NASA Astrophysics Data System (ADS)
Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Ermakov, A. M.
2015-01-01
The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines have been numerically solved using multiblock computational technologies. The obtained solution has been used to analyze subsonic flow past a thick (37.5% chord) airfoil with slot suction in circular vortex cells intended for the Ecology and Progress (Ekologiya i Progress, EKIP) aircraft project in comparison to a distributed (from the central body surface) suction at fixed values of the total volume flow rate (0.02121) and Reynolds number (105) in a range of Mach numbers from 0 to 0.4. This analysis revealed a significant (up to tenfold) decrease in the bow drag (determined with allowance for the energy losses) and a large (by an order of magnitude) increase in the aerodynamic efficiency of the thick airfoil containing vortex cells with slot suction, which reached up to 160.
Efficient Global Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
Flight Test Maneuvers for Efficient Aerodynamic Modeling
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2011-01-01
Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.
Insect Flight: Aerodynamics, Efficiency, and Evolution
NASA Astrophysics Data System (ADS)
Wang, Z. Jane
2007-11-01
Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?
Aerodynamics/ACEE: Aircraft energy efficiency
NASA Technical Reports Server (NTRS)
1981-01-01
An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.
Dynamic stability of an aerodynamically efficient motorcycle
NASA Astrophysics Data System (ADS)
Sharma, Amrit; Limebeer, David J. N.
2012-08-01
Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.
Elytra boost lift, but reduce aerodynamic efficiency in flying beetles
Johansson, L. Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T.; Hedenström, Anders
2012-01-01
Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency. PMID:22593097
Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency
NASA Technical Reports Server (NTRS)
Acree, C W.
2014-01-01
The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.
Benefits of high aerodynamic efficiency to orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Norris, R. B.; Paris, S. W.
1984-01-01
The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.
Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.
1998-01-01
The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.
An unsteady aerodynamic formulation for efficient rotor tonal noise prediction
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Testa, C.; Bernardini, G.
2013-12-01
An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.
2013-01-01
Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.
Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers
NASA Technical Reports Server (NTRS)
Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.
Efficient optimization of integrated aerodynamic-structural design
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.
1989-01-01
Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.
An Efficient Inverse Aerodynamic Design Method For Subsonic Flows
NASA Technical Reports Server (NTRS)
Milholen, William E., II
2000-01-01
Computational Fluid Dynamics based design methods are maturing to the point that they are beginning to be used in the aircraft design process. Many design methods however have demonstrated deficiencies in the leading edge region of airfoil sections. The objective of the present research is to develop an efficient inverse design method which is valid in the leading edge region. The new design method is a streamline curvature method, and a new technique is presented for modeling the variation of the streamline curvature normal to the surface. The new design method allows the surface coordinates to move normal to the surface, and has been incorporated into the Constrained Direct Iterative Surface Curvature (CDISC) design method. The accuracy and efficiency of the design method is demonstrated using both two-dimensional and three-dimensional design cases.
Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency
NASA Technical Reports Server (NTRS)
Acree, C W., Jr.
2014-01-01
The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.
Wing Warping and Its Impact on Aerodynamic Efficiency
NASA Astrophysics Data System (ADS)
Loh, Ben; Jacob, Jamey
2007-11-01
Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.
Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.; Kiely, Aaron B.
2014-01-01
family of schemes has been devised for organizing the output of an algorithm for predictive data compression of hyperspectral imagery so as to allow efficient parallelization in both the compressor and decompressor. In these schemes, the compressor performs a number of iterations, during each of which a portion of the data is compressed via parallel threads operating on independent portions of the data. The general idea is that for each iteration it is predetermined how much compressed data will be produced from each thread.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Liquid micrurgy chamber and microsyringe designs allow more efficient micromanipulations
NASA Technical Reports Server (NTRS)
Daniels, E. W.
1967-01-01
More efficient micromanipulations on large amoebae achieved by liquid micrurgy chamber and microsyringe. These innovations move the system closer to the specimen, and flatten the specimen for a clear view of the nuclei, also eliminating spherical abberation and evaporation.
An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi
1997-01-01
The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.
NASA Technical Reports Server (NTRS)
Guruswamy, G. P.; Goorjian, P. M.
1984-01-01
An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Sudakov, A. G.; Usachov, A. E.; Kharchenko, V. B.
2015-06-01
The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.
Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K
NASA Astrophysics Data System (ADS)
Neeb, D.; Gulhan, A.
2011-05-01
One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.
Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.
Usherwood, James R; Lehmann, Fritz-Olaf
2008-11-01
Dragonflies are dramatic, successful aerial predators, notable for their flight agility and endurance. Further, they are highly capable of low-speed, hovering and even backwards flight. While insects have repeatedly modified or reduced one pair of wings, or mechanically coupled their fore and hind wings, dragonflies and damselflies have maintained their distinctive, independently controllable, four-winged form for over 300Myr. Despite efforts at understanding the implications of flapping flight with two pairs of wings, previous studies have generally painted a rather disappointing picture: interaction between fore and hind wings reduces the lift compared with two pairs of wings operating in isolation. Here, we demonstrate with a mechanical model dragonfly that, despite presenting no advantage in terms of lift, flying with two pairs of wings can be highly effective at improving aerodynamic efficiency. This is achieved by recovering energy from the wake wasted as swirl in a manner analogous to coaxial contra-rotating helicopter rotors. With the appropriate fore-hind wing phasing, aerodynamic power requirements can be reduced up to 22 per cent compared with a single pair of wings, indicating one advantage of four-winged flying that may apply to both dragonflies and, in the future, biomimetic micro air vehicles. PMID:18477538
Investigating the Improved Aerodynamic Efficiency of Cambered Frames on Membrane MAV Wings
NASA Astrophysics Data System (ADS)
Wrist, Andrew; Zhang, Zheng; Hubner, Paul
2014-11-01
Previous research has demonstrated that membrane wings with cambered frames are more aerodynamically efficient than those with flat frames, despite passive dynamic membrane cambering for both. To help understand this aerodynamic benefit, this study compares the time-averaged membrane shape as well as membrane vibration frequency and amplitude for a group of wings with cambered frames. The frames were 3D printed with a hardened polymer material, and a silicon rubber membrane was attached to the top surface. The frame aspect ratio is two, comprised of two cells each with a cell aspect ratio of one. The rigid leading edge extended 20% of the chord, and the trailing edge was scalloped at 25%. Camber ranged from 2--6%, camber location from 40--60%, and airfoil thickness from 4--6%. Tests were performed in the University of Alabama's MAV wind tunnel at 10 m/s (Re = 50,000). High speed imaging results of the deformation and vibration will be discussed in context to airfoil and wing theory. National Science Foundation Grant Number: 1358991.
Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks
Larry Slone; Jeffrey Birkel
2007-10-31
The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional
NASA Technical Reports Server (NTRS)
Sullivan, T. J.; Hager, R. D.
1983-01-01
The aerodynamic design and test results of the fan and quarter-stage component for the GE/NASA Energy Efficient Engine (EEE) are presented. The fan is a high bypass ratio, single-stage design having 32 part-span shrouded rotor blades, coupled with a unique quarter-stage arrangement that provides additional core-stream pressure ratio and particle separation. The fan produces a bypass pressure ratio of 1.65 at the exit of the low aspect ratio vane/frame and a core-stream pressure ratio of 1.67 at the entrance to the core frame struts. The full-scale fan vehicle was instrumented, assembled and tested as a component in November 1981. Performance mapping was conducted over a range of speeds and bypass ratios using individually-controlled bypass and core-stream discharge valves. The fan bypass and core-stream test data showed excellent results, with the fan exceeding all performance goals at the important engine operating conditions.
Development of an efficient procedure for calculating the aerodynamic effects of planform variation
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Geller, E. W.
1981-01-01
Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923
NASA Technical Reports Server (NTRS)
Israel, R.; Rosner, D. E.
1983-01-01
The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.
Distributed Aerodynamic Sensing and Processing Toolbox
NASA Technical Reports Server (NTRS)
Brenner, Martin; Jutte, Christine; Mangalam, Arun
2011-01-01
A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.
Progress in reducing aerodynamic drag for higher efficiency of heavy duty trucks (class 7-8)
Brady, M; Browand, F; Hammache, M; Heineck, J T; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B
1999-04-01
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.
Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)
Rose McCallen; Richard Couch; Juliana Hsu; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J.T. Heineck; David Driver; James Bell; Gregory Zilliac
1999-12-31
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight. PMID:19762645
NASA Technical Reports Server (NTRS)
Chan, William Machado; Pandya, Shishir Ashok; Rogers, Stuart E.
2013-01-01
Recent developments on the automation of the X-rays approach to hole-cutting in over- set grids is further improved. A fast method to compute an auxiliary wall-distance function used in providing a rst estimate of the hole boundary location is introduced. Subsequent iterations lead to automatically-created hole boundaries with a spatially-variable o set from the minimum hole. For each hole boundary location, an averaged cell attribute measure over all fringe points is used to quantify the compatibility between the fringe points and their respective donor cells. The sensitivity of aerodynamic loads to di erent hole boundary locations and cell attribute compatibilities is investigated using four test cases: an isolated re-entry capsule, a two-rocket con guration, the AIAA 4th Drag Prediction Workshop Common Research Model (CRM), and the D8 \\Double Bubble" subsonic aircraft. When best practices in hole boundary treatment are followed, only small variations in integrated loads and convergence rates are observed for different hole boundary locations.
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Bakhle, Milind A.; Dowell, Earl H.
1993-01-01
A numerical eigenvalue problem formulation and a practical calculation procedure for exact eigenvalues and corresponding eigenvectors are developed and applied to a nonlinear, two-dimensional, time-marching full potential solver for cascade aeroelastic stability analysis. This procedure is based on the Lanczos recursive method and it directly calculates stability information about a nonlinear steady state. It is compared to conventional approaches in the frequency and time domains developed earlier and is found to be 100-10.000 times more computationally efficient. Eigenvalue constellations and the flutter results for flow through a cascade SR5 propfan airfoil are presented.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
NASA Technical Reports Server (NTRS)
Jacobs, Peter F.; Gloss, Blair B.
1989-01-01
The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.
Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.
Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W
2015-10-20
The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids. PMID:26438852
Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion
Bosse, Jens B.; Hogue, Ian B.; Feric, Marina; Thiberge, Stephan Y.; Sodeik, Beate; Brangwynne, Clifford P.; Enquist, Lynn W.
2015-01-01
The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids. PMID:26438852
Aerodynamics Improve Wind Wheel
NASA Technical Reports Server (NTRS)
Ramsey, V. W.
1982-01-01
Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.
Not Available
1993-01-01
In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.
Handheld Lasers Allow Efficient Detection of Fluorescent Marked Organisms in the Field
Fleischer, Shelby J.; De Moraes, Consuelo M.; Mescher, Mark C.; Tooker, John F.
2015-01-01
Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health. PMID:26035303
Sharma, Ashok; Podolsky, Robert; Zhao, Jieping; McIndoe, Richard A.
2009-01-01
Motivation: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a requirement to develop algorithms which are fast and can cluster extremely large datasets without affecting the cluster quality. Clustering is an unsupervised exploratory technique applied to microarray data to find similar data structures or expression patterns. Because of the high input/output costs involved and large distance matrices calculated, most of the algomerative clustering algorithms fail on large datasets (30 000 + genes/200 + arrays). In this article, we propose a new two-stage algorithm which partitions the high-dimensional space associated with microarray data using hyperplanes. The first stage is based on the Balanced Iterative Reducing and Clustering using Hierarchies algorithm with the second stage being a conventional k-means clustering technique. This algorithm has been implemented in a software tool (HPCluster) designed to cluster gene expression data. We compared the clustering results using the two-stage hyperplane algorithm with the conventional k-means algorithm from other available programs. Because, the first stage traverses the data in a single scan, the performance and speed increases substantially. The data reduction accomplished in the first stage of the algorithm reduces the memory requirements allowing us to cluster 44 460 genes without failure and significantly decreases the time to complete when compared with popular k-means programs. The software was written in C# (.NET 1.1). Availability: The program is freely available and can be downloaded from http://www.amdcc.org/bioinformatics/bioinformatics.aspx. Contact: rmcindoe@mail.mcg.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19261720
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Dynamic soaring: aerodynamics for albatrosses
NASA Astrophysics Data System (ADS)
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.
Pawłowski, Z; Zółtowski, M; Kazanecka, E
1999-01-01
This paper discusses the application of the aerodynamic method for the estimation of the efficiency of the vocal articulation and respiratory organ during singing and playing wind instruments. An evaluation of the vocal and respiratory organ was carried out on the basis of an analysis and correlation between the following parameters: PV--phonation volume, MPT--maximum phonation/playing time, SP--subglottal/blowing pressure, MFR--mean flow rate, GR--glottal resistance, EP--expiratory power, W--work. Volume and airflow was measured by a pneumotachometr with an electronic spirometer. The application of a plethysmographic booth made it possible to carry out non-invasive, indirect measurements of the subglottal and blowing pressure. Changes of pressure during singing and playing were recorded in the form of an aerodynamogram curve. This curve was used to determine the maximum duration of sound. Other quantities were derived from a mathematical analysis. PMID:10763322
Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis
2015-02-01
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon's fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510
Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis
2015-01-01
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Lee, Jieun; Taylor, Sarah E. B.; Smeriglio, Piera; Lai, Janice; Maloney, William J.; Yang, Fan; Bhutani, Nidhi
2015-01-01
Regeneration of human cartilage is inherently inefficient; an abundant autologous source, such as human induced pluripotent stem cells (hiPSCs), is therefore attractive for engineering cartilage. We report a growth factor-based protocol for differentiating hiPSCs into articular-like chondrocytes (hiChondrocytes) within 2 weeks, with an overall efficiency >90%. The hiChondrocytes are stable and comparable to adult articular chondrocytes in global gene expression, extracellular matrix production, and ability to generate cartilage tissue in vitro and in immune-deficient mice. Molecular characterization identified an early SRY (sex-determining region Y) box (Sox)9low cluster of differentiation (CD)44lowCD140low prechondrogenic population during hiPSC differentiation. In addition, 2 distinct Sox9-regulated gene networks were identified in the Sox9low and Sox9high populations providing novel molecular insights into chondrogenic fate commitment and differentiation. Our findings present a favorable method for generating hiPSC-derived articular-like chondrocytes. The hiChondrocytes are an attractive cell source for cartilage engineering because of their abundance, autologous nature, and potential to generate articular-like cartilage rather than fibrocartilage. In addition, hiChondrocytes can be excellent tools for modeling human musculoskeletal diseases in a dish and for rapid drug screening.—Lee, J., Taylor, S. E. B., Smeriglio, P., Lai, J., Maloney, W. J., Yang, F., Bhutani, N. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. PMID:25911615
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Ma, Yanyuan; Zhu, Liping
2013-01-01
Summary We study the heteroscedastic partially linear single-index model with an unspecified error variance function, which allows for high dimensional covariates in both the linear and the single-index components of the mean function. We propose a class of consistent estimators of the parameters by using a proper weighting strategy. An interesting finding is that the linearity condition which is widely assumed in the dimension reduction literature is not necessary for methodological or theoretical development: it contributes only to the simplification of non-optimal consistent estimation. We also find that the performance of the usual weighted least square type of estimators deteriorates when the non-parametric component is badly estimated. However, estimators in our family automatically provide protection against such deterioration, in that the consistency can be achieved even if the baseline non-parametric function is completely misspecified. We further show that the most efficient estimator is a member of this family and can be easily obtained by using non-parametric estimation. Properties of the estimators proposed are presented through theoretical illustration and numerical simulations. An example on gender discrimination is used to demonstrate and to compare the practical performance of the estimators. PMID:23970823
Vry, Jochen De; Martínez-Martínez, Pilar; Losen, Mario; Bode, Gerard H; Temel, Yasin; Steckler, Thomas; Steinbusch, Harry WM; Baets, Marc De; Prickaerts, Jos
2010-01-01
Viral gene transfer or transgenic animals are commonly used technologies to alter gene expression in the adult brain, although these approaches lack spatial specificity and are time consuming. We delivered plasmid DNA locally into the brain of adult C57BL/6 mice in vivo by voltage- and current-controlled electroporation. The low current-controlled delivery of unipolar square wave pulses of 125 µA with microstimulation electrodes at the injection site gave 16 times higher transfection rates than a voltage-controlled electroporation protocol with plate electrodes resulting in currents of about 400 mA. Transfection was restricted to the target region and no damage due to the electric pulses was found. Our current-controlled electroporation protocol indicated that the use of very low currents resulting in applied voltages within the physiological range of the membrane potential, allows efficient transfection of nonviral plasmid DNA. In conclusion, low current-controlled electroporation is an excellent approach for electroporation in the adult brain, i.e., gene function can be influenced locally at a high level with no mortality and minimal tissue damage. PMID:20389292
NASA Astrophysics Data System (ADS)
Ortega-Casanova, Joaquin; Fernandez-Feria, Ramon
2015-11-01
The thrust generated by two heaving plates in tandem is analysed for two particular sets of configurations of interest in forward flight: a plunging leading plate with the trailing plate at rest, and the two plates heaving with the same frequency and amplitude, but varying the phase difference. The thrust efficiency of the leading plate is augmented in relation to a single plate heaving with the same frequency and amplitude in most cases. In the first configuration, we characterize the range of nondimensional heaving frequencies and amplitudes of the leading plate for which the stationary trailing plate contributes positively to the global thrust. The maximum global thrust efficiency, reached for an advance ratio slightly less than unity and a reduced frequency close to 5, is about the same as the maximum efficiency for an isolated plate. But for low frequencies the tandem configuration with the trailing plate at rest is more thrust efficient than the isolated plate. In the second configuration, we find that the maximum thrust efficiency is reached for a phase lag of 180o (counterstroking), particularly for an advance ratio unity and a reduced frequency 4.4, and it is practically the same as in the other configuration and that for a single plate. Supported by the Ministerio de Economía y Competitividad of Spain Grant no. DPI2013-40479-P.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Vijgen, Paul M. H. W.
1993-01-01
Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.
NASA Astrophysics Data System (ADS)
Jung-Choon Im, Carl
1990-03-01
We give a pedagogical introduction to the star functions and the Noodle method. The Z-line shape and the polarization asymmetry at SLC/LEP can be evaluated elegantly and efficiently using the star functions and the Noodle method.
Dynamic Soaring: Aerodynamics for Albatrosses
ERIC Educational Resources Information Center
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…
Aerodynamics Research Revolutionizes Truck Design
NASA Technical Reports Server (NTRS)
2008-01-01
During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.
Jung-Choon Im, C. Department of Physics, Stanford University, Stanford, CA 94305 )
1990-03-05
We give a pedagogical introduction to the star functions and the Noodle method. The {ital Z}-line shape and the polarization asymmetry at SLC/LEP can be evaluated elegantly and efficiently using the star functions and the Noodle method.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
Perche, Federico; Lambert, Olivier; Berchel, Mathieu; Jaffrès, Paul-Alain; Pichon, Chantal; Midoux, Patrick
2012-02-14
Lipid-Polycation-DNA complexes (LPD) is a promising non-viral system for nucleic acids delivery. Usually, LPD are prepared just before their use. In the present work, we have examined whether dehydration of a new type of LPD (named LPD100) might be a storage option. LPD100 comprises PEGylated histidylated polylysine/pDNA polyplexes and a liposomal formulation made with lipophosphoramidates containing N-methylimidazolium and histamine polar heads. LPD100 were dehydrated by evaporation, and the physicochemical parameters and transfection efficiency (TE) of reconstituted LPD100 were compared to that of fresh LPD100. LPD100 previously dehydrated in the presence of 20% saccharose, displayed comparable size and surface charge as freshly prepared LPD100 but gave a better TE. CryoTEM experiments showed that the reconstituted LPD100 exhibited a shape similar to fresh ones. Moreover, when LPD100 were prepared with dehydrated pDNA/polymer complexes and fresh liposomes, TE was as efficient as with fresh LPD100 while a small increase of their size were observed. These results demonstrate that evaporation of LPD100 in the presence of saccharose is a powerful method to store them for a long period of time. PMID:21514370
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
Rubinstein, Nimrod D.; Feldstein, Tamar; Shenkar, Noa; Botero-Castro, Fidel; Griggio, Francesca; Mastrototaro, Francesco; Delsuc, Frédéric; Douzery, Emmanuel J.P.; Gissi, Carmela; Huchon, Dorothée
2013-01-01
Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the Phlebobranchia–Thaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate. PMID:23709623
McKechnie, Andrew E; Whitfield, Maxine C; Smit, Ben; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; McWhorter, Todd J; Wolf, Blair O
2016-07-15
Birds show phylogenetic variation in the relative importance of respiratory versus cutaneous evaporation, but the consequences for heat tolerance and evaporative cooling capacity remain unclear. We measured evaporative water loss (EWL), resting metabolic rate (RMR) and body temperature (Tb) in four arid-zone columbids from southern Africa [Namaqua dove (Oena capensis, ∼37 g), laughing dove (Spilopelia senegalensis, ∼89 g) and Cape turtle dove (Streptopelia capicola, ∼148 g)] and Australia [crested pigeon (Ocyphaps lophotes), ∼186 g] at air temperatures (Ta) of up to 62°C. There was no clear relationship between body mass and maximum Ta tolerated during acute heat exposure. Maximum Tb at very high Ta was 43.1±1.0, 43.7±0.8, 44.7±0.3 and 44.3±0.8°C in Namaqua doves, laughing doves, Cape turtle doves and crested pigeons, respectively. In all four species, RMR increased significantly at Ta above thermoneutrality, but the increases were relatively modest with RMR at Ta=56°C being 32, 60, 99 and 11% higher, respectively, than at Ta=35°C. At the highest Ta values reached, evaporative heat loss was equivalent to 466, 227, 230 and 275% of metabolic heat production. The maximum ratio of evaporative heat loss to metabolic production observed in Namaqua doves, 4.66, exceeds by a substantial margin previous values reported for birds. Our results support the notion that cutaneous evaporation provides a highly efficient mechanism of heat dissipation and an enhanced ability to tolerate extremely high Ta. PMID:27207640
Sharp Hypervelocity Aerodynamic Research Probe
NASA Technical Reports Server (NTRS)
Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)
1996-01-01
The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.
New technology in turbine aerodynamics
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Snouwaert, J; Bunick, D; Hutchison, C; Fowlkes, D M
1987-01-01
We have isolated clones with well over 100 randomly dispersed point mutations distributed throughout the 5' half of chemically synthesized adenovirus type 2 VA I genes. In addition, we have isolated clusters of mutations targeted to the regions corresponding to the A and B block consensus sequences of eukaryotic tRNA and adenovirus VA genes. In vitro analyses of these constructs have allowed us to survey in detail the importance of DNA sequence to transcriptional efficiency. Our analyses demonstrate that certain constructs with radically substituted A block regions can be transcribed efficiently. In contrast, there is little tolerance for variation in the sequence within the B block region. We propose that the B block sequence should be R-G-A/T-T-C-R-A-N-N-C for optimal transcriptional efficiency of the VA I gene in mammalian cells. PMID:3671085
Aerodynamic analysis of Pegasus - Computations vs reality
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan
1993-01-01
Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.
Aerodynamics and performance testing of the VAWT
Klimas, P.C.
1981-01-01
Early investigations suggest that reductions in cost of energy (COE) and increases in reliability for VAWT systems may be brought about through relatively inexpensive changes to the current aerodynamic design. This design uses blades of symmetrical cross-section mounted such that the radius from the rotating tower centerline is normal to the blade chord at roughly the 40% chord point. The envisioned changes to this existing design are intended to: (1) lower cut-in windspeed; (2) increase maximum efficiency; (3) limit maximum aerodynamic power; and (4) limit peak aerodynamic torques. This paper describes certain experiments designed to both better understand the aerodynamics of a section operating in an unsteady, curvilinear flowfield and achieve some of the desired changes in section properties. The common goal of all of these experiments is to lower VAWT COE and increase system reliability.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
Computation of dragonfly aerodynamics
NASA Astrophysics Data System (ADS)
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
Phuong, H N; Blavy, P; Martin, O; Schmidely, P; Friggens, N C
2016-01-01
Reproductive success is a key component of lifetime efficiency - which is the ratio of energy in milk (MJ) to energy intake (MJ) over the lifespan, of cows. At the animal level, breeding and feeding management can substantially impact milk yield, body condition and energy balance of cows, which are known as major contributors to reproductive failure in dairy cattle. This study extended an existing lifetime performance model to incorporate the impacts that performance changes due to changing breeding and feeding strategies have on the probability of reproducing and thereby on the productive lifespan, and thus allow the prediction of a cow's lifetime efficiency. The model is dynamic and stochastic, with an individual cow being the unit modelled and one day being the unit of time. To evaluate the model, data from a French study including Holstein and Normande cows fed high-concentrate diets and data from a Scottish study including Holstein cows selected for high and average genetic merit for fat plus protein that were fed high- v. low-concentrate diets were used. Generally, the model consistently simulated productive and reproductive performance of various genotypes of cows across feeding systems. In the French data, the model adequately simulated the reproductive performance of Holsteins but significantly under-predicted that of Normande cows. In the Scottish data, conception to first service was comparably simulated, whereas interval traits were slightly under-predicted. Selection for greater milk production impaired the reproductive performance and lifespan but not lifetime efficiency. The definition of lifetime efficiency used in this model did not include associated costs or herd-level effects. Further works should include such economic indicators to allow more accurate simulation of lifetime profitability in different production scenarios. PMID:26301951
Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis
2015-01-01
Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324
Aerodynamics model for a generic ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.
1995-01-01
This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.
Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks
NASA Astrophysics Data System (ADS)
Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko
2016-07-01
Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
Mezzadra, Riccardo; Hollenstein, Andreas; Gomez-Eerland, Raquel; Schumacher, Ton N
2016-01-01
Recent years have seen major breakthroughs in genome-engineering systems, such as transposon-mediated gene delivery systems and CRISPR-Cas9-mediated genome-editing tools. In these systems, transient expression of auxiliary genes is responsible for permanent genomic modification. For both systems, it would be valuable to select for cells that are likely to undergo stable genome modification. Importantly, in particular for clinical applications of genome-engineered cell products, it will also be of importance to remove those cells that, due to random vector integration, display an unwanted stable expression of the auxiliary gene. Here, we develop a traceless selection system that on the one hand allows efficient enrichment of modified cells, and on the other hand can be used to select against cells that retain expression of the auxiliary gene. The value of this system to produce highly enriched-auxiliary gene-free cell products is demonstrated. PMID:27003756
Inner workings of aerodynamic sweep
Wadia, A.R.; Szucs, P.N.; Crall, D.W.
1998-10-01
The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfy identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.
López-Noguera, Sonia; Petri, César; Burgos, Lorenzo
2009-12-01
The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In addition, their elimination may allow gene stacking by the same selection strategy. In apricot, selection using the selectable marker gene nptII, that confers resistance to aminoglycoside antibiotics, is relatively effective. An attractive alternative is offered by the MAT system (multi-auto-transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with an MAT vector has been attempted in the apricot cultivar 'Helena'. Regeneration from infected leaves with Agrobacterium harboring a plasmid containing the ipt gene was significantly higher than that from non-transformed controls in a non-selective medium. In addition, transformation efficiencies were much higher than those previously reported using antibiotic selection, probably due to the integration of the regeneration-promoting ipt gene. However, the lack of an ipt expression-induced differential phenotype in apricot made difficult in detecting the marker genes excision and plants had to be evaluated at different times. PCR analysis showed that cassette excision start occurring after 6 months approximately and 1 year in culture was necessary for complete elimination of the cassette in all the transgenic lines. Excision was confirmed by Southern blot analysis. We report here for the first time in a temperate fruit tree that the MAT vector system improves regeneration and transformation efficiency and would allow complete elimination of marker genes from transgenic apricot plants by site-specific recombination. PMID:19820947
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Aerodynamics of Heavy Vehicles
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Lee, Jungil; Park, Hyungmin
2014-01-01
We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.
AWT aerodynamic design status. [Altitude Wind Tunnel
NASA Technical Reports Server (NTRS)
Davis, Milt W.
1984-01-01
The aerodynamic design of the NASA Altitude Wind Tunnel is presented in viewgraph format. The main topics covered are: analysis of a plenum evacuation system; airline definition and pressure loss code development; contraction geometry and code analysis; and design of the two stage fan. Flow characteristics such as pressure ratio, mach number distribution, adiabatic efficiency, and losses are shown.
Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Cruz, Juna R.; Lingard, J. Stephen
2006-01-01
In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.
A climatology of formation conditions for aerodynamic contrails
NASA Astrophysics Data System (ADS)
Gierens, K.; Dilger, F.
2013-06-01
Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Reference values and improvement of aerodynamic drag in professional cyclists.
García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo
2008-02-01
The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597
Aerodynamic Parameter Identification of a Venus Lander
NASA Astrophysics Data System (ADS)
Sykes, Robert A.
An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.
Unstructured mesh algorithms for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
Aerodynamic optimization studies on advanced architecture computers
NASA Technical Reports Server (NTRS)
Chawla, Kalpana
1995-01-01
The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.
Jiang, Yanfang; Morgan-Kiss, Rachael M.; Campbell, John W.; Chan, Chi Ho; Cronan, John E.
2010-01-01
Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously-supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function. PMID:20028080
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
Design, aerodynamics and autonomy of the DelFly.
de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W
2012-06-01
One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor. PMID:22617112
A climatology of formation conditions for aerodynamic contrails
NASA Astrophysics Data System (ADS)
Gierens, K.; Dilger, F.
2013-11-01
Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
NASA Astrophysics Data System (ADS)
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Aerodynamic heated steam generating apparatus
Kim, K.
1986-08-12
An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.
Aerodynamic seals for rotary machine
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.
Development of a database of aerodynamic information for wind turbine airfoil sections
Hoffmann, M.J.
1995-09-01
The Ohio State University Aeronautical and Astronautical Research Laboratory staff (OSU/AARL) continue to develop a database of aerodynamic information for wind turbine airfoil sections. The purpose is to provide sufficient aerodynamic information, about various and different airfoil sections, to assist airfoil and rotor designers in efforts to improve wind turbine rotor efficiencies. Steady state and pitch oscillation data are taken in the OSU/AARL 3x5 subsonic wind tunnel, with and without model leading edge grit roughness. Each airfoil model is subjected to the same test matrix thereby allowing relative comparisons. The presentation includes a brief discussion of the testing methods, typical results, how the data can be accessed and used by the wind energy community, and future plans.
Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage
NASA Technical Reports Server (NTRS)
Boyd, David D., Jr.
1999-01-01
A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
Aerodynamics of a Cryogenic Semi-Tanker
NASA Astrophysics Data System (ADS)
Ortega, Jason; Salari, Kambiz
2009-11-01
The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Integrated structural-aerodynamic design optimization
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.
1988-01-01
This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Biological and aerodynamic problems with the flight of animals
NASA Technical Reports Server (NTRS)
Holst, E. V.; Kuchemann, D.
1980-01-01
Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.
Forward flight of birds revisited. Part 1: aerodynamics and performance.
Iosilevskii, G
2014-10-01
This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548
Forward flight of birds revisited. Part 1: aerodynamics and performance
Iosilevskii, G.
2014-01-01
This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548
Caron, Marie-Christine; Caruso, Manuel . E-mail: manuel.caruso@crhdq.ulaval.ca
2005-08-01
A major limitation in gene therapy for vectors derived from Moloney murine leukemia virus (MLV) is that they only deliver genes into dividing cells. In this study, a careful comparison of spleen necrosis virus (SNV)-derived vectors with MLV and human immunodeficiency virus (HIV)-1 retroviral vectors indicated that SNV vectors can deliver genes 4-fold more efficiently than MLV vectors into aphidicolin-arrested cells, although at a 25-fold lower efficiency than HIV-1-derived vectors. Furthermore, the addition of a NLS in the SNV matrix (MA) that mimics the one located in HIV-1 MA did not increase the ability of SNV vectors to transfer genes into arrested cells. Also, we found that the RD114 envelope was able to pseudotype SNV viral particles in a very efficient manner.
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat
2015-01-01
Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970
Influence of hinge point on flexible flap aerodynamic performance
NASA Astrophysics Data System (ADS)
Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.
2013-12-01
Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.
Aerodynamic control with passively pitching wings
NASA Astrophysics Data System (ADS)
Gravish, Nick; Wood, Robert
Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.
Aerodynamic enhancement of space transportation systems
NASA Technical Reports Server (NTRS)
Walberg, G. D.
1981-01-01
The results of a number of recent investigations are reviewed and used to demonstrate gains in launch, orbital transfer, and planetary vehicle performance and economy that can result from the proper exploitation of aerodynamic phenomena. For launch vehicles, application of control-configured design is shown to allow substantial reduction in wing and vertical fin area (and hence, weight) while maintaining acceptable vehicle performance and control. For orbital transfer and planetary vehicles, the use of aerodynamic lift and drag to reduce retropropulsion requirements is shown to produce payload increases of up to 100 percent and to enable some planetary missions that are not feasible with all-propulsive vehicles. Finally, the application of various advanced technologies to a complete set of launch and orbit transfer vehicles in an early space industrialization mission scenario is considered.
Performance of an aerodynamic particle separator
Ragland, K.; Han, J.; Aerts, D.
1996-12-31
This compact, high-flow device aerodynamically separates small particles from a gas stream by a series of annular truncated airfoils. The operating concept, design and performance of this novel particle separator are described. Tests results using corn starch and post-cyclone coal fly ash are presented. Particle collection efficiencies of 90% for corn starch and 70% for coal fly ash were measured at inlet velocities of 80 ft s{sup {minus}1} (2,700 cfm) and (6 inches) water pressure drop with particle loading up to 4 gr ft{sup {minus}3} in air at standard conditions. Results from computer modeling using FLUENT are presented and compared to the tests. The aerodynamic particle separator is an attractive alternative to a cyclone collector.
Freight Wing Trailer Aerodynamics Final Technical Report
Sean Graham
2007-10-31
intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Hooks, I.; Homan, D.; Romere, P. O.
1985-01-01
The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel
2004-06-01
A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars. PMID:15359604
Aerodynamic Design Study of Advanced Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.
2002-01-01
As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD
Baltabekova, A Zh; Shagyrova, Zh S; Kamzina, A S; Voykov, M; Zhiyenbay, Ye; Ramanculov, E M; Shustov, A V
2015-08-01
Immunoglobulin E (IgE) plays a central role in type I hypersensitivity including allergy and asthma. Novel treatment strategy envisages development of a therapeutic vaccine designed to elicit autologous blocking antibodies against the IgE. We sought to develop an IgE-epitope antigen that induces antibodies against a receptor-contacting epitope on human IgE molecule. We designed the VLP immunogens which utilize hepatitis B virus core protein (HBcAg) as a carrier, and present arrays of the receptor-contacting epitopes of the human IgE on their surfaces. FG loop from the IgE domain Cε3 was engineered into the HBcAg. Two constructs explore a well-established approach of insertion into a main immunodominant region of the HBcAg. Third construct is different in that the carrier is produced in a form of an assembly of two polypeptide chains which upon expression remain associated in a stable VLP-forming subunit (SplitCore technology). No VLPs were isolated from E.coli expressing the IgE-epitope antigens with contiguous sequences. On the contrary, the SplitCore antigen carrying the FG loop efficiently formed the VLPs. Immunization of mice with the VLPs presenting receptor-contacting epitope of the IgE elicited antibodies recognizing the human IgE in ELISA. PMID:25837568
Not Available
1980-01-01
The project as originally conceived and funded envisioned a conventional full - window - length storm sash mounted in the cement block window opening. Appropriate linkage would open the storm sash. This design proved to be a safety hazard and physically undesirable. The design of the storm window sash was revised. Individual storm frames were to be mounted on each awning sash. Mechanical interferences with the storm sash occurred when a two inch air space was used. This was solved by reducing the air space to the optimum dimension of 3/4 inches. The sizes and configuration of the awning type windows were studied to aid in cost effective and efficient design of the storm frame. It was discovered that in all but the later (aluminum conserving) models, the window pane was recessed 3/4 inches. This serendipidous fact resulted in the design of a triple glazed window utilizing only one storm sash glazed on both sides. The resultant combination window and storm sash is estimated to give approximately R 3.9 to R 5.2 insulation value.
Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders
2016-05-15
Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag. PMID:26994178
Reciprocity relations in aerodynamics
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.
2013-01-01
Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Aerodynamic Design Opportunities for Future Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.
2002-01-01
A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.
Integrated aerodynamic-structural-control wing design
NASA Technical Reports Server (NTRS)
Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.
1992-01-01
The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.
Aerodynamic sampling for landmine trace detection
NASA Astrophysics Data System (ADS)
Settles, Gary S.; Kester, Douglas A.
2001-10-01
Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.
New aircraft configurations handling qualities studies based on the aerodynamic invariant concept
NASA Astrophysics Data System (ADS)
Bazile, J.
2013-12-01
This paper proposes an innovative approach to go deeper in the Handling Qualities knowledge for New Aircraft Configurations based on the Aerodynamic Invariant Concept. By manipulating the Doublet Lattice Method for aerodynamic derivatives computation, an Aerodynamic Invariant can be highlighted. It contributes to many aircraft dynamics parameters and can be considered as "key driver" of the longitudinal aircraft dynamics. The aim of this new approach is to study the impact of this aerodynamic invariant on aircraft Handling Qualities and to ask the question: "Could this aerodynamic invariant be used in parallel with Performance in the conceptual design phase to "seek" New Aircraft configurations capable of achieving further Handling Qualities improvement with Performance benefits?" The enclosed results highlight that the aerodynamic invariant could allow to improve and to optimize the aircraft Handling Qualities by relaxing the aircraft dynamics stability.
How energy efficient is your car?
NASA Astrophysics Data System (ADS)
Roura, Pere; Oliu, Daniel
2012-07-01
A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.
1984-01-01
Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
The aerodynamics of insect flight.
Sane, Sanjay P
2003-12-01
The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
Global aerial flyways allow efficient travelling.
Kranstauber, B; Weinzierl, R; Wikelski, M; Safi, K
2015-12-01
Birds migrate over vast distances at substantial costs. The highly dynamic nature of the air makes the selection of the best travel route difficult. We investigated to what extent migratory birds may optimise migratory route choice with respect to wind, and if route choice can be subject to natural selection. Following the optimal route, calculated using 21 years of empirical global wind data, reduced median travel time by 26.5% compared to the spatially shortest route. When we used a time-dependent survival model to quantify the adaptive benefit of choosing a fixed wind-optimised route, 84.8% of pairs of locations yielded a route with a higher survival than the shortest route. This suggests that birds, even if incapable of predicting wind individually, could adjust their migratory routes at a population level. As a consequence, this may result in the emergence of low-cost flyways representing a global network of aerial migratory pathways. PMID:26477348
Reduced order models for nonlinear aerodynamics
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Dowell, Earl H.; Bliss, Donald B.
1988-01-01
Reduced order models are needed for reliable, efficient and accurate prediction of aerodynamic forces to analyze fluid structure interaction problems in turbomachinery, including propfans. Here, a finite difference, time marching Navier-Stokes code is validated for unsteady airfoil motion by comparing results with those from classical potential flow. The Navier-Stokes code is then analyzed for calculation of primitive and exact estimates of eigenvalues and eigenvectors associated with fluid-airfoil interaction. A variational formulation for the Euler equations and Navier-Stokes equations will be the basis for reduction of order through an eigenvector transformation.
NASA Astrophysics Data System (ADS)
Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn
2003-11-01
A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.
Aerodynamics of badminton shuttlecocks
NASA Astrophysics Data System (ADS)
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
The aerodynamics of propellers
NASA Astrophysics Data System (ADS)
Wald, Quentin R.
2006-02-01
The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.
NASA Astrophysics Data System (ADS)
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
Unsteady aerodynamic models for agile flight at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brunton, Steven L.
computational tools are developed throughout this work. Highly unsteady maneuvers are visualized using finite-time Lyapunov exponent fields, which highlight separated flows and wake structures. A new fast method of computing these fields is presented. In addition, we generalize the immersed boundary projection method computations to use a moving base flow, which allows for the simulation of complex geometries undergoing large motions with up to an order of magnitude speed-up. The methods developed in this thesis provide a systematic approach to identify unsteady aerodynamic models from analytical, numerical, or experimental data. The resulting models are shown to be reduced-order models of the linearized Navier-Stokes equations that are expressed in state-space form, and they are, therefore, both efficient and accurate. The specific form of the model, which separates added-mass forces, quasi-steady lift, and transient forces, guarantees that the resulting models are accurate over the entire range of frequencies. Finally, the models are low-dimensional linear systems of ordinary differential equations, so that they are compatible with existing flight dynamic models as well as a wealth of modern control techniques.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
Aerodynamic preliminary analysis system 2. Part 2: User's manuals
NASA Technical Reports Server (NTRS)
Divan, P.
1981-01-01
An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Aerodynamic preliminary analysis system 2. Part 1: Theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1991-01-01
An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Configuration Aerodynamics: Past - Present - Future
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.
1999-01-01
The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.
Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications
Popovic, S.; Vuskovic, L.
2006-12-01
Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force.
An overview of NASA's role in maneuvering missile aerodynamic technology
NASA Technical Reports Server (NTRS)
Sawyer, W. C.; Jackson, C. M., Jr.
1982-01-01
This paper presents an overview of the role NASA has had and continues to pursue in providing missile aerodynamic technology. In the past, NASA has provided considerable support to the missile industry and the military. The support has generally taken the form of theoretical aerodynamic analyses, experimental studies to provide solutions for specific problems, and the documentation of existing foreign missile systems and domestic missiles. In 1975, NASA shifted its missile-related efforts in aerodynamics from this largely service role to one of conducting more basic research. The areas of research include: innovative methods for roll control of cruciform missiles, airbreathing missiles with maneuver requirements, and an advanced generation of monoplanar missiles for efficient supersonic carriage and delivery.
Grid sensitivity for aerodynamic optimization and flow analysis
NASA Technical Reports Server (NTRS)
Sadrehaghighi, I.; Tiwari, S. N.
1993-01-01
After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.
Aerodynamic performance of vertical and horizontal axis wind turbines
NASA Astrophysics Data System (ADS)
Maydew, R. C.; Klimas, P. C.
1981-06-01
The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.
Resonance versus aerodynamics for energy savings in agile natural flyers
NASA Astrophysics Data System (ADS)
Kok, Jia M.; Chahl, Javaan
2014-03-01
Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
New technology in turbine aerodynamics.
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Recent advances in computational aerodynamics
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh K.; Desse, Jerry E.
1991-04-01
The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
Effects of ice accretions on aircraft aerodynamics
NASA Astrophysics Data System (ADS)
Lynch, Frank T.; Khodadoust, Abdollah
2001-11-01
This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not
Aerodynamics Of Missiles: Present And Future
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1991-01-01
Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.
Unsteady aerodynamics modeling for flight dynamics application
NASA Astrophysics Data System (ADS)
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Langley Symposium on Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Stack, Sharon H. (Compiler)
1986-01-01
The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.
NASA Astrophysics Data System (ADS)
Osusky, Lana Maria
The increase in the availability and power of computational resources over the last fifteen years has contributed to the development of many different types of numerical optimization methods and created a large area of research focussed on numerical aerodynamic shape optimization and, more recently, high-fidelity multidisciplinary optimization. Numerical optimization provides dramatic savings when designing new aerodynamic configurations, as it allows the designer to focus more on the development of a well-posed design problem rather than on performing an exhaustive search of the design space via the traditional cut-and-try approach, which is expensive and time-consuming. It also reduces the dependence on the designer's experience and intuition, which can potentially lead to more optimal designs. Numerical optimization methods are particularly attractive when designing novel, unconventional aircraft for which the designer has no pre-existing studies or experiences from which to draw; these methods have the potential to discover new designs that might never have been arrived at without optimization. This work presents an extension of an efficient gradient-based numerical aerodynamic shape optimization algorithm to enable optimization in turbulent flow. The algorithm includes an integrated geometry parameterization and mesh movement scheme, an efficient parallel Newton-Krylov-Schur algorithm for solving the Reynolds-Averaged Navier-Stokes (RANS) equations, which are fully coupled with the one-equation Spalart-Allmaras turbulence model, and a discrete-adjoint gradient evaluation. In order to develop an efficient methodology for optimization in turbulent flows, the viscous and turbulent terms in the ii governing equations were linearized by hand. Additionally, a set of mesh refinement tools was introduced in order to obtain both an acceptable control volume mesh and a sufficiently refined computational mesh from an initial coarse mesh. A series of drag minimization
Interdisciplinary optimization combining electromagnetic and aerodynamic methods
NASA Astrophysics Data System (ADS)
Sullivan, Anders James
The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the
Sensitivity analysis in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1984-01-01
Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.
Semianalytic modeling of aerodynamic shapes
NASA Technical Reports Server (NTRS)
Barger, R. L.; Adams, M. S.
1985-01-01
Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation.
Aerodynamic laboratory at Cuatro Vientos
NASA Technical Reports Server (NTRS)
JUBERA
1922-01-01
This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.
POEMS in Newton's Aerodynamic Frustum
ERIC Educational Resources Information Center
Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita
2010-01-01
The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…
Aerodynamic design via control theory
NASA Technical Reports Server (NTRS)
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Shuttle reentry aerodynamic heating test
NASA Technical Reports Server (NTRS)
Pond, J. E.; Mccormick, P. O.; Smith, S. D.
1971-01-01
The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.
Rotary wing aerodynamically generated noise
NASA Technical Reports Server (NTRS)
Schmitz, F. J.; Morse, H. A.
1982-01-01
The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.
Nostril Aerodynamics of Scenting Animals
NASA Astrophysics Data System (ADS)
Settles, G. S.
1997-11-01
Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)
Aerodynamic Simulation of the MEXICO Rotor
NASA Astrophysics Data System (ADS)
Herraez, I.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.
2014-12-01
CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed.
Rotor/wing aerodynamic interactions in hover
NASA Technical Reports Server (NTRS)
Felker, F. F.; Light, J. S.
1986-01-01
An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.
A New Aerodynamic Data Dispersion Method for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.
2011-01-01
A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.
Exploratory Investigation of Aerodynamic Flameholders for Afterburner Application
NASA Technical Reports Server (NTRS)
Butze, Helmut F.; Metzler, Allen J.
1959-01-01
An investigation was conducted to determine the flameholding capabilities of aerodynamic jets at afterburner operating conditions. Stability data for a number of aerodynamic flameholders were obtained in a 5- by 5-inch test section at inlet-air reference velocities up to 600 feet per second, an inlet-air temperature of 1250 F, and a combustor-inlet pressure of 15 inches of mercury absolute. Combustion efficiency and stability data of the more promising combinations were then obtained in a 10- by 12-inch test section at the same test conditions. Both air and stoichiometric mixtures of fuel and air were used in the jets; mixture flow rates were approximately 1 percent by weight of the total air-flow rate. Injection pressures were limited to values that might be available from compressor-bleed air. At a reference velocity of 600 feet per second, aerodynamic flame-holders alone were unable to maintain a stable flame at injection pressures up to 70 pounds per square inches large reductions in velocity were required to achieve flame stabilization. When the aerodynamic jets were used in combination with a V-gutter flameholder with approximately a 30 percent blocked area, flame stabilization was attained at a velocity of 600 feet per second; however, the combustion efficiencies of the various combinations were no greater than that obtained with the V-gutter alone.
The aerodynamic design of the oblique flying wing supersonic transport
NASA Technical Reports Server (NTRS)
Vandervelden, Alexander J. M.; Kroo, Ilan
1990-01-01
The aerodynamic design of a supersonic oblique flying wing is strongly influenced by the requirement that passengers must be accommodated inside the wing. It was revealed that thick oblique wings of very high sweep angle can be efficient at supersonic speeds when transonic normal Mach numbers are allowed on the upper surface of the wing. The goals were motivated by the ability to design a maximum thickness, minimum size oblique flying wing. A 2-D Navier-Stokes solver was used to design airfoils up to 16 percent thickness with specified lift, drag and pitching moment. A new method was developed to calculate the required pressure distribution on the wing based on the airfoil loading, normal Mach number distribution and theoretical knowledge of the minimum drag of oblique configurations at supersonic speeds. The wing mean surface for this pressure distribution was calculated using an inverse potential flow solver. The lift to drag ratio of this wing was significantly higher than that of a comparable delta wing for cruise speeds up to Mach 2.
Aerodynamics of a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1990-01-01
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
NASA Astrophysics Data System (ADS)
Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho
2014-07-01
The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Nakade, Koji
A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.
Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses
NASA Astrophysics Data System (ADS)
Gratton, Patrice
2011-12-01
Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David
1997-01-01
An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat
Methods of reducing vehicle aerodynamic drag
Sirenko V.; Rohatgi U.
2012-07-08
A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.
Multiprocessing on supercomputers for computational aerodynamics
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Mehta, Unmeel B.
1991-01-01
Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
NASA Astrophysics Data System (ADS)
Monk, David James Winchester
Compressor design programs are becoming more reliant on computational tools to predict and optimize aerodynamic and aeromechanical behavior within a compressor. Recent trends in compressor development continue to push for more efficient, lighter weight, and higher performance machines. To meet these demands, designers must better understand the complex nature of the inherently unsteady flow physics inside of a compressor. As physical testing can be costly and time prohibitive, CFD and other computational tools have become the workhorse during design programs. The objectives of this research were to investigate the aerodynamic and aeromechanical behavior of the Purdue multistage compressor, as well as analyze novel concepts for reducing rotor resonant responses in compressors. Advanced computational tools were utilized to allow an in-depth analysis of the flow physics and structural characteristics of the Purdue compressor, and complement to existing experimental datasets. To analyze the aerodynamic behavior of the compressor a Rolls-Royce CFD code, developed specifically for multistage turbomachinery flows, was utilized. Steady-state computations were performed using the RANS solver on a single-passage mesh. Facility specific boundary conditions were applied to the model, increasing the model fidelity and overall accuracy of the predictions. Detailed investigations into the overall compressor performance, stage performance, and individual blade row performance were completed. Additionally, separation patterns on stator vanes at different loading conditions were investigated by plotting pathlines near the stator suction surfaces. Stator cavity leakage flows were determined to influence the size and extent of stator hub separations. In addition to the aerodynamic analysis, a Rolls-Royce aeroelastic CFD solver was utilized to predict the forced response behavior of Rotor 2, operating at the 1T mode crossing of the Campbell Diagram. This computational tool couples
Control of helicopter rotorblade aerodynamics
NASA Technical Reports Server (NTRS)
Fabunmi, James A.
1991-01-01
The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.
Computer Simulation of Aircraft Aerodynamics
NASA Technical Reports Server (NTRS)
Inouye, Mamoru
1989-01-01
The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.
Viking entry aerodynamics and heating
NASA Technical Reports Server (NTRS)
Polutchko, R. J.
1974-01-01
The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.
Aerodynamic instability: A case history
NASA Technical Reports Server (NTRS)
Eisenmann, R. C.
1985-01-01
The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
High-speed aerodynamics of several blunt-cone configurations
NASA Technical Reports Server (NTRS)
Intrieri, P. F.; Kirk, D. B.
1986-01-01
The experimental techniques and results from NASA Ames research into the aerodynamics of blunt shapes are described. Two facilities are used: the Hypersonic Free Flight Aerodynamic Facility (HFFAF) and the Pressurized Ballistic Range (PBR). The HFFAF features a 23 m test section through which projectiles can be fired by light-gas guns to achieve velocities up to 9 km/sec in pressures from 1 atm down to 20 microns Mg. Aerodynamic flight data are recorded with shadowgraphs. The 62 m long PBR, with 24 orthogonal spark shadowgraph stations, allows testing in up to 6 atm pressures but with only half the velocity of the HFFAF. Tests have been performed on the Galileo probe to be dropped into the Jovian atmosphere. The Galileo data for a 45 deg cone probe have been similar to Pioneer Venus probe data. Ballistic data are presently being obtained for the probe at Re below 1000, when the drag coefficients are expected to increase dramatically as the probe enters the Jovian atmosphere and begins braking from 4700 m/s speed. Sample test data from an OTV which can change orbits through aerodynamic maneuvers and for several asymmetric configurations ae also provided.
Application of Approximate Unsteady Aerodynamics for Flutter Analysis
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2010-01-01
A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.
Passive flow control by membrane wings for aerodynamic benefit
NASA Astrophysics Data System (ADS)
Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence
2013-03-01
The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Applied aerodynamics: Challenges and expectations
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Smith, Charles A.
1993-01-01
Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.
X-34 Vehicle Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.
1998-01-01
The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.
Implementation of an aerodynamic lens for TRIGA-SPEC
NASA Astrophysics Data System (ADS)
Grund, J.; Düllmann, Ch. E.; Eberhardt, K.; Nagy, Sz.; van de Laar, J. J. W.; Renisch, D.; Schneider, F.
2016-06-01
We report on the optimization of the gas-jet system employed to couple the TRIGA-SPEC experiment to the research reactor TRIGA Mainz. CdI2 aerosol particles suspended in N2 as carrier gas are used for an effective transport of fission products from neutron induced 235 U fission from the target chamber to a surface ion source. Operating conditions of the gas-jet were modified to enable the implementation of an aerodynamic lens, fitting into the limited space available in front of the ion source. The lens boosts the gas-jet efficiency by a factor of 4-10. The characterization of the gas-jet system as well as the design of the aerodynamic lens and efficiency studies are presented and discussed.
Experimental quiet engine program aerodynamic performance of Fan C
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Parker, D. E.; Dunbar, L. W.
1972-01-01
This report presents the aerodynamic component test results of Fan C, a high-bypass-ratio, low-aerodynamic-loading, 1550 feet per second (472.4 m/sec), single-stage fan, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.60 with an adiabatic efficiency of 84.2 percent at a total fan flow of 915 lb/sec (415.0 kg/sec). It was tested with and without inlet distortion. A bypass total-pressure ratio of 1.61 and an adiabatic efficiency of 83.9 percent at a total fan flow of 921 lb/sec (417.8 kg/sec) were actually achieved. An operating margin in excess of 14.6 percent was demonstrated at design speed.
NASA Astrophysics Data System (ADS)
Maksimov, F. A.; Churakov, D. A.; Shevelev, Yu. D.
2011-02-01
Complex-geometry design and grid generation are addressed. The gasdynamic equations are solved, and the numerical results are compared with experimental data. For aerodynamic problems, a suite of mathematical and information technology tools is proposed for the support and management of geometric models of actual objects. Based on the mathematical modeling methods developed, numerical experiments can be performed for a wide class of geometric forms and the aerodynamic properties of aircraft can be predicted with allowance for the viscosity effects.
Summary of NASA aerodynamic and heat transfer studies in turbine vanes and blades
NASA Technical Reports Server (NTRS)
Moffitt, T. P.; Stepka, F. S.; Rohlik, H. E.
1976-01-01
Aerodynamic effects of trailing edge geometry, hole size, angle, spacing, and shape were studied in two- and three-dimensional cascades and in a warm turbine test series. Heat transfer studies were carried out in various two- and three-dimensional test facilities in order to provide corresponding heat transfer data. Results are shown in terms of cooling effectiveness and aerodynamic efficiency for various coolant fractions, coolant-primary temperature ratios, and cooling configurations.
Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama
2001-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.
The role of unsteady aerodynamics in aeroacoustics
NASA Technical Reports Server (NTRS)
Pao, S. Paul
1988-01-01
The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.
HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)
The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...
Computational aerodynamics applications to transport aircraft design
NASA Technical Reports Server (NTRS)
Henne, P. A.
1983-01-01
Examples are cited in assessing the effect that computational aerodynamics has had on the design of transport aircraft. The application of computational potential flow methods to wing design and to high-lift system design is discussed. The benefits offered by computational aerodynamics in reducing design cost, time, and risk are shown to be substantial.These aerodynamic methods have proved to be particularly effective in exposing inferior or poor aerodynamic designs. Particular attention is given to wing design, where the results have been dramatic.
Numerical investigation of wind turbine and wind farm aerodynamics
NASA Astrophysics Data System (ADS)
Selvaraj, Suganthi
A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also
Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test
NASA Technical Reports Server (NTRS)
Broeren, Andy; Riley, Jim
2012-01-01
In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.
Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Riley, James T.
2012-01-01
In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.
Progress in computational unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1993-01-01
After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.
Simulation of iced wing aerodynamics
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.
1991-01-01
The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.
The basic aerodynamics of floatation
Davies, M.J.; Wood, D.H.
1983-09-01
The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.
Aerodynamics. [Numerical simulation using supercomputers
Graves, R.A. Jr.
1988-01-01
A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO/sub 2/.
Aerodynamic applications of infrared thermography
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Alderfer, David W.
1989-01-01
A series of wind tunnel experiments were conducted as part of a systematic study for evaluation of infrared thermography as a viable non-intrusive thermal measurement technique for aerodynamic applications. The experiments consisted of obtaining steady-state surface temperature and convective heat transfer rates for a uniformly heated cylinder in transverse flow with a Reynolds number range of 46,000 to 250,000. The calculated convective heat transfer rates were in general agreement with classical data. Furthermore, IR thermography provided valuable real-time fluid dynamic information such as visualization of flow separation, transition and vortices.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav
2003-01-01
A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.
Experimental evaluation of a flapping-wing aerodynamic model for MAV applications
NASA Astrophysics Data System (ADS)
Lee, Jun-Seong; Kim, Dae-Kwan; Lee, Jin-Young; Han, Jae-Hung
2008-03-01
In the preliminary design phase of the bio-inspired flapping-wing MAV (micro air vehicle), it is necessary to predict the aerodynamic forces around the flapping-wing under flapping-wing motion at cruising flight. In this study, the efficient quasi-steady flapping-wing aerodynamic model for MAV application is explained and it is experimentally verified. The flapping-wing motion is decoupled to the plunging and pitching motion, and the plunging-pitching motion generator with load cell assembly is developed. The compensation of inertial forces from the measured lift and thrust is studied to measure the pure aerodynamic loads on the flapping-wing. Advanced ratio is introduced to evaluate the unsteadiness of the flow and to make an application range of flapping-wing aerodynamic model.
The aerodynamic analysis of the gyroplane rotating-wing system
NASA Technical Reports Server (NTRS)
Wheatley, John B
1934-01-01
An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.
Aerodynamic characteristics of missile configurations based on Soviet design concepts
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
Formulation for Simultaneous Aerodynamic Analysis and Design Optimization
NASA Technical Reports Server (NTRS)
Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.
1993-01-01
An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.
Aerodynamic Shape Optimization Based on Free-form Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2004-01-01
This paper presents a free-form deformation technique suitable for aerodynamic shape optimization. Because the proposed technique is independent of grid topology, we can treat structured and unstructured computational fluid dynamics grids in the same manner. The proposed technique is an alternative shape parameterization technique to a trivariate volume technique. It retains the flexibility and freedom of trivariate volumes for CFD shape optimization, but it uses a bivariate surface representation. This reduces the number of design variables by an order of magnitude, and it provides much better control for surface shape changes. The proposed technique is simple, compact, and efficient. The analytical sensitivity derivatives are independent of the design variables and are easily computed for use in a gradient-based optimization. The paper includes the complete formulation and aerodynamics shape optimization results.
Numerical investigations on the aerodynamics of SHEFEX-III launcher
NASA Astrophysics Data System (ADS)
Li, Yi; Reimann, Bodo; Eggers, Thino
2014-04-01
The present work is a numerical study of the aerodynamic problems related to the hot stage separation of a multistage rocket. The adapter between the first and the second stage of the rocket uses a lattice structure to vent the plume from the 2nd-stage-motor during the staging. The lattice structure acts as an axisymmetric cavity on the rocket and can affect the flight performance. To quantify the effects, the DLR CFD code, TAU, is applied to study the aerodynamic characteristics of the rocket. The CFD code is also used to simulate the start-up transients of the 2nd-stage-motor. Different plume deflectors are also investigated with the CFD techniques. For the CFD computation in this work, a 2-species-calorically-perfect-gas-model without chemical reactions is selected for modeling the rocket plume, which is a compromise between the demands of accuracy and efficiency.
Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Orion Crew Module Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.
2011-01-01
The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
Aerodynamic Characteristics of Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Hull, G F; Dryden, H L
1925-01-01
This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-01-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
The aerodynamics of small Reynolds numbers
NASA Technical Reports Server (NTRS)
Schmitz, F. W.
1980-01-01
Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.
Future Computer Requirements for Computational Aerodynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.