Science.gov

Sample records for aerobic methane release

  1. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  2. Methane-Derived Hydrogen in Lipids Produced by Aerobic Methanotrophs

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Jahnke, L. L.; Schimmelmann, A.; Hayes, J. M.

    2001-12-01

    Combined hydrogen- and carbon-isotopic analyses of methane often provide important clues about its origin. Unfortunately, methane is not preserved in the geologic record so these analyses can only examine trapped or actively produced methane. The lipids of microorganisms that consume methane potentially record its isotopic composition, and are accessible throughout most of the geologic record. Those lipids therefore represent a potential means for examining the characteristics of methane released into the oceans over geologic history. We have examined the hydrogen-isotopic relationships between methane and lipids in the aerobic methanotroph Methylococcus capsulatus using cultures in which the D/H ratio of supplied water and methane were controlled independently. Resulting δ D values were measured for a range of fatty acids, sterols, and hopanols using isotope-ratio-monitoring gas chromatography/mass spectrometry. We estimate that 31 +/- 2% of hydrogen in every lipid we examined is derived from methane, regardless of whether cultures were harvested in exponential or stationary phase. The biochemical pathways responsible for the transfer of hydrogen from methane to lipids are not fully understood. Isotope fractionation associated with the utilization of methane (i.e., α lipid/methane) averages 0.986 for fatty acids and 0.789 for isoprenoid lipids. For water, fractionation (α lipid/water) averages 0.938 for fatty acids and 0.831 for isoprenoid lipids. Given typical δ D values for seawater (0%) and thermogenic `dry' methane (-150‰ ), fatty acids from M. capsulatus should have δ D values near -95‰ , and isoprenoids should have δ D values near -215‰ . Using δ Dmethane = -300‰ , a value near the lower limit of those for biogenic methanes, we predict δ D values for methanotroph fatty acids and isoprenoid lipids of -140 and -260‰ , respectively. It appears possible that D/H measurements of lipids from methanotrophic bacteria will provide useful hydrogen

  3. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  4. Lipid Biomarkers Indicating Aerobic Methanotrophy at Ancient Marine Methane- Seeps

    NASA Astrophysics Data System (ADS)

    Birgel, D.; Peckmann, J.

    2007-12-01

    The inventory of lipid biomarkers of a number of ancient methane-seep limestones has been studied over the last decade. The molecular fingerprints of the chemosynthesis-based microbial communities tend to be extremely well-preserved in these limestones. The key process at seeps is the anaerobic oxidation of methane, performed by consortia of sulfate-reducing bacteria and methanotrophic archaea. Compounds preserved within modern and ancient seep settings comprise C-13-depleted lipid biomarkers. Besides the occurrence of C-13- depleted isoprenoids (archaea) and n-alkyl-chains (bacteria), C-13-depleted hopanoids have been reported in seep limestones. Here, lipid biomarker data are presented from three ancient methane-seep limestones embedded in Miocene and Campanian strata. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. In a Miocene limestone, 3-beta-methylated hopanoids were found (delta C-13: -100 per mil). Most likely, 3-beta-methylated hopanepolyols, prevailing in aerobic methanotrophs were the precursor lipids. In another Miocene limestone, a series of C-13-depleted 4-methylated steranes (lanostanes; -80 to -70 per mil) is derived from aerobic methanotrophs. Lanosterol is the most likely precursor of lanostanes, known to be produced by aerobic methanotrophs, some of which are outstanding among bacteria in having the capacity to produce steroids. In a Campanian seep limestone a suite of conspicuous secohexahydrobenzohopanes (-110 to -107 per mil) is found. These hopanoids probably represent early degradation products of seep-endemic aerobic methanotrophs. This interpretation is supported by the presence of "regular" hopanoids that can be discriminated from the unusual secohexahydrobenzohopanes by only moderately low delta C-13 values (-49 to -42 per mil). Structural and carbon isotope data reveal that aerobic methanotrophy is more common at ancient methane- seeps than previously noticed. Our data indicate that

  5. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  6. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  7. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  8. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  9. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean

    PubMed Central

    Metcalf, William W.; Griffin, Benjamin M.; Cicchillo, Robert M.; Gao, Jiangtao; Janga, Sarath Chandra; Cooke, Heather A.; Circello, Benjamin T.; Evans, Bradley S.; Martens-Habbena, Willm; Stahl, David A.; van der Donk, Wilfred A.

    2012-01-01

    Relative to the atmosphere, much of the aerobic ocean is supersaturated with methane; however, the source of this important greenhouse gas remains enigmatic. Catabolism of methylphosphonic acid by phosphorus-starved marine microbes, with concomitant release of methane, has been suggested to explain this phenomenon, yet methylphosphonate is not a known natural product, nor has it been detected in natural systems. Further, its synthesis from known natural products would require unknown biochemistry. Here we show that the marine archaeon Nitrosopumilus maritimus encodes a pathway for methylphosphonate biosynthesis and that it produces cell-associated methylphosphonate esters. The abundance of a key gene in this pathway in metagenomic datasets suggests that methylphosphonate biosynthesis is relatively common in marine microbes, providing a plausible explanation for the methane paradox. PMID:22936780

  10. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  11. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  12. Dark aerobic methane emission associated to leaf factors of two Acacia and five Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Watanabe, Makoto; Watanabe, Yoko; Kim, Yong Suk; Koike, Takayoshi

    2012-07-01

    We sought the biological factors determining variations in the methane emission rates from leaves of different plant species under aerobic conditions. Accordingly, we studied relations between the methane emission rate and leaf traits of two Acacia and five Eucalyptus species. We grew seedlings of each species in a glasshouse and measured the methane emission rate of the detached leaves under dark conditions at 30 °C. At the same time we measured the leaf mass per area (LMA), water content, and concentrations of carbon and nitrogen. There was no correlation between the leaf nitrogen concentration and the methane emission rate. This is consistent with previous findings that enzymatic processes do not influence methane emission. We found a significant negative correlation between LMA and the methane emission rate. Our results suggest that leaf structure is primarily responsible for differences in the rates of aerobic methane emission from leaves of different species.

  13. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  14. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  15. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K.; Sepulveda-Jauregui, A.; Anthony, K. Walter; Thalasso, F.

    2015-08-01

    Methanotrophic bacteria play an important role oxidizing a significant fraction of methane (CH4) produced in lakes. Aerobic CH4 oxidation depends mainly on lake CH4 and oxygen (O2) concentrations, in such a manner that higher MO rates are usually found at the oxic/anoxic interface, where both molecules are present. MO also depends on temperature, and via methanogenesis, on organic carbon input to lakes, including from thawing permafrost in thermokarst (thaw)-affected lakes. Given the large variability in these environmental factors, CH4 oxidation is expected to be subject to large seasonal and geographic variations, which have been scarcely reported in the literature. In the present study, we measured CH4 oxidation rates in 30 Alaskan lakes along a north-south latitudinal transect during winter and summer with a new field laser spectroscopy method. Additionally, we measured dissolved CH4 and O2 concentrations. We found that in the winter, aerobic CH4 oxidation was mainly controlled by the dissolved O2 concentration, while in the summer it was controlled primarily by the CH4 concentration, which was scarce compared to dissolved O2. The permafrost environment of the lakes was identified as another key factor. Thermokarst (thaw) lakes formed in yedoma-type permafrost had significantly higher CH4 oxidation rates compared to other thermokarst and non-thermokarst lakes formed in non-yedoma permafrost environments. As thermokarst lakes formed in yedoma-type permafrost have been identified to receive large quantities of terrestrial organic carbon from thaw and subsidence of the surrounding landscape into the lake, confirming the strong coupling between terrestrial and aquatic habitats and its influence on CH4 cycling.

  16. Evaluation of Heat Induced Methane Release from Methane Hydrates

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Elwood-Madden, M.; Phelps, T. J.; Rawn, C. J.

    2010-12-01

    Clathrates, or gas hydrates, structurally are guest gas molecules populating a cavity in a cage of water molecules. Gas hydrates naturally occur on Earth under low temperature and moderate pressure environments including continental shelf, deep ocean, and permafrost sediments. Large quantities of methane are trapped in hydrates, providing significant near-surface reserves of carbon and energy. Thermodynamics predicts that hydrate deposits may be destabilized by reducing the pressure in the system or raising the temperature. However, the rate of methane release due to varying environmental conditions remains relatively unconstrained and complicated by natural feedback effects of clathrate dissociation. In this study, hydrate dissociation in sediment due to localized increases in temperature was monitored and observed at the mesoscale (>20L) in a laboratory environment. Experiments were conducted in the Seafloor Process Simulator (SPS) at Oak Ridge National Laboratory (ORNL) to simulate heat induced dissociation. The SPS, containing a column of Ottawa sand saturated with water containing 25mg/L Sno-Max to aid nucleation, was pressurized and cooled well into the hydrate stability field. A fiber optic distributed sensing system (DSS) was embedded at four depths in the sediment column. This allowed the temperature strain value (a proxy for temperature) of the system to be measured with high spatial resolution to monitor the clathrate formation/dissociation processes. A heat exchanger embedded in the sediment was heated using hot recirculated ethylene glycol and the temperature drop across the exchanger was measured. These experiments indicate a significant and sustained amount of heat is required to release methane gas from hydrate-bearing sediments. Heat was consumed by hydrate dissociated in a growing sphere around the heat exchanger until steady state was reached. At steady state all heat energy entering the system was consumed in maintaining the temperature profile

  17. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    accumulation of chloride ions either in spent media or in slurries prepared from Searsville Lake soil, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soils enriched in methanotrophs. This result leads us to surmise that the release of O2 during enzymatic perchlorate reduction was low, and that the oxygen produced was unavailable to the aerobic methanotrophs. This was borne out by patterns of O2 and CO2 production during experiments with lake soil, growth media, and pure cultures of dissimilatory perchlorate reducing bacteria. We observed that O2 release during incubation of D. agitata CKB with 10 mM ClO4- or ClO3- was decoupled from metabolism. More O2 was released during incubations without added acetate than with 10 mM acetate and an even greater amount of O2 was released during incubation with heat-killed cells. This suggests a chemical mechanism of O2 production during reaction with ClO4- and ClO3-. Hence, perchlorate reducing bacteria need not be present to facilitate O2 release from the surface of Mars, in support of recent interpretations of Viking LR and GEx experiments.

  18. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S. M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; Hoppert, M.

    2012-07-01

    Methane oxidizing prokaryotes are ubiquitous in oxic and anoxic habitats wherever C1-compounds are present. Thus, methane saturated mud volcano fluids should be a preferred habitat of methane consuming prokaryotes, using the readily available electron donors. In order to understand the relevance of methane as a carbon and energy source in mud volcano communities, we investigate the diversity of prokaryotic organisms involved in oxidation of methane in fluid samples from the Salse di Nirano mud volcano field situated in the Northern Apennines. Cell counts were at approximately 0.7 × 106 microbial cells/ml. A fraction of the microbial biomass was identified as ANME (anaerobic methanotroph) archaea by fluorescence in situ hybridization (FISH) analysis. They are associated in densely colonized flakes, of some tens of μm in diameter, embedded in a hyaline matrix. Diversity analysis based on the 16S rDNA genes, retrieved from amplified and cloned environmental DNA, revealed a high proportion of archaea, involved in anaerobic oxidation of methane (AOM). Aerobic methane-oxidizing proteobacteria could be highly enriched from mud volcano fluids, indicating the presence of aerobic methanotrophic bacteria, which may contribute to methane oxidation, whenever oxygen is readily available. The results imply that biofilms, dominated by ANME archaea, colonize parts of the mud volcano venting system.

  19. Review of methane mitigation technologies with application to rapid release of methane from the Arctic.

    PubMed

    Stolaroff, Joshuah K; Bhattacharyya, Subarna; Smith, Clara A; Bourcier, William L; Cameron-Smith, Philip J; Aines, Roger D

    2012-06-19

    Methane is the most important greenhouse gas after carbon dioxide, with particular influence on near-term climate change. It poses increasing risk in the future from both direct anthropogenic sources and potential rapid release from the Arctic. A range of mitigation (emissions control) technologies have been developed for anthropogenic sources that can be developed for further application, including to Arctic sources. Significant gaps in understanding remain of the mechanisms, magnitude, and likelihood of rapid methane release from the Arctic. Methane may be released by several pathways, including lakes, wetlands, and oceans, and may be either uniform over large areas or concentrated in patches. Across Arctic sources, bubbles originating in the sediment are the most important mechanism for methane to reach the atmosphere. Most known technologies operate on confined gas streams of 0.1% methane or more, and may be applicable to limited Arctic sources where methane is concentrated in pockets. However, some mitigation strategies developed for rice paddies and agricultural soils are promising for Arctic wetlands and thawing permafrost. Other mitigation strategies specific to the Arctic have been proposed but have yet to be studied. Overall, we identify four avenues of research and development that can serve the dual purposes of addressing current methane sources and potential Arctic sources: (1) methane release detection and quantification, (2) mitigation units for small and remote methane streams, (3) mitigation methods for dilute (<1000 ppm) methane streams, and (4) understanding methanotroph and methanogen ecology. PMID:22594483

  20. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  1. Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia)

    NASA Astrophysics Data System (ADS)

    Merinero, Raúl; Ruiz-Bermejo, Marta; Menor-Salván, César; Lunar, Rosario; Martínez-Frías, Jesús

    2012-07-01

    The primary geochemical process at methane seeps is anaerobic oxidation of methane (AOM), performed by methanotrophic archaea and sulfate-reducing bacteria (SRB). The molecular fingerprints (biomarkers) of these chemosynthetic microorganisms can be preserved in carbonates formed through AOM. However, thermal maturity and aerobic degradation can change the original preserved compounds, making it difficult to establish the relation between AOM and carbonate precipitation. Here we report a study of amino acid and lipid abundances in carbonate matrices of aerobically altered pipes recovered from the seafloor of the Gulf of Cadiz (SW Iberian Peninsula). This area is characterized by a complex tectonic regime that supports numerous cold seeps. Studies so far have not determined whether the precipitation of carbonate pipes in the Gulf of Cadiz is a purely chemical process or whether microbial communities are involved. Samples from this site show signs of exposure to oxygenated waters and of aerobic alteration, such as oxidation of authigenic iron sulfides. In addition, the degradation index, calculated from the relative abundance of preserved amino acids, indicates aerobic degradation of organic matter. Although crocetane was the only lipid identified from methanotrophic archaea, the organic compounds detected (n-alkanes, regular isoprenoids and alcohols) are compatible with an origin from AOM coupled with bacterial sulfate reduction (BSR) and subsequent aerobic degradation. We establish a relation among AOM, BSR and pipe formation in the Gulf of Cadiz through three types of analysis: (1) stable carbon and oxygen isotopic composition of carbonate minerals; (2) carbonate microfabrics; and (3) mineralogical composition. Our results suggest that carbonate pipes may form through a process similar to the precipitation of vast amounts of carbonate pavements often found at cold seeps. Our approach suggests that some organic compound patterns, in combination with additional

  2. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  3. Strong release of methane on Mars in northern summer 2003.

    PubMed

    Mumma, Michael J; Villanueva, Geronimo L; Novak, Robert E; Hewagama, Tilak; Bonev, Boncho P; Disanti, Michael A; Mandell, Avi M; Smith, Michael D

    2009-02-20

    Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane could be a signature of either origin. Using high-dispersion infrared spectrometers at three ground-based telescopes, we measured methane and water vapor simultaneously on Mars over several longitude intervals in northern early and late summer in 2003 and near the vernal equinox in 2006. When present, methane occurred in extended plumes, and the maxima of latitudinal profiles imply that the methane was released from discrete regions. In northern midsummer, the principal plume contained approximately 19,000 metric tons of methane, and the estimated source strength (>/=0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California. PMID:19150811

  4. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  5. Modeling of methane release from intact coal

    SciTech Connect

    Odintsev, V.N.

    2005-09-15

    Development of percolating clusters when loading samples of a geomaterial that is hierarchically and stochastically heterogeneous is modeled. The conditions are analyzed for propagation of crack under pressure of methane in the transition phase from a bound state into a free one on the faces of the growing crack in coal.

  6. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane

    SciTech Connect

    Quay, P.D.; King, S.L.; Lansdown, J.M.; Wilbur, D.O. )

    1988-12-01

    Measurements of the delta-C{sup 13} of methane released from tropical, temperate, and arctic wetland sites are reported. The mean delta C{sup 13} values (relative to PDB carbonate standard) for peat bogs and Alaskan tundra are {minus}53 + or{minus}8, {minus}66 + or{minus}5 and {minus}64 + or{minus}5{per thousand}, respectively. These measurements combined with methane flux estimates yield a flux-weighted global average delta-C{sup 13} value of {minus}59 + or{minus}6{per thousand} for methane released from wetlands, a major natural methane source. The agreement between the measured delta-C{sup 13} for methane emitted from wetlands and the calculated steady state value of approximately {minus}6{per thousand} for the delta-C{sup 13} of preindustrial methane sources suggests that methane was predominantly produced biogenically in the preindustrial era. The industrial era time rate of change of the delta-C{sup 13} of the global methane flux is calculated from estimates of the growth rate of the major anthropogenically derived methane sources and the C{sup 13} composition of these sources, and compared to the measured change in the delta-C{sup 13} of methane during the last 300 years. Based on these results, it is estimated that 13 + or{minus}8% of the current global methane flux is derived abiogenically from natural gas and biomass burning, whereas the remainder is derived biogenically primarily from wetlands, rice paddies, and livestock. 40 refs., 5 figs., 2 tabs.

  7. Biogeochemical distinction of methane releases from two Amazon hydroreservoirs.

    PubMed

    Lima, Ivan Bergier Tavares

    2005-06-01

    Biogeochemical distinction of methane emissions to the atmosphere may essentially rely on the surface area and morphometry of Amazon hydroreservoirs. Tucurui (deep) and Samuel (shallow) reservoirs released in average 13.82+/-22.94 and 71.19+/-107.4 mg CH4 m(-2)d(-1), respectively. delta13C-CH4 values from the sediments to the atmosphere indicate that the deep reservoir has extended methanotrophic layer, oxidizing large quantities of light isotope methane coming from the sediments, while sediment-generated methane can easily evade the shallow reservoir. PMID:15894055

  8. Methane release from seeps offshore W-Svalbard: Considerations to extrapolate fluxes into the water/atmosphere

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Veloso, M.; Mienert, J.; Sommer, S.; Bussmann, I.; Haren, H.

    2012-04-01

    Increased (5-100 nM) and sometimes strongly increased (> 100 nM) methane concentrations in the water column, at the sea surface and even in the atmosphere (8 ppm) have been reported from Arctic areas. Some increases are clearly related to localized methane seep sites, others show a strong link to river runoff or to a widely spread (diffuse) methane release from degrading organic matter possibly linked to thawing permafrost. An important question in the marine science community is if the warming of the Arctic is already accelerating methane fluxes from the seabed into the water column and whether we are experiencing a significant flux into the atmosphere. Marine methane fluxes from localized seep sites have been studied for several decades already and the general biogeochemical processes and transport mechanisms have been identified (e.g. AOM, carbonate precipitation, bubble release, sea-atmosphere fluxes) and are fairly well understood. But we still know very little about the temporal variability of methane release and the link to thawing offshore permafrost is still very un-researched. Two areas, the Eastern Siberian Shelf and W-Spitzbergen have been targeted by repeated research cruises to gain more knowledge about this topic. Here, we present work from W-Spitzbergen carried out from 2009 to 2011. Since the discovery of methane seepage offshore Svalbard in 2008 (Westbrook et al., 2008), there has been an international effort to study this area by geophysical, oceanographic, visual and geochemical methods. Repeated hydroacoustic surveys with singlebeam and multibeam systems proved that bubble release in seep areas, at the upper gas hydrate boundary and the shelf edge has been continuous over the three years period. However, specific bubble releasing vents do show intermediate activity with episodic or cyclic release. In addition to this inconstant release, changing currents and internal waves physically influence the methane distribution in the water column, in

  9. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    NASA Astrophysics Data System (ADS)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  10. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature. PMID:9464387

  11. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases.

    PubMed

    Ma, Jie; Luo, Hong; Devaull, George E; Rixey, William G; Alvarez, Pedro J J

    2014-01-01

    Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could pose an explosion risk if methane accumulates in a confined space above the ground where ignitable conditions exist. Ethanol-derived methane may also increase the vapor intrusion potential of toxic fuel hydrocarbons by stimulating the depletion of oxygen by methanotrophs, and thus inhibiting aerobic biodegradation of hydrocarbon vapors. To assess these processes, a three-dimensional numerical vapor intrusion model was used to simulate the degradation, migration, and intrusion pathway of methane and benzene under different site conditions. Simulations show that methane is unlikely to build up to pose an explosion hazard (5% v/v) if diffusion is the only mass transport mechanism through the deeper vadose zone. However, if methanogenic activity near the source zone is sufficiently high to cause advective gas transport, then the methane indoor concentration may exceed the flammable threshold under simulated conditions. During subsurface migration, methane biodegradation could consume soil oxygen that would otherwise be available to support hydrocarbon degradation, and increase the vapor intrusion potential for benzene. Vapor intrusion would also be exacerbated if methanogenic activity results in sufficiently high pressure to cause advective gas transport in the unsaturated zone. Overall, our simulations show that current approaches to manage the vapor intrusion risk for conventional fuel released might need to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases. PMID:24354291

  12. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting.

    PubMed

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2016-04-19

    Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VSaero h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change. PMID:27045933

  13. Astronomical pacing of methane release in the Early Jurassic period.

    PubMed

    Kemp, David B; Coe, Angela L; Cohen, Anthony S; Schwark, Lorenz

    2005-09-15

    A pronounced negative carbon-isotope (delta13C) excursion of approximately 5-7 per thousand (refs 1-7) indicates the occurrence of a significant perturbation to the global carbon cycle during the Early Jurassic period (early Toarcian age, approximately 183 million years ago). The rapid release of 12C-enriched biogenic methane as a result of continental-shelf methane hydrate dissociation has been put forward as a possible explanation for this observation. Here we report high-resolution organic carbon-isotope data from well-preserved mudrocks in Yorkshire, UK, which demonstrate that the carbon-isotope excursion occurred in three abrupt stages, each showing a shift of -2 per thousand to -3 per thousand. Spectral analysis of these carbon-isotope measurements and of high-resolution carbonate abundance data reveals a regular cyclicity. We interpret these results as providing strong evidence that methane release proceeded in three rapid pulses and that these pulses were controlled by astronomically forced changes in climate, superimposed upon longer-term global warming. We also find that the first two pulses of methane release each coincided with the extinction of a large proportion of marine species. PMID:16163353

  14. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    PubMed

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  15. Palaeoceanography: methane release in the Early Jurassic period.

    PubMed

    Wignall, Paul B; McArthur, John M; Little, Crispin T S; Hallam, Anthony

    2006-06-01

    Dramatic global warming, triggered by release of methane from clathrates, has been postulated to have occurred during the early Toarcian age in the Early Jurassic period. Kemp et al. claim that this methane was released at three points, as recorded by three sharp excursions of delta13C(org) of up to 3 per thousand magnitude. But they discount another explanation for the excursions: namely that some, perhaps all, of the rapid excursions could be a local signature of a euxinic basin caused by recycling of isotopically light carbon from the lower water column. This idea has been proposed previously (see ref. 3, for example) and is supported by the lack evidence for negative delta13C excursions in coeval belemnite rostra. Kemp et al. dismiss this alternative, claiming that each abrupt shift would have required the recycling of about double the amount of organic carbon that is currently present in the modern ocean; however, their measurements are not from an ocean but from a restricted, epicontinental seaway and so would not require whole-ocean mixing to achieve the excursions. PMID:16738612

  16. Aerobic biotransformation of N-nitrosodimethylamine and N-nitrodimethylamine in methane and benzene amended soil columns

    NASA Astrophysics Data System (ADS)

    Weidhaas, Jennifer; Dupont, R. Ryan

    2013-07-01

    Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23 μg (mg cells)- 1) and methane (0.14 and 8.4 μg (mg cells)- 1) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1 × 10- 2 ± 1.7 × 10- 3 d- 1 and 6.5 × 10- 1 ± 7.1 × 10- 1 d- 1 for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).

  17. Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments

    NASA Astrophysics Data System (ADS)

    Talbot, Helen M.; Handley, Luke; Spencer-Jones, Charlotte L.; Dinga, Bienvenu Jean; Schefuß, Enno; Mann, Paul J.; Poulsen, John R.; Spencer, Robert G. M.; Wabakanghanzi, Jose N.; Wagner, Thomas

    2014-05-01

    Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30‰ to -40‰ for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential

  18. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. PMID:25225767

  19. MICROBIAL REMOVAL OF HALOGENATED METHANES, ETHANES, AND ETHYLENES IN AN AEROBIC SOIL EXPOSED TO METHANE. (JOURNAL VERSION)

    EPA Science Inventory

    Contamination of ground water with halogenated aliphatic hydrocarbons threatens the source of drinking water. To study microbial processes that may enhance the removal of these compounds, Lincoln fine sand was exposed to an atmosphere containing methane (4%) to enrich microorgani...

  20. Formation of layers of methane in the atmosphere of Mars after surface release

    NASA Astrophysics Data System (ADS)

    Viscardy, S.; Daerden, F.; Neary, L.

    2016-03-01

    Simulations with a general circulation model for the atmosphere of Mars show that surface emissions of methane can result in a highly nonuniform vertical distribution throughout the atmosphere, including the formation of layers, during the first weeks after the release. The fate of the released methane is determined by the global circulation pattern at the time of the release, and the methane can be transported to locations over the planet that are remote from the emission site. It typically takes several weeks for the methane to become more uniformly mixed, implying that the detection of vertical layers of methane can be indicative of recent surface emission. This puts the existing observations in a new perspective and will allow instruments on the upcoming ExoMars Trace Gas Orbiter mission to detect signatures of surface emission activity as they are designed to measure the first vertical profiles of methane on Mars.

  1. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. PMID:26551651

  2. Field and experimental evidence for low-O2 affinity of aerobic methane oxidizers in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Bange, Hermann; Kock, Annette; Lehmann, Moritz F.; Treude, Tina; Niemann, Helge

    2015-04-01

    The coastal ocean accounts for more than 75 % of the global oceanic methane emissions. An important process in mitigating methane emissions from the seawater to the atmosphere is aerobic methane oxidation (MOx). Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity, and oxygen concentrations, all of which are potential key environmental factors controlling MOx. We conducted a two-year time-series study of MOx measurements in the water column of a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay, Boknis Eck Time Series Station, 54°31.823 N, 10°02.764 E, 28 m water depth; www.bokniseck.de). Physicochemical parameters at this station have been monitored since 1957. Seasonal stratification during summer/autumn leads to intermittent oxygen depletion (hypoxic to anoxic) in bottom waters in the later part of the stratification period. The duration of these low-oxygen events increased since the 1970s (Lennartz et al., 2014). Furthermore, the organic-rich seafloor continuously produces methane, which leads to gas ebullition followed by accumulation of dissolved methane in bottom waters (up to 470 nM) and supersaturation (with respect to the atmospheric equilibrium) in surface waters (up to 27 nM). MOx communities were most active in bottom waters (1-5 nM/day), which usually contain the lowest oxygen concentrations (sometimes below the in situ detection limit of ~1 µM). In order to better understand the effect of low oxygen concentrations, and thus of hypoxic and suboxic events, on MOx in coastal systems, we conducted lab-based experiments, during which we adjusted oxygen concentrations to values between 0.2 - 220 µM in methane-rich (~100 nM) Eckernförde Bay waters. These samples were then incubated with trace amounts of tritium-labeled methane to assess first order rate constants of methane oxidation. Highest MOx rates were detected at oxygen concentrations of ~0.5 µM (considerably higher than at

  3. Estimating methane releases from natural gas production and transmission in Russia

    NASA Astrophysics Data System (ADS)

    Dedikov, J. V.; Akopova (Vniigaz), G. S.; Gladkaja (Vniigaz), N. G.; Piotrovskij (Tyumentransgaz), A. S.; Markellov (Volgotransgaz), V. A.; Salichov (Yamburggazdabuicha), S. S.; Kaesler, H.; Ramm, A.; Müller von Blumencron, A.; Lelieveld, J.

    Methane releases from the RAO Gazprom gas production and transmission facilities in Russia were determined in an extensive measurement program carried out in 1996 and 1997. Subsequently, the measurements were extrapolated to the Russian scale. The results show that methane releases from gas transmission are less than 1% of throughput. Methane loss from gas production in northwestern Siberia appears to be relatively small, generally less than 0.1%. The largest methane emissions result from venting during maintenance and repairs, leaks from valves on transmission lines, and from compressor stations. The measurements show that, in the case of leaks, a limited number of major ones accounts for most of the methane releases. Methane emissions expressed as a percentage of the gas volume produced or transported are (rounded figures): production and processing 0.1%, pipelines 0.2%, compressor stations 0.7%, so that the total release by production and transmission in Russia amounts to about 1.0%, i.e. ˜5.4×10 9 m 3/a (˜4 Tg/a). This is consistent with our previous preliminary estimates, indicating that maximum emissions are 1.5-1.8%/a. However, this is generally lower than most other estimates and speculations.

  4. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    USGS Publications Warehouse

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  5. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages. PMID:19573197

  6. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. PMID:27267930

  7. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  8. Methane release from igneous intrusion of coal during Late Permian extinction events

    SciTech Connect

    Retallack, G.J.; Jahren, A.H.

    2008-01-15

    Unusually large and locally variable carbon isotope excursions coincident with mass extinctions at the end of the Permian Period (253 Ma) and Guadalupian Epoch (260 Ma) can be attributed to methane outbursts to the atmosphere. Methane has isotopic values {delta}{sup 13}C low enough to reduce to feasible amounts the carbon required for isotopic mass balance. The duration of the carbon isotopic excursions and inferred methane releases are here constrained to < 10,000 yr by counting annual varves in lake deposits and by estimating peat accumulation rates. On paleogeographic maps, the most marked carbon isotope excursions form linear arrays back to plausible methane sources: end-Permian Siberian Traps and Longwood-Bluff intrusions of New Zealand and end-Guadalupian Emeishan Traps of China. Intrusion of coal seams by feeder dikes to flood basalts could create successive thermogenic methane outbursts of the observed timing and magnitude, but these are unreasonably short times for replenishment of marine or permafrost sources of methane. Methane released by fracturing and heating of coal during intrusion of large igneous provinces may have been a planetary hazard comparable with bolide impact.

  9. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  10. Hypotheses for a Near-Surface Reservoir of Methane and Its Release on Mars

    NASA Astrophysics Data System (ADS)

    Hu, R.; Bloom, A. A.; Gao, P.; Miller, C. E.; Yung, Y. L.

    2015-12-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the Martian environment and its potential for life, as the current theories do not entail any active source or sink of methane. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses as an attempt to explain the apparent variability of the atmospheric methane abundance. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol-1 to explain the magnitude of the methane spikes, higher than laboratory measurements. The second scenario is that microorganisms exist and convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption. The third scenario is that deep subsurface aquifers sealed by ice or clathrate produce bursts of methane as a result of freezing and thawing of the permafrost, as the terrestrial arctic tundra. Continued monitoring of methane by Curiosity will test the existence of the near-surface reservoir and its exchange with the atmosphere.

  11. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments.

    PubMed

    Wang, Xinming; Wu, Ting

    2008-05-01

    The release of isoprene and 12 monoterpenes during the decomposition of orange wastes was studied under controlled aerobic conditions in laboratory for a period of 2 months. Monoterpenes (mainly limonene, beta-myrcene, sabinene, and alpha-pinene) dominated among the released volatile organic compounds, but isoprene was only a very minor constituent. Two time windows with peak microbial activity were indicated by CO2 emission fluxes and waste temperature, both of which reached their maximums 3-4 days and 15-20 days after the incubation, respectively. Although isoprene had only one emission peak synchronizing with the first peak microbial activity, monoterpenes had relatively high emission rates, but they decreased at the beginning without correlation to the first peak of microbial activity, due largely to direct volatilization of these monoterpenes primarily present in orange substrates as inherited constituents. However, after the initial decrease the emission rates of monoterpenes rose again in conjunction with the second peak of microbial activity, indicating secondary production of these monoterpenes through microbial activity. On the basis of monitored emission fluxes, the amounts of secondarily formed monoterpenes from microbial activity well surpassed those inherited in the orange wastes. Production of total terpenes reached 1.10 x 10(4) mg kg(-1) (dry weight), of which limonene alone was 63%. For either limonene or total terpenes, about 95% of their emission occurred in the first 30 days, implying that organic wastes might give off considerable amount of terpenes during early disposal under aerobic conditions before the conventional anaerobic landfilling, and emission measurements just in landfills might underestimate the waste-related emissions of reactive organic gases. PMID:18522104

  12. Ice-sheet-driven methane storage and release in the Arctic.

    PubMed

    Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun

    2016-01-01

    It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features--pockmarks and active gas flares--across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone--which could serve as a methane sink--existed beneath the ice sheet. Moreover, we reveal that in water depths 150-520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release. PMID:26739497

  13. Ice-sheet-driven methane storage and release in the Arctic

    NASA Astrophysics Data System (ADS)

    Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun

    2016-01-01

    It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ~1,900 fluid escape features--pockmarks and active gas flares--across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone--which could serve as a methane sink--existed beneath the ice sheet. Moreover, we reveal that in water depths 150-520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release.

  14. Ice-sheet-driven methane storage and release in the Arctic

    PubMed Central

    Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun

    2016-01-01

    It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features—pockmarks and active gas flares—across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone—which could serve as a methane sink—existed beneath the ice sheet. Moreover, we reveal that in water depths 150–520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release. PMID:26739497

  15. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    PubMed Central

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-01-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967

  16. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    NASA Astrophysics Data System (ADS)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  17. Nanostructural control of methane release in kerogen and its implications to wellbore production decline.

    PubMed

    Ho, Tuan Anh; Criscenti, Louise J; Wang, Yifeng

    2016-01-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967

  18. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE PAGESBeta

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  19. Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Steele, Andrew; Hynek, B. M.

    2015-01-01

    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.

  20. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    SciTech Connect

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  1. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows.

    PubMed

    Krause, Sascha; Niklaus, Pascal A; Badwan Morcillo, Sara; Meima Franke, Marion; Lüke, Claudia; Reim, Andreas; Bodelier, Paul L E

    2015-11-01

    The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions. PMID:26449384

  2. Central release of nitric oxide mediates antinociception induced by aerobic exercise.

    PubMed

    Galdino, G S; Duarte, I D; Perez, A C

    2015-09-01

    Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception. PMID:25517916

  3. Methylated silicates may explain the release of chlorinated methane from Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  4. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  5. Quantification of methane fluxes from industrial sites using a combination of a tracer release method and a Gaussian model

    NASA Astrophysics Data System (ADS)

    Ars, S.; Broquet, G.; Yver-Kwok, C.; Wu, L.; Bousquet, P.; Roustan, Y.

    2015-12-01

    Greenhouse gas (GHG) concentrations keep on increasing in the atmosphere since industrial revolution. Methane (CH4) is the second most important anthropogenic GHG after carbon dioxide (CO2). Its sources and sinks are nowadays well identified however their relative contributions remain uncertain. The industries and the waste treatment emit an important part of the anthropogenic methane that is difficult to quantify because the sources are fugitive and discontinuous. A better estimation of methane emissions could help industries to adapt their mitigation's politic and encourage them to install methane recovery systems in order to reduce their emissions while saving money. Different methods exist to quantify methane emissions. Among them is the tracer release method consisting in releasing a tracer gas near the methane source at a well-known rate and measuring both their concentrations in the emission plume. The methane rate is calculated using the ratio of methane and tracer concentrations and the emission rate of the tracer. A good estimation of the methane emissions requires a good differentiation between the methane actually emitted by the site and the methane from the background concentration level, but also a good knowledge of the sources distribution over the site. For this purpose, a Gaussian plume model is used in addition to the tracer release method to assess the emission rates calculated. In a first step, the data obtained for the tracer during a field campaign are used to tune the model. Different model's parameterizations have been tested to find the best representation of the atmospheric dispersion conditions. Once these parameters are set, methane emissions are estimated thanks to the methane concentrations measured and a Bayesian inversion. This enables to adjust the position and the emission rate of the different methane sources of the site and remove the methane background concentration.

  6. Dynamic simulations of potential methane release from East Siberian continental slope sediments

    NASA Astrophysics Data System (ADS)

    Stranne, C.; O'Regan, M.; Dickens, G. R.; Crill, P. M.; Miller, C.; Preto, P.; Jakobsson, M.

    2015-12-01

    Sediments deposited along continental margins of the Arctic Ocean presumably host large amounts of CH4 in gas hydrates. Here we apply numerical simulations to assess the potential of gas hydrate dissociation and methane release from the East Siberian slope over the next 100 years. Simulations are based on a hypothesized bottom water warming of 3 °C, and an assumed starting distribution of gas hydrate. The simulation results show that methane hydrate dissociation in these sediments is relatively slow, and that gas fluxes toward the seafloor are limited by low sediment permeability. The latter is true even when sediment fractures are permitted to form through overpressure. With an initial gas hydrate distbution dictated by present-day pressure and temperature conditions, nominally 0.35 gigaton of CH4 are released from the East Siberian slope during the first 100 years of the simulation. However, this methane discharge is reduced significantly (to ~0.05 Gt) if Arctic Ocean history is considered. This is because a lower sea level during the last glacial maximum must result in depleted gas hydrate abundance within the most sensitive region of the modern gas hydrate stability zone. In any case, even if methane reached the atmosphere, amounts coming from East Siberian slopes would be minimal compared to present-day atmospheric methane inputs from other sources.

  7. Modeling of Large Methane Releases and their affect on the Chemistry of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bergmann, D. J.; Cameron-Smith, P. J.; Elliot, S.; Reagan, M. T.; Maltrud, M. E.

    2009-12-01

    A vast quantity of methane is locked in solid phase as methane clathrates in ocean sediments (as much carbon as all other fossil fuels combined). Rapid destabilization of the clathrates due to climate warming would significantly increase methane emissions from the ocean. This would result in a number of affects including strong greenhouse heating, increased surface ozone, reduced stratospheric ozone, and intensification of the ozone hole. Many of the affects in the chemistry of the atmosphere are non-linear and difficult to estimate without a detailed model. As part of the DOE IMPACTS project on abrupt climate change we have used our 3D global atmospheric chemistry model (IMPACT) to take a first look at some of these affects. This model includes detailed chemistry of the troposphere (including isoprene and other hydrocarbons) and the stratosphere (including the important chlorine and bromine compounds). We ran the model at 4x5 degree resolution with methane simply scaled to present day emissions. We show results for 1x, 2x, 10x, 100x, and 1000x emission scenarios. We analyzed the results after the simulations have reached steady state (many years of simulation) and show the affect of these large releases on tropospheric air quality, the “health” of the stratosphere, and greenhouse heating. Substantial increases were seen in atmospheric methane lifetime, a positive feedback, due to the increased methane reducing the OH concentration. In the future we will couple our atmospheric chemistry to a complete Earth system model (based on CCSM) for methane including ocean ecosystem, ocean sediment and boreal land models to give more accurate estimates of the emission term and to look at the full system response.

  8. Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng)

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Roberts, D. A.; Aubrey, A. D.; Green, R. O.; Hulley, G. C.; Hook, S. J.

    2014-12-01

    Airborne imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) are well suited for monitoring local methane sources by covering large regions with the high spatial resolution necessary to resolve emissions. As part of a field campaign with controlled methane releases at the Rocky Mountain Oilfield Testing Center (RMOTC), a number of methane plumes were clearly visible at multiple flux rates and flight altitudes. Images of plumes appeared consistent with wind directions measured at ground stations and were present for fluxes as low as 14.2 cubic meters of methane per hour, equivalent to 0.09 kt/year. Direct comparison of results from AVIRISng and plume dispersion models is ongoing and will be used to assess the potential of constraining emission fluxes using AVIRISng. Methane plumes observed at RMOTC with the Hyperspectral Thermal Emission Spectrometer (HyTES) will also be presented. This controlled release experiment was used to determine the methane sensitivity of AVIRISng and inform sensor design for future imaging spectrometers that could constrain natural and anthropogenic methane emissions on local and regional scales. Imaging spectrometers permit direct attribution of emissions to individual point sources which is particularly useful given the large uncertainties associated with anthropogenic emissions, including industrial point source emissions and fugitive methane from the oil and gas industry. Figure caption: a. AVIRISng true color image indicating tube trailer (TT), meteorological tower (MT), and release point (RP). b. Prominent methane plume and measured enhancements for 70.8 cubic meters per hour methane flux is consistent with wind speed and direction (see arrow) measured by meteorological tower. A linear transect is shown in red and corresponds to enhancements shown in c. d. True color image showing release point (RP). e. Smaller methane plume for 14.2 cubic meters per hour flux. f. Methane

  9. Observations of the release of non-methane hydrocarbons from fractured shale.

    PubMed

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts. PMID:24978099

  10. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect

    Kirchman, David L.

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  11. The role of subglacial microbes in carbon cycling and methane release in the past and present

    NASA Astrophysics Data System (ADS)

    Stibal, M.; Bech Mikkelsen, A.; Wadham, J. L.; Telling, J.; Hawkings, J.; Lis, G. P.; Lawson, E. C.; Hasan, F.; Dubnick, A.; Elberling, B.; Jacobsen, C. S.

    2012-12-01

    Subglacial environments are largely anoxic, contain organic carbon (OC) overridden by glacier ice during periods of advance, and harbour active microbial communities. This creates favourable conditions for a variety of microbial metabolisms, including methanogenesis. Yet little is known of the past and present potentials of subglacial microbes to take part in carbon cycling including methane production. Here we present data on the abundance and diversity of prokaryotic microbes, the activity of methanogenic archaea and the amount and character of OC in subglacial sediment and runoff from the Greenland Ice Sheet and compare them to those from other Arctic glaciers. The investigated Greenland subglacial sediment was of Holocene-aged soil origin and contained less bioavailable OC compared to subglacial sediments of lacustrine origin. The total microbial abundance and diversity was relatively low and the community was dominated by Proteobacteria. The identified clones were related to bacteria with both aerobic and anaerobic metabolisms, indicating the presence of both oxic and anoxic conditions in the sediments. Significant numbers of methanogens (up to 7×104 cells g-1) were detected and clones of Methanomicrobiales were identified in the clone library. Long lag periods (up to >200 days) were observed before significant methane concentrations (~0.2 pmol g-1 day-1 at 1C) were measured in long-term incubation experiments. These rates were lower than those measured in subglacial sediments containing more bioavailable OC. We use the measured rates of methanogenesis to estimate the potential for methane production beneath the Laurentide/Inuitian/Cordilleran and Fennoscandian Ice Sheets during a typical 85 ka Quaternary glacial/interglacial cycle. We predict that contrasting rates of methane production are likely to occur beneath glaciers that overran different types of substrate. Methane production from overridden soils such as those in Greenland is likely to be lower than

  12. Causes and Effects of the early Aptian ( ˜117 Ma) Methane Release

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Conrad, C.; Arens, N. C.

    2004-12-01

    In 2001, we reported a negative excursion in early-Aptian atmospheric δ 13CO2 (Δ = -3.6 to -6.5 ‰ ), based on δ 13C analyses of organic matter and land-plant isolates from coarsely-sampled Colombian estuarine and near-shore sediments. Here we present similar results for an Aptian section of the Arundel Clay (Potomac Group, central Maryland), which is well-known for its exceptional preservation of terrestrial plant materials. Sampling across 13 meters of sediment at ˜10-cm intervals revealed a clear shift in the δ 13C of terrestrial organic matter (n=153) and land-plant isolates (n=33) of Δ = -2.3 and -2.9 ‰ , respectively. The shift was observed within palynological Zone I, which is temporally well-correlated with our previous work. Given the probable composition of the early Cretaceous atmosphere, a methane hydrate release is the likely cause of this excursion; isotopic mass balance of our record in conjunction with the δ 13Ccarbonate record of Menegatti et al., 1998 suggest a total methane hydrate C release = ˜ 1,100 Gt ( ˜10% of the modern reservoir) over a period of approximately 500 kyr. In consideration of a mechanism for early Aptian methane release, we calculated changes in global subduction rates during the Early Cretaceous from the classic high-resolution plate reconstructions established by Engebretson,1985. These reconstructions revealed a dramatic decrease in the motion of the Farallon plate toward the subduction zones of the North Pacific basin during the early Aptian, caused by a massive increase in frictional interaction (i.e., seismic coupling) between overriding and subducting plates stretching from northeast Asia, to Alaska, to British Columbia. Associated forces caused uplift and compression in continental margins sufficient to continuously destabilize a portion of the probable methane hydrate reservoir (evidence of this compression is also observed in the geologic record [Vaughan et al. 1995]). The methane hydrate release created a

  13. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (Hy

  14. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Portnov, Alexey; Mienert, Jurgen; Semenov, Peter; Ilatovskaya, Polina

    2015-08-01

    The Holocene marine transgression starting at ~19 ka flooded the Arctic shelves driving extensive thawing of terrestrial permafrost. It thereby promoted methanogenesis within sediments, the dissociation of gas hydrates, and the release of formerly trapped gas, with the accumulation in pressure of released methane eventually triggering blowouts through weakened zones in the overlying and thinned permafrost. Here we present a range of geophysical and chemical scenarios for the formation of pingo-like formations (PLFs) leading to potential blowouts. Specifically, we report on methane anomalies from the South Kara Sea shelf focusing on two PLFs imaged from high-resolution seismic records. A variety of geochemical methods are applied to study concentrations and types of gas, its character, and genesis. PLF 1 demonstrates ubiquitously low-methane concentrations (14.2-55.3 ppm) that are likely due to partly unfrozen sediments with an ice-saturated internal core reaching close to the seafloor. In contrast, PLF 2 reveals anomalously high-methane concentrations of >120,000 ppm where frozen sediments are completely absent. The methane in all recovered samples is of microbial and not of thermogenic origin from deep hydrocarbon sources. However, the relatively low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. As a consequence, we hypothesize that the high-methane concentrations at PLF 2 are due to microbial methane production and migration from a deeper source.

  15. Thermogenic Methane release as a Cause for the Long Duration of the PETM

    NASA Astrophysics Data System (ADS)

    Frieling, J.

    2015-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; 55 Ma) was a ~170 kyr period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean and atmosphere, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modelling has indicated that the shape of the CIE, which consists of a rapid onset, a prolonged phase of stable low δ13C and subsequent recovery, is best explained by an initial large pulse (3,000 Pg), followed by ~50 kyr of slow continuous release of 13C-depleted carbon (1,480 Pg). Suggested sources include submarine methane hydrates, terrigenous organic matter and thermogenic methane and CO2 from hydrothermal vent complexes in the Norwegian Sea. Here, we test the latter hypothesis by dating the active phase of a hydrothermal vent relative to the CIE through dinoflagellate cyst and carbon isotope stratigraphy. We find that activity in this vent system post-dates the onset of the PETM, excluding the possibility that it triggered the PETM. However, our record indicates the vent system was active during the ~60 kyr long "body" phase and thus represents the first actual proof of PETM carbon release from a particular reservoir. To test whether the pulsed release of carbon from these vent systems may have caused the long duration of the body of the PETM, we conduct a suite of experiments using a simple carbon cycle box model (LOSCAR). Our experiments indicate that pulsed carbon input from several vent systems over a prolonged period as suggested from the vent-literature (4-12 pulses within 60 kyr; total volume of 1,480 Pg) matches the CIE and deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that methane and CO2 from the Norwegian Sea vent complexes may have been the main source of carbon during the PETM, following its dramatic onset.

  16. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  17. Monitoring Production of Methane from Spills of Gasoline at UST Release Sites (Boston, MA)

    EPA Science Inventory

    Anaerobic biodegradation of the BTEX compounds can produce substantial concentrations of methane in ground water at gasoline spill sites. This methane can escape the ground water, move through the unsaturated zone and potentially produce explosive concentrations of methane in c...

  18. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node

    NASA Astrophysics Data System (ADS)

    Thomsen, Laurenz; Barnes, Christopher; Best, Mairi; Chapman, Ross; Pirenne, Benoît; Thomson, Richard; Vogt, Joachim

    2012-08-01

    The NEPTUNE Canada cabled observatory network enables non-destructive, controlled experiments and time-series observations with mobile robots on gas hydrates and benthic community structure on a small plateau of about 1 km2 at a water depth of 870 m in Barkley Canyon, about 100 km offshore Vancouver Island, British Columbia. A mobile Internet operated vehicle was used as an instrument platform to monitor and study up to 2000 m2 of sediment surface in real-time. In 2010 the first mission of the robot was to investigate the importance of oscillatory deep ocean currents on methane release at continental margins. Previously, other experimental studies have indicated that methane release from gas hydrate outcrops is diffusion-controlled and should be much higher than seepage from buried hydrate in semipermeable sediments. Our results show that periods of enhanced bottom currents associated with diurnal shelf waves, internal semidiurnal tides, and also wind-generated near-inertial motions can modulate methane seepage. Flow dependent destruction of gas hydrates within the hydrate stability field is possible from enhanced bottom currents when hydrates are not covered by either seafloor biota or sediments. The calculated seepage varied between 40-400 μmol CH4 m-2 s-1. This is 1-3 orders of magnitude higher than dissolution rates of buried hydrates through permeable sediments and well within the experimentally derived range for exposed gas hydrates under different hydrodynamic boundary conditions. We conclude that submarine canyons which display high hydrodynamic activity can become key areas of enhanced seepage as a result of emerging weather patterns due to climate change.

  19. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-03-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.

  20. Hydrodynamic Models of the Dynamics of Methane Release by Natural Hydrates

    NASA Astrophysics Data System (ADS)

    Lyubimova, T.; Lyubimov, D.; Ivantsov, A.; Tsiberkin, K.; Zikanov, O.

    2011-12-01

    We present results of a broad study of the dynamics of natural deposits of methane hydrates in response to global warming. Particular attention is given to the hydrodynamic aspects of the process associated with instability and deformation of boundaries and filtration of released methane to the surface. The study is computational and is based on a novel physical model that fully takes into account the nonlinear three-dimensional dynamics of the processes of heat and mass transfer that control the dissociation of natural hydrates. This particular presentation is focused on two phenomena. One is the possibility of development and growth of chimney-like vertical hydrate-free channels within the hydrate stability zone (HSZ) that provide paths of relatively unimpeded escape of methane to the surface. According to our analysis, such channels can develop and grow under geologically plausible conditions, the main of which is relatively high (above approximately 10-12 m2)permeability of deposits. The key mechanism that determines the growth is the convection heat transfer by upward filtration of methane gas from the underlying gas-saturated layer. Simulations of the system consisting of several channels located close to each other demonstrate faster growth and merging. We also consider the dynamics of a compact hydrate-free inclusion (a bubble) within the HSZ. The goal of this investigation is to evaluate the ability of such bubbles to migrate to the surface. As a model, an isolated bubble in a boundless hydrate zone is considered. Considering the evolution of a purely spherical bubble, we find that its lifetime can be estimated as t ˜ R2δ -σ , where R is the bubble radius, δ is a parameter evaluating the closeness of surrounding hydrates to dissociation, and 0<σ <1 is function of R. The more advanced model that takes into account the flow of methane gas and buoyancy force shows significant deformation and even disintegration of the bubble at high permeability of

  1. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    PubMed

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed. PMID:25768429

  2. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  3. Measuring in situ dissolved methane concentrations in gas hydrate-rich systems, Part 1: Investigating the correlation between tectonics and methane release from sediments

    NASA Astrophysics Data System (ADS)

    Lapham, L.; Wilson, R. M.; Paull, C. K.; Chanton, J.; Riedel, M.

    2010-12-01

    In 2009, an area of extended methane venting at 1200 meters water depth was found with high resolution AUV bathymetry scans on the Northern Cascadia Margin that was previously unknown. When visited by ROV, we found seafloor cracks with active bubble streams and thin bacterial mats suggesting shallow gas and possible pore-fluid saturation. Upon coring into the cracks, a hard-substrate (carbonate or gas hydrate) was punctured and gas flows began. With these observations, we asked the question “is this shallow gas released from the seafloor from regional tectonic activity, and, if so, what is the temporal variability of such release events?” To answer this, we deployed a long term pore-water collection device at one of these gas crack sites, informally named “bubbly gulch”, for 9 months. The device is made up of 4 OsmoSamplers that were each plumbed to a port along a 1-meter probe tip using small diameter tubing. By osmosis, the samplers collected water samples slowly through the ports and maintained them within a 300 meter-long copper tubing coil. Because of the high methane concentrations anticipated, in situ pressures were maintained within the coil by the addition of a high pressure valve. Water samples were collected from the overlying water, at the sediment-water interface, and 6 and 10 cm into the sediments. Bottom water temperatures were also measured over the time series to determine pumping rates of the samplers but also to look for any temporal variability. In May 2010, the samplers were retrieved by ROV during efforts to install seafloor instruments for Neptune Canada. In a land-based lab, the coils were sub-sampled by cutting every 4 meters of tubing. With a pumping rate of 0.5 mL/day, this allowed a temporal resolution of 6 days. To date, one sampler coil has been sub-sampled and measured for methane concentrations and stable carbon isotopes. Preliminary results from this coil show pore-fluids nearly saturated with respect to methane, ~45 m

  4. Syngas formation in methane flames and carbon monoxide release during quenching

    SciTech Connect

    Weinberg, Felix; Carleton, Fred; Houdmont, Raphael; Dunn-Rankin, Derek; Karnani, Sunny

    2011-02-15

    Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in the absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the quenching

  5. Methane Release and Pingo-Like Feature Across the South kara Sea Shels, an Area of Thawing Offshore Permafrost

    NASA Astrophysics Data System (ADS)

    Serov, P.; Portnov, A.; Mienert, J.

    2015-12-01

    Thawing subsea permafrost controls methane release from the Russian Arctic shelf having a considerable impact on the climate-sensitive Arctic environment. Our recent studies revealed extensive gas release over an area of at least 7500 km2and presence of pingo-like features (PLFs), showing severe methane leakage, in the South Kara Sea in water depths >20m (Serov et al., 2015). Specifically, we detected shallow methane ebullition sites expressed in water column acoustic anomalies (gas flares and gas fronts) and areas of increased dissolved methane concentrations in bottom water, which might be sufficient sources of carbon for seawater-atmosphere exchange. A study of nature and source of leaking gas was focused on two PLFs, which are acoustically transparent circular mounds towering 5-9 m above the surrounding seafloor. One PLF (PLF 2) connects to biogenic gas from deeper sources, which is reflected in δ13CCH4 values ranging from -55,1‰ to -88,0‰ and δDCH4values varied from -175‰ to -246‰. Low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. The formation of PLF 2 is directly linked to the thawing of subsea permafrost and, possibly, decomposition of permafrost related gas hydrates. High accumulations of biogenic methane create the necessary forces to push the remaining frozen layers upwards and, therefore, form a topographic feature. We speculate that PLF 1, which shows ubiquitously low methane concentrations, is either a relict submerged terrestrial pingo, or a PLF lacking the necessary underlying methane accumulations. Our model of glacial-interglacial permafrost evolution supports a scenario in which subsea permafrost tapers seaward and pinches out at 20m isobaths, controlling observed methane emissions and development of PLFs. Serov. P., A. Portnov, J. Mienert, P. Semenov, and P. Ilatovskaya (2015), Methane release from pingo-like features across the South Kara Sea shelf, an area of thawnig

  6. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    SciTech Connect

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.; King, Galen B.

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  7. Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Zhu, Baoli; Rijpstra, W. Irene C.; Jetten, Mike S. M.; Ettwig, Katharina F.; Sinninghe Damsté, Jaap S.

    2012-01-01

    The recently described bacterium “Candidatus Methylomirabilis oxyfera” couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of “Ca. Methylomirabilis oxyfera” is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of “Ca. Methylomirabilis oxyfera” to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple “Ca. Methylomirabilis oxyfera” enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC16:0). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC16:1Δ7), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC16:0 and 10MeC16:1Δ7 are key and characteristic components of the lipid profile of “Ca. Methylomirabilis oxyfera.” The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment. PMID:23042164

  8. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater.

    PubMed

    Lee, Chung-Seop; Le Thanh, Thao; Kim, Eun-Ju; Gong, Jianyu; Chang, Yoon-Young; Chang, Yoon-Seok

    2014-11-01

    Oxygen-releasing alginate beads (ORABs), a new concept of oxygen-releasing compounds (ORCs) designed to overcome some limitations regarding the fast oxygen release rate and the high pH equilibrium of ORCs, were fabricated to promote the stimulation of aerobic biodegradation in anaerobic groundwater. Slow oxygen-releasing rate and maintenance of constant pH were achieved by changing the parameters (ionic radius and valence) related to the cross-linking ions composing ORABs, and the best results were obtained for ORABs cross-linked with Al (Al-ORABs). Furthermore, the mechanism of the improved aerobic biodegradation using Al-ORABs under oxygen-limiting groundwater conditions was elucidated in batch and column studies with 1,4-dioxane and Mycrobacterium sp. PH-06 as a model contaminant and aerobic microbes, respectively. Maximum 1,4-dioxane degradations of 99% and 68.1% were achieved when Al-ORABs were applied in batch and column conditions, respectively, whereas 34.3% and 18% of 1,4-dioxane were degraded without Al-ORABs in batch and column conditions, respectively. PMID:25189509

  9. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    NASA Astrophysics Data System (ADS)

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, Claudia I.; Xu, Xiaomei; Chanton, Jeffrey P.; Waddington, James M.

    2014-03-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  10. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    USGS Publications Warehouse

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, Anthony; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  11. Seasonal methane accumulation and release from a gas emission site in the central North Sea

    NASA Astrophysics Data System (ADS)

    Mau, S.; Gentz, T.; Körber, J.-H.; Torres, M. E.; Römer, M.; Sahling, H.; Wintersteller, P.; Martinez, R.; Schlüter, M.; Helmke, E.

    2015-09-01

    We investigated dissolved methane distributions along a 6 km transect crossing active seep sites at 40 m water depth in the central North Sea. These investigations were done under conditions of thermal stratification in summer (July 2013) and homogenous water column in winter (January 2014). Dissolved methane accumulated below the seasonal thermocline in summer with a median concentration of 390 nM, whereas during winter, methane concentrations were typically much lower (median concentration of 22 nM). High-resolution methane analysis using an underwater mass-spectrometer confirmed our summer results and was used to document prevailing stratification over the tidal cycle. We contrast estimates of methane oxidation rates (from 0.1 to 4.0 nM day-1) using the traditional approach scaled to methane concentrations with microbial turnover time values and suggest that the scaling to concentration may obscure the ecosystem microbial activity when comparing systems with different methane concentrations. Our measured and averaged rate constants (k') were on the order of 0.01 day-1, equivalent to a turnover time of 100 days, even when summer stratification led to enhanced methane concentrations in the bottom water. Consistent with these observations, we could not detect known methanotrophs and pmoA genes in water samples collected during both seasons. Estimated methane fluxes indicate that horizontal transport is the dominant process dispersing the methane plume. During periods of high wind speed (winter), more methane is lost to the atmosphere than oxidized in the water. Microbial oxidation seems of minor importance throughout the year.

  12. Monitoring Production of Methane from Spills of Gasoline at UST Release Sites.

    EPA Science Inventory

    ORD-362 (Rev 06/10/05) (Webforms v2.4) Abstract: Anaerobic biodegradation of the BTEX compounds can produce substantial concentrations of methane in ground water at gasoline spill sites. This methane can escape the ground water, move through the unsaturated zone and potentiall...

  13. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    SciTech Connect

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  14. Effects of long-term supplementation of chestnut and valonea extracts on methane release, digestibility and nitrogen excretion in sheep.

    PubMed

    Wischer, G; Greiling, A M; Boguhn, J; Steingass, H; Schollenberger, M; Hartung, K; Rodehutscord, M

    2014-06-01

    The long-term effects of adding chestnut (CHE; Castanea sativa) and valonea (VAL; Quercus valonea) tannin-rich extracts to sheep feed were investigated. In Experiment 1, sheep (65 kg BW) were fed 842 g/day of a ryegrass-based hay. The control-treated animals (CON) received 464 g/day of concentrate, and tannin-treated animals received the same amount of concentrate additionally containing 20 g of the respective tannin-rich extract. Hay and concentrates were offered together in one meal. After the onset of treatment, methane release was measured in respiration chambers for 23.5-h intervals (nine times) in a 190-days period. Faeces and urine were collected three times (including once before the onset of the tannin treatment) to assess digestibility and urinary excretion of purine derivatives. Based on the results obtained from Experiment 1, a second experiment (Experiment 2) was initiated, in which the daily tannin dosage was almost doubled (from 0.9 (Experiment 1) to 1.7 g/kg BW0.75). With the exception of the dosage and duration of the treatment (85 days), Experiment 2 followed the same design as Experiment 1, with the same measurements. In an attempt to compare in vitro and in vivo effects of tannin supplementation, the same substrates and tannin treatments were examined in the Hohenheim gas test. In vitro methane production was not significantly different between treatments. None of the tannin-rich extract doses induced a reduction in methane in the sheep experiments. On the 1st day of tannin feeding in both experiments, tannin inclusion tended to decrease methane release, but this trend disappeared by day 14 in both experiments. In balance period 3 of Experiment 1, lower dry matter and organic matter digestibility was noted for tannin treatments. The digestibility of CP, but not NDF or ADF, was reduced in both experiments. A significant shift in N excretion from urine to faeces was observed for both tannin-rich extracts in both experiments, particularly in

  15. Climate-sensitive northern lakes and ponds are critical components of methane release

    NASA Astrophysics Data System (ADS)

    Wik, Martin; Varner, Ruth K.; Anthony, Katey Walter; MacIntyre, Sally; Bastviken, David

    2016-02-01

    Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of ~50° N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr-1 (12.4 Tg CH4-C yr-1). This estimate -- from lakes and ponds alone -- is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20-54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.

  16. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Shakhova, Natalia; Semiletov, Igor; Leifer, Ira; Sergienko, Valentin; Salyuk, Anatoly; Kosmach, Denis; Chernykh, Denis; Stubbs, Chris; Nicolsky, Dmitry; Tumskoy, Vladimir; Gustafsson, Örjan

    2014-01-01

    Vast quantities of carbon are stored in shallow Arctic reservoirs, such as submarine and terrestrial permafrost. Submarine permafrost on the East Siberian Arctic Shelf started warming in the early Holocene, several thousand years ago. However, the present state of the permafrost in this region is uncertain. Here, we present data on the temperature of submarine permafrost on the East Siberian Arctic Shelf using measurements collected from a sediment core, together with sonar-derived observations of bubble flux and measurements of seawater methane levels taken from the same region. The temperature of the sediment core ranged from -1.8 to 0°C. Although the surface layer exhibited the lowest temperatures, it was entirely unfrozen, owing to significant concentrations of salt. On the basis of the sonar data, we estimate that bubbles escaping the partially thawed permafrost inject 100-630mg methane m-2d-1 into the overlying water column. We further show that water-column methane levels had dropped significantly following the passage of two storms. We suggest that significant quantities of methane are escaping the East Siberian Shelf as a result of the degradation of submarine permafrost over thousands of years. We suggest that bubbles and storms facilitate the flux of this methane to the overlying ocean and atmosphere, respectively.

  17. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations.

    PubMed

    Rasa, Ehsan; Bekins, Barbara A; Mackay, Douglas M; de Sieyes, Nicholas R; Wilson, John T; Feris, Kevin P; Wood, Isaac A; Scow, Kate M

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05. PMID:24678130

  18. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    PubMed Central

    Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2014-01-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05. PMID:24678130

  19. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: simulation of field observations

    USGS Publications Warehouse

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-01-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  20. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  1. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

    NASA Astrophysics Data System (ADS)

    Graves, Carolyn A.; Steinle, Lea; Rehder, Gregor; Niemann, Helge; Connelly, Douglas P.; Lowry, David; Fisher, Rebecca E.; Stott, Andrew W.; Sahling, Heiko; James, Rachael H.

    2015-09-01

    Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ˜400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ˜60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ˜4-20 μmol m-2 d-1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source.

  2. The Carbon and Hydrogen Stable Isotope Composition of Methane Released from Natural Wetlands and Ruminants

    NASA Astrophysics Data System (ADS)

    Lansdown, John Malcolm

    The delta^{13} {rm C} of CH_4 emitted from the tropical Amazon river floodplain, temperate peat bogs in Washington and Minnesota, and the arctic Alaskan tundra was -59, -73, -66, and -65perthous, respectively. The deltaD of CH_4 from these sites was -294, -308, -339, and -391perthous, respectively, and a linear relationship was observed between the deltaD of CH_4 and soil water. A ^{13} C balance between CH_4, CO _2 and soil organic matter indicated a higher percentage of CH_4 production via methyl conversion at the Amazon floodplain than at the other wetland sites and that the anoxic CO _2 flux was 1.5 to 2.0 times the CH _4 flux. The ^{13} C balance provided greater constraint on the anoxic CO_2 flux than calculations based on soil water gradients. An in situ value of 0.774 for the hydrogen kinetic isotope effect during microbial CH _4 oxidation was estimated from the increase in the delta^{13} {rm C} and deltaD of CH_4 in flux samples from the Amazon site. The average delta^{13 }{rm C} of CH_4 released from an acidic peat bog in Washington state (pH = 3.5) was -73perthous, lower than previously measured at freshwater wetland sites. Soil incubations with ^{14 }C-labeled CO_2 and acetate substrates showed that CO_2 reduction accounted for essentially all methane production in the bog. An in situ value of 0.933 for the carbon kinetic isotope effect for CO_2 reduction was calculated from the delta^{13 }{rm C} of the CH_4 flux and soil water CO_2.. The delta^{13} {rm C} and deltaD of CH_4 emitted from ruminants was measured and averaged -63 and -404perthous, respectively. CO _2 reduction accounted for ~70% of rumen CH_4 production based on the change in the delta ^{13}{rm C} and deltaD of rumen CH_4 vs. time during normal conditions and after the addition of deuterated water to the rumen. These results contrast the dogma in the literature that CO_2 reduction accounts for essentially all CH _4 production in the rumen. A global budget for the deltaD of CH_4 was

  3. Biased sampling of methane release from northern lakes: A problem for extrapolation

    NASA Astrophysics Data System (ADS)

    Wik, Martin; Thornton, Brett F.; Bastviken, David; Uhlbäck, Jo; Crill, Patrick M.

    2016-02-01

    Methane emissions from lakes are widely thought to be highly irregular and difficult to quantify with anything other than numerous distributed measurement stations and long-term sampling campaigns. In spite of this, a large majority of the study sites north of 50°N have been measured over surprisingly short time periods of only one to a few days. Using long-term data from three intensively studied small subarctic lakes, we recommend that measurements of diffusive methane flux and ebullition should be made over at least 11 and 39 days scattered throughout the ice-free season using depth-stratified sampling at 3 and 11 or more locations, respectively. We further show that low temporal and spatial resolutions are unlikely to cause overestimates. Therefore, we argue that most sites measured previously are likely underestimated in terms of emission potential. Avoiding these biases seen in much of the contemporary data is crucial to further constrain large-scale methane emissions from northern lakes and ponds.

  4. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  5. Methane release from the terrestrial ecosystems of greenhouse climates: Challenges and potential (Invited)

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Collinson, M.; Evershed, R. P.; Bingham, E.; Talbot, H.; Weijers, J.; Wilde, V.; Riegel, W.

    2009-12-01

    Recent circulation and geochemical modelling suggests that atmospheric methane could have been an important driver of global temperatures during past greenhouse climates. Such conclusions are largely based on our understanding of modern wetland biogeochemistry, including the impact of hydrology, temperature and primary photosynthetic production on rates of methanogenesis. However, validation of these parameters, and of course direct validation of past wetland methane fluxes or atmospheric methane concentrations, are either challenging or currently not possible. Here, we discuss prospects for using lipid biomarkers (and complementary approaches) in lignites to interrogate methane cycling and the environmental conditions that drive it. Potential new proxies include the MBT/CBT index from which mean air temperatures can be reconstructed, allowing direct validation that temperate and polar wetlands experienced greater temperatures during greenhouse times. Second, compound-specific dD values, when coupled to reconstructed vegetation and charcoal records, can provide expanded insight into past wetland hydrology. And finally, the concentrations, distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids provide direct evidence for increased methanogen or methanotroph biomasss, respectively. This final proxy is based directly on our ongoing investigations of a half dozen Holocene and modern peat deposits; in these, archaeol concentrations range from 0 to 30 ug per g of peat, and putative methanotroph hopanoids represent less than 3% if the total bacteriohopanoids. We illustrate the potential for such an integrated approach using the SE England Cobham lignite deposited during the Palaeocene Eocene Thermal Maximum (PETM). During the PETM, an increase in precipitation and/or runoff and a cessation of fires (collectively revealed by lithologic and vegetation change) apparently drove a dramatic increase in methane production as revealed by a

  6. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  7. Methane flux in potential hydrate-bearing sediments offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Chuang, Pei-Chuan; Hong, Wei-Li; Chen, Hsuan-Wen; Lin, Saulwood; Lin, Li-Hung; Mastumoto, Ryo; Hiruta, Akihiro; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tau; Jiang, Shao-yong; Wang, Yun-shuen; Chung, San-Hsiung; Chen, Cheng-Hong

    2016-04-01

    Methane in interstitial water of hydrate-bearing marine sediments ascends with buoyant fluids and is discharged into seawater, exerting profound impacts on ocean biogeochemistry and greenhouse effects. Quantifying the exact magnitude of methane transport across different geochemical transitions in different geological settings would provide bases to better constrain global methane discharge to seawater and to assess physio-chemical contexts imposed on microbial methane production and consumption and carbon sequestration in marine environments. Using sediments collected from different geological settings offshore southwestern Taiwan through decadal exploration on gas hydrates, this study analyzed gas and aqueous geochemistry and calculated methane fluxes across different compartments. Three geochemical transitions, including sulfate-methane transition zone (SMTZ), shallow sediments, and sediment-seawater interface were specifically focused for the flux calculation. The results combined with previous published data showed that methane fluxes at three interfaces of 2.71×10‑3 to 3.52×10‑1, 5.28×10‑7 to 1.08×100, and 1.34×10‑6 to 3.17×100 mmol m‑2 d‑1, respectively. The ranges of fluxes suggest that more than 90 % of methane originating from depth was consumed by anaerobic methanotrophy at the SMTZ, and further >90% of the remnant methane was removed by aerobic methanotrophy prior to reaching the sediment-seawater interface. Exceptions are sites at cold seeps where the percentage of methane released into seawater can reach more than 80% of methane at depth. Most sites with such high methane fluxes are located at active margin where thrusts and diapirism are well developed. Carbon mass balance method was applied for the calculation of anaerobic oxidation of methane (AOM) and organotrophic sulfate reduction rates at SMTZ. Results indicated that AOM rates were comparable with fluxes deduced from concentration gradients for most sites. At least 60% of

  8. Constraining methane release due to serpentinization by the observed D/H ratio on Mars

    NASA Astrophysics Data System (ADS)

    Chassefière, Eric; Leblanc, François

    2011-10-01

    It has been suggested that Mars' atmospheric CH 4 could be produced by crustal hydrothermal systems. The two most plausible mechanisms proposed so far, not exclusive from each other, are homogeneous formation by fluid-rock interaction during magmatic events and serpentinization of ultramafic rocks. The first goal of the present paper is to provide an upper limit on the release rate of serpentinization-derived CH 4. Due to the release of numerous H 2 molecules together with one CH 4 molecule, followed by thermal escape of all released H atoms to space and subsequent H isotopic fractionation, even a relatively modest serpentinization-derived CH 4 release acting over geological time scales may result in a significant enrichment of D wrt H in Mars' cryo-hydrosphere, including atmosphere, polar caps and subsurface reservoirs. By assuming that the CH 4 release rate has been proportional to the volcanic extrusion rate during the last 4 billion years, we calculate the present D/H ratio resulting from the crustal oxidation due to serpentinization, including the additional effect of sulfur oxidation. We show that this rate doesn't exceed 20% (within a factor of 2) of the estimated present value of the CH 4 release rate. If not, the present D/H ratio on Mars would be larger than observed (~ 5 SMOW). This result suggests that, either the production of CH 4 is sporadic with a present release rate larger than the average rate, or there are other significant sources of CH 4 like homogeneous formation from mantle carbon degassing or bacterial activity. Second, assuming further that most of the H isotopic fractionation observed today is due to serpentinization, we show that a ~ 400 m thick global equivalent layer of water may have been stored in serpentine since the late Noachian. This result doesn't depend on the chemical form of the released hydrogen (H 2 or CH 4). Such a quantity is generally considered as the amount required for explaining the formation of valley networks on

  9. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere

    NASA Astrophysics Data System (ADS)

    Myhre, C. Lund; Ferré, B.; Platt, S. M.; Silyakova, A.; Hermansen, O.; Allen, G.; Pisso, I.; Schmidbauer, N.; Stohl, A.; Pitt, J.; Jansson, P.; Greinert, J.; Percival, C.; Fjaeraa, A. M.; O'Shea, S. J.; Gallagher, M.; Le Breton, M.; Bower, K. N.; Bauguitte, S. J. B.; Dalsøren, S.; Vadakkepuliyambatta, S.; Fisher, R. E.; Nisbet, E. G.; Lowry, D.; Myhre, G.; Pyle, J. A.; Cain, M.; Mienert, J.

    2016-05-01

    We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble-released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4-3.8 nmol m-2 s-1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long-term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.

  10. Economic impacts of carbon dioxide and methane released from thawing permafrost

    NASA Astrophysics Data System (ADS)

    Hope, Chris; Schaefer, Kevin

    2016-01-01

    The Arctic is warming roughly twice as fast as the global average. If greenhouse gas emissions continue to increase at current rates, this warming will lead to the widespread thawing of permafrost and the release of hundreds of billions of tonnes of CO2 and billions of tonnes of CH4 into the atmosphere. So far there have been no estimates of the possible extra economic impacts from permafrost emissions of CO2 and CH4. Here we use the default PAGE09 integrated assessment model to show the range of possible global economic impacts if this CO2 and CH4 is released into the atmosphere on top of the anthropogenic emissions from Intergovernmental Panel on Climate Change scenario A1B (ref. ) and three other scenarios. Under the A1B scenario, CO2 and CH4 released from permafrost increases the mean net present value of the impacts of climate change by US$43 trillion, or about 13% (5-95% range: US$3-166 trillion), proportional to the increase in total emissions due to thawing permafrost. The extra impacts of the permafrost CO2 and CH4 are sufficiently high to justify urgent action to minimize the scale of the release.

  11. Ice core measurements of 14CH4 show no evidence of methane release from methane hydrates or old permafrost carbon during a large warming event 11,600 years ago

    NASA Astrophysics Data System (ADS)

    Petrenko, Vasilii; Severinghaus, Jeffrey; Smith, Andrew; Riedel, Katja; Brook, Edward; Schaefer, Hinrich; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais

    2015-04-01

    Thawing permafrost and marine methane hydrate destabilization in the Arctic and elsewhere have been proposed as large sources of methane to the atmosphere in the future warming world. To evaluate this hypothesis it is useful to ask whether such methane releases happened during past warming events. The two major abrupt warming events of the last deglaciation, Oldest Dryas - Bølling (OD-B, ≈ 14,500 years ago) and Younger Dryas - Preboreal (YD-PB; ≈11,600 years ago), were associated with large (up to 50%) increases in atmospheric methane (CH4) concentrations. The sources of these large warming-driven CH4 increases remain incompletely understood, with possible contributions from tropical and boreal wetlands, thawing permafrost as well as marine CH4 hydrates. We present new measurements of 14C of paleoatmospheric CH4 over the YD-PB transition from ancient ice outcropping at Taylor Glacier, Antarctica. 14C can unambiguously identify CH4 emissions from "old carbon" sources, such as permafrost and CH4 hydrates. The only prior study of paleoatmospheric 14CH4 (from Greenland ice) suggested that wetlands were the main driver of the YD-PB CH4 increase, but the results were weakened by an unexpected and poorly understood 14CH4 component from in situ cosmogenic production directly in near-surface ice. In this new study, we have been able to accurately characterize and correct for the cosmogenic 14CH4 component. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. These new measurements rule out the possibility of large CH4 releases to the atmosphere from methane hydrates or old permafrost carbon in response to the large and rapid YD-PB warming. To the extent that the characteristics of the YD-PB warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future

  12. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  13. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    PubMed Central

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  14. [Impact of Salinity on Leachate Treatment and N2O Releases from Semi-aerobic Aged-refuse Bioreactor].

    PubMed

    Li, Wei-hua; Sun, Ying-jie; Liu, Zi-liang; Ma, Qiang; Yang, Qiang

    2016-02-15

    Semi-aerobic Aged-refuse Bioreactor (SAARB) has a good effect on nitrogen removal in leachate, but a strong greenhouse gas (N2O) was generated during the nitrification and denitrification process. The effect of salinity (7-30 g x L(-1)) on the leachate treatment and the N2O production from SAARB system was investigated. Experimental results showed that salinity ranging from 7 to 30 g x L(-1) had no significant effect on COD removal, and the removal efficiency was always more than 85%. On the contrary, it had a strong influence on the removal of nitrogen. The removal efficiencies of NH4+ -N and TN decreased from 98. 23% and 91.48% at 7 g x L(-1) salt to 31.75% and 34.24% at 30 g x L(-1) salt, respectively. Moreover, there was significant nitrite (NO2- -N) accumulation in the presence of 30 g x L(-1) salt. Meanwhile, salinity had different inhibition strength on nitrification and denitrification bacteria, and the order of inhibition strength was as follows: nitrification bacteria > denitrification bacteria. In addition, the N2O production increased with salinity concentration, and the highest N2O accumulation (1397 microg +/- 369.88 microg) was observed with addition of 30 g x L(-1) salt, which accounted for 8.87%o of the total nitrogen removal. Meanwhile, it was 6-117 times higher in the presence of 30 g x L(-1) salt than that in low salinity conditions (7-20 g x L(-1)). And the peak time of the N2O production showed a delayed trend. These results indicated that salinity recirculation in leachate had a negative effect on the nitrogen removal and N2O production. Overall, salinity seemed to be a key parameter during leachate recirculation. PMID:27363172

  15. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol.

    PubMed

    Sihota, Natasha J; Mayer, K Ulrich; Toso, Mark A; Atwater, Joel F

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation-related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur-even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 9 μmol m(-2) s(-1). At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 393 μmol m(-2) s(-1). Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion

  16. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol

    NASA Astrophysics Data System (ADS)

    Sihota, Natasha J.; Mayer, K. Ulrich; Toso, Mark A.; Atwater, Joel F.

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation—related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur—even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 9 μmol m- 2 s- 1. At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 393 μmol m- 2 s- 1. Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion or

  17. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  18. Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin.

    PubMed

    Tavormina, Patricia L; Ussler, William; Orphan, Victoria J

    2008-07-01

    Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment. PMID:18487407

  19. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown

  20. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  1. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2014-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  2. Rapid warming at the Palaeocene-Eocene Thermal Maximum drives rapid hydrate dissociation but only modest and delayed methane release to the ocean

    NASA Astrophysics Data System (ADS)

    Minshull, Tim; Marin-Moreno, Hector; Wilson, Paul; Armstrong McKay, David

    2016-04-01

    During the Palaeocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature δ13C of the ocean-atmosphere system decreased abruptly - the record in deep sea benthic foraminifera shows an excursion of at least 2.5 to 3.0 ‰ VPDB. This global carbon isotope excursion (CIE) has been attributed to large-scale methane hydrate dissociation in response to rapid ocean warming. There is increasing evidence for warming-induced hydrate dissociation in the modern ocean and the PETM may represent an analogue for this process. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for a range of possible PETM scenarios. Our results show that hydrate dissociation in response to such warming is rapid but methane release to the ocean is modest, and delayed by hundreds to thousands of years by transport processes through the hydrate stability field. In our simulations most of the dissociated hydrate methane remains beneath the seabed, either in solution or as free gas below the irreducible gas saturation, and the small fraction (≤0.13) released to the ocean is delivered over several kyr. We conclude that hydrate dissociation cannot have been largely responsible for the CIE unless the late Palaeocene hydrate inventory greatly exceeded most current estimates.

  3. Tracing The Origin Of Methane And Water On Mars: Mapping Regions Of Active Release At Ultra-high Spatial Resolution Using Keck And VLT Under AO Control.

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, G. L.; Campbell, R.; Lyke, J.; Conrad, A.; Encrenaz, T.; Hartogh, P.; Kauefl, U.; Novak, R. E.; Tokunaga, A.

    2009-09-01

    Strong release of methane from active regions on Mars has been reported in northern summer (1) and southern spring (2). The spatial resolution of these measurements was about 500 km, sufficient to reveal discrete active regions. Regions of methane release appear mainly over ancient terrain (Noachian/Hesperian) known to have a rich hydration history, and often marked by fossae or other scarps. However, higher resolution is needed to test whether methane release is confined to a small number of narrowly defined vents or is widely distributed over the 500 km footprint. If narrowly confined, the plume should have correspondingly higher local density, enhancing spectral searches for water, methane, their isotopologues, and other trace gases that could reveal aspects of methane generation and depth of release. Ground-based telescopes equipped with both adaptive optics (AO) and high dispersion infrared spectrometers have delivered much higher spatial resolution on planetary bodies, but until now have not been applied to Mars. We acquired images and spectra of Mars under AO control at infrared wavelengths, using Keck-2 and ESO-VLT. In June 2009, we acquired test images with NIRC2/Keck-2 using AO in the natural guide star mode and achieved 0.12” FWHM resolution at 3.0 µm wavelength (Mars diameter was 4.7"). Diffraction-limited performance (0.06” at 3 µm) is expected during follow-up observations in September 2009. We observed Mars with UT1 under AO control (MACAO) in August and September 2009, and acquired spectra with CRIRES. We expect to achieve spatial resolution approaching 40 km in November-December 2009, representing a reduction in area by nearly a factor of 100 compared with earlier non-AO searches. Preliminary results will be presented. This work was funded by NASA grants 08-PAST08-0034 (Planetary Astronomy) and 08-PATM080-0031 (Planetary Atmospheres). 1. Mumma, Villanueva, Novak et al., Science 323, 1041 (2009) 2. Villanueva, Mumma, Novak, (in prep) 2009.

  4. Alteration of rare earth element distribution as a result of microbial activity and empirical methane injection

    NASA Astrophysics Data System (ADS)

    Castillo, D. J.; Davies, N. W.; Thurber, A. R.; Haley, B. A.; Colwell, F. S.

    2014-12-01

    As a result of warming, methane is being released into the marine environment in areas that have not historically experienced methane input. While methane is a potent greenhouse gas, microbial oxidation of methane within the sediment greatly limits the role of marine methane sources on atmospheric forcing. However, in these areas of new methane release, consumption of methane prior to its release into the atmosphere is a result of the response of the microbial community to this new input of methane. Further, rare earth elements (REEs) are not currently thought to be involved with microbial activity, but this assumption has not been rigorously tested. Here we test that: (1) microbial communities will rapidly respond to the onset of methane emission, and (2) the microbial response to this methane input will impact the distribution of REEs within the sediment. Undisturbed cores sampled from a tidal flat at Yaquina Bay, OR, were brought back to a lab and injected with anoxic seawater (as a control) or anoxic sea water saturated with methane gas for a total of 2 weeks. Aerobic methanotrophs proliferated over this short time period, becoming an abundant member of the microbial community as identified using fatty acid biomarkers. Excitingly, the experimental injection of methane also shifted the distribution of REEs within the sediment, a trend that appeared to follow the microbial response and that was different from the control cores. Further, the lightest REEs appeared to be used more than the heavier ones, supporting that the REEs are being actively used by the microbes. While we focused on identifying the response of those microbes responsible in methane-cycling, we also identified how the entire microbial community shifts as a result of methane input, and correlating with shifts in REE distribution. Here we have empirically demonstrated the rapid response of methanotrophs to the onset of methane emission and that REE distribution within the sediment is likely

  5. Carbon Release from Melting Arctic Permafrost on the North Slope, AK: 12CO2 and 13CO2 Concentrations and Fluxes, and Their Relationship to Methane and Methane Isotope Concentrations Measured in August 2013

    NASA Astrophysics Data System (ADS)

    Munster, J. B.; Sayres, D. S.; Healy, C. E.; Dumas, E. J.; Dobosy, R.; Kochendorfer, J.; Heuer, M.; Meyers, T. P.; Baker, B.; Anderson, J. G.

    2014-12-01

    One of the most important uncertainties in climate change is the positive feedback mechanism associated with the melting Arctic. As the Arctic permafrost destabilizes, labile carbon stored in the permafrost is subject to respiration and methanogenesis, producing greenhouse gases CO2 and CH4. Understanding the timing and rate of this release is paramount to our long-term understanding of the global climate structure, yet the remote location of the North Slope logistically precludes widespread tower measurements, necessitating airborne measurements. Presented are 12C and 13C CO2 concentration flux measurements taken via an aircraft at a height of 10-30m during mid to late August 2013 from the north slope of Alaska. The data show different regimes for CO2 vs δ-13C over regions within a roughly 100km box, indicating heterogenous landscape with differing dominant biological processes. The data are compared to CH4 measurements that were taken simultaneously, showing highly varying concentrations of CH4 with several different archetypical relationships to the total CO2 regimes. The relationship between CO2, δ-13C CO2, and CH4 concentrations provide further insight into the biological processes occurring in the melting Arctic permafrost. The data show that the dominant uptake and emission processes change by time of day and location. While the CO2 and isotopologue data alone indicates whether a region is dominant in respiration or photosynthesis, combining the data with CH4 measurements provides insight into the provenance of the CH4 as well as methanogenic biological pathways active on the North Slope, while mass balance between CH4, CO2 or δ-13C CO2 determines whether the methane signature is from methanogenesis, natural hydrocarbon seeps, or methane flaring. The data show few if any cases for which increases in methane concentrations are accompanied by a deviation in CO2 or δ-13C CO2 that would indicate incomplete methane flaring or natural seeps.

  6. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.

    PubMed

    Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte

    2014-08-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR

  7. [Advances in biomolecular machine: methane monooxygenases].

    PubMed

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced. PMID:26647577

  8. Monitoring Production of Methane and Carbon Dioxide and Consumption of Oxygen at Spills of Gasoline at UST Release Sites

    EPA Science Inventory

    Methane is rarely measured at fuel spill sites, and most commonly the measurements are made on samples of ground water. Many ground water monitoring wells are intentionally screened across the water table. This was done to allow them to sample free product. However, if there is s...

  9. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania.

    PubMed

    Alain, Karine; Holler, Thomas; Musat, Florin; Elvert, Marcus; Treude, Tina; Krüger, Martin

    2006-04-01

    Paclele Mici is a terrestrial mud volcano field located in the Carpathian Mountains (Romania), where thermal alteration of sedimentary organic compounds leads to methane, higher hydrocarbons and other petroleum compounds that are continuously released into the environment. The hydrocarbons represent potential substrates for microorganisms. We studied lipid biomarkers, stable isotope ratios, the effect of substrate (methane, other organic compounds) addition and 16S rRNA genes to gain insights into the hitherto unknown microbial community at this site. Quantitative real-time polymerase chain reaction analysis demonstrated that bacteria were much more abundant than archaea. Phylogenetic analyses of 16S rDNA clone sequences indicated the presence of bacterial and archaeal lineages generally associated with the methane cycle (methanogens, aerobic and anaerobic methanotrophs), the sulfur cycle (sulfate reducers), and groups linked to the anaerobic degradation of alkanes or aromatic hydrocarbons. The presence of sulfate reducers, methanogens and methanotrophs in this habitat was also confirmed by concurrent surveys of lipid biomarkers and their isotopic signatures. Incubation experiments with several common and complex substrates revealed the potential of the indigenous microbial community for sulfate reduction, methanogenesis and aerobic methanotrophy. Additionally, consistently to the detection of methane-oxidizing archaea (ANME) and 13C-depleted archaeal lipids, a weak but significant activity of anaerobic methane oxidation was measured by radiotracer techniques and in vitro. This survey is the first to report the presence and activity of ANME in a terrestrial environment. PMID:16584470

  10. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. PMID:17051217

  11. The behavior and release of methane related to hydrates in a pockmark area in the eastern margin of the Japan Sea: An approach from chlorine isotope composition in pore water and sea water

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Satake, H.; Takeuchi, A.; Gamo, T.

    2006-12-01

    Methane released from the seafloor is a strong contributor to the greenhouse gas budget. Some deposits of methane hydrates existing in ocean sediment are linked to plate collision/subduction boundaries and associated tectonic motion. Methane plumes were observed in the pockmark area off Sado, at the end of the eastern margin of the Japan Sea where the North American and Eurasian tectonic plates intersect. Our goal in this study is to investigate the origin of methane and its actual release mechanisms from the seafloor and its behavior and seasonal variation in the water column by using chemical oceanic observations and geochemical analysis of pore water and sea waters. Geochemical data sets are from five cruises over two years and three seasons. The KT05-11 and KT06-26 expeditions were on the R/V Tansei-Maru, NA220 on the T/S Nagasaki-Maru, and the NT05-10 and NT06-19 expeditions using the unmanned submersible HYPER-DOLPHIN and its mother-ship R/V Natsushima. Results of chlorine and oxygen isotope compositions and other water chemical characteristics indicate that methane hydrate is generated over the bottom and is then melted in the shallow water. The possible processes are: 1) In deep water, chlorine isotope composition shows inverse correlation with oxygen, which suggests the fine particles of methane hydrate are adhering to the surface of gas bubbles released from deep sediment together with cold seep; the methane hydrate particles possibly grow and expand above the bottom and rise in water column. 2) In shallower water mass (< 300m depth), the amount of fresh water accumulated hints that fresh water is derived from the melting of methane hydrate and contributes up to 3% of the amount calculated by the decrease in upper-water salinity; this implies that a corresponding amount of methane was transported to ocean surface. The seasonal variations of dissolved methane and other chemical features in shallow water are possibly affected by the methane-oxidation and

  12. A large thermogenic-methane release event in the SW Barents Sea, during the Last Glacial Maximum. Indications from numerical modelling and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Anka, Z.; Rodrigues, E.; di Primio, R.; Ostanin, I.; Stoddart, D.; Horsfield, B.

    2011-12-01

    The Barents Sea, located in the Norwegian Artic area, has undergone a series of tectonic, paleoceanographic and paleo-climatic events during the Cenozoic, which most likely have caused the redistribution and leakage of hydrocarbons accumulations (Ohm et al., 2008). (Dimakis et al., 1998). Present-day under-filled accumulations are known to have leaked in the past providing a source of hydrocarbons, mostly thermogenic methane. However, the timing, extent and driving factors for this event are largely unconstrained. We built a 3D basin model of the Hammerfest Basin in the SW Barents Sea, in order to quantify the masses of liquid and gaseous hydrocarbons generated, accumulated and eventually leaked from the reservoirs during the evolution of the basin. Particular emphasis was placed on analysing the fate of leaked volumes within the dynamics of Plio-Quaternary glacial cycles and formation or destabilization of gas hydrate deposits. The model was calibrated with maturity and temperature well data and reconstructs, with large degree of accuracy, the composition and volume of the hydrocarbons, particularly the gaseous phase present in the main reservoirs. Our results predict the development of overpressures in the reservoirs due to the ice loading of the basin during the glacial periods. Pressure fluctuations derived from cyclic loading-unloading during the glacial-interglacial periods reached up to 5 MPa. The under-filled nature of the present-day accumulations would result from leakage events during the episodes of glacial retreat, in the transition from glacial to interglacial periods. Considerations of the gas hydrate stability conditions in the basin during the time span between 1.00Ma and ≈11,500 years indicate that the leaking thermogenic methane was probably trapped as gas hydrate deposits during the glacial events and then released at once upon hydrate destabilisation during the Last Glacial Maximun (LGM). These results are supported by the presence of km

  13. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.

  14. Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol.

    PubMed

    Ma, Jie; Rixey, William G; DeVaull, George E; Stafford, Brent P; Alvarez, Pedro J J

    2012-06-01

    Fuel ethanol releases can stimulate methanogenesis in impacted aquifers, which could pose an explosion risk if methane migrates into enclosed spaces where ignitable conditions exist. To assess this potential risk, a flux chamber was emplaced on a pilot-scale aquifer exposed to continuous release (21 months) of an ethanol solution (10% v:v) that was introduced 22.5 cm below the water table. Despite methane concentrations within the ethanol plume reaching saturated levels (20-23 mg/L), the maximum methane concentration reaching the chamber (21 ppm(v)) was far below the lower explosion limit in air (50,000 ppm(v)). The low concentrations of methane observed in the chamber are attributed to methanotrophic activity, which was highest in the capillary fringe. This was indicated by methane degradation assays in microcosms prepared with soil samples from different depths, as well as by PCR measurements of pmoA, which is a widely used functional gene biomarker for methanotrophs. Simulations with the analytical vapor intrusion model "Biovapor" corroborated the low explosion risk associated with ethanol fuel releases under more generic conditions. Model simulations also indicated that depending on site-specific conditions, methane oxidation in the unsaturated zone could deplete the available oxygen and hinder aerobic benzene biodegradation, thus increasing benzene vapor intrusion potential. Overall, this study shows the importance of methanotrophic activity near the water table to attenuate methane generated from dissolved ethanol plumes and reduce its potential to migrate and accumulate at the surface. PMID:22568485

  15. Geochemical and Hydrological limitation of carbon sequestration and methane release in anoxic peat soil from the Luther Marsh, Canada

    NASA Astrophysics Data System (ADS)

    Bonaiuti, Simona; Blodau, Christian

    2015-04-01

    In deep peat layers, anaerobic respiration showed a slow-down due to the lack of solute transport which causes an accumulation of metabolic end products (i.e. DIC and CH4). This accumulation can lower the Gibbs free energy levels available to the terminal respiration processes, potentially leading to an inhibition in the decomposition. In particular, this state can affect the methanogenesis, acetogenesis and fermentation processes which occur near thermodynamic minimum energy levels. We conducted a column experiments with an ombrothrophic bog peat over a period of 300 days at 20° C, to test the hypothesis that alteration in solute and gas transport rates can remove this biogeochemical inactivation of DIC and methane turnover rates. To this end, we tested a i) control treatment with no gas and solute transport, ii) advective flow treatment with a flow water of 10 mm d-1, iii) ebullition treatment with methane removal by conduit transport as surrogate for bubbling, and iv) an O2-free atmosphere treatment to test the effect of remote transport of electron on anaerobic decomposition, in absence of oxygen compared to the other treatment. We determined detailed concentration depth profiles of dissolved inorganic carbon (DIC), methane (CH4) and relevant decomposition intermediates (i.e. H2, Fe, nitrate, acetate, formiate and propionate), every 15 days at the beginning and every ca. 2 months after 75 days. CO2 and CH4 fluxes were measured using a static chamber approach. Net turnover of DIC and CH4 in depth layers was calculated for individual depth intervals from mass balance approach based on diffusive mass fluxes between adjacent depth layers and change in storage over time. Thermodynamic energy levels of relevant electron accepting processes were calculated over time. In the initial phase of the experiments, DIC and CH4 concentrations increased mostly below the water table level at 10 cm depth and over time in all treatments. After 45 days of incubation, CH4

  16. Short-term variations of methane concentrations and methanotrophic activity in a coastal inlet (Eckernförde Bay, Germany)

    NASA Astrophysics Data System (ADS)

    Richner, Dominik; Niemann, Helge; Steinle, Lea; Schneider von Deimling, Jens; Urban, Peter; Hoffmann, Jasper; Schmidt, Mark; Treude, Tina; Lehmann, Moritz

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated into the overlying water column and, potentially, into the atmosphere. However, a sequence of microbially mediated methane oxidation pathways in sediments and the water column mitigate the contribution of oceans to the atmospheric methane budget. Of particular importance are methanotrophic bacteria in the water column that mediate the aerobic oxidation of methane (MOx), and represent the final sink for methane before its release to the atmosphere where it acts as a potent greenhouse gas. However methane cycling in (aerobic) marine waters is not well constrained. Particularly little is known about spatiotemporal aspects of MOx activity and the underlying key physical, chemical and biological factors. Here we show results from our investigations on methane dynamics on very short time scales of hours to days in the Eckernförde Bay (E-Bay), a costal inlet of the Baltic Sea in northern Germany featuring seasonal bottom water hypoxia/anoxia. In autumn 2014, we observed highly spatiotemporal variations in water column methane contents and MOx activity: Anoxic bottom waters in a trough in the northern part of the bay contained extremely high methane concentrations of up to 800 nM, which sharply declined at the midwater redox interface (methane remained supersaturated with respect to the atmospheric equilibrium throughout the water column at all times). The methane decrease at the redox interface was related to highly active MOx communities consuming methane under microoxic conditions at rates of up 40 nM/d. About 12 hours later, the methane content and the extend of bottom water anoxia was much lower and MOx activity was highly reduced in the northern part but strongly elevated in the southern part of the bay. A few days later, bottom water anoxia, methane loading and MOx activity was partially re-established. In this contribution, we will discuss potential forcing

  17. Measurements and Simulations of Methane Concentration During a Controlled Release Experiment for Top-down Emission Quantification by In Situ and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nottrott, A.; Rahn, T. A.; Costigan, K. R.; Canfield, J.; Arata, C.; Dubey, M.; Frankenberg, C.; Thorpe, A. K.; Aubrey, A. D.

    2013-12-01

    Natural gas has been widely touted as a transition fuel because it produces fewer greenhouse gas (GHG) emissions from combustion than coal or oil. However, considering the lifecycle GHG emissions from the entire natural gas production process it is unclear whether the environmentally detrimental aspects of drilling, refining and transportation offset the benefits associated with reduced GHG emissions during combustion. Bottom-up estimates of methane (CH4) leaks from natural gas production range from 1-10% of total production, but actual emissions have not yet been verified with measurements. A large scale, outdoor, controlled release experiment was conducted to measure CH4 emissions from quasi-point sources at local spatial scales in top-down framework. The experiment was designed to quantify the sensitivity of remotely sensed observations from three airborne hyperspectral sensors AVIRIS, CARVE and HyTES. Release rates ranged from 10-5000 scf/hr. CH4 concentration fluctuations and boundary layer turbulence were measured at 20 Hz on towers located downwind of release locations. Analytical footprint and computational fluid dynamics models are employed to simulate boundary layer turbulence fields and aid in the interpretation of in situ data. CH4 emissions rates are calculated with an uncertainty of 20-70% using only in situ measurements as input to a concentration footprint model. The Weather Research and Forecasting (WRF) model is used to simulate local atmospheric conditions during the experiment, and provide boundary conditions to force very high resolution, terrain resolving large-eddy simulations (LES). WRF simulations are initialized and nudged with fields from the North American Mesoscale Forecast System (NAM) 40 km analysis, and incorporate the effects of topography at sub one-kilometer scales. The HIGRAD LES model is run with a horizontal grid resolution up to 2 meters. Methane sources are simulated in HIGRAD, and model output is used to augment spatially

  18. Impacts of ethanol-blended fuels release on groundwater aquifers and fate of produced methane: Simulation of field observations

    EPA Science Inventory

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  19. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    EPA Science Inventory

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  20. Characterization and biological abatement of diffuse methane emissions and odour in an innovative wastewater treatment plant.

    PubMed

    Barcón, Tamara; Hernández, Jerónimo; Gómez-Cuervo, Santiago; Garrido, Juan M; Omil, Francisco

    2015-01-01

    An innovative and patented process for medium-high strength sewage which comprises an anaerobic step followed by a hybrid anoxic-aerobic chamber and a final ultrafiltration stage was characterized in terms of methane fugitive emissions as well as odours. The operation at ambient temperature implies higher methane content in the liquid anaerobic effluent, which finally causes concentrations around 0.01-2.4% in the off-gas released in the anoxic-aerobic chamber (1.25% average). Mass balances indicate that these emissions account for up to 30-35% of the total methane generated in the anaerobic reactor. A conventional biofilter (BF) operated at an empty bed residence time of 4 min was used to treat these emissions for 70 d. In spite of the fluctuations in the methane inlet concentrations derived from the operation of the wastewater treatment plant (WWTP), it was possible to operate at pseudo-steady-state conditions, achieving average removal efficiencies of 76.5% and maximum elimination capacities of 30.1 g m(-3) h(-1). Odour removal was quantified as 99.1%. Fluorescence in situ hybridization probes as well as metabolic activity assays demonstrated the suitability of the biomass developed in the WWTP as inoculum to start up the BF due to the presence of methanotrophic bacteria. PMID:25749282

  1. Quantifying the flux and fate of methane into the Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Leonte, M.; Garcia-Tigreros Kodovska, F.; Chan, E. W.; Valentine, D. L.; Kellermann, M. Y.; Arrington, E. C.; Navarrete, L. C.; Weinstein, A.; Chepigin, A.; Weber, T.; Ruppel, C. D.; Scranton, M. I.

    2015-12-01

    Methane seeps were investigated in the Hudson Canyon, along the northern US Atlantic Margin on the R/V Endeavor in July 2014. These seeps are located along the upper feather-edge of the methane clathrate hydrate stability zone. Water column samples were collected guided by the acoustic identification of bubble streams in a 32 km2 region. This presentation details the measurements of dissolved methane concentration, natural stable isotopes, potential methane oxidation rates, and current velocity which were used in chemical and isotopic models to quantify (1) the total emission of methane to the water column in this region and (2) the extent of aerobic methane oxidation. In addition, the timing, efficiency, and kinetics of aerobic methane oxidation were investigated with mesocosm incubations of seawater in a unique experimental design that enabled high temporal resolution data acquisition. Finally, the ultimate fate of methane carbon was assessed with high precision measurements of pH.

  2. Gas hydrate formation in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon dioxide

    USGS Publications Warehouse

    Brewer, P.G.; Orr, F.M., Jr.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.

    1998-01-01

    We have utilized a remotely operated vehicle (ROV) to initiate a program of research into gas hydrate formation in the deep sea by controlled release of hydrocarbon gases and liquid CO2 into natural sea water and marine sediments. Our objectives were to investigate the formation rates and growth patterns of gas hydrates in natural systems and to assess the geochemical stability of the reaction products over time. The novel experimental procedures used the carrying capacity, imaging capability, and control mechanisms of the ROV to transport gas cylinders to depth and to open valves selectively under desired P-T conditions to release the gas either into contained natural sea water or into sediments. In experiments in Monterey Bay, California, at 910 m depth and 3.9??C water temperature we find hydrate formation to be nearly instantaneous for a variety of gases. In sediments the pattern of hydrate formation is dependent on the pore size, with flooding of the pore spaces in a coarse sand yielding a hydrate cemented mass, and gas channeling in a fine-grained mud creating a veined hydrate structure. In experiments with liquid CO2 the released globules appeared to form a hydrate skin as they slowly rose in the apparatus. An initial attempt to leave the experimental material on the sea floor for an extended period was partially successful; we observed an apparent complete dissolution of the liquid CO2 mass, and an apparent consolidation of the CH4 hydrate, over a period of about 85 days.

  3. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  4. Technical Note: Disturbance of soil structure can lead to release of entrapped methane in glacier forefield soils

    NASA Astrophysics Data System (ADS)

    Nauer, P. A.; Chiri, E.; Zeyer, J.; Schroth, M. H.

    2014-02-01

    Investigations of sources and sinks of atmospheric CH4 are needed to understand the global CH4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic subglacial sediment to an oxic proglacial soil, in which soil-microbial consumption of atmospheric CH4 is initiated. The development of this change in CH4 turnover can be quantified by soil-gas profile analysis. We found evidence for CH4 entrapped in glacier forefield soils when comparing two methods for the collection of soil-gas samples: a modified steel rod (SR) designed for one-time sampling and rapid screening (samples collected ∼1 min after hammering the SR into the soil), and a novel multilevel sampler (MLS) for repetitive sampling through a previously installed access tube (samples collected weeks after access-tube installation). In glacier forefields on siliceous bedrock, sub-atmospheric CH4 concentrations were observed with both methods. Conversely, elevated soil-CH4 concentrations were observed in calcareous glacier forefields, but only in samples collected with the SR, while MLS samples all showed sub-atmospheric CH4 concentrations. Time-series of SR soil-gas sampling (additional samples collected 2, 3, 5, and 7 min after hammering) confirmed the transient nature of the elevated soil-CH4 concentrations, which were decreasing from ∼100 μL L-1 towards background levels within minutes. This hints towards the existence of entrapped CH4 in calcareous glacier forefield soil that can be released when sampling soil-gas with the SR. Laboratory experiments with miniature soil cores collected from two glacier forefields confirmed CH4 entrapment in these soils. Treatment by sonication and acidification resulted in a massive release of CH4 from calcareous cores (on average 0.3-1.8 μg CH4 (g d.w.)-1) (d.w. - dry

  5. Methane release from the East Siberian Arctic Shelf: The role of subsea permafrost and other controlling factors as inferred from decadal observational and modeling efforts

    NASA Astrophysics Data System (ADS)

    Shakhova, N. E.

    2015-12-01

    Sustained methane (CH4) release from thawing Arctic permafrost to atmosphere may be a positive, major feedback to climate warming. East Siberian Arctic Shelf (ESAS) atmospheric CH4 venting was reported as on par with flux from Arctic tundra. Unlike release when ancient carbon in thawed on-land permafrost is mobilized, ESAS CH4 release is not determined by modern methanogenesis. Pre-formed CH4 largely stems from seabed deposits. Our investigation, including observational studies using hydrological, biogeochemical, geophysical, geo-electrical, microbiological, and isotopic methods, and modeling efforts to assess current subsea permafrost state and the ESAS' contribution to the regional CH4 budget, have clarified processes driving ESAS CH4 emissions. Subsea permafrost state is a major emission determinant; rates vary by 3-5 orders of magnitude. Outer ESAS CH4 emission rates, where subsea permafrost is predicted to be degraded due to long submergence by seawater, in places are similar to near-shore rates, where deep/open taliks can form due to combined heating effects of seawater, river runoff, geothermal flux, and pre-existing thermokarst. Progressive subsea permafrost thawing and decreasing ice extent could significantly increase ESAS CH4 emissions. Subsea permafrost drilling results reveal modern recently submerged subsea permafrost degradation rates, contradicting previous hypotheses that thousands of years required to form escape paths for permafrost-preserved gas. We used a decadal observational ESAS water column and atmospheric boundary layer (ABL) data set to define the minimum source strength required to explain observed seasonally-increased ABL CH4 concentration. Modeling results agree with estimates from in-situ sonar data. In <10 m shallow water ≤72% of CH4 remains in surfacing bubbles. Dissolved CH4 fate largely depends on 3 factors: dissolved CH4 water column turnover time, water column stability against vertical mixing, and turbulent diffusion and

  6. Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.

    PubMed

    Hsu, Li-Jen; Alwahabi, Zeyad T; Nathan, Graham J; Li, Yu; Li, Z S; Aldén, Marcus

    2011-06-01

    A quantitative point measurement of total sodium ([Na](total)) and potassium ([K](total)) in the plume of a burning particle of Australian Loy Yang brown coal (23 ± 3 mg) and of pine wood pellets (63 ± 3 mg) was performed using laser-induced breakdown spectroscopy (LIBS) in a laminar premixed methane flame at equivalence ratios ( U ) of 1.149 and 1.336. Calibration was performed using atomic sodium or potassium generated by evaporation of droplets of sodium sulfite (Na(2)SO(3)) or potassium sulfate (K(2)SO(4)) solutions seeded into the flame. The calibration compensated for the absorption by atomic alkalis in the seeded flame, which is significant at high concentrations of solution. This allowed quantitative measurements of sodium (Na) and potassium (K) released into the flame during the three phases of combustion, namely devolatilization, char, and ash cooking. The [Na](total) in the plume released from the combustion of pine wood pellets during the devolatilization was found to reach up to 13 ppm. The maximum concentration of total sodium ([Na](max)M(total)) and potassium ([K](max)(total)) released during the char phase of burning coal particles for φ = 1.149 was found to be 9.27 and 5.90 ppm, respectively. The [Na](max)(total) and [K](max)(total) released during the char phase of burning wood particles for φ = 1.149 was found to be 15.1 and 45.3 ppm, respectively. For the case of φ = 1.336, the [Na](max)(total) and [K](max)(total) were found to be 13.9 and 6.67 ppm during the char phase from burning coal particles, respectively, and 21.1 and 39.7 ppm, respectively, from burning wood particles. The concentration of alkali species was higher during the ash phase. The limit of detection (LOD) of sodium and potassium with LIBS in the present arrangement was estimated to be 29 and 72 ppb, respectively. PMID:21639991

  7. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. PMID:26348286

  8. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1996-01-01

    The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic

  9. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  10. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  11. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  12. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  13. Explicit Microbial Processes to Simulate Methane Production and Oxidation in Wetlands in the GFDL Land Model

    NASA Astrophysics Data System (ADS)

    Smolander, S.; Sulman, B. N.; Shevliakova, E.

    2015-12-01

    Recent observational studies highlighted the need to include explicit treatment of the soil microbial processes into the next generation of Earth System Models (ESMs). These processes shape most soil biogeochemical cycles and control releases of the most potent greenhouses gases carbon dioxide and methane. Currently global ecosystem models usually parameterize methane production as a fraction of soil heterotrophic respiration. This lumps the pathways of several different functional groups of microbes into one production rate, possibly modified by a number of environmental factor multipliers. Methane oxidation is usually more explicitly modeled by Michaelis-Menten kinetics, but if the maximum rate, before environmental multipliers, is a constant parameter, this essentially implies a constant methanotrophic microbe population size. We present an explicit model for wetland soil microbial processes in an ESM context. We introduce a growth and decomposition model for four functional groups of microbes involved in methane production and oxidation, so microbial populations can grow when conditions are favorable and substrate is available. When soil conditions are anoxic, fermenting microbes transform available soil carbon into intermediate substrates, and two different kinds of methanogenic microbes live on their preferred substrates producing methane. Methane is transported through aerobic layers of the soil column, where methanotrophic microbes oxidize part of the methane, and the rest escapes to the atmosphere. We present initial simulations using the new model in the context of existing measurements of methane emissions and microbial populations at the site level, and discuss the implications of including these processes in an ESM. This explicit process model establishes a foundation for improving dynamic ecosystem-climate feedbacks in ESM simulations, and facilitates more detailed experimental verification of wetland biogeochemical processes.

  14. Are methane production and cattle performance related?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...

  15. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed

    Kästner, M

    1991-07-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  16. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed Central

    Kästner, M

    1991-01-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  17. The regulation of methane oxidation in soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.

    1995-01-01

    The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.

  18. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  19. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, J.W.; Kaneko, M.; Heuer, V.B.; Coffin, R.B.; Whiticar, M.

    2009-01-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The ??13C values of methane range from a minimum value of - 82.2??? on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of - 39.5??? at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from - 22.5??? to +25.7???. The magnitude of the carbon isotope separation between methane and CO2 (??c = 63.8 ?? 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform ??DCH4 values (- 172??? ?? 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5???. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25??? and increases to ~ 40??? at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C

  20. [Research progress in microbial methane oxidation coupled to denitrification].

    PubMed

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  1. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations. PMID:23639409

  2. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  3. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  4. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1.

    PubMed

    Kits, K Dimitri; Klotz, Martin G; Stein, Lisa Y

    2015-09-01

    Obligate methanotrophs belonging to the Phyla Proteobacteria and Verrucomicrobia require oxygen for respiration and methane oxidation; nevertheless, aerobic methanotrophs are abundant and active in low oxygen environments. While genomes of some aerobic methanotrophs encode putative nitrogen oxide reductases, it is not understood whether these metabolic modules are used for NOx detoxification, denitrification or other purposes. Here we demonstrate using microsensor measurements that a gammaproteobacterial methanotroph Methylomonas denitrificans sp. nov. strain FJG1(T) couples methane oxidation to nitrate reduction under oxygen limitation, releasing nitrous oxide as a terminal product. Illumina RNA-Seq data revealed differential expression of genes encoding a denitrification pathway previously unknown to methanotrophs as well as the pxmABC operon in M. denitrificans sp. nov. strain FJG1(T) in response to hypoxia. Physiological and transcriptome data indicate that genetic inventory encoding the denitrification pathway is upregulated only upon availability of nitrate under oxygen limitation. In addition, quantitation of ATP levels demonstrates that the denitrification pathway employs inventory such as nitrate reductase NarGH serving M. denitrificans sp. nov. strain FJG1(T) to conserve energy during oxygen limitation. This study unravelled an unexpected metabolic flexibility of aerobic methanotrophs, thereby assigning these bacteria a new role at the metabolic intersection of the carbon and nitrogen cycles. PMID:25580993

  5. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  6. Redefining the isotopic boundaries of biogenic methane: Methane from endoevaporites

    NASA Astrophysics Data System (ADS)

    Tazaz, Amanda M.; Bebout, Brad M.; Kelley, Cheryl A.; Poole, Jennifer; Chanton, Jeffrey P.

    2013-06-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleoenvironments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption, particularly in hypersaline environments. Methane in the atmosphere of Mars may be an indication of extant life, but it may also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. On Earth these methane sources can be distinguished using stable isotopic analyses and the ratio of methane (C1) to C2 and C3 alkanes present in the gas source (C1/(C2 + C3)). We report here that methane produced in hypersaline environments on Earth has an isotopic composition and alkane content outside the values presently considered to indicate a biogenic origin. Methane-rich bubbles released from sub-aqueous substrates contained δ13CCH4 and δ2HCH4 values ranging from -65‰ to -35‰ and -350‰ to -140‰ respectively. Higher salinity endoevaporites yielded what would be considered non-biogenic methane based upon stable isotopic and alkane content, however incubation of crustal and algal mat samples resulted in methane production with similar isotopic values. Radiocarbon analysis indicated that the production of the methane was from recently fixed carbon. An extension of the isotopic boundaries of biogenic methane is necessary in order to avoid the possibility of false negatives returned from measurements of methane on Mars and other planetary bodies.

  7. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  8. Methane oxidation linked to chlorite dismutation

    PubMed Central

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs. PMID:24987389

  9. Methane oxidation linked to chlorite dismutation

    USGS Publications Warehouse

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

  10. Methane oxidation linked to chlorite dismutation.

    PubMed

    Miller, Laurence G; Baesman, Shaun M; Carlström, Charlotte I; Coates, John D; Oremland, Ronald S

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO(-) 2) dismutation. Although dissimilatory reduction of ClO(-) 4 and ClO(-) 3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO(-) 2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO(-) 2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO(-) 2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO(-) 2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO(-) 4 or ClO(-) 3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs. PMID:24987389

  11. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  12. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  13. Breaking methane

    PubMed Central

    Rosenzweig, Amy C.

    2015-01-01

    The most powerful oxidant found in nature is compound Q, an enzymatic intermediate that oxidizes methane. New spectroscopic data have resolved the long-running controversy about Q’s chemical structure. PMID:25607367

  14. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    SciTech Connect

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencing the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.

  15. Methane in permafrost - Preliminary results from coring at Fairbanks, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    1993-01-01

    Permafrost has been suggested as a high-latitude source of methane (a greenhouse gas) during global warming. To begin to assess the magnitude of this source, we have examined the methane content of permafrost in samples from shallow cores (maximum depth, 9.5m) at three sites in Fairbanks, Alaska, where discontinuous permafrost is common. These cores sampled frozen loess, peat, and water (ice) below the active layer. Methane contents of permafrost range from <0.001 to 22.2mg/kg of sample. The highest methane content of 22.2mg/kg was found in association with peat at one site. Silty loess had high methane contents at each site of 6.56, 4.24, and 0.152mg/kg, respectively. Carbon isotopic compositions of the methane (??13C) ranged from -70.8 to -103.9 ???, and hydrogen isotopic compositions of the methane (??D) from -213 to -313 ???, indicating that the methane is microbial in origin. The methane concentrations were used in a one dimensional heat conduction model to predict the amount of methane that will be released from permafrost worldwide over the next 100 years, given two climate change scenarios. Our results indicate that at least 30 years will elapse before melting permafrost releases important amounts of methane; a maximum methane release rate will be about 25 to 30 Tg/yr, assuming that methane is generally distributed in shallow permafrost as observed in our samples.

  16. Inhibition of methane consumption in forest soils by monoterpenes

    SciTech Connect

    Amaral, J.A.; Knowles, R.

    1998-04-01

    Selected monoterpenes were tested for their ability to inhibit atmospheric methane consumption by three forest soils from different vegetation types and by the cultured methanotrophic strain, Methylosinus trichosporium OB3b. Subsurface soil from coniferous (Pinus banksiana), deciduous (Populus tremuloides), and mixed hardwood (Tsuga canadensis and Prunus pensylvanica) stands was used under field-moist and slurry conditions. Most of the hydrocarbon monoterpenes tested significantly inhibited methane consumption by soils at environmentally relevant levels, with ({minus})-{alpha}-pinene being the most effective. With the exception of {beta}-myrcene, monoterpenes also strongly inhibited methane oxidation by Methylosinus trichosporium OB3b. Carbon dioxide production was stimulated in all of the soils by the monoterpenes tested. In one case, methane production was stimulated by ({minus})-{alpha}-pinene in an intact, aerobic core. Oxide and alcohol monoterpenoids stimulated methane production. Thus, monoterpenes appear to be potentially important regulators of methane consumption and carbon metabolism in forest soils.

  17. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  18. A New Screening Method for Methane in Soil Gas Using Existing Groundwater Monitoring Wells

    EPA Science Inventory

    Methane in soil gas may have undesirable consequences. The soil gas may be able to form a flammable mixture with air and present an explosion hazard. Aerobic biodegradation of the methane in soil gas may consume oxygen that would otherwise be available for biodegradation of gasol...

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  1. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  2. Methane clathrates in the solar system.

    PubMed

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  3. METHANE EMISSIONS FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    The chapter identifies and describes major industrial sources of methane (CH4) emissions. or each source type examined, it identifies CH4 release points and discusses in detail the factors affecting emissions. t also summarizes and discusses available global and country-specific ...

  4. Landfill Methane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  5. Pingos, craters and methane-leaking seafloor in the central Barents Sea: signals of decomposing gas hydrate releasing gas from deeper hydrocarbon reservoirs?

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Plaza-Faverola, A. A.; Winsborrow, M.; Deryabin, A.; Mattingsdal, R.; Vadakkepuliyambatta, S.; Serov, P.; Mienert, J.; Bünz, S.

    2015-12-01

    A cluster of large craters and mounds appear on the gas-leaking sea floor in the central Barents Sea around the upper limit for methane hydrate stability, covering over 360 km2. We use multibeam bathymetry, single-beam echo sounder and high-resolution seismic data to reveal the detailed geomorphology and internal structure of craters and mounds, map the distribution gas in the water and to unravel the subsurface plumbing system and sources of gas leakage. Distinct morphologies and geophysical signatures of mounds and craters are inferred to reflect different development stages of shallow gas hydrate formation and dissociation. Over 600 gas flares extending from the sea floor into the water are mapped, many of these from the seafloor mounds and craters, but most from their flanks and surroundings. Analysis of geophysical data link gas flares in the water, craters and mounds to seismic indications of gas advection from deeper hydrocarbon reservoirs along faults and fractures. We present a conceptual model for formation of mounds, craters and gas leakage of the area.

  6. Methane seepage along the Hikurangi Margin offshore New Zealand: 6 years of multidisciplinary studies

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Bialas, J.; Klaucke, I.; Crutchley, G.; Dale, A.; Linke, P.; Sommer, S.; Bowden, D.; Rowden, A.; de Haas, H.; de Stigter, H.; Faure, K.

    2012-12-01

    Detailed studies in 2006, 2007 and 2011 along the east coast of New Zealand's North Island highlighted the close link of sub-bottom fluid pathways and seafloor expressions of methane seepage such as clam fields, carbonate build-ups, tubeworms, bacterial mats and methane release (Marine Geology 272). Prior to our studies, only accidental observations of hydroacoustic anomalies, recoveries of calyptogena shells and methane-derived carbonate chimneys indicated active seepage. Wide areas of the sub-seafloor show BSR structures, gas migration pathways, gas chimneys and blanking zones, which are closely linked to actual seep sites. Sidescan surveys showed four prominent seep areas at Omakere Ridge in 1120m water depth, three of them perfectly matching the shapes and locations of faults seen in high resolution 3D-seismic surveys. The fourth seep, Bear's Paw, on its western side represents an old seep which developed into a cold water coral habitat. At the actively seeping eastern part, gas hydrates could be retrieved and bubble release was observed hydroacoustically and confirmed by high dissolved methane values (380nM). No strong microbial oxidation effects could be found in δ13C values plotting along a mixing curve between pure seep (-70 ‰PDB) and atmospheric methane (-47 ‰PDB). Lander deployments show a tide-influenced gas discharge with sometimes eruptive bubble release with possible plume development transporting methane-charged water higher up into the water column. Rock Garden, with just above 600m water depth at its top outside the gas hydrate stability zone, hosts two main seep areas. ROV observations at Faure Site document eruptive releases of free gas from decimeter-wide craters at the seafloor. Flux estimates show peak releases of 420ml/min with bubbles up to 9mm in diameter. Concentrations of dissolved methane reach up to 3500nM close to the bottom, but higher concentrations are limited to below 400m of water depth; here, methane is transported towards

  7. Methane production and methanogen levels in steers that differ in residual gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas released by cattle is a product of fermentation in the digestive tract. The two primary sites of methane fermentation in ruminants are the reticulum-rumen complex, and the cecum. Methane release from cattle represents a 2 to 12% loss of the energy intake. Reducing the proportion of fe...

  8. Comparison of Two Techniques to Calculate Methane Oxidation rates in Samples Obtained From the Hudson Canyon Seep Field in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Chepigin, A.; Kellermann, M. Y.; Arrington, E.; Valentine, D. L.; Sylva, S.

    2014-12-01

    Aerobic methane oxidation, or methanotrophy, is the dominant process by which methane is removed from the water column in oceanic environments. Therefore, accurately quantifying methane oxidation rates is crucial when constructing methane budgets on a local or global scale. Here we present a comparison of two techniques used to determine methane oxidation rates based on samples obtained over the Hudson Canyon seep field in the North Atlantic. Traditional methane oxidation rate measurements require inoculation of water samples with isotopically labeled methane and tracking the changes to methane concentrations and isotopes as the samples are incubated. However, the addition of methane above background levels is thought to increase the potential for methane oxidation in the sample. A new technique to calculate methane oxidation rates is based on kinetic isotope models and incorporates direct measurements of methane concentrations, methane 13C isotopes, and water current velocity. Acoustic instrumentation (ADCP) aboard the R/V Endeavor was used to obtain water current velocity data while water samples were collected for methane concentration and isotopic ratio analysis. Methane δ13C measurements allow us to attribute changes in methane concentration to either water dispersion or bacterial methane oxidation. The data obtained from this cruise will tell us a comprehensive story of methane removal processes from this active seep field. The kinetic isotope models will allow us to estimate the total flux of methane from the seep site and calculate methane oxidation rates at different depths and locations away from seafloor plumes.

  9. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  10. Non-microbial methane emissions from soils

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and <53 μm, M2). Results show that applying autoclaving to pre-treat soils is effective to inhibit methanogenic activity, ensuring the CH4 emitted being non-microbial. Responses of non-microbial CH4 emissions to temperature, water, and H2O2 were almost identical between aerobic and anaerobic conditions. Increasing temperature, water of proper amount, and H2O2 could significantly enhance CH4 emissions. However, the emission rates were inhibited and enhanced by anaerobic conditions without and with the existence of H2O2, respectively. As regards the aggregates, aggregate-based emission presented an order of M1 > A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished

  11. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Matson, Dennis L.; Johnson, Torrence V.

    2016-08-01

    To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically ≈30% of the thickness of the lava flow (≈3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m2 of flow area. Such an event would release methane for nearly a year. One or two events per year covering ∼20 km2 would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of ≈9000 km2 with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane.

  12. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. PMID:20435458

  13. Methane emission from flooded soils - from microorganisms to the atmosphere

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  14. Thinking Like a Wildcatter: Prospecting for Methane in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Oehler, D. Z.

    2005-01-01

    Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.

  15. Methane oxidation in Saanich Inlet during summer stratification

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.

    1989-01-01

    Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.

  16. Analysing the consistency of martian methane observations by investigation of global methane transport

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2015-09-01

    Reports of methane on Mars at different times imply varying spatial distributions. This study examines whether different observations are mutually consistent by using a global circulation model to investigate the time evolution of methane in the atmosphere. Starting from an observed plume of methane, consistent with that reported in 2003 from ground-based telescopes, multiple simulations are analysed to investigate what is required for consistency with an inferred methane signal from the Thermal Emission Spectrometer made 60 sols later. The best agreement between the existing observations is found using continued release from a solitary source over Nili Fossae. While the peaks in methane over the Tharsis Montes, Elysium Mons and Nili Fossae regions are well aligned with the retrievals, an extra peak on the south flank of the Isidis basin is apparent in the model due to the prevailing eastward transport of methane. The absence of this feature could indicate the presence of a fast-acting localised sink of methane. These results show that the spatial and temporal variability of methane on Mars implied by observations could be explained by advection from localised time-dependent sources alongside a currently unknown methane sink. Evidence is presented that a fast trapping mechanism for methane is required. Trapping by a zeolite structure in dust particles is a suggested candidate warranting further investigation; this could provide a fast acting sink as required by this reconstruction.

  17. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  19. Methane sources and production in the northern Cascadia margin gas hydrate system

    NASA Astrophysics Data System (ADS)

    Pohlman, J. W.; Kaneko, M.; Heuer, V. B.; Coffin, R. B.; Whiticar, M.

    2009-10-01

    The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The δ13C values of methane range from a minimum value of - 82.2‰ on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of - 39.5‰ at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO 2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from - 22.5‰ to +25.7‰. The magnitude of the carbon isotope separation between methane and CO 2 ( εc = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform δD CH 4 values (- 172‰ ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO 2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO 2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5‰. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO 2 is ~ 25‰ and increases to ~ 40‰ at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C

  20. Modeling the fate of methane hydrates under global warming

    NASA Astrophysics Data System (ADS)

    Kretschmer, Kerstin; Biastoch, Arne; Rüpke, Lars; Burwicz, Ewa

    2015-05-01

    Large amounts of methane hydrate locked up within marine sediments are vulnerable to climate change. Changes in bottom water temperatures may lead to their destabilization and the release of methane into the water column or even the atmosphere. In a multimodel approach, the possible impact of destabilizing methane hydrates onto global climate within the next century is evaluated. The focus is set on changing bottom water temperatures to infer the response of the global methane hydrate inventory to future climate change. Present and future bottom water temperatures are evaluated by the combined use of hindcast high-resolution ocean circulation simulations and climate modeling for the next century. The changing global hydrate inventory is computed using the parameterized transfer function recently proposed by Wallmann et al. (2012). We find that the present-day world's total marine methane hydrate inventory is estimated to be 1146 Gt of methane carbon. Within the next 100 years this global inventory may be reduced by ˜0.03% (releasing ˜473 Mt methane from the seafloor). Compared to the present-day annual emissions of anthropogenic methane, the amount of methane released from melting hydrates by 2100 is small and will not have a major impact on the global climate. On a regional scale, ocean bottom warming over the next 100 years will result in a relatively large decrease in the methane hydrate deposits, with the Arctic and Blake Ridge region, offshore South Carolina, being most affected.

  1. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  2. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  3. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  4. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors.

    PubMed

    Shaw, C B; Carliell, C M; Wheatley, A D

    2002-04-01

    Conventional biological wastewater treatment plants do not easily degrade the dyes and polyvinyl alcohols (PVOH) in textile effluents. Results are reported on the possible advantages of anaerobic/aerobic cometabolism in sequenced redox reactors. A six phase anaerobic/aerobic sequencing laboratory scale batch reactor was developed to treat a synthetic textile effluent. The wastewater included PVOH from desizing and an azo dye (Remazol Black). The reactor removed 66% of the applied total organic carbon (load F: M 0.15) compared to 76% from a control reactor without dye. Colour removal was 94% but dye metabolites caused reactor instability. Aromatic amines from the anaerobic breakdown of the azo dyes were not completely mineralised by the aerobic phase. Breakdown of PVOH by the reactor (20-30%) was not as good as previous reports with entirely aerobic cultures. The anaerobic cultures were able to tolerate the oxygen and methane continued to be produced but there was a deterioration in settlement. PMID:12092574

  5. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  6. Making methane visible

    NASA Astrophysics Data System (ADS)

    Gålfalk, Magnus; Olofsson, Göran; Crill, Patrick; Bastviken, David

    2016-04-01

    Methane (CH4) is one of the most important greenhouse gases, and an important energy carrier in biogas and natural gas. Its large scale emission patterns have been unpredictable and the source and sink distributions are poorly constrained. Remote assessment of CH4 with high sensitivity at m2 spatial resolution would allow detailed mapping of near ground distribution and anthropogenic sources and sinks in landscapes but has hitherto not been possible. Here we show that CH4 gradients can be imaged on methane imaging will include a lake, barn, sewage sludge deposit, waste incineration plant, and controlled gas releases. We will also present successful simultaneous imaging of another important greenhouse gas, nitrous oxide, with the same instrument.

  7. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. PMID:26874310

  8. Prospecting for Methane in Arabia Terra, Mars - First Results

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dotoyhy Z.; Venechuk, Elizabeth M.

    2006-01-01

    Methane has been measured in the Martian atmosphere at concentrations of approx. 10 ppb. Since the photochemical lifetime of this gas is approx. 300 years, it is likely that methane is currently being released from the surface. Possible sources for the methane include 1) hydrothermal activity, 2) serpentinization of basalts and other water-rock interactions, 3) thermal maturation of sedimentary organic matter, and 4) metabolism of living bacteria. Any such discovery would revolutionize our understanding of Mars. Longitudinal variations in methane concentration, as measured by the Planetary Fourier Spectrometer (PFS) on Mars Express, show the highest values over Arabia Terra, Elysium Planum, and Arcadia-Memnonia, suggesting localized areas of methane release. We are using orbital data and methodologies derived from petroleum exploration in an attempt to locate these release points.

  9. Diversity of methanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions.

    PubMed

    Yun, Juanli; Ma, Anzhou; Li, Yaoming; Zhuang, Guoqiang; Wang, Yanfen; Zhang, Hongxun

    2010-01-01

    Zoige wetland is one of the most important methane emission centers in China. The oxidation of methane in the wetland affects global warming, soil ecology and atmospheric chemistry. Despite their global significance, microorganisms that consume methane in Zoige wetland remain poorly characterized. In this study, we investigated methanotrophs diversity in soil samples from both anaerobic site and aerobic site in Zoige wetland using pmoA gene as a molecular marker. The cloning library was constructed according to the pmoA sequences detected. Four clusters of methanotrophs were detected. The phylogenetic tree showed that all four clusters detected were affiliated to type I methanotrophs. Two novel clusters (cluster 1, cluster 2) were found to relate to none of the recognized genera of methanotrophs. These clusters have no cultured representatives and reveal an ecological adaptation of particular uncultured methanotrophs in Zoige wetland. Two clusters were belonging to Methylobacter and Methylococcus separately. Denaturing gradient gel electrophoresis gel bands pattern retrieved from these two samples revealed that the community compositions of anaerobic soil and aerobic soil were different from each other while anaerobic soil showed a higher metanotrophs diversity. Real-time PCR assays of the two samples demonstrated that aerobic soil sample in Zoige wetland was 1.5 times as much copy numbers as anaerobic soil. These data illustrated that methanotrophs are a group of microorganisms influence the methane consumption in Zoige wetland. PMID:21179963

  10. Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes.

    PubMed

    Xu, Qiyong; Tian, Ying; Kim, Hwidong; Ko, Jae Hac

    2016-10-01

    Aeration pretreatment was demonstrated as an efficient technology to promote methane recovery from a bioreactor landfill with high food waste content. In this study, a short-term experiment was conducted to investigate the effects of aerobic-anaerobic operation modes on biogas recovery. Three landfill-simulated columns (anaerobic control (A1), a constant aeration (C1) and a gradually reduced aeration (C2)) were constructed and operated for 130days. The aeration frequency was adjusted by oxygen consumption in an aerated MSW landfill. After aerobic pretreatment was halted, the methanogenic phase was rapidly developed in both the C1 and C2 columns, reducing the volatile fatty acid (VFA) concentrations and increasing pH. The methane volumes per dry MSW produced from the C1 and C2 columns were approximately 62L/kg VS and 75L/kg VS, respectively, while methane produced from the A1 column was almost negligible. The result clearly showed that aerobic pretreatment with gradual reduction of aeration rates could not only improve methane recovery from waste decomposition, but also enhance leachate COD and VFA removal. PMID:27426021

  11. Metastable methane clathrate particles as a source of methane to the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Chassefière, Eric

    2009-11-01

    The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of "anomalous preservation" evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation-sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H 2O 2 penetration in the regolith that methane could prevent H 2O 2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The

  12. A conduit dilation model of methane venting from lake sediments

    NASA Astrophysics Data System (ADS)

    Scandella, Benjamin P.; Varadharajan, Charuleka; Hemond, Harold F.; Ruppel, Carolyn; Juanes, Ruben

    2011-03-01

    Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.

  13. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  14. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  15. A conduit dilation model of methane venting from lake sediments

    USGS Publications Warehouse

    Scandella, B.P.; Varadharajan, C.; Hemond, Harold F.; Ruppel, C.; Juanes, R.

    2011-01-01

    Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.

  16. Global dispersion and local diversification of the methane seep microbiome

    PubMed Central

    Ruff, S. Emil; Biddle, Jennifer F.; Teske, Andreas P.; Knittel, Katrin; Boetius, Antje

    2015-01-01

    Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate–methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean. PMID:25775520

  17. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  18. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Dumont, Marc G

    2016-08-01

    Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region. PMID:27369086

  19. Methane on Mars: Measurements and Possible Origins

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  20. Comparison of Methods to Assess the Fate of Methane in a Landfill-Cover Soil

    NASA Astrophysics Data System (ADS)

    Gomez, K. E.; Schroth, M. H.; Eugster, W.; Niklaus, P.; Oester, P.; Zeyer, J.

    2008-12-01

    A substantial fraction of the greenhouse gas methane released into the atmosphere is produced in terrestrial environments such as wetlands, rice paddy fields, and landfills. However, the amount of methane that is emitted from these environments is often reduced by microbial methane oxidation, mediated by methanotrophic microorganisms. Methanotrophs are ubiquitous in soils and represent the largest biological sink for methane. We performed a series of field experiments in summer 2008 to compare several state-of- the-art methods to assess the fate of methane in a landfill-cover soil near Liestal (BL), Switzerland. Methods employed included eddy-covariance and field-chamber measurements to quantify net methane flux at the landfill surface. In addition, methane concentrations at the landfill surface were monitored using a portable methane detector. Methane fluxes within the cover soil were estimated from methane-concentration profiles in conjunction with radon measurements. Additionally, gas push-pull tests were employed for in-situ quantification of methane oxidation in the cover soil. Finally, methane stable-carbon-isotope measurements were conducted to corroborate methane oxidation in the cover soil. Preliminary results indicate that each method provides unique information, and when combined, the data provide detailed insight in the fate of methane in the cover soil. The investigated landfill-cover soil appears to be ordinarily a net sink for methane. However, it can quickly turn into a net source of methane under adverse meteorological conditions.

  1. More than three thousand years of microbial methane consumption at cold seeps offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Vögtli, Irina; Liebetrau, Volker; Krause, Stefan; Treude, Tina; Lehmann, Moritz; Niemann, Helge

    2014-05-01

    Microbial consumption retains a significant fraction of methane in marine sediments. Under anoxic conditions, the anaerobic oxidation of methane (AOM) is mediated by archaea with sulfate as the terminal electron acceptor, whereas the aerobic oxidation of methane (MOx) is mediated by bacteria. MOx is typically less important in marine systems because oxygen availability in sediments is very low and methane is consumed in deeper sediments through AOM. At cold seeps, however, the methane flux can be high enough to bypass the AOM filter so that methane and oxygen overlap in surface sediments. The role of MOx thus becomes more significant at highly active cold seeps. To further test this hypothesis, and the applicability of MOx-signatures as a tracer for paleo seep activity, we investigated lipid biomarkers of methanotrophic communities in modern sediments and compared them to fossilised lipids in more than 3000 years old authigenic carbonate accretions. Sediments and carbonates were recovered in the direct vicinity of bubble release sites at cold seeps offshore Svalbard, systems that have been active for at least 3000 years (Berndt et al., 2014). Samples were recovered with the submersible JAGO during an expedition with R/V M.S. Merian (MSM 21/4) in 2012. The composition of lipid biomarkers and their associated stable carbon isotope signatures provide evidence for distinctly different methanotrophic communities in modern sediments and the old carbonates. In deeper sediments, where AOM rate measurements were maximal (~500 nmol ml-1 d-1 at ~5 cm sediment depth), the dominance of the 13C-depleted archaeal biomarker archaeol and the absence of sn2-hydroxyarchaeol and crocetane point to an AOM community dominated by ANME1-archaea. At the surface of the sediment core, we found 13C-depleted 4α-methylsteroids and diploptene, lipid biomarkers originating from MOx communities. The biomarker profiles are consistent with our visual observations. During sampling, methane bubbles

  2. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    NASA Astrophysics Data System (ADS)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    = -31‰) released following the chemical degradation of ether bonds with HI, argue against an origin from archaea involved in AOM. Intriguingly, the only 13C-depleted (-66‰<δ13C<-53‰) lipid biomarkers detected in the superficial sediments and in the anoxic waters of Lake Pavin are bacterial hopanoids (diploptene, diplopterol, C32 homohopanols and homohopanoic acid). Such 13C-depleted hopanoids are generally thought to be specific of aerobic methanotrophic bacteria but the recent discovery of hopanoids in cultures of strictly anaerobic bacteria allows envisaging AOM in Lake Pavin as a bacterially-driven process. The analysis of lipid biomarkers from the different redox zones of the water column (oxic, transition oxic-anoxic, fully anoxic) is currently being investigated and should help assessing the unconventional anaerobic methane consumers of Lake Pavin.

  3. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse.

    PubMed

    Mota, V T; Araújo, T A; Amaral, M C S

    2015-07-01

    Vinasse is the main liquid waste from ethanol production, and it has a considerable pollution potential. Biological treatment is a promising alternative to reduce its organic load. The aim of this study was to analyze the biodegradation of sugarcane juice vinasse in aerobic and anaerobic conditions. The content of carbohydrates, proteins and volatile fatty acids was evaluated. Vinasse samples showed a high biodegradability (>96.5 %) and low percentage of inert chemical oxygen demand (COD) (<3.2 %) in both aerobic and anaerobic conditions. The rates of substrate utilization were slightly higher in aerobic reactors, but COD stabilization occurred simultaneously in the anaerobic reactors, confirming its suitability for anaerobic digestion. Inert COD in anaerobic conditions was lower than in aerobic conditions. On the other hand, COD from metabolic products in the anaerobic reactors was higher than in the aerobic ones, indicating an increased release of soluble microbial products (SMPs) by anaerobic microorganisms. The results indicated that carbohydrates were satisfactorily degraded and protein-like substances were the major components remaining after biological degradation of vinasse. PMID:25957273

  4. Coal-bed methane water effects on dill and essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  5. The effect of coal-bed methane water on spearmint and peppermint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coal bed methane (CBM) is extracted from underground coal seams, flooded with water. In order to reduce the pressure and release the methane, the trapped water needs to be pumped out. The resulting ‘waste water’ is known as coal-bed methane water (CBMW). Major concerns with the use of CBMW are the h...

  6. Methane emissions from cattle differing in feed intake and feed efficiency fed a high concentrate diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas released by cattle is a product of fermentation of feed in the digestive tract and represents a loss of feed energy. In addition to being a dietary energy loss, methane is considered a greenhouse gas. Developing strategies to reduce methane emissions from cattle have the potential to i...

  7. Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane is a potent greenhouse gas and its release to the atmosphere is considered to contribute to global warming. Ruminal enteric methane production represents a loss of 2% to 15% of the animal’s energy intake and contributes nearly 20% of the United States total methane emissions. Studies have ...

  8. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  9. Up with methane

    SciTech Connect

    Barlaz, M.A.; Milke, M.W.; Ham, R.K.

    1986-12-01

    Methane production from municipal refuse represents a rapidly developing source of energy which remains underutilized. Part of the problem is the small amount of methane which is typically collected relative to the refuse's methane generation potential. This study was undertaken to define the parameters which affect the onset of methane production and methane yields in sanitary landfills. Ultimately, we need to develop refuse disposal methods which enhance its methane production potential. Included in the study were tests of how introduction of old refuse, use of sterile cover soil, addition of acetate to refuse, and use of leachate, recycling and neutralization affect methane generation. A more thorough understanding of how the microbes present in refuse react to different variables is the first step in the development of techniques for stimulating methane production in sanitary landfills.

  10. Molecular and isotopic insights into methane oxidation in Lake Kivu

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Wehrli, B.; Schubert, C. J.

    2013-12-01

    Lake Kivu is a meromictic lake in the East African Rift Valley, located between the Republic of Rwanda and the Democratic Republic of Congo. The hypolimnion is permanently stratified and contain an unusually high amount of dissolved methane (CH4; ~ 60 km3) and carbon dioxide (CO2; ~300 km3) at standard temperature and pressure. While microbial-mediated methane oxidation is an important sink of methane in the lake, little is known about the distribution of microbes involved in the methane oxidation. To provide insights into methanotrophy in the lake, we analyzed depth profile of CH4, δ13C-CH4 and δ13C-DIC, δ13C-POC and the biomarkers of methanotrophic archaea and bacteria and their stable carbon isotopic composition from suspended particulate matter isolated from the lake water column. Our preliminary data show enhanced methane oxidation in oxic-anoxic transition zone in the water column. Depth distribution of diagnostic methanotrophic archaeal biomarkers such as archaeol and hydroxyarchaeol suggest archaea might be involved in anaerobic methane oxidation. Phospholipid fatty acids and diplopterol distribution and carbon isotopic signatures indicate bacteria-mediated anaerobic (and aerobic) methane oxidation in the lake.

  11. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  12. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Numata, K.; Riris, H.; Li, S.; Wu, S.; Kawa, S. R.; Abshire, J. B.; Dawsey, M.; Ramanathan, A.

    2011-12-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 um and 1.65 um. We have demonstrated detection of methane at 3.3 μm and 1650 nm in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 um.

  13. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  14. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  15. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  16. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria.

    PubMed

    Foster, J W; Davis, R H

    1966-05-01

    Foster, J. W. (The University of Texas, Austin), and Richard H. Davis. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J. Bacteriol. 91:1924-1931. 1966.-A new coccus-shaped bacterium capable of aerobic growth at the expense of methane or methanol in a mineral salts medium is described. The organism did not grow at the expense of any of the conventional substrates or homologous hydrocarbons tested. It is gram-negative, nonmotile, and thermotolerant. It grows well at 50 C, optimally at 37 C, but does not grow at 55 C. The cells are encapsulated and have a characteristic diplococcoid arrangement. Washed, "resting-cell" suspensions oxidized certain primary alcohols and short-chain alkanes, an example of "nongrowth oxidation." Of the methane-C utilized, 86% was "fixed" in organic form; the remainder was oxidized to CO(2). The guanine-cytosine content of the extracted deoxyribonucleic acid was 62.5%. Obligate methane-utilizing bacteria are considered as "one-carbon" organisms rather than hydrocarbon utilizers. The assimilation pathway in the obligate methane-methanol bacteria is different from that in the facultative methanol utilizers. Nomenclatural problems arising from the use of the prefix "Methano-" to denote both bacteria that oxidize methane and bacteria that produce methane are discussed. The obligate, one-carbon, methane-methanol bacteria are considered as "methyl" utilizers, and the prefix "Methylo-" is suggested as a solution to the problem of generic cognomens. "Methylococcus capsulatus" gen. n., sp. n. is the name proposed for the new methane coccus. PMID:5937247

  17. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  18. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment

    NASA Astrophysics Data System (ADS)

    Norði, Katrin á.; Thamdrup, Bo

    2014-05-01

    Anaerobic oxidation of methane coupled to denitrification (DAOM) is a novel process of potential importance to the regulation of methane emissions from freshwater environments. We established nitrate-enriched microcosms of sediment from a freshwater pond in order to quantify the role of this process in a simulated natural redox zonation. The microcosms were allowed to acclimate to nitrate levels of 1-2 mmol L-1 in the overlying water for 16 months leading to a nitrate penetration of 4 cm. The nitrate enrichment significantly stimulated AOM relative to controls, and based on the similar concentrations of sulfate and reactive Fe(III) in the control sediment we conclude that the observed AOM was coupled to denitrification. DAOM occurred at rates that were two orders of magnitude lower than aerobic methane oxidation rates reported in freshwater sediments, and the process appeared to be limited by nitrate or nitrite even at millimolar nitrate concentrations. By contrast, ammonium was efficiently consumed at the base of the nitrate zone, presumably by the anammox process. Although DAOM was stimulated by nitrate enrichment, there were no significant differences between the methane emission from the control and nitrate-enriched microcosms. Our results provide the first experimental evaluation of the kinetics of DAOM in whole sediment cores and indicate that AOM coupled to denitrification can consume a substantial part of the methane flux in nitrate-rich environments. Because it is much less efficient in scavenging methane than its aerobic counterpart, the anaerobic process will, however, mainly be of significance in the regulation of methane emission from oxygen-depleted systems.

  19. Martian Methane From a Cometary Source: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  20. Homicide by methane gas.

    PubMed

    De-Giorgio, Fabio; Grassi, Vincenzo M; Vetrugno, Giuseppe; Rossi, Riccardo; Fucci, Nadia; d'Aloja, Ernesto; Pascali, Vincenzo L

    2012-09-10

    Methane is a suffocating gas, and "methane deaths" are largely the result of suffocation by gas-air displacement after accidental or deliberate exposure. Neither methane gas nor other suffocating gases are a common means of homicide, with the potential exception of the use of gas in chemical weapons or gas chambers. Here, we report the case of a 53-year-old woman who was killed by her husband with methane gas. The man had given his wife a dose of Lorazepam before setting up a hose that conveyed methane from the kitchen into the apartment's bedroom. The man subsequently faked his own suicide, which was later discovered. PMID:22721935

  1. Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿

    PubMed Central

    Chen, Yin; Crombie, Andrew; Rahman, M. Tanvir; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Theisen, Andreas R.; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium. PMID:20472789

  2. Methane photochemistry and methane production on Neptune

    NASA Technical Reports Server (NTRS)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  3. Methane photochemistry and methane production on Neptune

    SciTech Connect

    Romani, P.N.; Atreya, S.K.

    1988-06-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus. 65 references.

  4. Clumped Methane Isotopologue Temperatures of Microbial Methane

    NASA Astrophysics Data System (ADS)

    Ono, S.; Wang, D. T.; Gruen, D.; Delwiche, K.; Hemond, H.; Pohlman, J.

    2014-12-01

    We will report the abundance of 13CH3D, a clumped isotopologue of methane, in microbial methane sampled from natural environments. They yield some expected and some unexpected results reflecting both equilibrium and kinetic isotope effects controlling the abundance of 13CH3D in low temperature environments. The four isotopologues of methane (12CH4, 13CH4, 12CH3D and 13CH3D) were measured by a tunable infrared spectroscopy method at a precision of 0.2‰ and accuracy of 0.5‰ (Ono et al., 2014). Similar to carbonate clumped isotope thermometry, clumped isotopologues of methane become more stable at lower temperatures. The equilibrium constant for the isotope exchange reaction 13CH4 + 12CH3D ⇌ 13CH3D + 12CH4 deviates from unity by +6.3 to +3.5 ‰ for methane equilibrated between 4 and 121 °C, a range expected for microbial methanogenesis. This would be measurably-distinct from a thermogenic methane signal, which typically have apparent 13CH3D-based temperatures ranging from 150 to 220 °C (+3.0 to +2.2 ‰ clumped isotope effect; Ono et al., 2014; Stolper et al. 2014). Marine samples, such as methane clathrates and porewater methane from the Cascadia margin, have 13CH3D-based temperatures that appear to be consistent with isotopic equilibration at in situ temperatures that are reasonable for deep sedimentary environments. In contrast, methane from freshwater environments, such as a lake and a swamp, yield apparent temperatures that are much higher than the known or inferred environmental temperature. Mixing of two or more distinct sources of methane could potentially generate this high temperature bias. We suggest, however, that this high-temperature bias likely reflects a kinetic isotope fractionation intrinsic to methanogenesis in fresh water environments. In contrast, the low-temperature signals from marine methane could be related to the slow metabolic rates and reversibility of microbial methanogenesis and methanotrophy in marine sedimentary environments

  5. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  6. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  7. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  8. Anaerobic oxidation of methane: an "active" microbial process.

    PubMed

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang

    2015-02-01

    The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce methane. Subsequently, it has been found that AOM can also be coupled with denitrification. The known microbes responsible for this process are Candidatus Methylomirabilis oxyfera (M. oxyfera) and Candidatus Methanoperedens nitroreducens (M. nitroreducens). Candidatus Methylomirabilis oxyfera belongs to the NC10 bacteria, can catalyze nitrite reduction through an "intra-aerobic" pathway, and may catalyze AOM through an aerobic methane oxidation pathway. However, M. nitroreducens, which is affiliated with ANME-2d archaea, may be able to catalyze AOM through the reverse methanogenesis pathway. Moreover, manganese (Mn(4+) ) and iron (Fe(3+) ) can also be used as electron acceptors of AOM. This review summarizes the mechanisms and associated microbes of AOM. It also discusses recent progress in some unclear key issues about AOM, including ANME-1 in hypersaline environments, the effect of oxygen on M. oxyfera, and the relationship of M. nitroreducens with ANME. PMID:25530008

  9. Draft Genome Sequence of the Methane-Oxidizing Bacterium Methylococcus capsulatus (Texas)

    PubMed Central

    Hult, Lene T. Olsen; Kuczkowska, Katarzyna; Jacobsen, Morten; Lea, Tor; Pope, Phillip B.

    2012-01-01

    Methanotrophic bacteria perform major roles in global carbon cycles via their unique enzymatic activities that enable the oxidation of one-carbon compounds, most notably methane. Here we describe the annotated draft genome sequence of the aerobic methanotroph Methylococcus capsulatus (Texas), a type strain originally isolated from sewer sludge. PMID:23144383

  10. Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas).

    PubMed

    Kleiveland, Charlotte R; Hult, Lene T Olsen; Kuczkowska, Katarzyna; Jacobsen, Morten; Lea, Tor; Pope, Phillip B

    2012-12-01

    Methanotrophic bacteria perform major roles in global carbon cycles via their unique enzymatic activities that enable the oxidation of one-carbon compounds, most notably methane. Here we describe the annotated draft genome sequence of the aerobic methanotroph Methylococcus capsulatus (Texas), a type strain originally isolated from sewer sludge. PMID:23144383