Cross-spectral recognition method of bridge deck aerodynamic admittance function
NASA Astrophysics Data System (ADS)
Zhao, Lin; Ge, Yaojun
2015-12-01
This study proposes a new identification algorithm about the admittance function, which can estimate the full set of six aerodynamic admittance functions considering cross power spectral density functions about the forces and the turbulence components. The method was first numerically validated through Monte Carlo simulations, and then adopted to estimate the aerodynamic admittance of a streamlined bridge deck. The identification method was further validated through a comparison between the numerical calculation and wind tunnel tests on a moving bridge section.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Structures that Contribute to Middle-Ear Admittance in Chinchilla
Rosowski, John J.; Ravicz, Michael E.; Songer, Jocelyn E.
2009-01-01
We describe measurements of middle-ear input admittance in chinchillas (Chinchilla lanigera) before and after various manipulations that define the contributions of different middle-ear components to function. The chinchilla’s middle-ear air spaces have a large effect on the low-frequency compliance of the middle ear, and removing the influences of these spaces reveals a highly admittant tympanic membrane and ossicular chain. Measurements of the admittance of the air spaces reveal that the high-degree of segmentation of these spaces has only a small effect on the admittance. Draining the cochlea further increases the middle-ear admittance at low frequencies and removes a low-frequency (less than 300 Hz) level dependence in the admittance. Spontaneous or sound-driven contractions of the middle-ear muscles in deeply anesthetized animals were associated with significant changes in middle-ear admittance. PMID:16944166
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Song, Yi-lin; Gao, Shu-mei; Ikarashi, Akira; Yamakoshi, Ken-ichi
2009-03-01
A handy-type monitoring system for cardiovascular haemodynamic functions based on the volume-compensation and electrical admittance method is developed. In this system, the inconvenient and discomfort due to cuff occlusion of the biological segment for BP measurement is improved by developing a new device using a local pressurization method, the stability for the physiological information detection is improved by developing a new detecting system, and the noise during detection using the system is greatly reduced by using a newly developed nozzle-flapper type electro-pneumatic converter. Also, for electrical admittance cardiography to estimate CO, the applicability of a two-compartment coaxial cylindrical model and the optimal position of a spot-electrode array that is used to replace the conventional band-electrode are discussed in this research. Experimental result shows that the monitoring system should satisfy non-invasive BP and CO measurement on beat by beat, and the comfort of measurement is significantly improved. PMID:19771888
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
Tevatron admittance measurement
Zhang, X.L.; Shiltsev, V.; Tan, C.Y.; /Fermilab
2005-05-01
We measured the Tevatron beam admittance by the means of exciting the beam with noise and causing emittance growth. The noise power was about 3W with a bandwidth of 100Hz and centered either in the horizontal betatron frequency or vertical betatron frequency. We were able to controllably blow the beam emittance up quickly. From the point where the beam emittance stopped growing, we measured the beam acceptance of the Tevatron.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Experimental determination of three dimensional liquid rocket nozzle admittances.
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Bell, W. A.; Daniel, B. R.; Smith, A. J., Jr.
1972-01-01
The three dimensional nozzle admittance, an important parameter in combustion instability studies, was experimentally measured for several nozzle configurations. The admittance values were obtained using a modification of the classical impedance tube technique. The modified impedance tube method measures the admittance of a duct termination in the presence of one dimensional mean flow and three dimensional oscillations. Values of the nozzle admittance were obtained from pressure amplitude measurements taken at discrete points along the length of the tube. To determine the effects of nozzle geometry, nozzles were tested with half-angles of 15, 30, and 45 degrees and entrance Mach numbers of 0.08, 0.16, and 0.20. The admittance results are presented as functions of nondimensional frequency for mixed first tangential-longitudinal modes. These results are compared with available theoretical predictions and favorable agreement between theory and experiment is shown.
Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.
1994-01-01
Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
A creatinine biosensor based on admittance measurement
NASA Astrophysics Data System (ADS)
Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li
2015-08-01
Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.
Acoustic-Liner Admittance in a Duct
NASA Technical Reports Server (NTRS)
Watson, W. R.
1986-01-01
Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.
Experimental characterization of high speed centrifugal compressor aerodynamic forcing functions
NASA Astrophysics Data System (ADS)
Gallier, Kirk
The most common and costly unexpected post-development gas turbine engine reliability issue is blade failure due to High Cycle Fatigue (HCF). HCF in centrifugal compressors is a coupled nonlinear fluid-structure problem for which understanding of the phenomenological root causes is incomplete. The complex physics of this problem provides significant challenges for Computational Fluid Dynamics (CFD) techniques. Furthermore, the available literature fails to address the flow field associated with the diffuser potential field, a primary cause of forced impeller vibration. Because of the serious nature of HCF, the inadequacy of current design approaches to predict HCF, and the fundamental lack of benchmark experiments to advance the design practices, there exists a need to build a database of information specific to the nature of the diffuser generated forcing function as a foundation for understanding flow induced blade vibratory failure. The specific aim of this research is to address the fundamental nature of the unsteady aerodynamic interaction phenomena inherent in high-speed centrifugal compressors wherein the impeller exit flow field is dynamically modulated by the vaned diffuser potential field or shock structure. The understanding of this unsteady aerodynamic interaction is fundamental to characterizing the impeller forcing function. Unsteady static pressure measurement at several radial and circumferential locations in the vaneless space offer a depiction of pressure field radial decay, circumferential variation and temporal fluctuation. These pressure measurements are coupled with high density, full field measurement of the velocity field within the diffuser vaneless space at multiple spanwise positions. The velocity field and unsteady pressure field are shown to be intimately linked. A strong momentum gradient exiting the impeller is shown to extend well across the vaneless space and interact with the diffuser vane leading edge. The deterministic unsteady
Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.
Improved multimodal admittance method in varying cross section waveguides.
Maurel, Agnès; Mercier, Jean-François; Pagneux, Vincent
2014-04-01
An improved version of the multimodal admittance method in acoustic waveguides with varying cross sections is presented. This method aims at a better convergence with respect to the number of transverse modes that are taken into account. It is based on an enriched modal expansion of the pressure: the N first modes are the local transverse modes and a supplementary (N+1)th mode, called boundary mode, is a well-chosen transverse function orthogonal to the N first modes. This expansion leads to the classical form of the coupled mode equations where the component of the boundary mode is of evanescent character. Under this form, the multimodal admittance method based on the Riccati equation on the admittance matrix (the Dirichlet-to-Neumann operator) is straightforwardly implemented. With this supplementary mode, in addition to the improvement of the convergence of the pressure field, results show a superconvergence of the scattered field outside of the varying cross sections region. PMID:24711716
NASA Technical Reports Server (NTRS)
Morelli, E. A.; Proffitt, M. S.
1999-01-01
The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.
Forcing function effects on unsteady aerodynamic gust response. I - Forcing functions
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The measured unsteady flow fields are compared to linear-theory gust requirements. The perforated plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. The airfoil forcing functions exhibit characteristics far from linear-theory gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. It is shown that airfoil wakes, both compressor and turbine, cannot be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
Analytical admittance characterization of high mobility channel
Mammeri, A. M.; Mahi, F. Z.; Varani, L.
2015-03-30
In this contribution, we investigate the small-signal admittance of the high electron mobility transistors field-effect channels under a continuation branching of the current between channel and gate by using an analytical model. The analytical approach takes into account the linearization of the 2D Poisson equation and the drift current along the channel. The analytical equations discuss the frequency dependence of the admittance at source and drain terminals on the geometrical transistor parameters.
NASA Astrophysics Data System (ADS)
Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.
2012-09-01
Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
NASA Technical Reports Server (NTRS)
Arian, Eyal; Salas, Manuel D.
1997-01-01
We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.
Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method
NASA Technical Reports Server (NTRS)
Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.
1977-01-01
The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.
NASA Astrophysics Data System (ADS)
Diallo, O.; Clezio, E. Le; Delaunay, T.; Bavencoffe, M.; Feuillard, G.
2014-01-01
This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.
Diallo, O.; Bavencoffe, M.; Feuillard, G.; Clezio, E. Le; Delaunay, T.
2014-01-15
This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
A study of the ionic conduction of mica surface by admittance spectroscopy
NASA Astrophysics Data System (ADS)
Dolci, D.; Aloisi, G.; Lanzi, L.; Carlà, M.
2007-08-01
The ionic conduction on the surface of humid mica has been analyzed by admittance spectroscopy as a function of relative humidity for different surface treatments. Measurements at low frequency indicate that water adsorption proceeds first in the form of a strongly adsorbed uniform thin layer, then with the formation of highly inhomogeneous thick aggregates.
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady period flow field is generated by rotating flows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. When the forcing function did not exhibit linear-theory gust characteristics, the resulting unsteady aerodynamic response of the downstream stators was much more complex and correlated poorly with the linear-theory gust predictions. It is shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.
An introduction to generalized functions with some applications in aerodynamics and aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.
1994-01-01
In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
Chen, Sheng Hwa; Hsiao, Tzu-Yu; Hsiao, Li-Chun; Chung, Yu-Mei; Chiang, Shu-Chiung
2007-07-01
Teachers have a high percentage of voice problems. For voice disordered teachers, resonant voice therapy is hypothesized to reduce voice problems. No research has been done on the physiological, acoustic, and aerodynamic effects of resonant voice therapy for school teachers. The purpose of this study is to investigate resonant voice therapy outcome from perceptual, physiological, acoustic, aerodynamic, and functional aspects for female teachers with voice disorders. A prospective study was designed for this research. The research subjects were 24 female teachers in Taipei. All subjects received resonant voice therapy in groups of 4 subjects, 90 minutes per session, and 1 session per week for 8 weeks. The outcome of resonant voice therapy was assessed from auditory perceptual judgment, videostroboscopic examination, acoustic measurements, aerodynamic measurements, and functional measurements before and after therapy. After therapy the severity of roughness, strain, monotone, resonance, hard attack, and glottal fry in auditory perceptual judgments, the severity of vocal fold pathology, mucosal wave, amplitude, and vocal fold closure in videostroboscopic examinations, phonation threshold pressure, and the score of physical scale in the Voice Handicap Index were significantly reduced. The speaking Fo, maximum range of speaking Fo, and maximum range of speaking intensity were significantly increased after therapy. No significant change was found in perturbation and breathiness measurements after therapy. Resonant voice therapy is effective for school teachers and is suggested as one of the therapy approaches in clinics for this population. PMID:16581227
Increasing Immunization Compliance by Reducing Provisional Admittance.
Davis, Wendy S; Varni, Susan E; Barry, Sara E; Frankowski, Barbara L; Harder, Valerie S
2016-08-01
Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase student compliance with Vermont immunization regulations using a collaborative learning approach with public health school liaisons and school nurses from public schools to reduce provisional admittance in 2011-2012. Strategies included using a tracking system, accessing the immunization registry, promoting immunization importance, tracking immunization plans, and working with medical homes to update records. Participating school nurses observed decreases in the number of provisionally admitted students, although this reduction was not significantly different than matched comparison schools. We also found the number of provisionally admitted students fluctuated throughout the year and resolving the immunization status of New Americans and exchange students required special attention. Our approach supports the coordinated school health model and demonstrates the critical role school nurses play in improving population health outcomes. PMID:26699951
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Lee, Eunjung; Seo, Jin Keun
2014-04-01
Trans-admittance mammography (TAM) is a bioimpedance technique for breast cancer detection. It is based on the comparison of tissue conductivity: cancerous tissue is identified by its higher conductivity in comparison with the surrounding normal tissue. In TAM, the breast is compressed between two electrical plates (in a similar architecture to x-ray mammography). The bottom plate has many sensing point electrodes that provide two-dimensional images (trans-admittance maps) that are induced by voltage differences between the two plates. Multi-frequency admittance data (Neumann data) are measured over the range 50 Hz-500 kHz. TAM aims to determine the location and size of any anomaly from the multi-frequency admittance data. Various anomaly detection algorithms can be used to process TAM data to determine the transverse positions of anomalies. However, existing methods cannot reliably determine the depth or size of an anomaly. Breast cancer detection using TAM would be improved if the depth or size of an anomaly could also be estimated, properties that are independent of the admittivity contrast. A formula is proposed here that can estimate the depth of an anomaly independent of its size and the admittivity contrast. This depth estimation can also be used to derive an estimation of the size of the anomaly. The proposed estimations are verified rigorously under a simplified model. Numerical simulation shows that the proposed method also works well in general settings.
NASA Technical Reports Server (NTRS)
Kana, D. D.; Vargas, L. M.
1977-01-01
Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight. PMID:19762645
Online Stability in Human-Robot Cooperation with Admittance Control.
Dimeas, Fotios; Aspragathos, Nikos
2016-01-01
In the design of a compliant admittance controller for physical human-robot interaction, it is necessary to ensure stable and effective cooperation. The stability of the admittance controller is mainly threatened by a stiff environment. Many methods that guarantee stability in arbitrary environments, impose conservative control gains that limit the effectiveness of the cooperation. Inspired by previous work in frequency domain stability observers, a method is proposed in this paper to detect unstable behavior and stabilize the robot with online adaptation of the admittance control gains. The introduced instability index is based on frequency domain analysis, which very quickly detects unstable behavior by monitoring high frequency oscillation in the force signal. To treat the instability, an adaptation scheme of the admittance parameters is proposed, that relaxes conservative gains and improves the cooperation by considering the effect of variable admittance on the operators' effort. We investigate two human-robot co-manipulation tasks; cooperation within a zero stiffness environment and cooperation in contact with a stiff double-wall virtual environment. The proposed methods are validated experimentally with a number of subjects in cooperation with an LWR manipulator. PMID:26780819
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
Characterizing the eardrum admittance: Comparisons of tympanometry and reflectance
NASA Astrophysics Data System (ADS)
Robinson, Sarah; Thompson, Suzanne; Allen, Jont B.
2015-12-01
The residual ear canal (REC) between the probe and tympanic membrane (TM) is a significant source of non-pathological variability for acoustic measurements made in the ear canal. Tympanometry and reflectance, which seek to characterize the middle ear based on the TM admittance, must account for unknown REC dimensions. In tympanometry, the REC volume and 226 Hz TM admittance are estimated by varying the canal static pressure. Using a reflectance parametrization developed by the authors, typical assumptions for removing the REC effect are extended, and methods to estimate the REC volume and TM admittance are presented and compared to tympanometry. Results of this method are shown for reflectance measurements of human ears with varying static middle ear pressures (MEPs). The data show that the 226 Hz TM compliance is non-zero at tympanometric pressure extremes, and that acoustic parameters of the middle ear have highly variable, nonlinear dependence on the MEP level.
Admittance of multiterminal quantum Hall conductors at kilohertz frequencies
Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.
2014-03-28
We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.
Not Available
1993-01-01
In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.
NASA Astrophysics Data System (ADS)
Bol'basov, E. N.; Lapin, I. N.; Tverdokhlebov, S. I.; Svetlichnyi, V. A.
2014-07-01
For applications in tissue engineering, three-dimensional biodegradable polymeric matrices, whose surface is functionalized by nanoparticles obtained in the liquid phase by the method of laser ablation from bulk metal (Ag or Zn) targets, are synthesized by the method of aerodynamic synthesis from a solution of poly-l-lactide acid. Their properties are investigated. It is demonstrated that the matrices represent a very porous spatial fibrous structure consisting of polymorphic fibers with diameters from 0.25 to 2.5 μm. It is established that functional coatings consisting of agglomerates of semiconductor (ZnO) or metal (Ag) nanoparticles can be produced on the surface of structural matrix elements by repeated matrix impregnation.
9 CFR 117.3 - Admittance of animals.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...
9 CFR 117.3 - Admittance of animals.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...
9 CFR 117.3 - Admittance of animals.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...
9 CFR 117.3 - Admittance of animals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...
9 CFR 117.3 - Admittance of animals.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...
Abdala, Carolina; Keefe, Douglas H.; Oba, Sandra I.
2009-01-01
Previous work has reported non-adultlike distortion product otoacoustic emission (DPOAE) suppression in human newborns at f2 =6000 Hz, indicating an immaturity in peripheral auditory function. In this study, DPOAE suppression tuning curves (STCs) were recorded as a measure of cochlear function and acoustic admittance/reflectance (YR) in the ear canal recorded as a measure of middle-ear function, in the same 20 infants at birth and through 6 months of age. DPOAE STCs changed little from birth through 6 months, showing excessively narrow and sharp tuning throughout the test period. In contrast, several middle-ear indices at corresponding frequencies shifted systematically with increasing age, although they also remained non-adultlike at 6 months. Linear correlations were conducted between YR and DPOAE suppression features. Only two correlations out of 76 were significant, and all but three YR variables accounted for <10% of the variance in DPOAE suppression tuning. The strongest correlation was noted between admittance phase at 5700 Hz and STC tip-to-tail (R=0.49). The association between middle-ear variables and DPOAE suppression may be stronger during other developmental time periods. Study of older infants and children is needed to fully define postnatal immaturity of human peripheral auditory function. PMID:17552713
Entrainment of radio frequency chaff by wind as a function of surface aerodynamic roughness.
Gillies, John A; Nickling, William G
2003-02-01
Radio frequency (RF) chaff (approximately 2-cm x 25-microm diameter aluminum-coated glass silicate cylinders) released by military aircraft during testing and training activities has the potential to become entrained by wind upon settling to the Earth's surface. Once entrained from the surface there is the potential for RF chaff to be abraded and produce PM10 and PM2.5, which are regulated pollutants and pose health concerns. A series of portable wind tunnel tests were carried out to examine the propensity of RF chaff to become entrained by wind by defining the relationship between the threshold friction velocity of RF chaff (u(*t RF chaff)) and aerodynamic roughness (z(o)) of surfaces onto which it may deposit. The test surfaces were of varying roughness including types near the Naval Air Station (NAS), Fallon, NV, where RF chaff is released. The u(*t) of this fibrous material ranged from 0.14 m/sec for a smooth playa to 0.82 m/sec for a rough crusted playa surface with larger cobble-sized (approximately 6-26-cm diameter) rocks rising above the surface. The u(*t RF chaff) is dependent on the z(o) of the surface onto which it falls as well as the physical characteristics of the roughness. The wind regime of Fallon would allow for chaff suspension events to occur should it settle on typical surfaces in the area. However, the wind climatology of this area makes the probability of such events relatively low. PMID:12617294
Impact and admittance modeling of the Isidis Planitia, Mars
NASA Astrophysics Data System (ADS)
Mancinelli, Paolo; Mondini, Alessandro C.; Pauselli, Cristina; Federico, Costanzo
2015-11-01
In this study, the impact event that produced the Martian Isidis basin (0-20°N and 70-100°E) was modeled using the iSALE hydrocode, and the current lithospheric structure was obtained comparing the calculated admittance from topography and gravity data, with the admittance from top-load and bottom-load flexure models. The best-fit admittance model was obtained using a bottom-load flexure with a thinned crust of 10 km, likely formed by cooling of the surficial melt pool after the impact, and an elastic thickness of 36 km. We found that the impact produced crustal excavation and thickening, surficial melt pool and temperatures >1500 K beneath the area where the free-air maxima is observed. The geometry resulting from the impact modeling is compatible with the radius of the Isidis basin. Derived thermal gradient and heat flux are in agreement with an early-Noachian epoch for the Isidis impact event and with the intense volcanic activity that followed the impact.
NASA Technical Reports Server (NTRS)
Morino, L.
1980-01-01
Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.
Unsteady aerodynamics modeling for flight dynamics application
NASA Astrophysics Data System (ADS)
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Quality control of dairy products using single frequency admittance measurements
NASA Astrophysics Data System (ADS)
Mabrook, M. F.; Darbyshire, A. M.; Petty, M. C.
2006-02-01
A reusable device for the detection of adulteration in dairy products such as milk and cream has been developed. The ac electrical admittance spectra of different samples have been studied using both uncoated and alkyl mercaptan-coated gold electrodes. Uncoated gold electrodes exhibited a polarization at around 250 Hz for full fat milk, while mercaptan-coated gold electrodes showed a similar effect at around 2 kHz. The characteristics at 100 kHz and 8 °C for all skimmed milk samples revealed a linear decrease in conductance with increasing water content over the entire range of water concentration. In contrast, the conductance of full fat milk, single and double cream, showed a linear decrease only at added water concentration higher than 6%. At lower concentrations, these dairy products exhibited anomalous conductivity maxima.
Computer code for the prediction of nozzle admittance
NASA Technical Reports Server (NTRS)
Nguyen, Thong V.
1988-01-01
A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.
Automatically calibrating admittances in KATE's autonomous launch operations model
NASA Astrophysics Data System (ADS)
Morgan, Steve
1992-09-01
This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).
Automatically calibrating admittances in KATE's autonomous launch operations model
NASA Technical Reports Server (NTRS)
Morgan, Steve
1992-01-01
This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).
Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure
NASA Astrophysics Data System (ADS)
Zielinski, Todd M.; Hettrick, Doug; Cho, Yong
2010-04-01
Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p < 0.05) comparing baseline VTI to phenylephrine VTI (246 ± .05 ms to 320 ± .07 ms) and baseline admittance waveform maximum to phenylephrine admittance waveform maximum (0.0148 ± .002 siemens to 0.0151 ± .002 siemens). Conclusion: Chronic minimally invasive admittance measurement techniques that monitor relative change in blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.
Panaretos, Anastasios H; Werner, Douglas H
2015-02-23
In this paper we demonstrate the feasibility of using multiport network theory to describe the admittance properties of a longitudinally loaded plasmonic nanorod antenna. Our analysis reveals that if the appropriate terminal ports are defined across the nanorod geometry then the corresponding voltage and current quantities can be probed and thus it becomes feasible to extract the admittance matrix of the structure. Furthermore, it is demonstrated that by utilizing cylindrical dielectric waveguide theory, closed form expressions can be derived that uniquely characterize the loading material in terms of its admittance. The combination of the admittance matrix information along with the load admittance expressions provides an effective methodology for computing the nanorod's input admittance/impedance for arbitrary loading scenarios. This is important because the admittance resonances are associated with the structure's scattering peaks which are excited by a plane wave polarized parallel to its long dimension. Subsequently, the proposed approach provides a fast and computationally efficient circuit-based methodology to predict and custom engineer the scattering properties of a loaded plasmonic nanorod without having to rely on repetitive lengthy full wave simulations. PMID:25836483
Surface acoustic admittance of highly porous open-cell, elastic foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1983-01-01
This work presents a comprehensive study of the surface acoustic admittance properties of graded sizes of open-cell foams that are highly porous and elastic. The intrinsic admittance as well as properties of samples of finite depth were predicted and then measured for sound at normal incidence over a frequency range extending from about 35-3500 Hz. The agreement between theory and experiment for a range of mean pore size and volume porosity is excellent. The implications of fibrous structure on the admittance of open-cell foams is quite evident from the results.
Localized Gravity/Topography Correlation and Admittance Spectra one the Moon
NASA Astrophysics Data System (ADS)
Ishihara, Y.; Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Araki, H.; Noda, H.; Sasaki, S.; Iwata, T.; Hanada, H.
2009-04-01
attempt localized spectral analysis of the Moon first and then apply possible compensation mechanisms to explain the observed admittance. Kaguya mission has been yielding representation of lunar gravity and topography (shape) substantially superior in resolution and accuracy to earlier solutions. For global lunar gravity field, an accurate spherical harmonic model of gravitational potential up to degree and order 100 (SGM100g) was derived from one year tracking (including 4-way Doppler) data [3]. For topography, LALT has obtained more than 6 million altitude measurements with 5 m precision, from which a spherical harmonic expansion of topography to degree and order 359 (STM359_grid-02) has been determined [4]. In this study, we use those new models. We employ the spatio-spectral localization technique [5] to obtain gravity/shape correlation and admittance spectra as function of position on the Moon. In this analysis, we localize harmonic field with axisymmetric windows of constant diameter, described by Lwin zonal harmonic coefficients. This restricts the permissible range of l in the windowed fields at both the low- (l > Lwin) and high-wave number ends (l < Lobs-Lwin, ; Lobs is the maximum degree of observation) . We chose four fixed windows with Lwin = 5, 10, 17, 26 (equivalent to spatial scales 2200, 1100, 640 and 420 km, respectively). These window sizes correspond to huge-, large-, middle-, and small-size of impact basins. For up to degree 50 with Lwin = 5 scale, it is clearly shown that the near-side contains distinct anti-correlation regions whereas the far-side is mostly occupied by high correlation regions. This difference is mainly due to large mascon basins in near-side, such as mare Imbrium. For Lwin = 10 and 17 scales, we can see anti-correlation regions at not only near-side but also far-side. Locations of anti-correlation regions in the far-side correspond to impact basins (Type II basin [6]). However, lots of far side basins (Type I basin [6]) are not
Li, J. V.; Crandall, R. S.; Repins, I. L.; Nardes, A. M.; Levi, D. H.; Sulima, O.
2011-07-01
Admittance spectroscopy is commonly used to characterize majority-carrier trapping defects. In today's practical photovoltaic devices, however, a number of other physical mechanisms may contribute to the admittance measurement and interfere with the data interpretation. Such challenges arise due to the violation of basic assumptions of conventional admittance spectroscopy such as single-junction, ohmic contact, highly conductive absorbers, and measurement in reverse bias. We exploit such violations to devise admittance spectroscopy-based methods for studying the respective origins of 'interference': majority-carrier mobility, non-ohmic contact potential barrier, minority-carrier inversion at hetero-interface, and minority-carrier lifetime in a device environment. These methods are applied to a variety of photovoltaic technologies: CdTe, Cu(In,Ga)Se2, Si HIT cells, and organic photovoltaic materials.
NASA Astrophysics Data System (ADS)
Zhang, Maomao; Soleimani, Manuchehr
2016-02-01
Electrical capacitance tomography (ECT) is an imaging method mainly capable of reconstructing dielectric permittivity. Generally, the reactance part of complex admittance is measured in a selected frequency. This paper presents for the first time an in depth and systematic analysis of complex admittance data for simultaneous reconstruction of both electrical conductivity and dielectric permittivity. A complex-valued forward model, Jacobian matrix and inverse solution are developed in the time harmonic excitation mode to allow for multi-frequency measurements. Realistic noise models are used to evaluate the performance of complex admittance ECT in a range of excitation frequencies. This paper demonstrates far greater potential for ECT as a versatile imaging tool through novel analysis of complex admittance imaging using a dual conductivity permittivity inversion method. The paper demonstrates that various classes of contactless capacitance based measurement devices can be analysed through complex multi-frequency ECT.
48 CFR 3022.101-70 - Admittance of union representatives to DHS installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 3022.101-70 Admittance of union... Administration or United States Secret Service installations and work sites is not governed by this rule, but...
48 CFR 3022.101-70 - Admittance of union representatives to DHS installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 3022.101-70 Admittance of union... Administration or United States Secret Service installations and work sites is not governed by this rule, but...
48 CFR 3022.101-70 - Admittance of union representatives to DHS installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 3022.101-70 Admittance of union... Administration or United States Secret Service installations and work sites is not governed by this rule, but...
48 CFR 3022.101-70 - Admittance of union representatives to DHS installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 3022.101-70 Admittance of union... Administration or United States Secret Service installations and work sites is not governed by this rule, but...
Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond
NASA Astrophysics Data System (ADS)
Zubkov, V. I.; Kucherova, O. V.; Bogdanov, S. A.; Zubkova, A. V.; Butler, J. E.; Ilyin, V. A.; Afanas'ev, A. V.; Vikharev, A. L.
2015-10-01
Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120-150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10-13 down to 2 × 10-17 cm2 was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (˜2 × 10-20 cm2). At T > Troom in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.
Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond
Zubkov, V. I. Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas'ev, A. V.; Bogdanov, S. A.; Vikharev, A. L.; Butler, J. E.
2015-10-14
Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Smrekar, S. E.; Anderson, F. S.
2005-01-01
We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.
Use of Admittance-Wall Models in Analysis of Radiating Line Antennas
NASA Astrophysics Data System (ADS)
Tammen, David John
This thesis describes the development of analytical models for two radiating line antenna structures: the traveling -wave microstrip antenna and the Annular Sector Radiating Line (ANSERLIN) antenna. The models provide data and insights into the operation of the antennas without requiring large amounts of computation. It was shown that the general characteristics of the radiation patterns of ANSERLIN elements can be obtained using only a small number of circularly polarized spherical modes in the field expansion. A first -order model is obtained by solving for the fields of a closed waveguide with perfect electric conducting (PEC) top and bottom walls and perfect magnetic conducting (PMC) side walls. The propagation constant obtained from these fields of the closed waveguide is then used in the equivalent magnetic current filaments to obtain the radiated fields. Use of the propagation constant of the closed waveguide fields does not include the fringing and radiation behavior. A second-order model was developed in which the radiation loss and fringing fields are included by putting a small complex admittance on the side walls rather than having PMC side walls. Two formulations were developed to include the radiation loss in the representation: a coupled-mode formulation and an eigenvalue formulation. The coupled -mode formulation, which is similar to that described by Schelkunoff for a waveguide with lossy conductors, is used to obtain the complex-valued propagation constant. In the eigenvalue formulation, the eigenvalues obtained from the solution of the characteristic equation of the waveguide with admittance side walls are used to obtain the complex -valued propagation constant. This complex-valued propagation constant, which includes the fringing and radiation behavior, is then used in the equivalent magnetic current filaments to obtain the radiated fields. Good agreement was found between measured results and results computed using the eigenvalue formulation
Inconsistent Definitions of the Pressure-Coupled Response and the Admittance of Solid Propellants
NASA Technical Reports Server (NTRS)
Cardiff, Eric H.
2003-01-01
When an acoustic wave is present in a solid propellant combustion environment, the mass flux from the combustion zone oscillates at the same frequency as the acoustics. The acoustic wave is either amplified or attenuated by the response of the combustion to the acoustic disturbance. When the acoustic wave is amplified, this process is called combustion instability. The amplification is quantitatively measured by a response function. The ability to predict combustion stability for a solid propellant formulation is essential to the formulator to prevent or minimize the effects of instabilities, such as an oscillatory thrust. Unfortunately, the prediction of response values for a particular propellant remains a technical challenge. Most predictions of the response of propellants are based on test data, but there are a number of questions about the reliability of the standard test method, the T-burner. Alternate methods have been developed to measure the response of a propellant, including the ultrasound burner, the magnetic flowmeter and the rotating valve burner, but there are still inconsistencies between the results obtained by these different methods. Aside from the experimental differences, the values of the pressure-coupled responses obtained by different researchers are often compared erroneously, for the simple reason that inconsistencies in the definitions of the responses and admittances are not considered. The use of different definitions has led to substantial confusion since the first theoretical treatments of the problem by Hart and McClure in 1959. The definitions and relations derived here seek to alleviate this problem.
Universal Impedance, Admittance and Scattering Fluctuations in Quantum-chaotic Systems
NASA Astrophysics Data System (ADS)
Hemmady, Sameer
2006-03-01
We experimentally investigate fluctuations in the eigenvalues of the impedance, admittance and scattering matrices of wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We consider a 2-D, time-reversal symmetric chaotic microwave resonator driven by two non-ideally coupled ports. The system-specific coupling effects are removed using the measured radiation impedance matrix (3pt<->Z Rad) [1] of the two ports. A normalized impedance matrix (3pt<->z ) is thus obtained, and the Probability Density Function (PDF) of its eigenvalues is predicted to be universal depending only on the cavity loss. We observe remarkable agreement between the statistical properties of 3pt<->z and 3pt<->y =3pt<->z -1 for all degrees of loss, which is in accordance with [1, 2] and Random Matrix Theory (RMT). We compare the joint PDF of the eigenphases of the normalized scattering matrix (3pt<->s ) with that obtained from RMT for varying degrees of loss. We study the joint PDF of the eigenvalues of 3pt<->s 3pt<->s ^ and find good agreement with [3]. [1] X. Zheng, et al., -- Electromagnetics (in press); condmat/0408317; S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005).[2] Y. V. Fyodorov, et al.,-- condmat/0507016.[3] P. W. Brouwer and C. W. J Beenakker -- PRB 55, 4695 (1997). Work supported by DOD MURI AFOSR Grant F496200110374, DURIP Grants FA95500410295 and FA95500510240.
Universal Impedance, Admittance and Scattering Fluctuations in Quantum-chaotic Systems.
NASA Astrophysics Data System (ADS)
Hemmady, Sameer; Zheng, Xing; Antonsen, Thomas; Ott, Edward; Anlage, Steven M.
2006-03-01
We experimentally investigate fluctuations in the eigenvalues of the impedance, admittance and scattering matrices of wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We consider a 2-D, time-reversal symmetric chaotic microwave resonator driven by two non-ideally coupled ports. The system-specific coupling effects are removed using the measured radiation impedance matrix (3pt<->Z Rad) [1] of the two ports. A normalized impedance matrix (3pt<->z ) is thus obtained, and the Probability Density Function (PDF) of its eigenvalues is predicted to be universal depending only on the cavity loss. We observe remarkable agreement between the statistical properties of 3pt<->z and 3pt<->y =3pt<->z -1 for all degrees of loss, which is in accordance with [1, 2] and Random Matrix Theory (RMT). We compare the joint PDF of the eigenphases of the normalized scattering matrix (3pt<->s ) with that obtained from RMT for varying degrees of loss. We study the joint PDF of the eigenvalues of 3pt<->s 3pt<->s ^ and find good agreement with [3]. [1] X. Zheng, et al., -- Electromagnetics (in press); condmat/0408317; S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005).[2] Y. V. Fyodorov, et al.,-- condmat/0507016.[3] P. W. Brouwer and C. W. J Beenakker -- PRB 55, 4695 (1997). Work supported by DOD MURI AFOSR Grant F496200110374, DURIP Grants FA95500410295 and FA95500510240.
Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan
1994-01-01
The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.
Admittance of Au/1,4-benzenedithiol/Au single-molecule junctions
NASA Astrophysics Data System (ADS)
Yamauchi, Kazumasa; Kurokawa, Shu; Sakai, Akira
2012-12-01
Employing the admittance formula for double-barrier junctions [Fu and Dudley, Phys. Rev. Lett. 70, 65 (1993)], we have estimated an ac susceptance (imaginary part of admittance) of Au/1,4-benzenedithiol/Au single-molecule junctions from their current-voltage characteristics. In the MHz regime, we find that the junction susceptance shows a very small (˜0.1 aF) capacitive component that can be entirely masked by a larger electrode capacitance. Direct ac signal transmission measurements up to 1 GHz reveal no molecular signals and confirm the smallness of the molecular capacitance in the MHz regime.
Aerodynamic effects of flexibility in flapping wings
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.
2010-01-01
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic
Admittance model for the shuttle remote manipulator system in four configurations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Papadopoulos, Loukas; Tolson, Robert H.
1993-01-01
A possible scenario for robot task performance in space is to mount two small, dexterous arms to the end of the Shuttle Remote Manipulator System (SRMS). As these small robots perform tasks, the flexibility of the SRMS may cause unsuccessful task executions. In order to simulate the dynamic coupling between the SRMS and the arms, admittance models of the SRMS in four brakes locked configurations were developed. The admittance model permits calculation of the SRMS end-effector response due to end-effector disturbing forces. The model will then be used in conjunction with a Stewart Platform, a vehicle emulation system. An application of the admittance model was shown by simulating the disturbing forces using two SRMS payloads, the Dextrous Orbital Servicing System (DOSS) manipulator and DOSS carrying a 1000 lb. cylinder. Mode by mode comparisons were conducted to determine the minimum number of modes required in the admittance model while retaining dynamic fidelity. It was determined that for all four SRMS configurations studied, between 4 and 6 modes of the SRMS structure (depending on the excitation loads) were sufficient to retain tolerance of 0.01 inches and 0.01 deg. These tolerances correspond to the DOSS manipulator carrying no object. When the DOSS carries the 1000 lb. cylinder, between 15 and 20 modes were sufficient, approximately three or four times as many modes as for the unloaded case.
Damage detection on the joint of steel frame through high-frequency admittance signals
NASA Astrophysics Data System (ADS)
Wang, Dansheng; Zhu, Hongping; Zhou, Huaqiang; Yang, Haiping
2008-11-01
The basic idea of a piezoelectric admittance (reciprocal of impedance) technique for structural health monitoring is presented in this paper. An experimental study on damage detection of a steel frame structure is operated by the use of the high-frequency piezoelectric admittance signals. In this experiment, three PZT active sensors are bonded to three different components around a joint of the steel frame separately, and the looseness of bolts is identified by monitoring the variations of piezoelectric admittance measurements. From the experimental results it is found that the PZT active sensors hold the ability to detect structural local damage, i.e. they are insensitive to the damage in far fields. Subsequently, two damage indexes, the covariance and the cross correlation coefficient between two real admittance data sets are defined respectively, by which the extent of damage of the frame structure is evaluated. It is found that the cross correlation coefficient index can correctly reflect the damage extent of the frame structure qualitatively in different frequency ranges, but the covariance index can not.
48 CFR 1222.101-70 - Admittance of union representatives to DOT installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Basic Labor Policies 1222.101-70 Admittance of union representatives to DOT installations. (a) It is DOT policy to admit labor union representatives of contractor employees to DOT installations to visit work sites and transact labor union business with contractors, their employees, or union stewards pursuant...
48 CFR 1222.101-70 - Admittance of union representatives to DOT installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Basic Labor Policies 1222.101-70 Admittance of union representatives to DOT installations. (a) It is DOT policy to admit labor union representatives of contractor employees to DOT installations to visit work sites and transact labor union business with contractors, their employees, or union stewards pursuant...
48 CFR 1222.101-70 - Admittance of union representatives to DOT installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Basic Labor Policies 1222.101-70 Admittance of union representatives to DOT installations. (a) It is DOT policy to admit labor union representatives of contractor employees to DOT installations to visit work sites and transact labor union business with contractors, their employees, or union stewards pursuant...
48 CFR 1222.101-70 - Admittance of union representatives to DOT installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Admittance of union representatives to DOT installations. 1222.101-70 Section 1222.101-70 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies...
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
Computation of dragonfly aerodynamics
NASA Astrophysics Data System (ADS)
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
An analysis of light-induced admittance changes in rod outer segments
Falk, G.; Fatt, P.
1973-01-01
1. Measurements were made of the time course and amplitude of the change in real part of admittance, ΔG, of a suspension of frog rod outer segments, following a flash of light bleaching about 1% of the rhodopsin content of the rods. The measurements, based on the use of a specially designed marginal oscillator, covered the frequency range between 500 Hz and 17 MHz. 2. The components of response, previously described for rods prepared by a method involving exposure to strongly hypertonic sucrose solutions, are present in similar form when rods are isolated and maintained in isotonic solutions made up with equi-osmotic concentrations of NaCl and sucrose or with Na2SO4. 3. Component I, identified as a slowly developing positive ΔG apparent at very low frequencies, is frequency-independent up to the characteristic frequency of admittance for the suspension, fY (about 2 MHz for rods suspended in a solution having the conductivity of Ringer solution), but decreases at still higher frequencies. 4. Component II, identified as a rapidly developing positive ΔG which appears only above a critical frequency about 2·5 decades below fY, increases approximately logarithmically with frequency to reach a limiting amplitude in the region of fY. 5. The amplitude of component II, ΔGII, measured in the region of fY, varies linearly with the conductivity of the suspending medium, Go, under conditions in which the conductivity of the rod interior is also a linear function of the external conductivity. The relation for a flash bleaching 1% of the rhodopsin content of the dark-adapted rod is [Formula: see text] 6. Measurements made on rods suspended in a low-conductivity solution, which has the effect of reducing the conductivity of the rod interior to about one ninth its value for rods suspended in Ringer solution, reveal a decline in component II for frequencies above 8 MHz. 7. To explain the frequency dependence of component II and its dependence on conductivity, it is proposed
The aerodynamics of propellers
NASA Astrophysics Data System (ADS)
Wald, Quentin R.
2006-02-01
The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Admittance spectroscopy of copper indium diselenide/cadmium sulfide solar cells
NASA Astrophysics Data System (ADS)
Strifler, Walter A.
This dissertation concentrates on admittance spectroscopy of CuInSe2/CdS heterojunction solar cells prepared by chemical spray pyrolysis (CSP) and by multiple-source evaporation (MSE). The primary goal is to examine some of the more important electrical characteristics of these heterojunctions and determine if the spray-pyrolyzed cells behave similar, albeit at a lower efficiency, to higher quality cells prepared by other techniques. The primary analytical tool used in this study is admittance spectroscopy. The theory of admittance spectroscopy is developed using the concept of equivalent circuits. The traditional temperature-swept technique for admittance spectroscopy is shown to be inadequate for measuring most heterojunction samples examined in this study because of the large parallel leakage conductance found in these devices. Instead, a frequency-swept admittance technique is developed and employed to correct for the parallel conductance effect and reveal the true nature of slow charge in the depletion layer. In addition to admittance spectroscopy, the two sets of solar cell diodes are characterized using a variety of measurement techniques including capacitance-voltage, current-voltage over spectral response, capacitance dispersion over wavelength, and solar efficiency. The different pieces of experimental data are discussed to form a self-consistent physical model of the polycrystalline solar cells. Charge transport across the diode junction is dominated by recombination processes within the CuInSe2 depletion layer for both sets of diodes although the large parallel conductance in the CSP diodes often masks this characteristic. The CSP solar cells exhibit a pronounced blue peak in the spectral response indicating that electron collection is the limiting factor in the overall short-circuit quantum efficiency. A large degree of capacitance dispersion is found in both sets of diodes. Supporting measurements indicate that the majority of this dispersion is due
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
NASA Astrophysics Data System (ADS)
Köhler, K.; Pletschen, W.; Godejohann, B.; Müller, S.; Menner, H. P.; Ambacher, O.
2015-11-01
Admittance-voltage profiling of AlxGa1-xN/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al0.3Ga0.7N layer growth. For frequencies below 108 Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation between frequency dependent admittance-voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al0.3Ga0.7N barriers (20%). The specific resistance of the layers below the gate is above 105 Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Aerodynamics of Heavy Vehicles
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Lee, Jungil; Park, Hyungmin
2014-01-01
We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.
Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Cruz, Juna R.; Lingard, J. Stephen
2006-01-01
In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
NASA Astrophysics Data System (ADS)
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
NASA Astrophysics Data System (ADS)
Dardé, Jérémi; Hyvönen, Nuutti; Seppänen, Aku; Staboulis, Stratos
2013-08-01
In this paper, the simultaneous retrieval of the exterior boundary shape and the interior admittivity distribution of an examined body in electrical impedance tomography is considered. The reconstruction method is built for the complete electrode model and it is based on the Fréchet derivative of the corresponding current-to-voltage map with respect to the body shape. The reconstruction problem is cast into the Bayesian framework, and maximum a posteriori estimates for the admittivity and the boundary geometry are computed. The feasibility of the approach is evaluated by experimental data from water tank measurements. The results demonstrate that the proposed method has potential for handling an unknown body shape in a practical setting.
NASA Astrophysics Data System (ADS)
Kalia, Sameer; Mahajan, Aman; Neerja, Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K.
2016-05-01
The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance -frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.
Characterisation of defects in p-GaN by admittance spectroscopy
NASA Astrophysics Data System (ADS)
Elsherif, O. S.; Vernon-Parry, K. D.; Evans-Freeman, J. H.; Airey, R. J.; Kappers, M.; Humphreys, C. J.
2012-08-01
Mg-doped GaN films have been grown on (0 0 0 1) sapphire using metal organic vapour phase epitaxy. Use of different buffer layer strategies caused the threading dislocation density (TDD) in the GaN to be either approximately 2×109 cm-2 or 1×1010 cm-2. Frequency-dependent capacitance and conductance measurements at temperatures up to 450 K have been used to study the electronic states associated with the Mg doping, and to determine how these are affected by the TDD. Admittance spectroscopy of the films finds a single impurity-related acceptor level with an activation energy of 160±10 meV for [Mg] of about 1×1019 cm-3, and 120±10 eV as the Mg precursor flux decreased. This level is thought to be associated with the Mg acceptor state. The TDD has no discernible effect on the trap detected by admittance spectroscopy. We compare these results with cathodoluminescence measurements reported in the literature, which reveal that most threading dislocations are non-radiative recombination centres, and discuss possible reasons why our admittance spectroscopy have not detected electrically active defects associated with threading dislocations.
Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R
2015-01-01
An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation. PMID:25281143
Left ventricular epicardial admittance measurement for detection of acute LV dilation
Porterfield, John E.; Larson, Erik R.; Jenkins, James T.; Escobedo, Daniel; Valvano, Jonathan W.; Pearce, John A.
2011-01-01
There are two implanted heart failure warning systems incorporated into biventricular pacemakers/automatic implantable cardiac defibrillators and tested in clinical trials: right heart pressures, and lung conductance measurements. However, both warning systems postdate measures of the earliest indicator of impending heart failure: left ventricular (LV) volume. There are currently no proposed implanted technologies that can perform LV blood volume measurements in humans. We propose to solve this problem by incorporating an admittance measurement system onto currently deployed biventricular and automatic implantable cardiac defibrillator leads. This study will demonstrate that an admittance measurement system can detect LV blood conductance from the epicardial position, despite the current generating and sensing electrodes being in constant motion with the heart, and with dynamic removal of the myocardial component of the returning voltage signal. Specifically, in 11 pigs, it will be demonstrated that 1) a physiological LV blood conductance signal can be derived; 2) LV dilation in response to dose-response intravenous neosynephrine can be detected by blood conductance in a similar fashion to the standard of endocardial crystals when admittance is used, but not when only traditional conductance is used; 3) the physiological impact of acute left anterior descending coronary artery occlusion and resultant LV dilation can be detected by blood conductance, before the anticipated secondary rise in right ventricular systolic pressure; and 4) a pleural effusion simulated by placing saline outside the pericardium does not serve as a source of artifact for blood conductance measurements. PMID:21148342
NASA Technical Reports Server (NTRS)
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899
Unsteady Aerodynamics - Subsonic Compressible Inviscid Case
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1999-01-01
This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
Summary analysis of the Gemini entry aerodynamics
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Howes, D. B.
1972-01-01
The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
NASA Astrophysics Data System (ADS)
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Aerodynamics Improve Wind Wheel
NASA Technical Reports Server (NTRS)
Ramsey, V. W.
1982-01-01
Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.
Recent Experiments at the Gottingen Aerodynamic Institute
NASA Technical Reports Server (NTRS)
Ackeret, J
1925-01-01
This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).
Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang
2012-12-20
We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system. PMID:23262604
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds
Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers
2015-01-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
NASA Astrophysics Data System (ADS)
Motuzko, F. Y.; Trubitsyn, A. V.
1985-04-01
The electric current I sub h through a human body touching one phase of a 3-0 network is calculated on the basis of the conventional equivalent circuit for the general case of unequal insulation admittances in all three phases. The two extreme cases here are all three insulation admittances approaching zero or infinity respectively. The theoretical relation in the latter case is not consistent with reality, in which an infinitely large insulation admittance presents a short circuit across the 3-0 source and a fully effective shunt across the human body. The equivalent circuit is modified, accordingly, to include the internal source resistance in series with the insulation admittance in each phase. Calculations pertaining to the method of personnel protection are continued, to establish the dependence of current on the insulation resistance of the touched phase and thus establish the safe range of this resistance when the resistance as well as the insulation admittance of this phase are different from those of the other two phases and those of the other two phases are equal.
Real time pressure-volume loops in mice using complex admittance: measurement and implications.
Kottam, Anil T G; Porterfield, John; Raghavan, Karthik; Fernandez, Daniel; Feldman, Marc D; Valvano, Jonathan W; Pearce, John A
2006-01-01
Real time left ventricular (LV) pressure-volume (P-V) loops have provided a framework for understanding cardiac mechanics in experimental animals and humans. Conductance measurements have been used for the past 25 years to generate an instantaneous left ventricular (LV) volume signal. The standard conductance method yields a combination of blood and ventricular muscle conductance; however, only the blood signal is used to estimate LV volume. The state of the art techniques like hypertonic saline injection and IVC occlusion, determine only a single steady-state value of the parallel conductance of the cardiac muscle. This is inaccurate, since the cardiac muscle component should vary instantaneously throughout the cardiac cycle as the LV contracts and fills, because the distance from the catheter to the muscle changes. The capacitive nature of cardiac muscle can be used to identify its contribution to the combined conductance signal. This method, in contrast to existing techniques, yields an instantaneous estimate of the parallel admittance of cardiac muscle that can be used to correct the measurement in real time. The corrected signal consists of blood conductance alone. We present the results of real time in vivo measurements of pressure-admittance and pressure-phase loops inside the murine left ventricle. We then use the magnitude and phase angle of the measured admittance to determine pressure volume loops inside the LV on a beat by beat basis. These results may be used to achieve a substantial improvement in the state of the art in this measurement method by eliminating the need for hypertonic saline injection. PMID:17946238
Aerodynamic heated steam generating apparatus
Kim, K.
1986-08-12
An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.
Admittance Test and Conceptual Study of a CW Positron Source for CEBAF
Golge, Serkan; Hyde, Charles E.; Freyberger, Arne
2009-09-02
A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.
Measuring the complex admittance of a nearly isolated graphene quantum dot
Zhang, Miao-Lei; Wei, Da; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen
2014-08-18
We measured the radio-frequency reflection spectrum of an on-chip reflection line resonator coupled to a graphene double quantum dot (DQD), which was etched almost isolated from the reservoir and reached the low tunnel rate region. The charge stability diagram of DQD was investigated via dispersive phase and magnitude shift of the resonator with a high quality factor. Its complex admittance and low tunnel rate to the reservoir was also determined from the reflected signal of the on-chip resonator. Our method may provide a non-invasive and sensitive way of charge state readout in isolated quantum dots.
2014-01-01
Background In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. Methods A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. Results The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong
2014-10-01
Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
NASA Technical Reports Server (NTRS)
McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Simons, Mark; Wieczorek, Mark A.; Phillips, Roger J.; Neumann, Gregory A.; Aharonson, Oded; Head, James W.
2002-01-01
[i] From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T(sub e)) required to support the observed topographic load since the time of loading. We convert T(sub e) to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary shape ) in lieu of topography referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T, values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.
The long-wavelength admittance and effective elastic thickness of the Canadian Shield
NASA Astrophysics Data System (ADS)
Kirby, J. F.; Swain, C. J.
2014-06-01
The strength of the cratonic lithosphere has been controversial. On the one hand, many estimates of effective elastic thickness (Te) greatly exceed the crustal thickness, but on the other the great majority of cratonic earthquakes occur in the upper crust. This implies that the seismogenic thickness of cratons is much smaller than Te, whereas in the ocean basins they are approximately the same, leading to suspicions about the large Te estimates. One region where such estimates have been questioned is the Canadian Shield, where glacial isostatic adjustment (GIA) and mantle convection are thought to contribute to the long-wavelength undulations of the topography and gravity. To date these have not been included in models used to estimate Te from topography and gravity which conventionally are based only on loading and flexure. Here we devise a theoretical expression for the free-air (gravity/topography) admittance that includes the effects of GIA and convection as well as flexure and use it to estimate Te over the Canadian Shield. We use wavelet transforms for estimating the observed admittances, after showing that multitaper estimates, which have hitherto been popular for Te studies, have poor resolution at the long wavelengths where GIA and convection predominate, compared to wavelets. Our results suggest that Te over most of the shield exceeds 80 km, with a higher-Te core near the southwest shore of Hudson Bay. This means that the lack of mantle earthquakes in this craton is simply due to its high strength compared to the applied stresses.
Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge
2014-05-01
Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Chin, Suei; Lan, C. Edward
1990-01-01
Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.
Rarefield-Flow Shuttle Aerodynamics Flight Model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1994-01-01
A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
A Generic Nonlinear Aerodynamic Model for Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2014-01-01
A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Nozzle Aerodynamic Stability During a Throat Shift
NASA Technical Reports Server (NTRS)
Kawecki, Edwin J.; Ribeiro, Gregg L.
2005-01-01
An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.
Aerodynamics of a Cryogenic Semi-Tanker
NASA Astrophysics Data System (ADS)
Ortega, Jason; Salari, Kambiz
2009-11-01
The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
ERIC Educational Resources Information Center
Nondahl, David M.; Cruickshanks, Karen J.; Wiley, Terry L.; Tweed, Ted S.; Dalton, Dayna S.
2013-01-01
Purpose: The primary purpose of this study was to measure the 16-year change in peak compensated static acoustic admittance (Peak Y[subscript tm]) in a population-based cohort of older adults, and to determine whether age was associated with any observed change in Peak Y[subscript tm]. Other tympanometric measures also were taken and analyzed.…
Ravicz, Michael E.; Rosowski, John J.
2012-01-01
The middle-ear input admittance relates sound power into the middle ear (ME) and sound pressure at the tympanic membrane (TM). ME input admittance was measured in the chinchilla ear canal as part of a larger study of sound power transmission through the ME into the inner ear. The middle ear was open, and the inner ear was intact or modified with small sensors inserted into the vestibule near the cochlear base. A simple model of the chinchilla ear canal, based on ear canal sound pressure measurements at two points along the canal and an assumption of plane-wave propagation, enables reliable estimates of YTM, the ME input admittance at the TM, from the admittance measured relatively far from the TM. YTM appears valid at frequencies as high as 17 kHz, a much higher frequency than previously reported. The real part of YTM decreases with frequency above 2 kHz. Effects of the inner-ear sensors (necessary for inner ear power computation) were small and generally limited to frequencies below 3 kHz. Computed power reflectance was ∼0.1 below 3.5 kHz, lower than with an intact ME below 2.5 kHz, and nearly 1 above 16 kHz. PMID:23039439
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
Morse, Robert Peter
2013-10-01
Many passengers experience discomfort during flight because of the effect of low humidity on the skin, eyes, throat, and nose. In this physiological study, we have investigated whether flight and low humidity also affect the tympanic membrane. From previous studies, a decrease in admittance of the tympanic membrane through drying might be expected to affect the buffering capacity of the middle ear and to disrupt automatic pressure regulation. This investigation involved an observational study onboard an aircraft combined with experiments in an environmental chamber, where the humidity could be controlled but could not be made to be as low as during flight. For the flight study, there was a linear relationship between the peak compensated static admittance of the tympanic membrane and relative humidity with a constant of proportionality of 0.00315 mmho/% relative humidity. The low humidity at cruise altitude (minimum 22.7 %) was associated with a mean decrease in admittance of about 20 % compared with measures in the airport. From the chamber study, we further found that a mean decrease in relative humidity of 23.4 % led to a significant decrease in mean admittance by 0.11 mmho [F(1,8) = 18.95, P = 0.002], a decrease of 9.4 %. The order of magnitude for the effect of humidity was similar for the flight and environmental chamber studies. We conclude that admittance changes during flight were likely to have been caused by the low humidity in the aircraft cabin and that these changes may affect the automatic pressure regulation of the middle ear during descent. PMID:23887775
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells
NASA Astrophysics Data System (ADS)
Izhnin, Ihor I.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Voitsekhovskii, Alexander V.; Gorn, Dmitry I.; Dvoretsky, Sergey A.; Mikhailov, Nikolaj N.
2016-02-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.
Quantum dot admittance probed at microwave frequencies with an on-chip resonator
NASA Astrophysics Data System (ADS)
Frey, T.; Leek, P. J.; Beck, M.; Faist, J.; Wallraff, A.; Ensslin, K.; Ihn, T.; Büttiker, M.
2012-09-01
We present microwave frequency measurements of the dynamic admittance of a quantum dot tunnel-coupled to a two-dimensional electron gas. The measurements are made via a high-quality 6.75 GHz on-chip resonator capacitively coupled to the dot. The resonator frequency is found to shift both down and up close to conductance resonance of the dot corresponding to a change of sign of the reactance of the system from capacitive to inductive. The observations are consistent with a scattering matrix model. The sign of the reactance depends on the detuning of the dot from conductance resonance and on the magnitude of the tunnel rate to the lead with respect to the resonator frequency. Inductive response is observed on a conductance resonance when tunnel coupling and temperature are sufficiently small compared to the resonator frequency.
Three-dimensional admittance analysis of lithospheric elastic thickness over the Louisville Ridge
NASA Astrophysics Data System (ADS)
Hu, Minzhang; Li, Hui; Shen, Chongyang; Xing, Lelin; Hao, Hongtao
2016-04-01
Using bathymetry and altimetric gravity anomalies, a 1° × 1° lithospheric effective elastic thickness ( T e) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1, and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium T e of 10-20 km, while T e increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and Indo-Australian plates.
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.
Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N
2016-12-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe. PMID:26831691
Incremental Aerodynamic Coefficient Database for the USA2
NASA Technical Reports Server (NTRS)
Richardson, Annie Catherine
2016-01-01
In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Hooks, I.; Homan, D.; Romere, P. O.
1985-01-01
The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
The design of missile's dome that fits both optical and aerodynamic needs
NASA Astrophysics Data System (ADS)
Wei, Qun; Zhang, Xin; Jia, Hongguang
2010-10-01
Optical guidance missiles requires a dome which fits both optical and aerodynamic needs when they attack at 3 Ma. In this study, ellipse is the figure chosen to be the dome's shape. The ellipticity ɛ is the main variable should to be decided. The optimized function was built by optical and aerodynamic performance function multiply by their weights. The optical and aerodynamic functions were all obtained by computational fluid dynamic (CFD) simulation's results after normalization. In this study, the optical and aerodynamic performances have equal weights, after optimzing the ellipticity ɛis 2 for the missile.
Reciprocity relations in aerodynamics
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Rarefied-flow Shuttle aerodynamics model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1993-01-01
A rarefied-flow shuttle aerodynamic model spanning the hypersonic continuum to the free molecule-flow regime was formulated. The model development has evolved from the High Resolution Accelerometer Package (HiRAP) experiment conducted on the Orbiter since 1983. The complete model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as functions of angle-of-attack, body flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle-of-attack are presented, along with flight derived rarefied-flow transition bridging formulae. Comparisons are made with data from the Operational Aerodynamic Design Data Book (OADDB), applicable wind-tunnel data, and recent flight data from STS-35 and STS-40. The flight-derived model aerodynamic force coefficient ratio is in good agreement with the wind-tunnel data and predicts the flight measured force coefficient ratios on STS-35 and STS-40. The model is not, however, in good agreement with the OADDB. But, the current OADDB does not predict the flight data force coefficient ratios of either STS-35 or STS-40 as accurately as the flight-derived model. Also, the OADDB differs with the wind-tunnel force coefficient ratio data.
Freight Wing Trailer Aerodynamics Final Technical Report
Sean Graham
2007-10-31
Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.
1984-01-01
Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Dynamic soaring: aerodynamics for albatrosses
NASA Astrophysics Data System (ADS)
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
Aerodynamics for the Mars Phoenix Entry Capsule
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark
2008-01-01
Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.
Aerodynamic sampling for landmine trace detection
NASA Astrophysics Data System (ADS)
Settles, Gary S.; Kester, Douglas A.
2001-10-01
Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.
NASA Astrophysics Data System (ADS)
Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn
2003-11-01
A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.
Aerodynamics of badminton shuttlecocks
NASA Astrophysics Data System (ADS)
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
The aerodynamics of supersonic parachutes
Peterson, C.W.
1987-06-01
A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.
An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth
NASA Technical Reports Server (NTRS)
Brian, A. W.; Smrekar, S. E.; Stofan, E. R.
2004-01-01
Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.
Admittance spectroscopy of solar cells based on GaPNAs layers
Baranov, A. I. Gudovskikh, A. S.; Zelentsov, K. S.; Nikitina, E. V.; Egorov, A. Yu.
2015-04-15
Admittance spectroscopy is used to study defect levels in the layers of a GaPNAs quaternary solid solution. Centers with an activation energy of 0.22 eV and a capture cross section of ∼2.4 × 10{sup −15} cm{sup 2} are found in doped n-GaPNAs layers grown on GaP substrates. These centers correspond to already known Si{sub Ga} + V{sub P} defects in n-GaP; annealing decreases their concentration by several times. A level with an activation energy of 0.23–0.24 eV and capture cross section of ∼9.0 × 10{sup −20} cm{sup 2} is found in undoped GaPNAs layers grown on Si and GaP substrates. The concentration of these centers substantially decreases upon annealing, and, at annealing temperatures exceeding 600°C, there is absolutely no response from these defects. For undoped GaPNAs layers grown on GaP substrates, a level with an activation energy of 0.18 eV and capture cross section of ∼1.1 × 10{sup −16} cm{sup 2} is also found. The concentration of these centers remains unchanged upon annealing.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
NASA Technical Reports Server (NTRS)
Nissim, E.
1977-01-01
Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
Configuration Aerodynamics: Past - Present - Future
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.
1999-01-01
The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
New technology in turbine aerodynamics.
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Recent advances in computational aerodynamics
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh K.; Desse, Jerry E.
1991-04-01
The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
Aerodynamics Research Revolutionizes Truck Design
NASA Technical Reports Server (NTRS)
2008-01-01
During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.
Unsteady aerodynamic modeling and active aeroelastic control
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.
Aerodynamics Of Missiles: Present And Future
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1991-01-01
Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.
Application Program Interface for the Orion Aerodynamics Database
NASA Technical Reports Server (NTRS)
Robinson, Philip E.; Thompson, James
2013-01-01
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The
NASA Technical Reports Server (NTRS)
Hakkinen, Raimo J; Richardson, A S , Jr
1957-01-01
Sinusoidally oscillating downwash and lift produced on a simple rigid airfoil were measured and compared with calculated values. Statistically stationary random downwash and the corresponding lift on a simple rigid airfoil were also measured and the transfer functions between their power spectra determined. The random experimental values are compared with theoretically approximated values. Limitations of the experimental technique and the need for more extensive experimental data are discussed.
Langley Symposium on Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Stack, Sharon H. (Compiler)
1986-01-01
The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.
An Investigation into the Admittance of MIS-Structures Based on MBE HgCdTe with Quantum Wells
NASA Astrophysics Data System (ADS)
Dzyadukh, S. M.; Voitsekhovskii, A. V.; Nesmelov, S. N.; Dvoretskii, S. A.; N. Mikhailov, N.; Gorn, D. I.
2013-12-01
The results of investigations into the complex admittance of the MIS-structures based on heteroepitaxial MBE Hg1- x Cd x Te with quantum wells (QW) in the test-signal frequency range 1 kHz - 2 МHz at temperatures 8-300 K are reported. The thickness of single HgTe QWs was 5.6 and 7.1 nm, the content in the 35-nm thick barrier layers - 0.65 and 0.62, respectively.
Advanced Aerodynamic Design of Passive Porosity Control Effectors
NASA Technical Reports Server (NTRS)
Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.
2001-01-01
This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.
Atmospheric testing of wind turbine trailing edge aerodynamic brakes
Miller, L.S.; Migliore, P.G.; Quandt, G.A.
1997-12-31
An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.
Sensitivity analysis in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1984-01-01
Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.
Semianalytic modeling of aerodynamic shapes
NASA Technical Reports Server (NTRS)
Barger, R. L.; Adams, M. S.
1985-01-01
Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation.
Aerodynamic laboratory at Cuatro Vientos
NASA Technical Reports Server (NTRS)
JUBERA
1922-01-01
This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.
New technology in turbine aerodynamics
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Dynamic Soaring: Aerodynamics for Albatrosses
ERIC Educational Resources Information Center
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…
POEMS in Newton's Aerodynamic Frustum
ERIC Educational Resources Information Center
Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita
2010-01-01
The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…
Aerodynamic design via control theory
NASA Technical Reports Server (NTRS)
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Shuttle reentry aerodynamic heating test
NASA Technical Reports Server (NTRS)
Pond, J. E.; Mccormick, P. O.; Smith, S. D.
1971-01-01
The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.
Rotary wing aerodynamically generated noise
NASA Technical Reports Server (NTRS)
Schmitz, F. J.; Morse, H. A.
1982-01-01
The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.
Nostril Aerodynamics of Scenting Animals
NASA Astrophysics Data System (ADS)
Settles, G. S.
1997-11-01
Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)
Aerodynamics of a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1990-01-01
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
Interdisciplinary optimization combining electromagnetic and aerodynamic methods
NASA Astrophysics Data System (ADS)
Sullivan, Anders James
The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the
Application of Approximate Unsteady Aerodynamics for Flutter Analysis
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2010-01-01
A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.
Anthony L. Crawford
2012-08-01
Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.
(Aerodynamic focusing of particles and heavy molecules)
de la Mora, J.F.
1990-01-08
By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.
The interference aerodynamics caused by the wing elasticity during store separation
NASA Astrophysics Data System (ADS)
Lei, Yang; Zheng-yin, Ye
2016-04-01
Air-launch-to-orbit is the technology that has stores carried aloft and launched the store from the plane to the orbit. The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered is simulated numerically. And the interactive aerodynamic forces are analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Because of the effect of the interference aerodynamics, the roll angle response and pitch angle response increase. When the store is mounted under the wingtip, the additional aerodynamics caused by the wingtip vortex is obvious, which accelerate the divergence of the lateral force and the lateral-directional attitude angle of the store. This study supports some beneficial conclusions to the engineering application of the air-launch-to-orbit.
Control of helicopter rotorblade aerodynamics
NASA Technical Reports Server (NTRS)
Fabunmi, James A.
1991-01-01
The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.
Computer Simulation of Aircraft Aerodynamics
NASA Technical Reports Server (NTRS)
Inouye, Mamoru
1989-01-01
The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.
Viking entry aerodynamics and heating
NASA Technical Reports Server (NTRS)
Polutchko, R. J.
1974-01-01
The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.
Aerodynamic instability: A case history
NASA Technical Reports Server (NTRS)
Eisenmann, R. C.
1985-01-01
The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.
Applied aerodynamics: Challenges and expectations
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Smith, Charles A.
1993-01-01
Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.
X-34 Vehicle Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.
1998-01-01
The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.
Yoshii, Masayoshi; Minami, Junichi; Ishimitsu, Toshihiko; Yamakoshi, Ken-ichi; Matsuoka, Hiroaki
2005-04-01
Only a little information is available for the evaluation of the complex hemodynamic changes that occur during hemodialysis. Recently, we developed the transthoracic electrical admittance cardiograph for repeated measurements of cardiac output, and monitored hemodynamic changes during hemodialysis by the use of this device. We measured cardiovascular hemodynamic and autonomic parameters non-invasively during 210 min of hemodialysis in 19 chronic hemodialysis patients who for more than 2 months had no history of cardiovascular collapses during hemodialysis. Blood pressure was monitored every 10 min using a cuff-oscillometric device (TM-2425; A & D, Tokyo, Japan). Cardiac output was monitored on a beat-by-beat basis by a newly developed electrical admittance cardiograph (NICOVIEW PA1100; NEC, Tokyo, Japan). Electrocardiogram R-R intervals were also monitored by the TM-2425. Power spectral analysis of R-R intervals was performed to obtain the low-frequency (LF; 0.05-0.15 Hz) and the high-frequency (HF; 0.15-0.40 Hz) components based on an autoregressive model. Change in circulatory blood volume was also monitored by a CRIT-LINE (In-Line Diagnostics, Riverdale, UT, USA). Although blood volume declined significantly by 16.3 +/- 1.4% (mean +/- SE) during hemodialysis (P < 0.0001), mean blood pressure did not change significantly. Heart rate increased significantly from the initial values of 76.3 +/- 3.4-86.4 +/- 4.9 beats/min (P = 0.03). Cardiac output and stroke volume decreased significantly from 4.47 +/- 0.30 to 2.91 +/- 0.32 L/min (P < 0.0001), and from 57.0 +/- 3.7 to 33.9 +/- 3.1 mL (P < 0.0001), respectively. Total peripheral vascular resistance increased significantly from 1940 +/- 146 to 3117 +/- 280 dyne x s x cm(5) (P < 0.0001). The LF component did not show significant change, while the HF component decreased significantly (P = 0.007), and the LF/HF ratio increased significantly (P = 0.03). These results suggest that a reduction in parasympathetic nerve
Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A
2011-01-01
This paper presents the design, construction and testing of a device to measure pressure volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 minutes and runs for 24 hours. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated in thirteen rats with an acute preparation with 2-D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested in six rats with a 24-hour chronic preparation. Stability of the animal preparation and careful calibration are important factors affecting the success of the device. PMID:21606560
Investigation of the transient aerodynamic phenomena associated with passing manoeuvres
NASA Astrophysics Data System (ADS)
Noger, C.; Regardin, C.; Széchényi, E.
2005-11-01
Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.
The role of unsteady aerodynamics in aeroacoustics
NASA Technical Reports Server (NTRS)
Pao, S. Paul
1988-01-01
The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.
HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)
The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...
Computational aerodynamics applications to transport aircraft design
NASA Technical Reports Server (NTRS)
Henne, P. A.
1983-01-01
Examples are cited in assessing the effect that computational aerodynamics has had on the design of transport aircraft. The application of computational potential flow methods to wing design and to high-lift system design is discussed. The benefits offered by computational aerodynamics in reducing design cost, time, and risk are shown to be substantial.These aerodynamic methods have proved to be particularly effective in exposing inferior or poor aerodynamic designs. Particular attention is given to wing design, where the results have been dramatic.
Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Greene, Francis A.; Boyles, Katie A.
2006-01-01
Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).
Evaluation and modeling of aerodynamic properties of mung bean seeds
NASA Astrophysics Data System (ADS)
Shahbazi, Feizollah
2015-01-01
Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.
NASA Astrophysics Data System (ADS)
Maheshwari, Muneesh; Annamdas, Venu Gopal Madhav; Pang, John H. L.; Tjin, Swee Chuan; Asundi, Anand
2015-04-01
Structural health monitoring techniques using smart materials are on rise to meet the ever ending demand due to increased construction and manufacturing activities worldwide. The civil-structural components such as slabs, beams and columns and aero-components such as wings are constantly subjected to some or the other forms of external loading. This article thus focuses on condition monitoring due to loading/unloading cycle for a simply supported aluminum beam using multiple smart materials. On the specimen, fibre optic polarimetric sensor (FOPS) and fibre Bragg grating (FBG) sensors were glued. Piezoelectric wafer active sensor (PWAS) was also bonded at the centre of the specimen. FOPS and FBG provided the global and local strain measurements respectively whereas, PWAS predicted boundary condition variations by electromechanical admittance signatures. Thus these multiple smart materials together successfully assessed the condition of structure for loading and unloading tests.
3-D Navier-Stokes Analysis of Blade Root Aerodynamics for a Tiltrotor Aircraft In Cruise
NASA Technical Reports Server (NTRS)
Romander, Ethan
2006-01-01
The blade root area of a tiltrotor aircraft's rotor is constrained by a great many factors, not the least of which is aerodynamic performance in cruise. For this study, Navier-Stokes CFD techniques are used to study the aerodynamic performance in cruise of a rotor design as a function of airfoil thickness along the blade and spinner shape. Reducing airfoil thickness along the entire blade will be shown to have the greatest effect followed by smaller but still significant improvements achieved by reducing the thickness of root airfoils only. Furthermore, altering the shape of the spinner will be illustrated as a tool to tune the aerodynamic performance very near the blade root.
NASA Astrophysics Data System (ADS)
Mannequin, C.; Gonon, P.; Vallée, C.; Bsiesy, A.; Grampeix, H.; Jousseaume, V.
2011-11-01
Dielectric relaxation is studied in 10 nm HfO2 thin films which are deposited by atomic layer deposition on TiN and Pt electrodes. Transient currents are recorded from 10-3 s to 10 s, as a function of bias (0.1 V to 1 V) and temperature (20 °C to 180 °C). A Curie-von Schweidler law is observed, I = Q0/tα. The power law exponent α is constant with bias and strongly depends on the temperature (varying in the 0.65-1.05 range, with a peak at 75 °C). The amplitude Q0 is described by a relation of the form Q0 = C0Vβ, where the factor C0 is weakly activated and the exponent β varies with temperature (in the 0.9-1.5 range as T varies). Transient currents are discussed along with tunneling based models from the literature. To complement transient current experiments, admittance spectroscopy (conductance G and capacitance C) is performed at low frequencies, from 0.01 Hz to 10 kHz. The dispersion law of the conductance is of the form G ˜ ωs. The capacitance is the sum of two terms, a non-dispersive term (C∞) and a low-frequency dispersive term, CLF ˜ ω-n. The critical exponents s and n verify s ≈ α and n ≈ 1-α. At room temperature, the dielectric constant is expressed as ɛ' = Δɛ' f-n+ ɛ'∞, where ɛ'∞ = 11.1, n ≈ 0.2/0.3 (Pt/TiN), and Δɛ' ≈ 1.5/0.7 (Pt/TiN).
Inner workings of aerodynamic sweep
Wadia, A.R.; Szucs, P.N.; Crall, D.W.
1998-10-01
The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfy identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.
Progress in computational unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1993-01-01
After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.
Simulation of iced wing aerodynamics
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.
1991-01-01
The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.
The basic aerodynamics of floatation
Davies, M.J.; Wood, D.H.
1983-09-01
The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.
Aerodynamics. [Numerical simulation using supercomputers
Graves, R.A. Jr.
1988-01-01
A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO/sub 2/.
Aerodynamic applications of infrared thermography
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Alderfer, David W.
1989-01-01
A series of wind tunnel experiments were conducted as part of a systematic study for evaluation of infrared thermography as a viable non-intrusive thermal measurement technique for aerodynamic applications. The experiments consisted of obtaining steady-state surface temperature and convective heat transfer rates for a uniformly heated cylinder in transverse flow with a Reynolds number range of 46,000 to 250,000. The calculated convective heat transfer rates were in general agreement with classical data. Furthermore, IR thermography provided valuable real-time fluid dynamic information such as visualization of flow separation, transition and vortices.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1979-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.
Orion Crew Module Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.
2011-01-01
The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
Distributed Aerodynamic Sensing and Processing Toolbox
NASA Technical Reports Server (NTRS)
Brenner, Martin; Jutte, Christine; Mangalam, Arun
2011-01-01
A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-01-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
The aerodynamics of small Reynolds numbers
NASA Technical Reports Server (NTRS)
Schmitz, F. W.
1980-01-01
Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.
Future Computer Requirements for Computational Aerodynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.
Aerodynamic seal assemblies for turbo-machinery
Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao
2015-09-29
The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
Review of aerodynamic design in the Netherlands
NASA Technical Reports Server (NTRS)
Labrujere, Th. E.
1991-01-01
Aerodynamic design activities in the Netherlands, which take place mainly at Fokker, the National Aerospace Laboratory (NLR), and Delft University of Technology (TUD), are discussed. The survey concentrates on the development of the Fokker 100 wing, glider design at TUD, and research at NLR in the field of aerodynamic design. Results are shown to illustrate these activities.
Image processing of aerodynamic data
NASA Technical Reports Server (NTRS)
Faulcon, N. D.
1985-01-01
The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.
The basic aerodynamics of floatation
NASA Astrophysics Data System (ADS)
Davies, M. J.; Wood, D. H.
1983-09-01
It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).
Rarefaction Effects in Hypersonic Aerodynamics
NASA Astrophysics Data System (ADS)
Riabov, Vladimir V.
2011-05-01
The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.
Aerodynamic research on tipvane windturbines
NASA Astrophysics Data System (ADS)
Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.
1982-09-01
Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.
Aerodynamic seals for rotary machine
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.