostreptococcus anaerobius, and Escherichia coli and in a five-part mixture of B. fragilis, P. anaerobius, Fusobacterium nucleatum, Staphylococcus epidermidis, and Pseudomonas aeruginosa survived 72 h of storage in the ATS and anaerobic glove box environments, but the anaerobic species were inactivated in the aerobic storage except for B. fragilis in pure culture or in the three-part mixture. Changes in relative proportions among the species in a mixture were least in the ATS and anaerobic glove box environments and greatest during the aerobic storage, particularly in the five-part mixture. Bacteria present in pure or mixed culture in clinical specimens generally survived 72 h of storage in the ATS. These data indicate that changes in relative proportions occur with prolonged storage even under anaerobic conditions, but that the ATS would be most effective for preserving anaerobic bacteria and preventing drastic concentration changes and overgrowth of facultative and aerobic bacteria. Images PMID:370142

  2. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  3. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  4. [Research advances in denitrogenation characteristics of aerobic denitrifiers].

    PubMed

    Liang, Shu-Cheng; Zhao, Min; Lu, Lei; Zhao, Li-Yan

    2010-06-01

    The discovery of aerobic denitrifiers is the enrichment and breakthrough of traditional denitrification theory. Owing to their unique superiority in denitrogenation, aerobic denitrifiers have become a hotspot in the study of bio-denitrogenation of waste water. Under aerobic conditions, the aerobic denitrifiers can utilize organic carbon sources for their growth, and produce N2 from nitrate and nitrite. Most of the denitrifiers can also proceed with heterotrophic nitrification simultaneously, transforming NH4(+)-N to gaseous nitrogen. In this paper, the denitrogenation characteristics and action mechanisms of some isolated aerobic denitrifiers were discussed from the aspects of electron theory and denitrifying enzyme system. The effects of the environmental factors DO, carbon sources, and C/N on the denitrogenation process of aerobic denitrifiers were analyzed, and the screening methods as well as the present and potential applications of aerobic denitrifiers in wastewater treatment were described and discussed. PMID:20873638

  5. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  6. Sterol Synthesis in Diverse Bacteria

    PubMed Central

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  7. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  8. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions.

    PubMed

    Tong, Huanhuan; Yin, Ke; Ge, Liya; Giannis, Apostolos; Chuan, Valerie W L; Wang, Jing-Yuan

    2015-04-28

    The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS. PMID:25682368

  9. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  10. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  11. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed Central

    Kästner, M

    1991-01-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  12. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    USGS Publications Warehouse

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  13. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed

    Kästner, M

    1991-07-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  14. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product. PMID:27235971

  15. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor.

    PubMed

    Song, Yanjun; Ishii, Satoshi; Rathnayake, Lashitha; Ito, Tsukasa; Satoh, Hisashi; Okabe, Satoshi

    2013-07-01

    In this study, partial nitrifying (PN) aerobic granules were developed in a sequencing batch airlift reactor by controlling the airflow rate and NH4(+) loading rate. The PN reactor produced an effluent with a NO2(-)/NH4(+) ratio of approximately one and with an NH4(+) conversion rate of 1.22 kg N m(-3)day(-1). More than 95% of the total organic carbon was removed during the process. On the basis of clone library analysis and fluorescence in situ hybridization, ammonia-oxidizing bacteria (AOB) closely related to Nitrosomonas eutropha and putative heterotrophic denitrifiers were mainly present near the surface of the PN aerobic granules. Microelectrode measurements revealed that both NH4(+) and NO2(-) were consumed near the surface (<200 μm), whereas no nitrate (NO3(-)) accumulation was observed throughout the granules. These results indicate that PN by AOB and nitrite denitrification by heterotrophs, but not nitrite oxidation, simultaneously occurred near the surface of the PN aerobic granules. PMID:23665689

  16. Clinical comparison of the isolator and BacT/Alert aerobic blood culture systems.

    PubMed Central

    Hellinger, W C; Cawley, J J; Alvarez, S; Hogan, S F; Harmsen, W S; Ilstrup, D M; Cockerill, F R

    1995-01-01

    The performance characteristics of the Isolator (Wampole Laboratories, Cranbury, N.J.) and the BacT/Alert (Organon Teknika Corporation, Durham, N.C.) aerobic blood culture systems were compared for 6,009 blood culture sets obtained from patients with suspected bloodstream infections. The BacT/Alert aerobic bottle [BTA(O2)] was continuously agitated while it was incubated in 5% CO2 at 36 degrees C; culture plates prepared from the Isolator tube [I(O2)] were incubated in 5% CO2 at 37 degrees C. From 394 blood cultures, 416 clinically significant isolates of bacteria and yeasts were recovered. The overall yields for BTA(O2) and I(O2) were not significantly different (319 versus 336; P = 0.20). I(O2) recovered significantly more staphylococcus (P < 0.05) and yeast isolates (P < 0.01). BTA(O2) recovered significantly more aerobic and facultatively anaerobic gram-negative bacilli (P < 0.05). In blood culture sets which produced growth of the same organisms in both the BTA(O2) and I(O2) systems, the BTA(O2) system detected growth sooner, but more rapid identification was possible with the I(O2) system by virtue of earlier isolation of colonies on solid media. PMID:7665647

  17. Aerobic workout and bone mass in females.

    PubMed

    Alfredson, H; Nordström, P; Lorentzon, R

    1997-12-01

    This cross-sectional study aimed to investigate bone mass in females participating in aerobic workout. Twenty-three females (age 24.1 +/- 2.7 years), participating in aerobic workout for about 3 hours/week, were compared with 23 age-, weight- and height-matched non-active females. Areal bone mineral density (BMD) was measured in total body, head, whole dominant humerus, lumbar spine, right femoral neck, Ward's triangle, trochanter femoris, in specific sites in right femur diaphysis, distal femur, proximal tibia and tibial diaphysis, and bone mineral content (BMC) was measured in the whole dominant arm and right leg, using dual energy X-ray absorptiometry. The aerobic workout group had significantly (P < 0.05-0.01) higher BMD in total body (3.7%), lumbar spine (7.8%), femoral neck (11.6%), Ward's triangle (11.7%), trochanter femoris (9.6%), proximal tibia (6.8%) and tibia diaphysis (5.9%) compared to the non-active controls. There were no differences between the groups concerning BMD of the whole dominant humerus, femoral diaphysis, distal femur and BMC and lean mass of the whole dominant arm and right leg. Leaness of the whole dominant arm and leg was correlated to BMC of the whole dominant arm and right leg in both groups. In young females, aerobic workout containing alternating high and low impact movements for the lower body is associated with a higher bone mass in clinically important sites like the lumbar spine and hip, but muscle strengthening exercises like push-ups and soft-glove boxing are not associated with a higher bone mass in the dominant humerus. It appears that there is a skeletal adaptation to the loads of the activity. PMID:9458499

  18. CHAPTER IV-2 BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic bacteria provide an alternative to chemical pesticides used in insect control programs. Today, the principal microbial insecticides utilize spore forming bacteria or toxins produced by these bacteria as their active ingredients, either in formulations or by incorporation of toxin g...

  19. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.

    PubMed

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-10-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with fresh- or cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic- and sorbic acid and the interaction between these environmental factors. Growth models were developed by combining new and existing cardinal parameter values. Subsequently, the reference growth rate parameters (μref at 25°C) were fitted to a total of 52 growth rates from cottage cheese to improve model performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese. The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias- and accuracy factors and with the concept of acceptable simulation zone. Evaluation of predicted growth rates of L. monocytogenes in cottage cheese with fresh- or cultured cream dressing resulted in bias-factors (Bf) of 1.07-1.10 with corresponding accuracy factor (Af) values of 1.11 to 1.22. Lactic acid bacteria from added starter culture were on average predicted to grow 16% faster than observed (Bf of 1.16 and Af of 1.32) and growth of the diacetyl producing aroma culture was on average predicted 9% slower than observed (Bf of 0.91 and Af of 1.17). The acceptable simulation zone method showed the new models to successfully predict maximum population density of L. monocytogenes when growing together with lactic acid bacteria in cottage cheese. 11 of 13 simulations of L

  20. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product. PMID:26512862

  1. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  2. Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor.

    PubMed

    Jemaat, Zulkifly; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián

    2013-12-01

    The chemical and petrochemical industries produce wastewaters containing ammonium and phenolic compounds. Biological treatment of these wastewaters could be problematic due to the possible inhibitory effects exerted by phenolic compounds. The feasibility of performing simultaneous nitritation and p-nitrophenol (PNP) biodegradation using a continuous aerobic granular reactor was evaluated. A nitrifying granular sludge was bioaugmented with a PNP-degrading floccular sludge, while PNP was progressively added to the feed containing a high ammonium concentration. Nitritation was sustained throughout the operational period with ca. 85% of ammonium oxidation and less than 0.3% of nitrate in the effluent. PNP biodegradation was unstable and the oxygen limiting condition was found to be the main explanation for this unsteadiness. An increase in dissolved oxygen concentration from 2.0 to 4.5 mg O2 L(-1) significantly enhanced PNP removal, achieving total elimination. Acinetobacter genus and ammonia-oxidising bacteria were the predominant bacteria species in the granular biomass. PMID:24177164

  3. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages. PMID:19573197

  4. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS. PMID:24520715

  5. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.

    PubMed

    Kohrs, F; Heyer, R; Magnussen, A; Benndorf, D; Muth, T; Behne, A; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2014-10-01

    Biogas production from energy crops and biodegradable waste is one of the major sources for renewable energies in Germany. Within a biogas plant (BGP) a complex microbial community converts biomass to biogas. Unfortunately, disturbances of the biogas process occur occasionally and cause economic losses of varying extent. Besides technical failures the microbial community itself is commonly assumed as a reason for process instability. To improve the performance and efficiency of BGP, a deeper knowledge of the composition and the metabolic state of the microbial community is required and biomarkers for monitoring of process deviations or even the prediction of process failures have to be identified. Previous work based on 2D-electrophoresis demonstrated that the analysis of the metaproteome is well suited to provide insights into the apparent metabolism of the microbial communities. Using SDS-PAGE with subsequent mass spectrometry, stable protein patterns were evaluated for a number of anaerobic digesters. Furthermore, it was shown that severe changes in process parameters such as acidification resulted in significant modifications of the metaproteome. Monitoring of changing protein patterns derived from anaerobic digesters, however, is still a challenge due to the high complexity of the metaproteome. In this study, different combinations of separation techniques to reduce the complexity of proteomic BGP samples were compared with respect to the subsequent identification of proteins by tandem mass spectrometry (MS/MS): (i) 1D: proteins were tryptically digested and the resulting peptides were separated by reversed phase chromatography prior to MS/MS. (ii) 2D: proteins were separated by GeLC-MS/MS according to proteins molecular weights before tryptic digestion, (iii) 3D: proteins were separated by gel-free fractionation using isoelectric focusing (IEF) conducted before GeLC-MS/MS. For this study, a comparison of two anaerobic digesters operated at mesophilic and at

  6. Aerobic/anoxic post-treatment of anaerobically digested sewage sludge as an alternative to biological nitrogen removal from reject water.

    PubMed

    Morras, Mikel; Dosta, J; García-Heras, J L

    2015-05-01

    Stabilisation and biological nitrogen removal (BNR) of anaerobically digested sewage sludge were studied in a post-aeration reactor at pilot scale working under alternating anoxic-aerobic conditions. Digested sludge came from a two-stage anaerobic digestion (thermophilic + mesophilic). The best post-aerator performance was achieved when working at an HRT of 10 days (4 days aerobic; dissolved oxygen of 1.8 mg L(-1)) and VS content in the feed no lower than 6.7 g L(-1). Free ammonia concentration values in the effluent above 1.5 mg N L(-1) (around 150 mg NH4 (+)-N L(-1) at pH 7) were necessary to promote the BNR over nitrite. Removal efficiencies up to 80 % NH4 (+)-N, 50-55 % total nitrogen and 15-20 % VS were recorded in this study, with no external addition of chemicals. A nitrogen mass balance revealed that the high percent of NH4 (+)-N assimilated in heterotrophic growth was counteracted with that released in ammonification and fermentation, leading to a NH4 (+)-N removal mainly related to biological nitritation/denitritation. PMID:25407727

  7. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    PubMed

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. PMID:25725204

  8. Formation of aerobic granular sludge under adverse conditions: low DO and high ammonia.

    PubMed

    Zhang, Sheng-Hua; Zhang, Xiao-Hu; Lv, Lu; Wang, Qing; Jiang, Qipei

    2013-04-01

    In this study, two adverse environments: low dissolved oxygen (DO) and high ammonia concentration, were employed to investigate the morphology, interspecies quorum sensing, extracellular polymers (EPS) characterization and microbial communities in the formation of aerobic granular sludge. Results showed that low DO could promote filamentous bacterial outgrowth. Under high ammonia concentration aerobic granular sludge (AGS) could still be cultivated, although it was looser and lighter than the control group. During the early stage of the AGS cultivation process, Al-2 activity reached a peak value in all three reactors, and ultrasonic pre-treatment was not beneficial to the release of Al-2. During AGS formation, the production of polysaccharide exhibited increases from 12.2% to 40.3%, 49.6%, and 29.3%. And PS in R2 was the highest as the result of sludge bulking. PS/PN was 1.5 to approximately 8 in the three reactors. Three-dimensional EEM fuorescence spectroscopy variation indicated the change of protein in EPS, and the highest intensity of Peak T1 was obtained. The location shift of Peak T1 was not obvious, and Peaks A, C, and T2 shifted toward longer wavelengths (red shift) of 5 to approximately 60 nm, or shorter wavelengths (blue shift) of 10 to approximately 25 nm on the emission scale and/or excitation scale in all three reactors. This provided spectral information on the chemical structure changes. Bacteria in R3 had the highest species diversity, and all bacteria in beta-Proteobacteria were identified as genus Thauera, which suggested that simultaneous nitrification and denitrification occurred in R3. The filamentous bacteria in seed sludge and R2 were species-richer. There was a low abundance of filamentous bacteria in R1 and R3, which contributed to the granule structure stability. PMID:24620612

  9. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent

    NASA Technical Reports Server (NTRS)

    Oyaizu, H.; Debrunner-Vossbrinck, B.; Mandelco, L.; Studier, J. A.; Woese, C. R.

    1987-01-01

    Ribosomal RNA sequence comparisons define a phylogenetic grouping, the green non-sulfur bacteria and relatives (GNS), known to contain the genera Chloroflexus, Herpetosiphon and Thermomicrobium--organisms that have little phenotypic similarity. The unit is phylogenetically deep, but entirely distinct from any other eubacterial division (phylum). It is also relatively ancient--branching from the common eubacterial stem earlier than any other group of eubacteria reported thus far. The group phenotype is predominantly thermophilic, and its thermophilic members, especially Thermomicrobium, are more slowly evolving than Herpetosiphon, a mesophile. The GNS unit appears significantly older than either the green sulfur bacteria or the cyanobacteria--making it likely that organisms such as Chloroflexus, not the cyanobacteria, generated the oldest stromatolites, which formed over three billion years ago.

  10. Draft Genome Sequence of Syntrophomonas wolfei subsp. methylbutyratica Strain 4J5T (JCM 14075), a Mesophilic Butyrate- and 2-Methylbutyrate-Degrading Syntroph

    PubMed Central

    Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Liu, Wen-Tso

    2016-01-01

    Syntrophomonas wolfei subsp. methylbutyratica strain 4J5T (=JCM 14075T) is a mesophilic bacterium capable of degrading butyrate and 2-methylbutyrate through syntrophic cooperation with a partner methanogen. The draft genome sequence is 3.2 Mb, with a G+C content of 45.5%. PMID:26941138

  11. Surface Changes in Mild Steel Coupons from the Action of Corrosion-Causing Bacteria

    PubMed Central

    Obuekwe, Christian O.; Westlake, Donald W. S.; Cook, Fred D.; William Costerton, J.

    1981-01-01

    Changes which occur on the surface of mild steel coupons submerged in cultures of an Fe(III)-reducing bacterium, isolated from corroded pipe systems carrying crude oil, were studied microscopically to investigate the interaction between the corrosion-causing bacterium and the corroding mild steel coupon. Under micro-aerobic conditions and in the absence of the bacteria, a dense, crystalline, amorphous coat formed on the surface of the steel coupons. In the presence of bacteria the surface coat was extensively removed, exposing the bare metal to the environment. After about 2 weeks of exposure, the removal of the surface coating was followed by colonization of the metal surface by the bacteria. Colonization was mediated by fibrous, exopolysaccharidic material formed by the bacteria. Extension of studies to other bacteria isolated from crude oil and corroded pipes reveals that the formation of exopolysaccharide fibers and possession of adherent properties are common characteristics of bacteria from crude oil systems. Images PMID:16345735

  12. Diversity and ecology of oxalotrophic bacteria.

    PubMed

    Hervé, Vincent; Junier, Thomas; Bindschedler, Saskia; Verrecchia, Eric; Junier, Pilar

    2016-02-01

    Oxalate is present in environments as diverse as soils or gastrointestinal tracts. This organic acid can be found as free acid or forming metal salts (e.g. calcium, magnesium). Oxalotrophy, the ability to use oxalate as carbon and energy sources, is mainly the result of bacterial catabolism, which can be either aerobic or anaerobic. Although some oxalotrophic bacterial strains are commonly used as probiotics, little is known about the diversity and ecology of this functional group. This review aims at exploring the taxonomic distribution and the phylogenetic diversity of oxalotrophic bacteria across biomes. In silico analyses were conducted using the two key enzymes involved in oxalotrophy: formyl-coenzyme A (CoA) transferase (EC 2.8.3.16) and oxalyl-CoA decarboxylase (EC 4.1.1.8), encoded by the frc and oxc genes, respectively. Our analyses revealed that oxalate-degrading bacteria are