These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Rotary wing aerodynamically generated noise  

NASA Technical Reports Server (NTRS)

The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

Schmitz, F. J.; Morse, H. A.

1982-01-01

2

Comparison of Aerodynamic Noise Propagation Markus P. Rumpfkeil  

E-print Network

signatures. cylinder,14 and for a slat trailing-edge fComparison of Aerodynamic Noise Propagation Techniques Markus P. Rumpfkeil University of Dayton the computation of aerodynamic noise via different hybrid noise prediction methods is presented. An unsteady

Rumpfkeil, Markus Peer

3

Non-propulsive aerodynamic noise  

NASA Astrophysics Data System (ADS)

In the first part of the paper, the contribution of airframe noise to total aircraft noise on approach is assessed for a large current technology transport and for the same airframe powered with bypass ratio 10 engines with an additional 5 dB noise suppression applied to the fan and turbine noise sources. The airframe noise of the envisioned advanced subsonic transport is 2 EPNdB less than the largest contributor to the total aircraft noise, the fan inlet. The noise impact of the airframe noise, as measured by noise contour area, is 1/4 that of fan noise. Further fan noise reduction efforts should not view airframe noise as an absolute noise floor. In the second part of the paper, the results from one recent cavity noise wind tunnel experiment is reported. A cavity of dimensions 11.25 in. (28.58 cm) long, 2.5 in. (6.35 cm) wide, and variable depth was tested in the Mach number range of .20 through .90. Reynolds number varied from 5 to 100 million per foot (16 to 328 million per meter). The 1/d ratio was varied from 4.4 to 20.0. The model was tested at yaw angles from 0 to 15 degrees. In general, the deeper the cavity, the greater the amplitude of the acoustic tones. Reynolds number appeared to have little effect on acoustic tone amplitudes. Tone amplitude and bandwidth changed with Mach number. The effect of yaw on acoustic tones varied with Reynolds number, Mach number, 1/h, and mode number. At Mach number 0.90, increased yaw shifted the tone frequencies of the higher modal frequencies to lower frequencies. As cavity depth decreased, the effect of yaw decreased.

Willshire, William L., Jr.; Tracy, Maureen B.

1992-04-01

4

Remarks on the theory of aerodynamic noise  

NASA Technical Reports Server (NTRS)

The accuracy of approximations employed in the Lighthill theory in current aerodynamic noise research is critically evaluated. Based on the method of matched asymptotic expansions, the full Navier-Stokes equations are expanded for small Mach numbers. To the first order, the near-field is generally nonisentropic. The pressure field (pseudo-sound) is generated by the incompressible Reynolds stresses in the turbulent flow and the velocity, pressure perturbation, and their derivatives on the boundaries. In the far-field, the first-order pressure (acoustic) field satisfying a linear wave equation is obtained by matching with the pseudo-sound field. A uniformly valid solution for the pressure field in a stationary or uniformly moving medium is obtained. The solution shows that the generation of the first-order aerodynamic noise does not depend on the viscous, thermal, or entropy effects in the adiabatic flow nor on the shear stress on a smooth rigid boundary.

Pan, Y. S.

1975-01-01

5

Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise  

NASA Technical Reports Server (NTRS)

The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

Zorumski, W. E. (editor); Weir, D. S. (editor)

1986-01-01

6

Non-engine aerodynamic noise investigation of a large aircraft  

NASA Technical Reports Server (NTRS)

A series of flyover noise measurements have been accomplished utilizing a large jet transport aircraft with engine power reduced to flight idle. It was determined that the aerodynamic (nonengine) noise levels did occur in the general range that had been predicted by using small aircraft (up to 17,690 kg gross weight) prediction techniques. The test procedures used are presented along with discussions of the effects of aerodynamic configuration on the radiated noise, identification of noise sources, and predicted aerodynamic noise as compared with measurements.

Gibson, J. S.

1974-01-01

7

Efficient Low Noise Fan Overview and Preliminary Aerodynamic Design  

NASA Technical Reports Server (NTRS)

With support from the Ultra-Efficient En,aine Technology (UEET) and Quiet Aircraft Technology (QAT) programs, an efficient low noise fan will be designed and tested to investigate aerodynamic and acoustic performance effects using trailing edge blowing (TEB). The fan uses TEB to fill the momentum deficit behind the fan rotor. This presentation will include an overview of the plan to design, build, and test the f a n in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel. In addition, the preliminary aerodynamic design will be presented.

2001-01-01

8

Advanced Noise Control Fan Aerodynamic Performance  

NASA Technical Reports Server (NTRS)

The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

Bozak, Richard F., Jr.

2009-01-01

9

Experimental investigation of the aerodynamic noise radiated by a three-dimensional bluff body  

E-print Network

Experimental investigation of the aerodynamic noise radiated by a three-dimensional bluff body J.fischer@univ-poitiers.fr Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 2335 #12;Aerodynamic. The present work is an experimental study of the aerodynamic noise radiated by a three-dimensional simplified

Paris-Sud XI, Université de

10

Experimental Characterization of Wind Turbine Blade Aerodynamic Noise  

NASA Astrophysics Data System (ADS)

Wind turbine noise at low frequencies less than 300Hz is not only annoying to humans but has been proven to cause serious health issues. Additionally, animals are severely affected by wind turbines because a small increase in ambient noise (as is produced by wind turbines) significantly reduces their listening ability. In an attempt to better understand and characterize the aerodynamic noise of wind turbine blades, experimental testing was completed on PowerWorks 100kW and GudCraft WG700 blade specimens in the University of California, Davis Transportation Noise Control Center's anechoic chamber. Experimental testing and data analysis proved approximately 4.0dB to 6.0dB was produced due to the blades' geometric design for both blade specimens at low frequencies. This noise was maximized at the blades' leading edge along the central portion of the blades' radius. Theoretical prediction models have been used to determine that, for typical wind speeds and low frequencies, noise generated due to the tip passing frequency is clearly predominant.

Ingemanson, Megan Lynn

11

Measurements of aerodynamic noise and wake flow field in a cooling fan with winglets  

Microsoft Academic Search

The aerodynamic noise and the wake flow field in a cooling fan under actual operating conditions are studied with and without\\u000a winglets on the fan blades. In order to understand the influence of the winglet, the aerodynamic noise and the wake velocity\\u000a distribution are measured. The results indicated that overall noise level decreased and the noise spectrum was changed in

A. Nashimoto; N. Fujisawa; T. Akuto; Y. Nagase

2004-01-01

12

Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan  

NASA Technical Reports Server (NTRS)

One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

Fite, E. Brian

2006-01-01

13

High speed PIV applied to aerodynamic noise investigation  

NASA Astrophysics Data System (ADS)

In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic noise production. This will help considerably in understanding the noise production mechanisms and to investigate the possible ways of reducing it. In this study, we consider an open cavity with an aspect ratio between its length and depth of 2 at a Reynolds number of 2.4 × 104 and 3.0 × 104 based on the cavity length. The study is carried out combining high speed two-dimensional PIV, wall pressure measurements and sound measurements. The pressure field is computed from the PIV data. Curle's analogy is applied to obtain the acoustic pressure field. The pressure measurements on the wall of the cavity and the sound measurements are then used to validate the results obtained from PIV and check the range of validity of this approach. This study demonstrated that the technique is able to quantify the acoustic emissions from the cavity and is promising especially for capturing the tonal components on the sound emission.

Koschatzky, V.; Moore, P. D.; Westerweel, J.; Scarano, F.; Boersma, B. J.

2011-04-01

14

Effects of Nozzle Geometry and Intermittent Injection of Aerodynamic Tab on Supersonic Jet Noise  

Microsoft Academic Search

Effects of the nozzle geometry and intermittent injection of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is planned. A 1\\/100-scaled model of the rectangular plug nozzle is manufactured, and the noise reduction performance of aerodynamic tabs, which is small

Mikiya Araki; Takayuki Sano; Masayuki Fukuda; Takayuki Kojima; Hideyuki Taguchi; Seiichi Shiga; Tomio Obokata

2008-01-01

15

Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results  

NASA Technical Reports Server (NTRS)

The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

2005-01-01

16

Aerodynamics of Fan Flow Deflectors for Jet Noise Suppression Dimitri Papamoschou  

E-print Network

= exit LE = vane leading edge MID = vane midchord TE = vane trailing edge I. Introduction THE increaseAerodynamics of Fan Flow Deflectors for Jet Noise Suppression Dimitri Papamoschou and Feng Liu vanes used for noise suppression in separate-flow turbofan engines. The vanes are installed

Papamoschou, Dimitri

17

Numerical modeling of wind turbine aerodynamic noise in the time domain.  

PubMed

Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine. PMID:23363200

Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

2013-02-01

18

Numerical computation of aerodynamic noise radiation by the large eddy simulation  

NASA Astrophysics Data System (ADS)

Aerodynamic sound radiated from the low Mach number turbulent wake of a circular cylinder was computed using the large eddy simulation technique and compared with the measured data obtained in a low noise wind tunnel. In this study, a new upwinding FEM has been proposed and used for the simulation to obtain the unsteady flow field around the circular cylinder. The sound pressure was computed based on the Lighthill-Curle equation using the fluctuating surface pressure obtained from the large eddy simulation. The computed sound pressure spectrum shows reasonable agreement with the measured data. The present approach, thus, seems quite promising for predictions of aerodynamic noise radiated in complicated turbulent flow fields.

Kato, Chisachi; Takano, Yasushi; Iida, Akiyishi; Ikegawa, Masahiro

19

Effects of Nozzle Geometry and Intermittent Injection of Aerodynamic Tab on Supersonic Jet Noise  

NASA Astrophysics Data System (ADS)

Effects of the nozzle geometry and intermittent injection of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is planned. A 1/100-scaled model of the rectangular plug nozzle is manufactured, and the noise reduction performance of aerodynamic tabs, which is small air jet injection from the nozzle wall, was investigated. Compressed air is injected through the rectangular plug nozzle into the atmosphere at the nozzle pressure ratio of 2.7, which corresponds to the take-off condition of the vehicle. Aerodynamic tabs were installed at the sidewall ends, and 4 kinds of round nozzles and 2 kinds of wedge nozzles were applied. Using a high-frequency solenoid valve, intermittent gas injection is also applied. It is shown that, by use of wedge nozzles, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL (Overall sound pressure level), decreases by 29% when compared with round nozzles. It is also shown that, by use of intermittent injection, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL, decreases by about 40% when compared with steady injection. By combination of wedge nozzles and intermittent injection, the aerodynamic tab mass flow rate significantly decreases by 57% when compared with the conventional strategy.

Araki, Mikiya; Sano, Takayuki; Fukuda, Masayuki; Kojima, Takayuki; Taguchi, Hideyuki; Shiga, Seiichi; Obokata, Tomio

20

Diagnostic techniques for measurement of aerodynamic noise in free field and reverberant environment of wind tunnels  

NASA Technical Reports Server (NTRS)

Techniques for studying aerodynamic noise generating mechanisms without disturbing the flow in a free field, and in the reverberation environment of the ARC wind tunnel were investigated along with the design and testing of an acoustic antenna with an electronic steering control. The acoustic characteristics of turbojet as a noise source, detection of direct sound from a source in a reverberant background, optical diagnostic methods, and the design characteristics of a high directivity acoustic antenna. Recommendations for further studies are included.

El-Sum, H. M. A.; Mawardi, O. K.

1973-01-01

21

AERODYNAMIC NOISE GENERATION BY A STATIONARY BODY IN A TURBULENT AIR STREAM  

Microsoft Academic Search

When a vortex street formed at the trailing edge of an upstream plate is arranged to impinge upon the leading edge of a small downstream block of similar thickness, a very powerful aerodynamic noise source of tonal quality is formed. Such an arrangement in which the down stream block is suspended on taut wires has been used to investigate Curle's

D. A. Bies; J. M. Pickles; D. J. J. Leclercq

1997-01-01

22

Influence of separated vortex on aerodynamic noise of an airfoil blade  

NASA Astrophysics Data System (ADS)

In order to clarify the mechanism by which aerodynamic noise is generated from separated flow around an airfoil blade, the relation between the attack angle and the aerodynamic noise of the blade was analyzed using a wind tunnel experiment and a CFD code. In the case of rear surface separation, the separated vortex which has a large-scale structure in the direction of the blade chord is transformed into a structure that concentrates at the trailing edge with an increase in the attack angle. The aerodynamic noise level then becomes small according to the vortex scale in the blade chord. When the flow is separated at the leading edge, a separated vortex of low pressure is formed at the vicinity of the trailing edge. The pressure fluctuations on the blade surface at the vicinity of the trailing edge become large due to the vortex in the wake. It is considered that the aerodynamic noise level increases when the flow is separated at the leading edge because the separated vortex is causing the fluctuations due to wake vortex shedding.

Sasaki, Soichi; Takamatsu, Hajime; Tsujino, Masao; Tsubota, Haruhiro; Hayashi, Hidechito

2010-02-01

23

Radiation from a double layer jet. [aerodynamic noise  

NASA Technical Reports Server (NTRS)

The aerodynamic radiation caused by two acoustic point sources located symmetrically on the sides of a double layer jet which produces a velocity discontinuity was examined, with attention given to the effect on the sound by the stream. Basic equations were defined in terms of wave propagation in the fluid in motion and a Fourier transformation. It was found that the radiation due to a point source on one side of the jet is enhanced by the presence of sound transmitted from the other side. The effect is expressed as a function of the reflection coefficient, wherein the reflections take place at the vortex interfaces separating the fluid in motion from the fluid at rest. The intensity patterns were determined to be kidney-shaped, lung-shaped, and heart-shaped, and characterized by a deep valley in the directivity pattern. The significance of the findings for STOL aircraft ejector thrust augmentation is mentioned.

Dash, R.

1983-01-01

24

Effects of Aerodynamic Tabs onExhaust Noise from a Rectangular Plug Nozzle  

NASA Astrophysics Data System (ADS)

Effects of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Explanation Agency), a pre-cooled turbojet engine for the 1st stage propulsion of a TSTO (Two stage to orbit) is planned. In the present study, a 1/100-scaled model of the rectangular plug nozzle for the pre-cooled turbojet engine is manufactured and the exhaust noise characteristics were investigated. Compressed air is injected through the rectangular plug nozzle into the atmosphere. The nozzle pressure ratio was set at 2.7, which corresponds to the take-off condition of the vehicle. Aerodynamic tabs were installed at the ramp end (Upper AT), the cowl end (Lower AT) and the sidewall end (Side AT). The SPL (Sound pressure level) was measured with a high-frequency microphone. Without AT, the sound spectrum has a broadband peak at which the SPL is around 105dB. For Lower and Side ATs, the OASPL (Overall SPL) of the exhaust noise decreases, especially around ramp end. At the maximum, the OASPL was reduced by 2.4dB with about 2% loss of the main jet total pressure at the cowl exit. It is shown that the aerodynamic tabs are effective in noise reduction in a rectangular plug nozzle.

Araki, Mikiya; Sano, Takayuki; Kojima, Takayuki; Taguchi, Hideyuki; Shiga, Seiichi; Obokata, Tomio

25

AERODYNAMIC NOISE CONTROL BY OPTIMAL SHAPE A DISSERTATION  

E-print Network

shapes have been identified, resulting in significant reduction of trailing- edge noise in both laminar has been developed to optimize the shape of a hydrofoil trailing-edge for minimization it more suitable for the trailing-edge problem, particularly for constrained optimiza- tion. Optimization

Marsden, Alison L.

26

Estimation of aerodynamic noise generated by forced compressible round jets  

NASA Astrophysics Data System (ADS)

An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×10, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×10) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).

Maidi, Mohamed

2006-05-01

27

Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts  

NASA Technical Reports Server (NTRS)

Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

2014-01-01

28

Follow-on Low Noise Fan Aerodynamic Study  

NASA Technical Reports Server (NTRS)

The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

1999-01-01

29

Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance  

NASA Technical Reports Server (NTRS)

An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper implementation of injecting flow at/near the trailing edge as a wake filling strategy. However, data do support the notion that noise reductions can be realized not only for tones but perhaps more importantly, also for broadband. Furthermore, the technique can be implemented without adversely effecting overall fan aerodynamic performance.

Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

2006-01-01

30

Study of aerodynamic noise in low supersonic operation of an axial flow compressor  

NASA Technical Reports Server (NTRS)

A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.

Arnoldi, R. A.

1972-01-01

31

Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis  

NASA Technical Reports Server (NTRS)

A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

2002-01-01

32

Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise  

NASA Technical Reports Server (NTRS)

A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

Hanson, D. B.

1991-01-01

33

Interaction of aerodynamic noise with laminar boundary layers in supersonic wind tunnels  

NASA Technical Reports Server (NTRS)

The interaction between incoming aerodynamic noise and the supersonic laminar boundary layer is studied. The noise field is modeled as a Mach wave radiation field consisting of discrete waves emanating from coherent turbulent entities moving downstream within the supersonic turbulent boundary layer. The individual disturbances are likened to miniature sonic booms and the laminar boundary layer is staffed by the waves as the sources move downstream. The mean, autocorrelation, and power spectral density of the field are expressed in terms of the wave shapes and their average arrival rates. Some consideration is given to the possible appreciable thickness of the weak shock fronts. The emphasis in the interaction analysis is on the behavior of the shocklets in the noise field. The shocklets are shown to be focused by the laminar boundary layer in its outer region. Borrowing wave propagation terminology, this region is termed the caustic region. Using scaling laws from sonic boom work, focus factors at the caustic are estimated to vary from 2 to 6 for incoming shocklet strengths of 1 to .01 percent of the free stream pressure level. The situation regarding experimental evidence of the caustic region is reviewed.

Schopper, M. R.

1984-01-01

34

Analysis of aerodynamic field and noise of a small wind turbine  

NASA Astrophysics Data System (ADS)

The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential) velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

Niculescu, Mihai Leonida; Cojocaru, Marius Gabriel; Pricop, Mihai Victor

2012-11-01

35

Aerodynamic Noise Generation by a Stationary Body in a Turbulent Air Stream  

NASA Astrophysics Data System (ADS)

When a vortex street formed at the trailing edge of an upstream plate is arranged to impinge upon the leading edge of a small downstream block of similar thickness, a very powerful aerodynamic noise source of tonal quality is formed. Such an arrangement in which the down stream block is suspended on taut wires has been used to investigate Curle's prediction of the relation between the fluctuating lift force exerted by the block on the stream and the radiated sound power in the frequency domain for flow speeds ranging from 70 m/s to 190 m/s. The possible effect of additional stiff constraint to the motion of the clock in the direction of the fluctuating lift force on the radiated noise has also been investigated. The apparent effect of the additional constraint was to increase the magnitude of the fluctuating force on the radiating block but in either the case of constrained or unconstrained block the measured sound power data tends to agree with Curle's prediction at flow speeds above 140 m/s but gradually to diverge upward at lower flow speeds toward a prediction based upon a small vibrating sphere. In all cases the measured sound power levels tend to be bounded by Curle's prediction below and 9·5 dB above by a prediction based upon a small vibrating sphere.

Bies, D. A.; Pickles, J. M.; Leclercq, D. J. J.

1997-07-01

36

Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake  

NASA Astrophysics Data System (ADS)

Aerodynamic noise radiated from low Mach number turbulent wake of a circular cylinder has been numerically predicted by the following two-step approach. First, the three-dimensional unsteady incompressible Navier-Stokes equations are solved by the large eddy-simulation (LES) technique using a newly proposed streamline upwind finite element method. The far field sound pressure is then calculated from the fluctuating surface pressure on the cylinder, based on the Lighthill-Curle's equation. A sophisticated method has been proposed for computing sound pressure level (SPL) radiated from the whole span of the cylinder using the surface pressure fluctuation obtained in a small spanwise computational domain. The method takes the effects of the random phase shift of the surface pressure fluctuation into account. The predicted SPL is compared with the measured value. A fairly good agreement has been achieved between the predicted and measured SPL's for the peak spectrum intensity and the frequency dependency of the SPL up to about ten times higher than the peak frequency.

Kato, Chisachi; Iida, Akiyoshi; Takano, Yasushi; Fujita, Hajime; Ikegawa, Masahiro

1993-01-01

37

Single stage, low noise, advanced technology fan. Volume 1: Aerodynamic design  

NASA Technical Reports Server (NTRS)

The aerodynamic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11,650 ft/sec). The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (44.0 lb m/sec sq ft) with a hub-tip ratio of 0.38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 117.9 kg/sec (259.9 lb m/sec) for the selected rotor tip diameter if 90.37 cm (35.58 in.). The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet). A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment; length, thickness and position on a duct splitter for additional suppressor treatment; and duct surface Mach numbers.

Sullivan, T. J.; Younghans, J. L.; Little, D. R.

1976-01-01

38

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding  

NASA Technical Reports Server (NTRS)

Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined.

Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.

1991-01-01

39

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding  

NASA Astrophysics Data System (ADS)

Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined.

Hanson, D. B.; McColgan, C. J.; Ladden, R. M.; Klatte, R. J.

1991-05-01

40

Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport  

NASA Technical Reports Server (NTRS)

As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

1999-01-01

41

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory for wing shielding  

NASA Technical Reports Server (NTRS)

A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.

Amiet, R. K.

1991-01-01

42

Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design  

NASA Technical Reports Server (NTRS)

A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

1974-01-01

43

Aerodynamic performance investigation of advanced mechanical suppressor and ejector nozzle concepts for jet noise reduction  

NASA Technical Reports Server (NTRS)

Advanced Supersonic Transport jet noise may be reduced to Federal Air Regulation limits if recommended refinements to a recently developed ejector shroud exhaust system are successfully carried out. A two-part program consisting of a design study and a subscale model wind tunnel test effort conducted to define an acoustically treated ejector shroud exhaust system for supersonic transport application is described. Coannular, 20-chute, and ejector shroud exhaust systems were evaluated. Program results were used in a mission analysis study to determine aircraft takeoff gross weight to perform a nominal design mission, under Federal Aviation Regulation (1969), Part 36, Stage 3 noise constraints. Mission trade study results confirmed that the ejector shroud was the best of the three exhaust systems studied with a significant takeoff gross weight advantage over the 20-chute suppressor nozzle which was the second best.

Wagenknecht, C. D.; Bediako, E. D.

1985-01-01

44

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code  

NASA Technical Reports Server (NTRS)

The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.

Menthe, R. W.; Mccolgan, C. J.; Ladden, R. M.

1991-01-01

45

On the precise implications of acoustic analogies for aerodynamic noise at low Mach numbers  

NASA Astrophysics Data System (ADS)

We seek a clear statement of the scaling which may be expected with rigour for transportation or other noise at low Mach numbers M, based on Lighthill's and Curle's theories of 1952 and 1955. In the presence of compact solid bodies, the leading term in the acoustic intensity is of order M6. Contrary to the belief held since that time that it is of order M8, the contribution of quadrupoles, in the presence of dipoles, is of order only M7. Retarded-time-difference effects are also of order M7. Curle's widely used approximation based on unsteady forces neglects both effects. Its order of accuracy is thus lower than was thought, and the common estimates of the value of M below which it applies appear precarious. The M6 leading term is modified by powers up to the fourth of (1-Mr), where Mr is the relative Mach number between source and observer; at speeds of interest the effect is several dB. However, this is only one of the corrections of order M7, which makes its value debatable. The same applies to the difference between emission distance and reception distance. The scaling with M6 is theoretically correct to leading order, but this prediction may be so convincing, like the M8 scaling for jet noise, that some authors rush to confirm it when their measurements are in conflict with it. We survey experimental studies of landing-gear noise, and argue that the observed power of M is often well below 6. We also object to comparisons across Mach numbers at fixed frequency; they should be made at fixed Strouhal number St instead. Finally, the compact-source argument does not only require M?1; it requires MSt?1. This is more restrictive if the relevant St is well above 1, a situation which can be caused by interference with a boundary or by wake impingement, among other effects. The best length scales to define St for this purpose are discussed.

Spalart, Philippe R.

2013-05-01

46

Two-stage, low noise advanced technology fan. 4: Aerodynamic final report  

NASA Technical Reports Server (NTRS)

A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.

Harley, K. G.; Keenan, M. J.

1975-01-01

47

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer  

NASA Technical Reports Server (NTRS)

An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.

Magliozzi, B.; Hanson, D. B.

1991-01-01

48

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer  

NASA Astrophysics Data System (ADS)

An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.

Magliozzi, B.; Hanson, D. B.

1991-05-01

49

An experimental investigation of Curle's theory of aerodynamic noise generation by a stationary body in a turbulent air stream  

NASA Astrophysics Data System (ADS)

Bies et al. (J. Sound Vib. 204(4) (1997) 631) investigated Curle's theory (Proc. R. Soc. Ser. A 231 (1955) 505) published in 1955 over a wide range of flow speeds from about 50-200 m/s and found only partial agreement with the experimental data. Here the experimental investigation has been repeated allowing the data to be recorded in a format amenable to analysis, which was not previously possible. Reintroduction of a term neglected by Curle has been found necessary as Curle's compact source condition ensures so low a radiation impedance that the effect cannot be detected in the jet background noise. The reintroduction of the term, which has been neglected, allows his analysis to include radiation from sources not compact but less than half a wavelength in characteristic dimension. It is shown that the power ratio defined as the measured sound power divided by Curle's amended prediction converges to about 3 whereas Curle predicts that the power ratio should converge to 1 as the wave number converges to zero. The introduction of the empirically determined constant 3 into Curle's prediction brings the measurements into very good agreement with prediction over the entire range of the non-dimensional wave numbers from about 0.4 to 3.2.

Bies, David Alan

2004-12-01

50

Aerodynamic performance of 0.5 meter-diameter, 337 meter-per-second tip speed, 1.5 pressure-ratio, single-stage fan designed for low noise aircraft engines  

NASA Technical Reports Server (NTRS)

Overall and blade-element aerodynamic performance of a 0.271-scale model of QF-1 are presented, examined, and then compared and evaluated with that from similar low noise fan stage designs. The tests cover a wide range of speeds and weight flows along with variations in stator setting angle and stator axial spacing from the rotor. At design speed with stator at design setting angle and a fixed distance between stage measuring stations, there were no significant effects of increasing the axial spacing between rotor stator from 1.0 to 3.5 rotor chords on stage overall pressure ratio, efficiency or stall margin.

Gelder, T. F.; Lewis, G. W., Jr.

1974-01-01

51

insect Aerodynamics  

NSDL National Science Digital Library

This web page describes current research about insect flight dynamics. It focuses on the work of biologist R. McNeill Alexander of the University of Leeds, whose research team has built large-scale models of insects to test their flight aerodynamics in wind tunnels. At the bottom of the page is a small (160 x 120) QuickTime video of a Morpho butterfly (Order Lepidoptera, Family Nymphalidae) with detailed views of its wing scales. It is an excerpt from the Alien Empire miniseries of the Public Broadcasting Service's Nature series. The video requires QuickTime and may not be accessible to those with older or slow computers. The link to the "enhanced multimedia video clip" did not work at the time of this review.

0000-00-00

52

Aerodynamic Characteristics, Temperature, and Noise Measurements of a Large-Scale External-Flow Jet-Augmented-Flap Model with Turbojet Engines Operating  

NASA Technical Reports Server (NTRS)

An investigation has been conducted in the Langley full-scale tunnel on a large-scale model powered by turbojet engines with flattened rectangular nozzles. The wing had 35 deg. sweep of the leading edge, an aspect ratio of 6.5, a taper ratio of 0.31, and NACA 65(1)-412 and 65-408 airfoils at the root and tip. The investigation included measurements of the longitudinal aerodynamic characteristics of the model with half-span and full-span flaps and measurements of the sound pressure and skin temperature on the portions of the lower surface of the wing immersed in the jet flow. The tests were conducted over a range or angles of attack from -8 to 16 deg. for Reynolds numbers from 1.8 x 10(exp 6) to 4.4 x 10(exp 6) and a range of momentum coefficients from 0 to 2.0. In general, the aerodynamic results of this investigation made with a large-scale hot-jet model verified the results of previous investigations with small models powered by compressed-air jets. Although blowing was only done over the inboard portion of the wing, substantial amounts of induced lift were also obtained over the outboard portion of the wing. Skin temperatures were about 340 F and wing heating could be handled with available materials without cooling. Random acoustic loadings on the wing surface were high enough to indicate that fatigue failure from this source would require special consideration in the design of an external-flow jet flap system for an airplane.

Fink, Marvin P.

1961-01-01

53

Aerodynamic Design of Road Vehicles  

NASA Technical Reports Server (NTRS)

Guidebook discusses design of road vehicles to reduce aerodynamic drag. Book presents strategy for integrating aerodynamic design into vehicle design. Book written for readers lacking experience in aerodynamics.

Kurtz, D. W.

1985-01-01

54

Coupled 2-dimensional cascade theory for noise and unsteady aerodynamics of blade row interaction in turbofans. Volume 1: Theory development and parametric studies  

NASA Technical Reports Server (NTRS)

Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is concluded that the new features of this analysis - unsteady coupling, frequency scattering, and flow turning between rotor and stator - have a profound effect on noise generation caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate for noise analysis and prediction.

Hanson, Donald B.

1994-01-01

55

Classical Aerodynamic Theory  

NASA Technical Reports Server (NTRS)

A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

Jones, R. T. (compiler)

1979-01-01

56

'Integral Noise': An automatic calculation model for the prediction and control of fixed-wing aircraft noise. I - General considerations, theoretical bases and model analysis  

Microsoft Academic Search

A description is given of the INTNOI Integral Noise Program for advanced aircraft noise prediction and control. This computer model performs, on a modular basis, the analysis of both boundary layer aerodynamic noise and engine noise for the case of such turbofan-powered commercial aircraft as the 737. It also permits the prediction of noise levels due to engine and aerodynamic

F. Bossa; R. Gualdi

1981-01-01

57

NASA aerodynamics program  

NASA Technical Reports Server (NTRS)

The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

1992-01-01

58

Unsteady aerodynamics of advanced ducted fan  

Microsoft Academic Search

A three-dimensional linear frequency domain panel method has been extended to study the unsteady aerodynamics, aeroelasticity, and aeroacoustics of advanced ducted fans. Additional contributions are to extend and improve previous lifting surface theory to include for stator rows and planar supersonic tip Mach numbers, and radiated noise estimation. A two-dimensional viscous wake model is incorporated to account for the influence

Wen-Liang Huang

1996-01-01

59

NASA aerodynamics program  

NASA Technical Reports Server (NTRS)

Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

1990-01-01

60

Bifurcations in unsteady aerodynamics  

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1986-01-01

61

Bifurcations in unsteady aerodynamics  

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accommodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1987-01-01

62

Aerodynamics. [numerical simulation using supercomputers  

NASA Technical Reports Server (NTRS)

A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO2.

Graves, Randolph A., Jr.

1988-01-01

63

The causes and unwanted results of aerodynamic system effect  

SciTech Connect

Aerodynamic system effect (commonly abbreviated as system effect) and its impact on fan performance and noise are poorly understood and often neglected. What system effect is, what causes it in a typical fan-duct system, and how it adversely affects the flow performance and noise output of the fan are described in this article. Also discussed is code testing of fan and duct components and why code testing gives no insight into the often very adverse nature of system effect. The cumulative impact of aerodynamic system effect in a fan-duct system can substantially reduce system performance while causing excess noise.

Vanderburgh, C.R. (BVA Systems Ltd., Scarborough, Ontario (Canada). Vibro-Acoustics Div.); Paulauskis, J.A. (Hospital Building and Equipment Corp., St. Louis, MO (United States))

1994-02-01

64

Uncertainty in Computational Aerodynamics  

NASA Technical Reports Server (NTRS)

An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

2003-01-01

65

Numerical Aerodynamic Simulation  

NASA Technical Reports Server (NTRS)

An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

1989-01-01

66

AIAA 960409 Automatic Aerodynamic  

E-print Network

AIAA 96­0409 Automatic Aerodynamic Optimization on Distributed Memory Architectures Antony Jameson­0409 Automatic Aerodynamic Optimization on Distributed Memory Architectures Antony Jameson and Juan J. Alonso. The Euler equations and the resulting adjoint equations necessary to calculate the Frechet derivatives

Jameson, Antony

67

Aerodynamic technology opportunities for a high-speed civil transport  

NASA Technical Reports Server (NTRS)

A NASA-sponsored study has undertaken the definition of SST and HST configurations resulting in substantial reductions relative to current technology in takeoff gross weight, sonic boom overpressures, and airport-vicinity propulsion and aerodynamic noise. CFD methods have been applied to vehicle-shaping and laminar boundary layer flow area-maximizing configurational studies. Various planforms and active boundary-layer control methods are considered. Computer-managed wing control surface deflections are identified as substantial contributors to wing aerodynamic load and structural weight reduction, while correcting undesirable aerodynamic-pitching characteristics.

Welge, H. Robert

1988-01-01

68

Turbulent boundary layer noise  

NASA Astrophysics Data System (ADS)

Consideration is given to the reflection of aerodynamic noise off solid obstacles. Reflection is calculated in terms of the acoustic potential, instead of the density usually employed. An expression for the pressure generated in the vicinity of the object is then derived and compared with that obtained by Curle (1955).

Legendre, R.

1980-01-01

69

Aerodynamics of Heavy Vehicles  

NASA Astrophysics Data System (ADS)

We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

Choi, Haecheon; Lee, Jungil; Park, Hyungmin

2014-01-01

70

Aerodynamic Shutoff Valve  

NASA Technical Reports Server (NTRS)

Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

Horstman, Raymond H.

1992-01-01

71

Potential impacts of advanced aerodynamic technology on air transportation system productivity  

NASA Technical Reports Server (NTRS)

Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

Bushnell, Dennis M. (editor)

1994-01-01

72

Future Challenges and Opportunities in Aerodynamics  

NASA Technical Reports Server (NTRS)

Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

Kumar, Ajay; Hefner, Jerry N.

2000-01-01

73

Powered-Lift Aerodynamics and Acoustics. [conferences  

NASA Technical Reports Server (NTRS)

Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

1976-01-01

74

Advanced acoustic and aerodynamic 20-inch fan program  

NASA Technical Reports Server (NTRS)

The aerodynamic analyses, mechanical analyses, and stress tests of a 20-inch diameter advanced fan design intended for acoustic investigation by NASA-LeRC are discussed. A high tip speed transonic fan rotor was scaled directly to 20.0 inches (0.508 m) from a 28.74-inch (0.73-m) diameter rotor. A new stator was designed and fabricated for the fan and incorporated with a test rig housing and adapter hardware for installation in the NASA-LeRC Jet Noise Facility for acoustic evaluation. The stator was designed to allow mounting at three axial locations, and the fan, housing, and adapters are reversible so that either the inlet or the exhaust ends of the assembly face the open room of the test facility. Excellent aerodynamic performance is predicted, and a low noise signature is expected since the unique aerodynamic design features of this fan are directly conductive to producing minimum sound power.

Erwin, J. R.; Heldenbrand, R. W.

1977-01-01

75

Survey of techniques for reduction of wind turbine blade trailing edge noise  

Microsoft Academic Search

Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have

Barone; Matthew Franklin

2011-01-01

76

Nonlinear aerodynamic wing design  

NASA Technical Reports Server (NTRS)

The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

Bonner, Ellwood

1985-01-01

77

Aerodynamics of thrust vectoring  

NASA Technical Reports Server (NTRS)

Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

Tseng, J. B.; Lan, C. Edward

1989-01-01

78

Entry aerodynamics and heating  

NASA Technical Reports Server (NTRS)

An overview of the problems of entry aerodynamics and heating is given with emphasis on survival of the probe, predictability of performance, and reliability of performance. Technological challenges to performance prediction are considered and include: turbulent heat transfer, radiation blockage, chemical state of the shock layer, afterbody heat transfer, asymmetric ablation, and real-gas aerodynamics. It is indicated that various obstacles must be overcome in order to achieve technology readiness. These obstacles are considered to be: extrapolations from ground tests to flight; lack of flight experience; lack of parametric data; and uncertain knowledge of atmospherics.

Olstad, W.

1974-01-01

79

High speed helicopter noise sources  

NASA Technical Reports Server (NTRS)

The state-of-the art of helicopter rotor impulsive noise is reviewed. A triangulation technique for locating impulsive noise sources is developed using once-per-rev index signals as time references. A computer program (INSL) was written implementing this technique. Applying triangulation to the full-scale UH-1 noise data of NASA/Ames Research Center 40- by 80-Foot Wind Tunnel, three different noise sources are found on the rotor disk. The primary sources of thickness noise are in the second quadrant and on the advancing side of rotor disk. Two aerodynamic sources due to blade/vortex interaction are found in the first quadrant.

Lee, A.

1977-01-01

80

Clean wing airframe noise modeling for multidisciplinary design and optimization  

Microsoft Academic Search

A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two equation

Serhat Hosder

2004-01-01

81

Aerodynamics of Small Vehicles  

Microsoft Academic Search

In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of

Thomas J. Mueller

2003-01-01

82

Aerodynamics of Race Cars  

NASA Astrophysics Data System (ADS)

Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

Katz, Joseph

2006-01-01

83

Aerodynamic heated steam generating apparatus  

SciTech Connect

An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

Kim, K.

1986-08-12

84

Noise and noise abatement in fans and blowers: A review  

NASA Astrophysics Data System (ADS)

Noise generation and its reduction industrial fans (ventilators) is addressed. A review is given of the fan types commonly in use and their practical applications, the mechanisms of the aerodynamic noise generation in fans, theoretical and empirical prediction methods for fan noise, acoustic similarity laws, and noise reduction methods by means of the fan construction and fan operation. Measurement procedures are discussed with respect to the noise radiated from different parts of a fan, e.g. from the fan inlet or outlet, from the fan casing, from the fan as a whole, and to the noise radiated into ducts connected to the fan. Finally, considerations are made, for which classes of fans noise standards can be defined to characterize the noise emission of the various fan types.

Neise, W.

1980-03-01

85

Survey of lift-fan aerodynamic technology  

NASA Technical Reports Server (NTRS)

Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

Hickey, David H.; Kirk, Jerry V.

1993-01-01

86

Static Aerodynamic Performance Investigation of a Fluid Shield Nozzle  

NASA Technical Reports Server (NTRS)

In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation 36 Stage 3 noise goals for the High Speed Civil Transport application, General Electric Aircraft Engines conducted a design study to incorporate a fluid shield into a 36-chute suppressor exhaust-nozzle system. After a full scale preliminary mechanical design of the resulting fluid shield exhaust system, scale model aerodynamic performance tests and acoustic tests were conducted to establish both aerodynamic performance and acoustic characteristics. Data are presented as thrust coefficients, discharge coefficients, chute-base pressure drags, and plug static pressure distributions.

Balan, C.; Askew, J. W.

2005-01-01

87

AERODYNAMICS OF SMALL VEHICLES  

Microsoft Academic Search

? Abstract In this review,we,describe,the aerodynamic,problems,that must,be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number,and aspect ratio (AR) on the design and performance,of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number,of experimental,boundary-layer studies, including the

Thomas J. Mueller; James D. DeLaurier

2003-01-01

88

Aerodynamic mathematical modeling - basic concepts  

NASA Technical Reports Server (NTRS)

The mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers is reviewed. Bryan's original formulation, linear aerodynamic indicial functions, and superposition are considered. These concepts are extended into the nonlinear regime. The nonlinear generalization yields a form for the aerodynamic response that can be built up from the responses to a limited number of well defined characteristic motions, reproducible in principle either in wind tunnel experiments or flow field computations. A further generalization leads to a form accommodating the discontinuous and double valued behavior characteristics of hysteresis in the steady state aerodynamic response.

Tobak, M.; Schiff, L. B.

1981-01-01

89

Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4  

NASA Technical Reports Server (NTRS)

This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

1995-01-01

90

Freight Wing Trailer Aerodynamics  

SciTech Connect

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17

91

AIAA 982538 Aerodynamic Shape Optimization  

E-print Network

AIAA 98­2538 Aerodynamic Shape Optimization Techniques Based On Control Theory Antony Jameson. C. Vassberg Boeing Commercial Airplane Group, Long Beach, CA 90846 29th AIAA Fluid Dynamics;AIAA 98­2538 Aerodynamic Shape Optimization Techniques Based On Control Theory Antony Jameson and Juan

Stanford University

92

Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance  

SciTech Connect

Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

2008-08-01

93

Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design  

NASA Technical Reports Server (NTRS)

Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

Tweedt, Daniel L.

2010-01-01

94

Unsteady aerodynamics of blade rows  

NASA Technical Reports Server (NTRS)

The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

Verdon, Joseph M.

1989-01-01

95

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION  

Microsoft Academic Search

A Trailing Edge Noise Metric has been developed for constructing response surfaces that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach includes a modified version of a theoretical trailing edge noise prediction and utilizes a high fidelity CFD (RANS) code with a two-equation turbulence model to obtain the characteristic velocity and length

Serhat Hosder; Joseph A. Schetz; Bernard Grossman; William H. Mason

96

Aerodynamics of sports balls  

NASA Astrophysics Data System (ADS)

Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

Mehta, R. D.

97

Aerodynamics of Mars Odyssey  

NASA Technical Reports Server (NTRS)

Direct Simulation Monte Carlo and free-molecular analyses were used to provide aerothermodynamic characteristics of the Mars Odyssey spacecraft. The results of these analyses were used to develop an aerodynamic database that was used extensively for the pre-flight planning and in-flight execution for the aerobraking phase of the Mars Odyssey mission. During aerobraking operations, the database was used to reconstruct atmospheric density profiles during each pass. The reconstructed data was used to update the atmospheric model, which was used to determine the strategy for subsequent aerobraking maneuvers. The aerodynamic database was also used together with data obtained from on-board accelerometers to reconstruct the spacecraft attitudes throughout each aerobraking pass. The reconstructed spacecraft attitudes are in good agreement with those determined by independent on-board inertial measurements for all aerobraking passes. The differences in the pitch attitudes are significantly less than the preflight uncertainties of +/-2.9%. The differences in the yaw attitudes are influenced by zonal winds. When latitudinal gradients of density are small, the differences in the yaw attitudes are significantly less than the preflight uncertainties.

Takashima, Naruhisa; Wilmoth, Richard G.

2002-01-01

98

Vortex flow aerodynamics  

NASA Technical Reports Server (NTRS)

The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

Smith, J. H. B.; Campbell, J. F.; Young, A. D. (editor)

1992-01-01

99

Reciprocity relations in aerodynamics  

NASA Technical Reports Server (NTRS)

Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

Heaslet, Max A; Spreiter, John R

1953-01-01

100

Aerodynamics of Small Vehicles  

NASA Astrophysics Data System (ADS)

In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

Mueller, Thomas J.

101

Payload vehicle aerodynamic reentry analysis  

NASA Astrophysics Data System (ADS)

An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

Tong, Donald

102

Noise Meter  

MedlinePLUS

... Programs NIOSH NOISE AND HEARING LOSS PREVENTION Noise Meter Play around with the Noise Meter and hear the different sounds and sound intensities ... newer version of Adobe Flash Player. Download Noise Meter (.exe file) Download and play the Noise Meter ...

103

On the design and test of a low noise propeller  

NASA Technical Reports Server (NTRS)

An extensive review of noise and performance of general aviation propellers was performed. Research was done in three areas: The acoustic and aerodynamic theory of general aviation propellers, wind tunnel tests of three one-quarter scale models of general aviation propellers, and flight test of two low noise propellers. The design and testing of the second propeller is reviewed. The general aerodynamic considerations needed to design a new propeller are described. The design point analysis of low noise propellers is reviewed. The predicted and measured noise levels are compared.

Succi, G. P.

1981-01-01

104

Investigation of aerodynamic braking devices for wind turbine applications  

SciTech Connect

This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

1997-04-01

105

NASA progress in aircraft noise prediction  

NASA Technical Reports Server (NTRS)

Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

Raney, J. P.; Padula, S. L.; Zorumski, W. E.

1981-01-01

106

Parameter identification for nonlinear aerodynamic systems  

NASA Technical Reports Server (NTRS)

Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

Pearson, Allan E.

1990-01-01

107

The Airframe Noise Reduction Challenge  

NASA Technical Reports Server (NTRS)

The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

Lockhard, David P.; Lilley, Geoffrey M.

2004-01-01

108

Introduction. Computational aerodynamics.  

PubMed

The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used. PMID:17519203

Tucker, Paul G

2007-10-15

109

Low Noise Exhaust Nozzle Technology Development  

NASA Technical Reports Server (NTRS)

NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

2005-01-01

110

An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance  

NASA Technical Reports Server (NTRS)

Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

2006-01-01

111

Obtaining absolute acoustic spectra in an aerodynamic wind tunnel  

NASA Astrophysics Data System (ADS)

Cost effective methods for identifying and reducing sources of noise have become essential in the design of many modern transport vehicles. Whilst closed-section wind tunnels can readily evaluate aerodynamic performance, obtaining accurate acoustic spectra is often a major challenge because of the poor signal to noise ratios available. In this paper, methods of obtaining absolute spectra from the non-acoustically treated Markham wind tunnel at the University of Cambridge are discussed. Initial measurements with a small monopole source compare well with simulations and show that it is possible to obtain similar spectra from two nested acoustic arrays. However, a series of further experiments with simplified landing gear models show very different spectra from each array. By comparing measurements with simulations, it is shown that negative side lobes affect beamforming source maps. Measurements of an 'empty tunnel' cross spectral matrix allow the removal of sidelobes, providing much greater consistency between spectra. Finally, a dipole beamforming vector is used to account for the directivity of the landing gear noise, leading to good agreement between absolute spectra from the differently sized arrays. This analysis demonstrates that data from a phased array in a hard-walled, aerodynamic wind tunnel can provide meaningful acoustic spectra from low-noise models.

Quayle, Alexander R.; Dowling, Ann P.; Graham, W. R.; Babinsky, H.

2011-05-01

112

Tandem cylinder aerodynamic sound control using porous coating  

NASA Astrophysics Data System (ADS)

This study is concerned with the application of porous coatings as a passive flow control method for reducing the aerodynamic sound from tandem cylinders. The aim here is to perform a parametric proof-of-concept study to investigate the effectiveness of porous treatment on bare tandem cylinders to control and regularize the vortex shedding and flow within the gap region between the two bluff bodies, and thereby control the aerodynamic sound generation mechanism. The aerodynamic simulations are performed using 2D transient RANS approach with k - ? turbulence model, and the acoustic computations are carried out using the standard Ffowcs Williams-Hawkings (FW-H) acoustic analogy. Numerical flow and acoustic results are presented for bare tandem cylinders and porous-covered cylinders, with different porosities and thicknesses. Experimental flow and acoustic data are also provided for comparison. Results show that the proper use of porous coatings can lead to stabilization of the vortex shedding within the gap region, reduction of the vortex shedding interaction with the downstream body, and therefore the generation of tonal and broadband noise. It has also been observed that the magnitude and the frequency of the primary tone reduce significantly as a result of the flow regularization. The proposed passive flow-induced noise and vibration control method can potentially be used for other problems involving flow interaction with bluff bodies.

Liu, Hanru; Azarpeyvand, Mahdi; Wei, Jinjia; Qu, Zhiguo

2015-01-01

113

Noise Reduction Through Circulation Control  

NASA Technical Reports Server (NTRS)

Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

2005-01-01

114

Noise Generation in Hot Jets  

NASA Technical Reports Server (NTRS)

A prediction method based on the generalized acoustic analogy is presented, and used to evaluate aerodynamic noise radiated from high speed hot jets. The set of Euler equations are split into their respective non-radiating and residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of nonlinear terms that are identified with the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as turbulence quantities and temperature fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source elements to the far-field spectra and to show the significance of temperature fluctuations as a source of aerodynamic noise in hot jets.

Khavaran, Abbas; Kenzakowski, Donald C.

2007-01-01

115

Noise Reduction Through Circulation Control  

NASA Technical Reports Server (NTRS)

Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustics of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

2003-01-01

116

Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations  

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

117

Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations  

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

118

Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan  

NASA Technical Reports Server (NTRS)

Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

Tweedt, Daniel L.

2010-01-01

119

Noise Control Eng. J. 54 (3), 2006 MayJun Reducing the noise emitted from a domestic clothes-drying machine  

E-print Network

the aerodynamic properties of heat exchangers. The velocity and the acoustic properties of the heat exchangers the aerodynamic noise sources. The critical points were determined on the basis of spatial sound of the heat exchanger was considered. For this, a measurement station was set up in order to analyze

Podgornik, Rudolf

120

Experimental investigation of hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

An extensive series of ballistic range tests are currently being conducted at the Ames Research Center. These tests are intended to investigate the hypersonic aerodynamic characteristics of two basic configurations, which are: the blunt-cone Galileo probe which is scheduled to be launched in late 1989 and will enter the atmosphere of Jupiter in 1994, and a generic slender cone configuration to provide experimental aerodynamic data including good flow-field definition which computational aerodynamicists could use to validate their computer codes. Some of the results obtained thus far are presented and work for the near future is discussed.

Heinemann, K.; Intrieri, Peter F.

1987-01-01

121

Airfoil Optimization Using Practical Aerodynamic Design Requirements  

E-print Network

Airfoil Optimization Using Practical Aerodynamic Design Requirements Howard P. Buckley, Beckett Y., Toronto, Ontario, M3H 5T6, Canada Practical aerodynamic design problems must balance the goal the aerodynamic constraints imposed at the off-design operating conditions to be treated explicitly. Both methods

Zingg, David W.

122

Aerodynamic effects of Nacelle position  

NASA Technical Reports Server (NTRS)

An engineer in the PRT test the aerodynamic effects of nacelle position with respect to the wing, May 1930. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 132.

1932-01-01

123

New technology in turbine aerodynamics  

NASA Technical Reports Server (NTRS)

A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

Glassman, A. J.; Moffitt, T. P.

1972-01-01

124

Aerodynamic calculation of unmanned aircraft  

Microsoft Academic Search

Purpose – To provide an effective numerical method for analysis and design of aerodynamic characteristics of unmanned aerial vehicles basing on commercial package VSAERO. Design\\/methodology\\/approach – Calculation was made by VSAERO package, which is based on a classical panel method enhanced on boundary layer method. Paper explains how to use efficiently VSAERO package, which utilizes advanced CAD techniques, in modern

Marcin Figat; Tomasz Goetzendorf-Grabowski; Zdobys?aw Goraj

2005-01-01

125

Shuttle reentry aerodynamic heating test  

NASA Technical Reports Server (NTRS)

The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

Pond, J. E.; Mccormick, P. O.; Smith, S. D.

1971-01-01

126

Dynamic Soaring: Aerodynamics for Albatrosses  

ERIC Educational Resources Information Center

Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

Denny, Mark

2009-01-01

127

The Aerodynamics of Hummingbird Flight  

Microsoft Academic Search

(Abstract) Hummingbirds fly with their wings almost fully extended during their entire wingbeat. This pattern, associated with having proportionally short humeral bones, long distal wing elements, and assumed to be an adaptation for extended hovering flight, has lead to predictions that the aerodynamic mechanisms exploited by hummingbirds during hovering should be similar to those observed in insects. To test these

Douglas R. Warrick; Bret W. Tobalske; Donald R. Powers; Michael H. Dickinson

128

Aerodynamics of the hovering hummingbird  

Microsoft Academic Search

Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either

Douglas R. Warrick; Bret W. Tobalske; Donald R. Powers

2005-01-01

129

Aerodynamic design via control theory  

NASA Technical Reports Server (NTRS)

The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

Jameson, Antony

1988-01-01

130

Payload vehicle aerodynamic reentry analysis  

Microsoft Academic Search

An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry

Donald Tong

1991-01-01

131

Aerodynamics of runback ice accretions  

NASA Astrophysics Data System (ADS)

An experimental study of the effects of simulated runback ice accretions has been performed in order to describe their aerodynamic performance penalties and investigate their scaling for use in sub-scale aerodynamic testing. Runback ice accretions corresponding to three flight conditions, warm hold, cold hold and descent, were simulated and tested on the NACA 23012 and NACA 3415. The ice shapes were simulated on two levels of fidelity. Medium-fidelity simulations captured the chordwise location, cross-section, height distribution and chordwise extent of the ice accretion. Low-fidelity simulations captured their height and chordwise location. Two scaling methods were also employed. Each simulation was scaled based upon the ratio of the aerodynamic model chord to the full-scale icing model, called geometric scaling. The warm hold simulations were also scaled based upon the ratio of the local, clean-model boundary-layer thickness on the aerodynamic model to that of the icing model, called boundary-layer scaling. This method was employed because the geometrically-scaled simulations were found to be on the order of the boundary-layer thickness as the model approached stall. Following aerodynamic performance testing, fluorescent-oil flow visualization and hot-wire anemometry were used to investigate the flowfield resulting from the low-fidelity warm hold simulations. Results for this work have shown that runback ice accretions can cause significant aerodynamic performance penalties. In general, the NACA 23012 experienced greater aerodynamic performance penalties due to the runback simulations than did the NACA 3415. Low-fidelity simulations of the cold hold case agreed quite well with their medium fidelity counterparts. In the descent case, the level of variation in ice accretion height was too small for there to be a distinction between the low- and medium-fidelity cases. Low-fidelity simulations of the warm hold accretion did not agree well with the medium-fidelity simulation. In fact, the geometrically-scaled simulation was observed to increase the maximum lift and stalling angle-of-attack of the NACA 3415. Flowfield investigations using fluorescent-oil flow visualization and hot-wire anemometry showed that the simulations that were similar in height to the clean-model local boundary-layer thickness acted to stabilize the recovering boundary layer, delaying stall past the stalling angle-of-attack of the clean case.

Whalen, Edward A.

132

Rotorcraft noise  

NASA Technical Reports Server (NTRS)

The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

Huston, R. J. (compiler)

1982-01-01

133

Aerodynamics of a linear oscillating cascade  

NASA Technical Reports Server (NTRS)

The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

Buffum, Daniel H.; Fleeter, Sanford

1990-01-01

134

Noise Transmission through a Glass Window excited by Low-Speed Turbulent Flow  

E-print Network

are expected to contribute to the transmitted aerodynamic noise. One is related to the acoustic excitation critical aerodynamic components of an automobile [1]. The flow by-passing the A-pillar generates an intense of a part of kinetic energy of the turbulent volumetric flow structures into acoustic energy, interacting

Paris-Sud XI, Université de

135

Aerodynamic Measurement Technology  

NASA Technical Reports Server (NTRS)

Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

Burner, Alpheus W.

2002-01-01

136

An approach to low noise axial flow fan design, manufacture and testing  

Microsoft Academic Search

The design, construction, and testing of a low noise axial flow ventilation fan is reported. A test rig was used which allows accurate evaluation of both noise and aerodynamic performance. It became apparent that certain restrictions on noise measurement apply when using an anechoic duct terminated system. These restrictions are due to the presence of acoustic standing waves the precise

D. G. Shapland

1976-01-01

137

Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades  

NASA Astrophysics Data System (ADS)

To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-? turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.

Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li

2013-08-01

138

New Acoustic and Aerodynamic Phenomena due to Non-Uniform Rotation of Propellers  

NASA Astrophysics Data System (ADS)

A study is reported of the influence of non-uniform rotation—which is inherent to piston engine driven propellers—on the aerodynamics and aeroacoustics of multi-blade propellers by numerical simulation. The combination of aerodynamic predictions with a 3-D unsteady free wake panel method and aeroacoustic predictions based on Farassat's Formulation 1A of the Ffowcs Williams and Hawkings equation is used to achieve this goal. The numerical results show that non-uniform rotation has a significant influence on propeller aerodynamics and can lead to an increase in the generated noise. In case of a mismatch between the periodicity of the non-uniformity and the basic blade passage frequency, additional harmonics (“subharmonics”) are generated. For a periodicity coincidence, the effects are masked due to an overlapping of the frequencies. The level of such subharmonics may be high enough to increase the overall A-weighted noise. The azimuthal directivity of the of the propeller noise remains no longer axisymmetric, and changes to a wave-like harmonic variation. The number of undulations per revolution depends on the order of the non-uniformity and is not related to the number of propeller blades. The polar directivity pattern also changes substantially from that known for uniform rotation. A frequency domain analysis of the unsteady pressure distribution shows that the subharmonics perceived at a space-fixed location are not due to an aerodynamic or acoustic interaction but rather the consequence of a motion geometry or Doppler effect.

YIN, J. P.; AHMED, S. R.; DOBRZYNSKI, W.

1999-08-01

139

A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 1: Analysis development  

NASA Technical Reports Server (NTRS)

Structural, inertia, and aerodynamic models were combined to form a comprehensive model of rotor aerodynamics and dynamics that is applicable to a wide range of problems and a wide class of vehicles. A digital computer program is used to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories.

Johnson, W.

1980-01-01

140

A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual  

NASA Technical Reports Server (NTRS)

The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

Johnson, W.

1980-01-01

141

The compressible aerodynamics of rotating blades based on an acoustic formulation  

NASA Technical Reports Server (NTRS)

An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.

Long, L. N.

1983-01-01

142

Wing Leading Edge Concepts for Noise Reduction  

NASA Technical Reports Server (NTRS)

This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

2010-01-01

143

Viking entry aerodynamics and heating  

NASA Technical Reports Server (NTRS)

The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

Polutchko, R. J.

1974-01-01

144

Aerodynamic drag analysis of runners.  

PubMed

A model is presented for the determination of aerodynamic drag forces on runners. The model consists of a series of conjugated circular cylinders, to stimulate the trunk and appendages, and a sphere to stimulate the head. Results are presented for three runners representing respectively, adult American males in the 2.5, 50 and 97.5 percentiles of the population. It is found that power dissipated in overcoming air resistance for these three runners ranges from 0.33 to 0.49 horsepower at a sprint speed comparable to the current world's record for one hundred yards. In addition an alternate model, consisting of a single circular cylinder, is presented that simplifies the determination of total aerodynamics drag. The accuracy of this model is determined by comparing results for total drag with those found with the more complex model. It is found that the error ranges from 5 to 8.9 percent. PMID:1272006

Shanebrook, J R; Jaszczak, R D

1976-01-01

145

Survey of techniques for reduction of wind turbine blade trailing edge noise.  

SciTech Connect

Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

Barone, Matthew Franklin

2011-08-01

146

Empirical Prediction of Aircraft Landing Gear Noise  

NASA Technical Reports Server (NTRS)

This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

2005-01-01

147

Aerodynamic Design Using Neural Networks  

NASA Technical Reports Server (NTRS)

The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

Rai, Man Mohan; Madavan, Nateri K.

2003-01-01

148

Analysis of aerodynamic pendulum oscillations  

NASA Astrophysics Data System (ADS)

Oscillations of an aerodynamic pendulum about the "along the flow" equilibrium are studied. The attached oscillator model is used in order to simulate the internal dynamics of the airflow. Stability criteria are found and stability domains in plane of are constructed for different values of parameters. Influence of damping is studied. It is shown that damping depending on airspeed allows describing experimentally registered phenomenon of flutter occurrence in a certain range of airspeeds.

Selyutskiy, Yury D.

2012-11-01

149

Computerized aerodynamic design of a transonically 'quiet' blade  

NASA Technical Reports Server (NTRS)

The high noise levels produced by helicopters are major sources of concern. There are many sources of the noise, but during high-speed forward flight, impulsive noise dominates the noise spectrum. The cause of the high-speed impulsive noise is the propagation into the far field of shock waves that form on the advancing blade. This mechanism has been labeled 'delocalization'. It has been shown, however, that by judicious design of the blade-tip planform, delocalization can be prevented. The objective of the present study is to illustrate how blade-tip configurations (both planform and airfoil shape) can be systematically varied to identify shapes that avoid delocalization and simultaneously improve aerodynamic performance. This has been done using the latest version of the ROT22 transonic, full-potential, quasi-steady, rotor flow-field code. A hypothetical modern rotor blade was postulated, and tip modifications consisting of taper, sweep, and airfoil section alterations were investigated. Planform modifications were found to be most effective in eliminating delocalization.

Tauber, M. E.

1984-01-01

150

Combustion noise  

NASA Technical Reports Server (NTRS)

A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

Strahle, W. C.

1977-01-01

151

Noise radiation from turbulent flows over compliant surfaces  

NASA Technical Reports Server (NTRS)

The present study is based on Lighthill-Curle's theory of aerodynamic noise. Using a correlation approach and the image concept of Powell, the volume contribution of turbulent flow over a large surface is approximated by a surface contribution of pressure fluctuations. Far-field noise intensities are expressed in terms of the surface pressure fluctuations and surface impedance. Based on available experimental measurements, numerical examples are performed for noise radiated from a turbulent boundary layer and from a normal jet impingement over rigid surfaces. Comparisons with available noise measurements are made. For general turbulent flows over compliant surfaces, measurements are suggested to obtain useful data for noise predictions.

Pan, Y. S.

1975-01-01

152

Aerodynamic and directional acoustic performance of a scoop inlet  

NASA Technical Reports Server (NTRS)

Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

Abbott, J. M.; Dietrich, D. A.

1977-01-01

153

Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics  

NASA Technical Reports Server (NTRS)

Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

Farassat, F.

1994-01-01

154

Aerodynamic lift effect on satellite orbits  

NASA Technical Reports Server (NTRS)

Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

Karr, G. R.; Cleland, J. G.; Devries, L. L.

1975-01-01

155

Landing gear noise control using perforated fairings  

NASA Astrophysics Data System (ADS)

Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.

Boorsma, K.; Zhang, X.; Molin, N.

2010-05-01

156

Airfoil self noise - Effect of scale  

NASA Technical Reports Server (NTRS)

Key data from a comprehensive airfoil broadband self-noise study are reported. Attention here is restricted to two-dimensional sharp trailing-edge models. The models include seven NACA 0012 airfoil sections and five 'flat plate' sections with chordlengths ranging from 2.54 to 60.96 cm. Testing parameters include flow velocity, angle of attack to the flow, and boundary layer turbulence through natural transition and through tripping. Detailed aerodynamic measurements, of pertinence to the scaling problem of airfoil self-noise, were conducted in the near-wake of the trailing edges. Presented are mean and rms turbulent velocity profiles as well as boundary layer thicknesses and integral thickness parameters for a large range of conditions. The noise spectra of the self-noise sources were determined by the use of a cross-spectral technique. The spectra were normalized using the measured aerodynamic parameters in order to evaluate the most common scaling law now in use. An examination of the Reynolds number dependence of the overall self-noise levels has revealed a new and useful scaling result. This result appears to quantify the transition between turbulent-boundary-layer trailing edge noise and laminar-boundary-layer vortex shedding noise.

Brooks, T. F.; Marcolini, M. A.

1983-01-01

157

Tandem Cylinder Noise Predictions  

NASA Technical Reports Server (NTRS)

In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to capture the complete decay in the spanwise correlation, thereby producing reasonable noise radiation levels.

Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

2007-01-01

158

Oscillating aerodynamics and flutter of an aerodynamically detuned cascade in an incompressible flow  

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced torsion mode stability associated with alternate blade circumferential aerodynamic detuning of a rotor operating in an incompressible flow field. The oscillating cascade aerodynamics, including steady loading effects, are determined by developing a complete first order unsteady aerodynamic analysis. An unsteady aerodynamic influence coefficient technique is then utilized, thereby enabling the stability of both conventional uniformly spaced rotors and detuned nonuniform circumferentially spaced rotors to be determined. To demonstrate the enhanced flutter aeroelastic stability associated with this aerodynamic detuning mechanism, this model is applied to a baseline unstable rotor with a Gostelow flow geometry.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1989-01-01

159

Inner workings of aerodynamic sweep  

SciTech Connect

The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfy identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.

Wadia, A.R.; Szucs, P.N.; Crall, D.W. [GE Aircraft Engines, Cincinnati, OH (United States)

1998-10-01

160

Progress in computational unsteady aerodynamics  

NASA Technical Reports Server (NTRS)

After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

Obayashi, Shigeru

1993-01-01

161

Aerodynamic performance of centrifugal compressors  

SciTech Connect

Saving money with an efficient pipeline system design depends on accurately predicting compressor performance and ensuring that it meets the manufacturer's guaranteed levels. When shop testing with the actual gas is impractical, an aerodynamic test can ascertain compressor efficiency, but the accuracy and consistency of data acquisition in such tests is critical. Low test-pressure levels necessitate accounting for the effects of Reynolds number and heat transfer. Moreover, the compressor user and manufacturer must agree on the magnitude of the corrections to be applied to the test data.

Sayyed, S.

1981-12-01

162

Nonlinear Response of Composite Panels Under Combined Acoustic Excitation and Aerodynamic Pressure  

NASA Technical Reports Server (NTRS)

A finite element formulation is presented for the analysis of large deflection response of composite panels subjected to aerodynamic pressure- at supersonic flow and high acoustic excitation. The first-order shear deformation theory is considered for laminated composite plates, and the von Karman nonlinear strain-displacement relations are employed for the analysis of large deflection panel response. The first-order piston theory aerodynamics and the simulated Gaussian white noise are employed for the aerodynamic and acoustic loads, respectively. The nonlinear equations of motion for an arbitrarily laminated composite panel subjected to a combined aerodynamic and acoustic pressures are formulated first in structure node degrees-of-freedom. The system equations are then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. Modal participation is defined and the in-vacuo modes to be retained in the analysis are based on the modal participation values. Numerical results include root mean square values of maximum deflections, deflection and strain response time histories, probability distributions, and power spectrum densities. Results showed that combined acoustic and aerodynamic loads have to be considered for panel analysis and design at high dynamic pressure values.

Abdel-Motagaly, K.; Duan, B.; Mei, C.

1999-01-01

163

Computation of the Flow of a Dual-Stream Jet with Fan-Flow Deflectors for Noise Reduction  

E-print Network

on the aerodynamic performance of the dual-stream supersonic nozzle of a turbofan engine by using a three of attack, closure coefficient , = closure coefficients = specific heat ratio = plume deflection angle µ noise reduction scheme, it is important to assess the aerodynamic efficiency. Meaningful reduction

Papamoschou, Dimitri

164

Turbine disk cavity aerodynamics and heat transfer  

Microsoft Academic Search

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant

B. V. Johnson; W. A. Daniels

1992-01-01

165

Membrane wing aerodynamics for micro air vehicles  

Microsoft Academic Search

The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 106 to 104. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15cm

Yongsheng Lian; Wei Shyy; Dragos Viieru; Baoning Zhang

2003-01-01

166

The aerodynamics of small Reynolds numbers  

NASA Technical Reports Server (NTRS)

Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

Schmitz, F. W.

1980-01-01

167

Aerodynamics of dragonfly flight and robotic design  

Microsoft Academic Search

A pair of dynamically scaled robotic dragonfly model wings was developed to investigate the aerodynamic effect of wing-wing interaction in dragonfly flight. Instantaneous aerodynamic forces were measured while forewing-hindwing phase difference (?) was systematically varied. Experimental results showed that, i) for hovering flight, ?=0° enhanced the lift force on both forewing and hindwing; ?=180° reduced the total lift force, but

Zheng Hu; Raymond Mccauley; Steve Schaeffer; Xinyan Deng

2009-01-01

168

Perching aerodynamics and trajectory optimization  

NASA Astrophysics Data System (ADS)

Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.

Wickenheiser, Adam; Garcia, Ephrahim

2007-04-01

169

X-33 Hypersonic Aerodynamic Characteristics  

NASA Technical Reports Server (NTRS)

Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

1999-01-01

170

X-33 Hypersonic Aerodynamic Characteristics  

NASA Technical Reports Server (NTRS)

Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

1999-01-01

171

X-33 Hypersonic Aerodynamic Characteristics  

NASA Technical Reports Server (NTRS)

Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

1999-01-01

172

Dynamic stall and aerodynamic damping  

SciTech Connect

A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

1999-08-01

173

Aerodynamics of the hovering hummingbird.  

PubMed

Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan. PMID:15973407

Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

2005-06-23

174

X-33 Hypersonic Aerodynamic Characteristics  

NASA Technical Reports Server (NTRS)

Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

1999-01-01

175

Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm  

NASA Technical Reports Server (NTRS)

A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

Holst, Terry L.; Pulliam, Thomas H.

2001-01-01

176

Unified approach to aerodynamic sound generation in the presence of solid boundaries  

NASA Technical Reports Server (NTRS)

A general equation governing aerodynamic sound generation in the presence of solid boundaries is derived. It is shown that all the theories in the literature appear as special cases of this general equation. Derived special equations for propeller and fan noise are likewise shown to be more general than the conventional equations in that they make allowance for variation in retarded time over the blade surfaces.

Goldstein, M.

1974-01-01

177

How to improve open rotor aerodynamics at cruise and take-off  

E-print Network

rotor blade. Other studies, such as [18] and [19], have found possible acoustic benefits from sweep. These identified how sweep in- troduces phase differences into the noise signals radiating from each spanwise part of a propeller. The balance... 1 Copyright © 2014 University of Cambridge DRAFT – HOW TO IMPROVE OPEN ROTOR AERODYNAMICS AT CRUISE AND TAKE-OFF Cesare Hall, Alexios Zachariadis, Tobias Brandvik, Nishad Sohoni cah1003@cam.ac.uk University of Cambridge, Whittle...

Hall, Cesare; Zachariadis, Alexios; Brandvik, Tobias; Sohoni, Nishad

178

The Radiated Noise from Isotropic Turbulence with Applications to the Theory of Jet Noise  

NASA Astrophysics Data System (ADS)

Lighthill [1], in his Theory of Aerodynamic Noise, considered the noise from a pseudo-finite yet unbounded domain of compressible unsteady flow. The first application of this theory was given by Proudman [2] for the case of isotropic turbulence at low Mach numbers and high Reynolds numbers. More recently, Lilley [3] and Sarkar and Hussaini [4], using Direct Numerical Simulation (DNS), have reconsidered this problem, and evaluated for the first time the fourth order space-retarded time covariance which is central to Lighthill's theory for the determination of the acoustic radiated sound power. In this paper the previous work is extended to include the effects of a hot fluid in motion immersed in an external medium at rest. On the introduction of a simple hypothesis these results for the noise radiated from isotropic turbulence are used to predict the noise power radiated from a gaseous hot turbulent jet. The results are found to be qualitatively in agreement with far field experimental data on hot jets at subsonic and supersonic speeds, provided the jets are fully expanded and are devoid of shock waves. The theory has its origins in the 1950s following the publication of Lighthill's theory of aerodynamic noise, when Professor E. J. Richards, the author and their colleagues were striving to predict the noise from jet engines and establish methods for their noise reduction, without loss in performance.

Lilley, G. M.

1996-02-01

179

Review of Aircraft Engine Fan Noise Reduction  

NASA Technical Reports Server (NTRS)

Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

VanZante, Dale

2008-01-01

180

Performance and noise generation studies of supersonic air ejectors  

NASA Technical Reports Server (NTRS)

Experimental investigations were conducted to determine the aerodynamic performance and noise generation characteristics of five ejectors having subsonic secondary flow. Primary nozzles with equal exit area for Mach numbers 1, 1.5, 2, 2.5, and 3 produced a variety of noise and pumping effects. The pumping capacity, specific power, and noise generation of the Mach 1 nozzle was the highest and its mass augmentation was the lowest among the nozzles tested. The Mach 3 nozzle was found superior in mass augmentation and it also produced the lowest noise, however its pumping capacity and specific power was the lowest.

Barna, P. S.

1972-01-01

181

Aeroelastic Analysis of Bridges: Effects of Turbulence and Aerodynamic Nonlinearities  

E-print Network

Aeroelastic Analysis of Bridges: Effects of Turbulence and Aerodynamic Nonlinearities Xinzhong Chen for capturing the emerging concerns in bridge aerodynamics introduced by aerodynamic nonlinearities/or with aerodynamic characteristics sensitive to the effective angle of incidence. This paper presents a nonlinear

Kareem, Ahsan

182

MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS  

E-print Network

MULTI­TARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN # Abstract. Important quantities in aerodynamic flow simulations are the aerodynamic force coe subject classifications. 65N12,65N15,65N30 1. Introduction. In aerodynamic computations like compressible

Hartmann, Ralf

183

MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS  

E-print Network

MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN Abstract. Important quantities in aerodynamic flow simulations are the aerodynamic force coefficients including Navier-Stokes equations AMS subject classifications. 65N12,65N15,65N30 1. Introduction. In aerodynamic

Hartmann, Ralf

184

Solve valve noise and cavitation problems  

SciTech Connect

A clear understanding of aerodynamic noise theory and cavitation will avoid most major valve problems in process plants and allow the valve engineer to design out potential problems. On the other hand, the plant owner has to recognize that such valves may require a cost premium. However, such a premium will be recovered in a small amount of time because of the savings from reduced downtime and lower maintenance costs. Pressure reducing valves used on gases or high pressure steam valves, such as turbine bypass valves, convert substantial energy into heat and a lower pressure level. Unfortunately, this can only be done by accelerating the gas in one or more orifices and then decelerating it rapidly again through a turbulence mechanism or super-sonic shock cells. This causes a lot of noise and vibration. Valve engineering science has made substantial strides in the past few years, and one is now able to predict cavitation and aerodynamic sound levels before a valve is purchased. Similarly, newer valve sizes incorporate features that reduce noise and cavitation effects. Some other minor problems are resonant plug vibration and flashing. The paper discusses how to predict aerodynamic sound, how close can one estimate the sound level, cavitation, and incorrect installation.

Baumann, H.D. [Fisher Controls International, Inc., St. Louis, MO (United States)

1997-03-01

185

High angle of attack: Aerodynamics  

NASA Technical Reports Server (NTRS)

The ability to predict high angle of attack, nonlinear, aerodynamic characteristics of flight vehicles, including aircraft, has made significant progress in the last 25 years using computational tools and analyses. The key technological element which has made these analyses possible is the ability to account for the influence of the shed vortical flow, prevalent in this angle of attack range, on geometries of interest. Using selected analysis techniques, applications have also been made to wing design in order to improve their high speed maneuver performance. Various techniques, associated with different levels of accuracy, exist to model this vortical flow influence. The ones included in this paper cover: suction analogy with extensions; free vortex filaments; free vortex sheet modeling; and Euler and Navier-Stokes solutions. Associated relevant features of vortices are also addressed, including: the wing and flow conditions which cause vortex formation; and how the vortex strength varies with angle of attack and wing sweep.

Lamar, John E.

1992-01-01

186

Rarefied aerodynamic measurements in hypersonic rarefied wind tunnel  

NASA Astrophysics Data System (ADS)

In order to improve the feasibility of space missions, the prediction accuracy of rarefied aerodynamics is one of the important factors. To improve rarefied aerodynamic predictions, the determination of accommodation coefficients and direct measurement of rarefied aerodynamic forces are crucial. Thus, at Japan Aerospace Exploration Agency, a hypersonic rarefied wind tunnel has been developed for rarefied aerodynamic measurements. In this work, we have utilized both experimental and numerical approaches for rarefied hypersonic aerodynamic measurements, and the measurement schemes have been developed by using pendulous models for accommodation coefficients and for aeroshell aerodynamic characteristics. Consequently, we have successfully demonstrated measurements of accommodation coefficients and rarefied aerodynamic characteristics for an aeroshell.

Ozawa, T.; Suzuki, T.; Fujita, K.

2014-12-01

187

Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data  

NASA Technical Reports Server (NTRS)

The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

Messina, Michael D.

1995-01-01

188

Computation of Supersonic Jet Mixing Noise Using PARC Code With a kappa-epsilon Turbulence Model  

NASA Technical Reports Server (NTRS)

A number of modifications have been proposed in order to improve the jet noise prediction capabilities of the MGB code. This code which was developed at General Electric, employees the concept of acoustic analogy for the prediction of turbulent mixing noise. The source convection and also refraction of sound due to the shrouding effect of the mean flow are accounted for by incorporating the high frequency solution to Lilley's equation for cylindrical jets (Balsa and Mani). The broadband shock-associated noise is estimated using Harper-Bourne and Fisher's shock noise theory. The proposed modifications are aimed at improving the aerodynamic predictions (source/spectrum computations) and allowing for the non- axisymmetric effects in the jet plume and nozzle geometry (sound/flow interaction). In addition, recent advances in shock noise prediction as proposed by Tam can be employed to predict the shock-associated noise as an addition to the jet mixing noise when the flow is not perfectly expanded. Here we concentrate on the aerodynamic predictions using the PARC code with a k-E turbulence model and the ensuing turbulent mixing noise. The geometry under consideration is an axisymmetric convergent-divergent nozzle at its design operating conditions. Aerodynamic and acoustic computations are compared with data as well as predictions due to the original MGB model using Reichardt's aerodynamic theory.

Khavaran, A.; Kim, C. M.

1999-01-01

189

Investigation of helicopter rotor blade/wake interactive impulsive noise  

NASA Technical Reports Server (NTRS)

An analysis of the Tip Aerodynamic/Aeroacoustic Test (TAAT) data was performed to identify possible aerodynamic sources of blade/vortex interaction (BVI) impulsive noise. The identification is based on correlation of measured blade pressure time histories with predicted blade/vortex intersections for the flight condition(s) where impulsive noise was detected. Due to the location of the recording microphones, only noise signatures associated with the advancing blade were available, and the analysis was accordingly restricted to the first and second azimuthal quadrants. The results show that the blade tip region is operating transonically in the azimuthal range where previous BVI experiments indicated the impulsive noise to be. No individual blade/vortex encounter is identifiable in the pressure data; however, there is indication of multiple intersections in the roll-up region which could be the origin of the noise. Discrete blade/vortex encounters are indicated in the second quadrant; however, if impulsive noise were produced here, the directivity pattern would be such that it was not recorded by the microphones. It is demonstrated that the TAAT data base is a valuable resource in the investigation of rotor aerodynamic/aeroacoustic behavior.

Miley, S. J.; Hall, G. F.; Vonlavante, E.

1987-01-01

190

Aerodynamic Analyses Requiring Advanced Computers, part 2  

NASA Technical Reports Server (NTRS)

Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

1975-01-01

191

Aerodynamic Characterization of a Modern Launch Vehicle  

NASA Technical Reports Server (NTRS)

A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

Hall, Robert M.; Holland, Scott D.; Blevins, John A.

2011-01-01

192

HSR Aerodynamic Performance Status and Challenges  

NASA Technical Reports Server (NTRS)

This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

1999-01-01

193

Steady incompressible variable thickness shear layer aerodynamics  

NASA Technical Reports Server (NTRS)

A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

Chi, M. R.

1976-01-01

194

Aerodynamic and Aeroelastic Insights using Eigenanalysis  

NASA Technical Reports Server (NTRS)

This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

Heeg, Jennifer; Dowell, Earl H.

1999-01-01

195

Aerodynamic and Aeroelastic Insights using Eigenanalysis  

NASA Technical Reports Server (NTRS)

This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

Heeg, Jennifer; Dowell, Earl H.

2004-01-01

196

Low speed aerodynamics CFD code validation  

NASA Technical Reports Server (NTRS)

The objective of the research project is to develop and validate analytical methods for low-speed aerodynamics. The experimental needs for computational methods are presented. All data and results are presented in viewgraph format.

South, Jerry C.

1987-01-01

197

Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. 1: Experimental performance  

NASA Technical Reports Server (NTRS)

The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.

Gelder, T. F.

1980-01-01

198

The oscillating wing with aerodynamically balanced elevator  

NASA Technical Reports Server (NTRS)

The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

Kussner, H G; Schwartz, I

1941-01-01

199

Aerodynamic Performance Studies for Supersonic Cruise Aircraft  

NASA Technical Reports Server (NTRS)

Technical progress made in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA Supersonic Cruise Aircraft Research program has supported an expanded research program in aerodynamics including an ever growing experimental data base, methodology development across the Mach number range, and sonic boom. Progress in the aerodynamics area could facilitate the choice of the highly swept subsonic leading edge, arrow wing, known for superior supersonic cruise efficiency.

Mascitti, V. R.

1976-01-01

200

Fourier functional analysis for unsteady aerodynamic modeling  

NASA Technical Reports Server (NTRS)

A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

Lan, C. Edward; Chin, Suei

1991-01-01

201

Environmental Noise  

NASA Astrophysics Data System (ADS)

Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

Rumberg, Martin

202

Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission  

NASA Technical Reports Server (NTRS)

Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included.

Yang, J. C. S.; Tsui, C. Y.

1977-01-01

203

Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine  

PubMed Central

Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

Shamshirband, Shahaboddin; Petkovi?, Dalibor; Hashim, Roslan; Motamedi, Shervin

2014-01-01

204

Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.  

PubMed

Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

Shamshirband, Shahaboddin; Petkovi?, Dalibor; Hashim, Roslan; Motamedi, Shervin

2014-01-01

205

The Aerodynamics of Bird Flight  

NASA Astrophysics Data System (ADS)

The manifest success of birds in flight over small and large distances, in confined quarters and also in gusty conditions has inspired admiration, investigation and sometimes imitation from the earthbound human. Birds occupy a range of scales (2 g - 12 kg in mass, and 0.05 - 3 m in wingspan) that overlaps certain micro air vehicle (MAV) designs and there is interest in whether some bird-like properties (flapping wings, deformable feathers, movable tails) might be useful or even necessary for successful MAVs. A bird with 5 cm mean chord flying at 8 m/s has a nominal Reynolds number of 2 - 3 x 10^4. This is an extremely inconvenient range for design, operation and analysis of lifting surfaces, even in steady motion, because their properties are very sensitive to boundary layer separation. The moderate- to high-amplitude flapping motions, together with the complex surface geometry and mechanical properties of the wings themselves lead to yet further challenges. This talk will review some of the theoretical and practical approaches towards understanding and analyzing the aerodynamics of various types of bird flight, including some recent research results that suggest that this effort is far from complete.

Spedding, Geoffrey

2002-11-01

206

Parachute Aerodynamics From Video Data  

NASA Technical Reports Server (NTRS)

A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

2005-01-01

207

Aerodynamics of a hybrid airship  

NASA Astrophysics Data System (ADS)

The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

2012-06-01

208

1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics  

NASA Technical Reports Server (NTRS)

NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

McMillin, S. Naomi (Editor)

1999-01-01

209

1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics  

NASA Technical Reports Server (NTRS)

NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

McMillin, S. Naomi (Editor)

1999-01-01

210

1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics  

NASA Technical Reports Server (NTRS)

The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

Baize, Daniel G. (Editor)

1999-01-01

211

Unsteady incompressible aerodynamics and forced response of detuned blade rows  

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced forced response behavior associated with aerodynamic, structural, and combined aerodynamic-structural detuning of a loaded rotor operating in an incompressible flow field. The unsteady aerodynamic gust response and oscillating cascade aerodynamics are determined by developing both a complete first-order unsteady aerodynamic analysis and a locally analytical solution in individual grid elements of a body fitted computational grid. The aerodynamic detuning is accomplished by means of alternate circumferential airfoil spacing, with alternate blade structural detuning also considered. The beneficial forced response effects of these detuning techniques are then demonstrated by applying this model to various detuned rotor configurations.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1990-01-01

212

Missile Aerodynamics for Ascent and Re-entry  

NASA Technical Reports Server (NTRS)

Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

Watts, Gaines L.; McCarter, James W.

2012-01-01

213

Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel  

NASA Technical Reports Server (NTRS)

Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

1995-01-01

214

The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation  

NASA Technical Reports Server (NTRS)

In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

Greenwood, Eric; Sim, Ben W.

2013-01-01

215

Jet noise suppression by porous plug nozzles  

NASA Technical Reports Server (NTRS)

Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

Bauer, A. B.; Kibens, V.; Wlezien, R. W.

1982-01-01

216

Experimental investigation of hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

An extensive series of ballistic range tests were conducted at the Ames Research Center to determine precisely the aerodynamic characteristics of the Galileo entry probe vehicle. Figures and tables are presented which summarize the results of these ballistic range tests. Drag data were obtained for both a nonablated and a hypothesized ablated Galileo configuration at Mach numbers from about 0.7 to 14 and at Reynolds numbers from 1000 to 4 million. The tests were conducted in air and the experimental results were compared with available Pioneer Venus data since these two configurations are similar in geometry. The nonablated Galileo configuration was also tested with two different center-of-gravity positions to obtain values of pitching-moment-curve slope which could be used in determining values of lift and center-of-pressure location for this configuration. The results indicate that the drag characteristics of the Galileo probe are qualitatively similar to that of Pioneer Venus, however, the drag of the nonablated Galileo is about 3 percent lower at the higher Mach numbers and as much as 5 percent greater at transonic Mach numbers of about 1.0 to 1.5. Also, the drag of the hypothesized ablated configuration is about 3 percent lower than that of the nonablated configuration at the higher Mach numbers but about the same at the lower Mach numbers. Additional tests are required at Reynolds numbers of 1000, 500, and 250 to determine if the dramatic rise in drag coefficient measured for Pioneer Venus at these low Reynolds numbers also occurs for Galileo, as might be expected.

Intrieri, Peter F.

1988-01-01

217

Aerodynamic heating in hypersonic flows  

NASA Technical Reports Server (NTRS)

Aerodynamic heating in hypersonic space vehicles is an important factor to be considered in their design. Therefore the designers of such vehicles need reliable heat transfer data in this respect for a successful design. Such data is usually produced by testing the models of hypersonic surfaces in wind tunnels. Most of the hypersonic test facilities at present are conventional blow-down tunnels whose run times are of the order of several seconds. The surface temperatures on such models are obtained using standard techniques such as thin-film resistance gages, thin-skin transient calorimeter gages and coaxial thermocouple or video acquisition systems such as phosphor thermography and infrared thermography. The data are usually reduced assuming that the model behaves like a semi-infinite solid (SIS) with constant properties and that heat transfer is by one-dimensional conduction only. This simplifying assumption may be valid in cases where models are thick, run-times short, and thermal diffusivities small. In many instances, however, when these conditions are not met, the assumption may lead to significant errors in the heat transfer results. The purpose of the present paper is to investigate this aspect. Specifically, the objectives are as follows: (1) to determine the limiting conditions under which a model can be considered a semi-infinite body; (2) to estimate the extent of errors involved in the reduction of the data if the models violate the assumption; and (3) to come up with correlation factors which when multiplied by the results obtained under the SIS assumption will provide the results under the actual conditions.

Reddy, C. Subba

1993-01-01

218

Aerodynamic Simulation of Ice Accretion on Airfoils  

NASA Technical Reports Server (NTRS)

This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

2011-01-01

219

A shock wave approach to the noise of supersonic propellers  

NASA Technical Reports Server (NTRS)

To model propeller noise expected for a turboprop aircraft, the pressure ratio across the shock at the propeller tip was calculated and compared with noise data from three propellers. At helical tip Mach numbers over 1.0, using only the tip shock wave, the model gave a fairly good prediction of the noise for a bladed propeller and for a propeller swept for aerodynamic purposes. However for another propeller, which was highly swept and designed to have noise cancellations from the inboard propeller sections, the shock strength from the tip over predicted the noise. In general the good agreement indicates that shock theory is a viable method for predicting the noise from these supersonic propellers but that the shock strengths from all of the blade sections need to be properly included.

Dittmar, J. H.; Rice, E. J.

1981-01-01

220

On-road and wind-tunnel measurement of motorcycle helmet noise.  

PubMed

The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise. PMID:23967933

Kennedy, J; Carley, M; Walker, I; Holt, N

2013-09-01

221

Control of maglev vehicles with aerodynamic and guideway disturbances  

NASA Technical Reports Server (NTRS)

A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

1994-01-01

222

An analysis of blade vortex interaction aerodynamics and acoustics  

NASA Technical Reports Server (NTRS)

The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

Lee, D. J.

1985-01-01

223

Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle  

NASA Technical Reports Server (NTRS)

Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

1981-01-01

224

Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade  

NASA Technical Reports Server (NTRS)

An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

Hoyniak, D.; Fleeter, S.

1985-01-01

225

Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics  

NASA Technical Reports Server (NTRS)

Computer program SOUSSA-P (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics--Production Version) accurately and efficiently evaluates steady and unsteady aerodynamic loads on aircraft having arbitrary shapes and motions, including structural deformations.

Desmarais, R. N.; Cunningham, H. J.; Yates, E. C. J.; Morino, L.; Preuss, R. D.; Smolka, S. A.; Tseng, K.; Averick, J.

1982-01-01

226

Aerodynamic collection efficiency of fog water collectors  

NASA Astrophysics Data System (ADS)

Fog water collectors (FWC) can provide water to arid zones with persistent advection and orographic fog. A key feature of any FWC is the mesh used to capture fog droplets. Two relevant mesh characteristics are its shade coefficient and the characteristics of the fibers used to weave or knit the mesh. This paper develops a simple superposition model to analyze the effect of these factors on the Aerodynamic Collection Efficiency (ACE) of FWCs. Due to the simplicity of the model it cannot be directly applied to actual FWC meshes, and serve only for guidance on the order of magnitude of the optimum shade coefficient and the corresponding ACE. The model shows that there is a maximum ACE of the order of 20-24.5% for shade coefficients between 0.5 and 0.6, for the particular mesh simulated. Aerodynamic collection efficiency can be increased by making the FWC concave and improving the aerodynamics of the mesh fibers.

Rivera, Juan de Dios

2011-11-01

227

Aerodynamics of magnetic levitation (MAGLEV) trains  

NASA Technical Reports Server (NTRS)

High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

Schetz, Joseph A.; Marchman, James F., III

1996-01-01

228

Turbine disk cavity aerodynamics and heat transfer  

NASA Astrophysics Data System (ADS)

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

Johnson, B. V.; Daniels, W. A.

1992-07-01

229

History of the numerical aerodynamic simulation program  

NASA Technical Reports Server (NTRS)

The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

Peterson, Victor L.; Ballhaus, William F., Jr.

1987-01-01

230

Aerodynamic optimization studies on advanced architecture computers  

NASA Technical Reports Server (NTRS)

The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

Chawla, Kalpana

1995-01-01

231

Nonlinear aerodynamic modeling using multivariate orthogonal functions  

NASA Technical Reports Server (NTRS)

A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate orthogonal functions based on the data. Each orthogonal function retained in the model was decomposed into an expansion of ordinary polynomials in the independent variables, so that the final model could be interpreted as selectively retained terms from a multivariable power series expansion. A predicted squared-error metric was used to determine the orthogonal functions to be retained in the model; analytical derivatives were easily computed. The approach was demonstrated on the Z-body axis aerodynamic force coefficient (Cz) wind tunnel data for an F-18 research vehicle which came from a tabular wind tunnel and covered the entire subsonic flight envelope. For a realistic case, the analytical model predicted experimental values of Cz very well. The modeling technique is shown to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The polynomial model has good predictive capability, global validity, and analytical differentiability.

Morelli, Eugene A.

1993-01-01

232

Turbine disk cavity aerodynamics and heat transfer  

NASA Technical Reports Server (NTRS)

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

Johnson, B. V.; Daniels, W. A.

1992-01-01

233

Noise suppression with high Mach number inlets  

NASA Technical Reports Server (NTRS)

Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and a fixed geometry inlet (collapsing cowl) with no centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of area ratio, length/diameter ratio, and lip geometry were among several parameters investigated. The translating centerbody type inlet was found to be superior to the collapsing cowl both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length/diameter ratio and area ratio effects on performance near choked flow showed the latter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

Lumsdaine, E.; Cherng, J. G.; Tag, I.

1976-01-01

234

Aerodynamic and acoustic behavior of a YF-12 inlet at static conditions  

NASA Technical Reports Server (NTRS)

An aeroacoustic test program was performed with a YF-12 aircraft at ground static conditions. The objective was to collect acoustic and aerodynamic data that could determine the cause of YF-12 inlet noise suppression observed earlier. The results showed that the far-field noise level was lower with the YF-12 inlet than with a bellmouth inlet at engine speeds above 5500 rpm. The differences were about 5 PNdB to 11 PNdB, depending on YF-12 inlet configuration and on engine speed. Measurements showed that YF-12 inlet noise suppression was not caused by flow choking. The spike support struts were probably responsible, as in that region the spectral peak near the blade passing frequency disappeared between 6000 and 6600 rpm, and multiple pure tones were greatly reduced.

Bangert, L. H.; Feltz, E. P.; Godby, L. A.; Miller, L. D.

1981-01-01

235

Airfoil Ice-Accretion Aerodynamics Simulation  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

2007-01-01

236

Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)  

NASA Technical Reports Server (NTRS)

The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

Cruz, Christopher I.; Ware, George M.

1992-01-01

237

Method of reducing drag in aerodynamic systems  

NASA Technical Reports Server (NTRS)

In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

Hrach, Frank J. (inventor)

1993-01-01

238

Air flow testing on aerodynamic truck  

NASA Technical Reports Server (NTRS)

After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

1975-01-01

239

Unsteady Aerodynamics - Subsonic Compressible Inviscid Case  

NASA Technical Reports Server (NTRS)

This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

Balakrishnan, A. V.

1999-01-01

240

Low Noise Research Fan Stage Design  

NASA Technical Reports Server (NTRS)

This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

1995-01-01

241

Index for aerodynamic data from the Bumblebee program  

NASA Technical Reports Server (NTRS)

The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

Cronvich, L. L.; Barnes, G. A.

1978-01-01

242

Aerodynamics and flight performance of flapping wing micro air vehicles  

Microsoft Academic Search

Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as

Dmytro Silin

2010-01-01

243

Aerodynamic Force Modeling for Unsteady Wing Ryan Jantzen  

E-print Network

Aerodynamic Force Modeling for Unsteady Wing Maneuvers Ryan Jantzen and Kunihiko Taira Florida, Wright-Patterson Air Force Base, OH We report on the development of an aerodynamic force model for a flat focus is placed on examining the influence of large-amplitude wing motion on the unsteady aerodynamics

244

THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS  

E-print Network

THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS LYLE N. LONG and HOWARD­entry of the space shuttle into the earth's atmosphere. Dimensional analysis is an important tool in aerodynamics­T E X 1 #12; For detailed information on the aerodynamics and fluid mechanics pertinent to this paper

245

A Pilot Project in Preparation of an Aerodynamic Optimization Workshop  

E-print Network

A Pilot Project in Preparation of an Aerodynamic Optimization Workshop with Lessons Learned John C-scale Aerodynamic Optimization Workshop. Three independent optimization efforts were conducted concurrently, each in the preparation of a possible future workshop on aerodynamic shape optimization. 1.0 Introduction During AIAA

Jameson, Antony

246

An Integrated RANS-PSE-Wave Packet Tool for the Prediction of Subsonic and Supersonic Jet Noise  

E-print Network

for simultaneous nozzle acoustic and aerodynamic design applicable to subsonic and supersonic jet exhaust noise turbulence scale structure to link cause (nozzle geometry) and effect (near field and far field noise changes WENO = weighted essentially non-oscillatory L = left = generic variable R = right x = axial direction

Dabiri, John O.

247

Reduction of Wake-Stator Interaction Noise Using Passive Porosity  

NASA Technical Reports Server (NTRS)

The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.

Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.

2002-01-01

248

Crackling Noise  

E-print Network

Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behavior over many decades of sizes, their behavior is likely independent of microscopic and macroscopic details, and progress can be made by the use of very simple models. The fact that simple models and real systems can share the same behavior on a wide range of scales is called universality. We illustrate these ideas using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses. This field is still developing: we describe a number of continuing challenges.

James P. Sethna; Karin A. Dahmen; Christopher R. Myers

2001-02-06

249

Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers  

NASA Technical Reports Server (NTRS)

This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

1996-01-01

250

Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles  

NASA Technical Reports Server (NTRS)

One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

1994-01-01

251

A Preliminary Axial Fan Design Method with the Considerat ion of Performance and Noise Characteristics  

NASA Astrophysics Data System (ADS)

Presented in this paper are a fan's aero-acoustic performance method and its computation procedure which combines aerodynamic flow field data, performances and noise levels of fan. The internal flow field and the performance of fan are analyzed by the through-flow modeling, inviscid pitch-averaged quasi-3D flow analysis combined with flow deviation and pressure loss distribution models. Based on the predicted internal flow field dada by the trough-flow modeling, fan noise is predicted by two models for the discrete frequency noise due to rotating steady aerodynamic thrust and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. The present predictions of the flow distribution, the performance and the noise level of fan are well agreed with actual test results.

Lee, Chan; Kil, Hyun Gwon

2010-06-01

252

Design of low noise wind turbine blades using Betz and Joukowski concepts  

NASA Astrophysics Data System (ADS)

This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline/reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor.

Shen, W. Z.; Hrgovan, I.; Okulov, V.; Zhu, W. J.; Madsen, J.

2014-06-01

253

Investigation of noise suppression by sonic inlets for turbofan engines. Volume 1: Program summary  

NASA Technical Reports Server (NTRS)

Results of a program for sonic inlet technology development are presented. This program includes configuration and mechanical design selection of concepts, aerodynamic design description of the models, and results of test evaluation. Several sonic inlet concepts were tested and compared for aerodynamic and acoustic performance. Results of these comparative evaluations are presented. Near-field measurements were taken inside several of the inlet models. Results of these tests are discussed with respect to the effect of Mach number gradients on noise attenuation and rotor shock wave attenuation, and boundary layer effects on noise propagation. The test facilities and experimental techniques employed are described briefly.

Klujber, F.; Bosch, J. C.; Demetrick, R. W.; Robb, W. L.

1973-01-01

254

An aerodynamic load criterion for airships  

NASA Technical Reports Server (NTRS)

A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

Woodward, D. E.

1975-01-01

255

AERODYNAMIC CLASSIFICATION OF FIBERS WITH AEROSOL CENTRIFUGES  

EPA Science Inventory

The constituent particles of many ambient and workplace aerosols of health effects concerns are of fibrous and aggregate geometric shapes. he sites of deposition in the human respiratory system are primarily related to the mass median aerodynamic diameters of inhaled particle siz...

256

Aerodynamic characteristics of the Fiat UNO car  

Microsoft Academic Search

The purpose of this article is to describe the work conducted in the aerodynamic field throughout the 4-year development and engineering time span required by the project of the UNO car. A description is given of all the parametric studies carried out. Through these studies two types of cars at present in production were defined and the characteristics of a

Costelli

1984-01-01

257

Micro balloon actuators for aerodynamic control  

Microsoft Academic Search

A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been

C. Grosjean; G. B. Lee; W. Hong; Y. C. Tai; C. M. Ho

1998-01-01

258

Aircraft wake turbulence minimization by aerodynamic means  

NASA Technical Reports Server (NTRS)

The paper reviews NASA's efforts on wake vortex turbulence minimization by aerodynamic design or retrofit modifications to large transport aircraft. Theoretical and experimental (ground-based and flight) results are presented which show that the adverse effects of a vortex wake produced by a large aircraft on a small following aircraft can be reduced significantly.

Gessow, A.

1974-01-01

259

Aerodynamic heating effects on radome boresight errors  

Microsoft Academic Search

A three part study was performed to analytically define an aerodynamically heated radome for supersonic homing missile applications. First, the radome was mathematically modeled and a thermal analysis was performed to define the hot radome electrical properties and its wall dimensions. Second, analyses were performed to define boresight error vs. look angle in the E and H planes for both

L. B. Weckesser; R. K. Frazer; D. J. Yost; B. E. Kuehne; G. P. Tricoles; R. Hayward; E. L. Rope

1978-01-01

260

Active aerodynamic stabilisation of long suspension bridges  

Microsoft Academic Search

The paper describes the addition of actively controlled aerodynamic appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suspension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make use of control analysis and design techniques, a linear model of the structural and

Henrik Ditlev Nissen; Paul Haase Sørensen; Ole Jannerup

2004-01-01

261

Aerodynamic beam generator for large particles  

DOEpatents

A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

Brockmann, John E. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Dykhuizen, Ronald C. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

2002-01-01

262

Noise Simulation Modeling for Airport Noise Analysis  

Microsoft Academic Search

Noise simulation modeling is now feasible for assessing the noise impacts of airports since computational capabilities have increased. The current aviation noise models use integrated exposure assumptions to calculate the overall noise exposure. However, this assumption greatly restricts the ability to model the effects of terrain, barriers, weather, and aircraft directivity. Noise simulation models, such as NMSim, provide more accurate

J. Micah Downing

263

Numerical and experimental investigation on aerodynamic performance of small axial flow fan with hollow blade root  

NASA Astrophysics Data System (ADS)

To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Hollow blade root is manufactured near the hub. The numerical and experimental results show that hollow blade root has some effect on the static performance. Static pressure of the modified fan is generally the same with that of the datum fan, while, the efficiency curve of the modified fan has a different trend with that of the datum fan. The highest efficiency of the modified fan is 10% greater than that of the datum fan. The orthogonal experimental results of fan noise show that hollow blade root is a feasible method of reducing fan noise, and the maximum value of noise reduction is about 2 dB. The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin, hollow blade height and hollow blade width. The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root. The research results will provide the proof of the parameter optimization and the structure design for high performance and low noise small axial fans.

Li, Zhang; Jin, Yingzi; Huashu, Dou; Yuzhen, Jin

2013-10-01

264

Aerodynamic shape optimization using control theory  

NASA Technical Reports Server (NTRS)

Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

Reuther, James

1996-01-01

265

Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade  

NASA Technical Reports Server (NTRS)

An approach to passive flutter control is aerodynamic detuning, defined as designed pasage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamicaly detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentialy spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

Hoyniak, D.; Fleeter, S.

1986-01-01

266

A parametric study of transonic blade-vortex interaction noise  

NASA Technical Reports Server (NTRS)

Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.

Lyrintzis, A. S.

1991-01-01

267

On Noise Assessment for Blended Wing Body Aircraft  

NASA Technical Reports Server (NTRS)

A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft system noise studies, which include aerodynamic performance, propulsion efficiency, flight profile limitation and many other factors. For a future aircraft concept to achieve the NASA N+2 noise goal it will require a range of fully successful noise reduction technology developments.

Guo, Yueping; Burley, Casey L; Thomas, Russell H.

2014-01-01

268

Aerodynamic Simulation of Runback Ice Accretion  

NASA Technical Reports Server (NTRS)

This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

2010-01-01

269

Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction  

NASA Technical Reports Server (NTRS)

The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

2001-01-01

270

Aerodynamic enhancement of space transportation systems  

NASA Technical Reports Server (NTRS)

The results of a number of recent investigations are reviewed and used to demonstrate gains in launch, orbital transfer, and planetary vehicle performance and economy that can result from the proper exploitation of aerodynamic phenomena. For launch vehicles, application of control-configured design is shown to allow substantial reduction in wing and vertical fin area (and hence, weight) while maintaining acceptable vehicle performance and control. For orbital transfer and planetary vehicles, the use of aerodynamic lift and drag to reduce retropropulsion requirements is shown to produce payload increases of up to 100 percent and to enable some planetary missions that are not feasible with all-propulsive vehicles. Finally, the application of various advanced technologies to a complete set of launch and orbit transfer vehicles in an early space industrialization mission scenario is considered.

Walberg, G. D.

1981-01-01

271

Transonic and supersonic ground effect aerodynamics  

NASA Astrophysics Data System (ADS)

A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

Doig, G.

2014-08-01

272

Specialized computer architectures for computational aerodynamics  

NASA Technical Reports Server (NTRS)

In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

Stevenson, D. K.

1978-01-01

273

Aerodynamics of the Mars Microprobe Entry Vehicles  

NASA Technical Reports Server (NTRS)

The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic and transonic flow regimes is then presented. This description is based on Direct Simulation Monte Carlo analyses in the rarefied-flow regime, thermochemical nonequilibrium Computational Fluid Dynamics in the hypersonic regime, existing wind tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and finally, ballistic range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric-interface into the desired surface-impact orientation and velocity.

Mitcheltree, R. A.; Moss, J. N.; Cheatwood, F. M.; Greene, F. A.; Braun, R. D.

1997-01-01

274

Particle separation from a uniflow aerodynamic deduster  

SciTech Connect

A particle separation theory for uniflow aerodynamic dedusters was developed. Particle cut-size and separation efficiency were affected by many factors, such as chamber configuration, particle characteristics, and airflow patterns. A prototype aerodynamic deduster was developed based on the analysis of particle behavior in uniflow conditions. It was found that the vortex chamber length, annular tunnel space between the inside and outside cylinders, vane angle, tangential and axial air velocities, and turbulence intensities have effects on the particle cut-size and separation efficiency. A particle counter was used to measure dust concentrations upstream and downstream of the deduster. Particle separation efficiencies agreed well between the predicted and measured values. The study showed that a uniflow deduster could be effective in separating dust particles from an airstream. Further studies are needed to optimize the deduster configuration and evaluate the effect of turbulence intensity on particle separation.

Zhao, A.G.; Zhang, Y. [Univ. of Illinois, Urbana, IL (United States). Dept. of Agricultural Engineering

1998-10-01

275

Aerodynamic Shape Optimization Using Hybridized Differential Evolution  

NASA Technical Reports Server (NTRS)

An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

Madavan, Nateri K.

2003-01-01

276

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01

277

Noise pollution resources compendium  

NASA Technical Reports Server (NTRS)

Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

1973-01-01

278

Shuttle system ascent aerodynamic and plume heating  

NASA Technical Reports Server (NTRS)

The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed.

Foster, L. D.; Greenwood, T. F.; Lee, D. B.

1985-01-01

279

Aerodynamics of intermittent bounds in flying birds  

Microsoft Academic Search

Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift\\u000a is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions\\u000a of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured

Bret W. Tobalske; Jason W. D. Hearn; Douglas R. Warrick

2009-01-01

280

Opportunities for aerodynamic-drag reduction  

NASA Technical Reports Server (NTRS)

Methods for reducing aerodynamic drag to improve aircraft performance and reduce fuel consumption are discussed. The techniques considered are: (1) pressure drag reduction, (2) supercritical airfoils, (3) subcritical airfoils, (4) induced drag reduction by over-the-wing blowing and increased aspect ratio, and (5) friction drag reduction by laminar flow control and slot injection. It is stated that a 50 percent reduction from current drag values is expected through the application of these techniques.

Bower, R. E.

1975-01-01

281

Electrochemical shaping of aerodynamic seal elements  

Microsoft Academic Search

In this paper, a process of impulse electrochemical machining (cutting) of the basic functional structural elements (ridges,\\u000a combs, brushes) of aerodynamic seals used in GTEs and steam turbines is considered. Also presented are the description of\\u000a technological and design schemes of electrochemical shaping of ridges and the data on mathematical modelling and studies of\\u000a the main technological characteristics.

S. P. Pavlinich; A. R. Mannapov; N. Z. Gimaev; A. N. Zaitsev

2008-01-01

282

Euler solutions for aerodynamic inverse shape design  

Microsoft Academic Search

Contributions to the aerodynamics development have to be involved to achieve an increase in quality, reducing time and computer costs. Therefore, this work develops an optimization method based on the finite volume explicit Runge-Kutta multi-stage scheme with central spatial discretization in combination with multigrid and preconditioning. The multigrid approach includes local time-stepping and residual smoothing. Such a method allows getting

A. L. de Bortoli; R. de Quadros

2004-01-01

283

High angle of attack hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

A new aerodynamics force model is presented which is based on modified Newtonian theory and empirical correlations. The algebraic model was developed for complete vehicles from take off to orbital speeds and for large angles of attack. Predictions are compared to results for a wind tunnel model at a Mach number of 20, and the full scale Shuttle Orbiter for Mach numbers from 0.25 to 20 for angles of attack from 0 to 50 deg. The maximum shuttle orbiter lift/drag at Mach 10 and 20 is 1.85 at 20-deg angle-of-attack. Aerodynamic force predictions are made for a transatmospheric vehicle, which is a derivative of the Shuttle Orbiter, for Mach numbers from 4 to 27 at angles of attack from 5 to 40 deg. Predicted aerodynamic force data indicate that lift/drag ratios of 5.2 at Mach number 10 and 3.6 at Mach number 26 are obtainable. Changes in force coefficients with changes in: nose angle, sweep angle, and (volume exp 2/3)/planform area are quantified for Mach numbers of 10 and 26. Lift/drag ratios increase with decreasing nose angle and (volume exp 2/3)/planform area and increasing wing sweep angle. Lift/drag ratios are independent of these variables for angles of attack in excess of 20 deg at Mach 10 and 30 deg at Mach 26.

Harloff, Gary J.

1987-01-01

284

Membrane wing aerodynamics for micro air vehicles  

NASA Astrophysics Data System (ADS)

The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

2003-10-01

285

Asymmetric Uncertainty Expression for High Gradient Aerodynamics  

NASA Technical Reports Server (NTRS)

When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

Pinier, Jeremy T

2012-01-01

286

Mars Pathfider Rarefied Aerodynamics: Computations and Measurements  

NASA Technical Reports Server (NTRS)

On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing at Mars. In the present paper, the focus is on the hypersonic rarefied portion of Pathfinder's atmospheric entry where the synergy of flight measurements, aerodynamic calculations, and atmospheric modeling tools are used to extract Pathfinder's attitude and the freestream density. Accuracy of the capsule aerodynamics directly impacts the inferred atmospheric properties extracted from deceleration measurements made by on-board accelerometers. The range of rarefaction considered in this study extends from the free molecular to continuum conditions and angles of attack from O to 30 deg. The aerodynamic computations are made with free-molecular and direct simulation Monte Carlo codes. The calculations show that Pathfinder is statically unstable for much of the transitional rarefied regime. Due to the relatively modest forces and the gyroscopic motion of the spacecraft, the angle of attack excursions were less than 5 deg as inferred from force measurements for the rarefied portion of entry and approached a nominal zero degree trim angle near hypersonic continuum conditions.

Moss, James N.; Blanchard, Robert C.; Wilmoth, Richard G.; Braun, Robert D.

1998-01-01

287

Acoustic and aerodynamic study of a pusher-propeller aircraft model  

NASA Technical Reports Server (NTRS)

An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

Soderman, Paul T.; Horne, W. Clifton

1990-01-01

288

Noise group overview Avia0on Noise  

E-print Network

) · Sensi8vity analysis of trailing edge noise · Discrete Empirical Interpola8on Method) · Sensi8vity analysis of trailing edge noise · Discrete Empirical Interpola8on MethodNoise group overview #12;Avia0on Noise · Aircra& amongst the loudest sources

Wang, Wei

289

Noise Abatement  

NASA Technical Reports Server (NTRS)

SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

1983-01-01

290

The calculation of transonic rotor noise  

NASA Technical Reports Server (NTRS)

It is pointed out that an accurate prediction of the high-speed impulsive rotor noise is very difficult since the noise field depends on many complex factors. Schmitz and Yu (1981) have conducted a study with the aim to include local aerodynamic nonlinearities in a calculation regarding the acoustic shock. In the present investigation, the hover case of the model rotor studied by Schmitz and Yu was recomputed without certain implicit assumptions made in the earlier calculation. The obtained results show that the Schmitz-Yu computations are very much base-support area dependent. Attention is given to the quadrupole integral, and the pressure-time curves for the model rotor in hover.

Aggarwal, H. R.

1984-01-01

291

Aerodynamic, aeroacoustic, and aeroelastic investigations of airfoil-vortex interaction using large-eddy simulation  

NASA Astrophysics Data System (ADS)

In helicopters, vortices (generated at the tip of the rotor blades) interact with the next advancing blades during certain flight and manoeuvring conditions, generating undesirable levels of acoustic noise and vibration. These Blade-Vortex Interactions (BVIs), which may cause the most disturbing acoustic noise, normally occur in descent or high-speed forward flight. Acoustic noise characterization (and potential reduction) is one the areas generating intensive research interest to the rotorcraft industry. Since experimental investigations of BVI are extremely costly, some insights into the BVI or AVI (2-D Airfoil-Vortex Interaction) can be gained using Computational Fluid Dynamics (CFD) numerical simulations. Numerical simulation of BVI or AVI has been of interest to CFD for many years. There are still difficulties concerning an accurate numerical prediction of BVI. One of the main issues is the inherent dissipation of CFD turbulence models, which severely affects the preservation of the vortex characteristics. Moreover this is not an issue only for aerodynamic and aeroacoustic analysis but also for aeroelastic investigations as well, especially when the strong (two-way) aeroelastic coupling is of interest. The present investigation concentrates mainly on AVI simulations. The simulations are performed for Mach number, Ma = 0.3, resulting in a Reynolds number, Re = 1.3 x 106, which is based on the chord, c, of the airfoil (NACA0012). Extensive literature search has indicated that the present work represents the first comprehensive investigation of AVI using the LES numerical approach, in the rotorcraft research community. The major factor affecting the aerodynamic coefficients and aeroacoustic field as a result of airfoil-vortex interaction is observed to be the unsteady pressure generated at the location of the interaction. The present numerical results show that the aerodynamic coefficients (lift, moment, and drag) and aeroacoustic field are strongly dependent on the airfoil-vortex vertical miss-distance, airfoil angle of attack, vortex characteristics, and aeroelastic response of airfoil to airfoil-vortex interaction. A decay of airfoil-vortex interactions with the increase of vertical miss-distance and angle of attack was observed. Also, a decay of airfoil-vortex interactions is observed for the case of a flexible structure when compared with the case of a rigid structure. The decay of vortex core size produces a decrease in the aerodynamic coefficients.

Ilie, Marcel

292

Aerodynamic characteristics of airplanes at high angles of attack  

NASA Technical Reports Server (NTRS)

An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

Chambers, J. R.; Grafton, S. B.

1977-01-01

293

Airport Noise Tech Challenge Overview  

NASA Technical Reports Server (NTRS)

The Supersonics Project, operating under NASA Aeronautics Mission Directorate#s Fundamental Aero Program, has been organized around the Technical Challenges that have historically precluded commercial supersonic flight. One of these Challenges is making aircraft that are capable of such high aerodynamic performance quiet enough around airports that they will not be objectionable. It is recognized that a successful civilian supersonic aircraft will be a system where many new technologies will come together, and for this to happen not only will new low noise propulsion concepts be required, but new engineering tools that predict the noise of the aircraft as these technologies are combined and compromised with the rest of the aircraft design. These are the two main objectives of the Airport Noise Tech Challenge. " ! As a Project in the Fundamental Aero Program, we work at a relatively low level of technology readiness. However, we have high level milestones which force us to integrate our efforts to impact systems-level activities. To keep the low-level work tied to delivering engineering tools and low-noise concepts, we have structured our milestones around development of the concepts and organized our activities around developing and applying our engineering tools to these concepts. The final deliverables in these milestones are noise prediction modules validated against the best embodiment of each concept. These will then be used in cross-disciplinary exercises to demonstrate the viability of aircraft designs to meet all the Technical Challenges. Some of the concepts being developed are shown: Fan Flow Diverters, Multi-jet Shielding, High-Aspect Ratio Embedded Nozzles, Plasma Actuated Instability Manipulation, Highly Variable Cycle Mixer- Ejectors, and Inverted Velocity Profiles. These concepts are being developed for reduced jet noise along with the design tools which describe how they perform when used in various aircraft configurations. Several key upcoming events are highlighted, including tests of the Highly Variable Cycle Mixer-Ejectors, and Inverted Velocity Profiles. Other key events are milestones to be delivered within the next calendar year.

Bridges, James

2011-01-01

294

An approach to the prediction of airplane interior noise  

NASA Technical Reports Server (NTRS)

At present there is no well-proven method of calculating airplane interior noise associated with jet and boundary layer sources. In this presentation, statistical energy analysis is used to calculate fuselage skin vibration and interior noise levels, with the sidewall represented as a double-wall system. The results show that, in the case of an unpressurized fuselage, the acoustic transmission is dominated by the non-resonant response of the structure. Extension of the results to include pressurization effects and turbulent boundary layer excitation is discussed, particular emphasis being placed on aerodynamic coincidence.

Wilby, J. F.

1976-01-01

295

Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures  

NASA Technical Reports Server (NTRS)

Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

Larson, R. S.; Nelson, D. P.; Stevens, B. S.

1979-01-01

296

Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles  

NASA Astrophysics Data System (ADS)

The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

Knott, P. R.; Blozy, J. T.; Staid, P. S.

1981-02-01

297

Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines  

NASA Technical Reports Server (NTRS)

The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

Knott, P. R.; Blozy, J. T.; Staid, P. S.

1981-01-01

298

The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility  

NASA Technical Reports Server (NTRS)

The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

Castner, Raymond S.

1994-01-01

299

Aeroacoustics: Acoustic wave propagation; Aircraft noise prediction; Aeroacoustic instrumentation  

NASA Technical Reports Server (NTRS)

The papers in this volume deal with recent research into acoustic-wave propagation through the atmosphere and progress in aeroacoustic instrumentation, facilities, and test techniques. Topics include the propagation of aircraft noise over long distances in the lower atmosphere, measured effects of turbulence on the rise time of a weak shock, sound scattering from atmospheric turbulence, saturation effects associated with sound propagation in a turbulent medium, and a computer model of the lightning-thunder process. Other papers discuss the development of a computer system for aircraft noise prediction; aircraft flyover noise measurements; and theories and methods for the prediction of ground effects on aircraft noise propagation, for the prediction of airframe aerodynamic noise, for turbine noise prediction, and for combustion noise prediction. Attention is also given to the use of Hartmann generators as sources of high-intensity sound in a large absorption flow-duct facility, an outdoor jet noise facility, factors in the design and performance of free-jet acoustic wind tunnels, and the use of a laser shadowgraph for jet noise diagnosis.

Schwartz, I. R.

1976-01-01

300

Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock  

E-print Network

by an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate. 1. Introduction Over the last five decades, jet and external aerodynamic noises of aircraft have identified (see Fig. 1). On the one hand, acoustic perturbations generated by the unsteady heat release from

Nicoud, Franck

301

The prediction of noise generated by the interaction of airflow and duct discontinuities  

Microsoft Academic Search

There is a paucity of data available relating to the noise generated by ventilation system elements. This paucity arises from the difficulty in obtaining such data as it requires the use of rare and expensive combined acoustic and aerodynamic measurement facilities. In this paper a prediction technique is proposed which overcomes the need for these expensive test facilities. Discontinuities in

David J. Oldham

2002-01-01

302

Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods  

Microsoft Academic Search

The goal of this paper is to investigate the acoustic field generated by the flow over a cavity using two different and complementary numerical methods. First, a Direct Numerical Simulation of the 2-D compressible Navier–Stokes equations is performed to obtain directly the radiated noise. The results of the acoustic and aerodynamic fields are compared to the experimental data in the

X. Gloerfelt; C. Bailly; D. Juvé

2003-01-01

303

Trailing-edge noise control using surrogate-based optimization and large-eddy simulation  

Microsoft Academic Search

Derivative-free shape optimization is applied to minimize aerodynamic noise in the flow over an airfoil trailing-edge. Optimization is performed using the surrogate management framework (SMF) with constraints (Audet and Dennis 2000, SIAM J. Optim, to appear). In this method, design space exploration is performed with an inexpensive surrogate function, and the use of a poll step guarantees convergence to a

Alison Marsden; Meng Wang; John E. Dennis Jr.; Parviz Moin

2004-01-01

304

Integrated aerodynamic/structural design of a sailplane wing  

NASA Technical Reports Server (NTRS)

Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

1986-01-01

305

Fundamental Aspects of the Aerodynamics of Turbojet Engine Combustors  

NASA Technical Reports Server (NTRS)

Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture, the recirculation zone where primary combustion occurs, the secondary combustion zone, and the dilution zone were examined. An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit. The aerodynamics of afterburn chambers are discussed. A model which can be used to investigate the evolution of temperature, pressure, and rate and efficiency of combustion the length of the chamber was developed.

Barrere, M.

1978-01-01

306

A climatology of formation conditions for aerodynamic contrails  

NASA Astrophysics Data System (ADS)

Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

Gierens, K.; Dilger, F.

2013-06-01

307

Workshop on Aircraft Surface Representation for Aerodynamic Computation  

NASA Technical Reports Server (NTRS)

Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.

Gregory, T. J. (editor); Ashbaugh, J. (editor)

1980-01-01

308

Acoustic tests of duct-burning turbofan jet noise simulation  

NASA Technical Reports Server (NTRS)

The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

1978-01-01

309

Scaling of airfoil self-noise using measured flow parameters  

NASA Technical Reports Server (NTRS)

Data from an airfoil broadband self-noise study are reported. Attention here is restricted to two-dimensional models at zero angle of attack to the flow. The models include seven NACA 0012 airfoil sections and five flat plate sections with chordlengths ranging from 2.54 to 60.96 cm. Testing parameters include flow velocity to 71.3 m/s and boundary-layer turbulence through natural transition and by tripping. Detailed aerodynamic measurements are conducted in the near-wake of the sharp trailing edges. The noise spectra of the self-noise sources are determined by the use of a cross-spectral technique. The acoustic data are normalized using the measured aerodynamic parameters in order to evaluate a commonly used scaling law. An examination of the Reynolds number dependence of the normalized overall levels has revealed a useful scaling result. This result appears to quantify the transition between turbulent boundary-layer trailing-edge noise and laminar boundary-layer vortex shedding noise.

Brooks, T. F.; Marcolini, M. A.

1985-01-01

310

Recommended procedures for measuring aircraft noise and associated parameters  

NASA Technical Reports Server (NTRS)

Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

Marsh, A. H.

1977-01-01

311

A study of helicopter main rotor noise in hover  

NASA Technical Reports Server (NTRS)

Some fundamental aspects of rotor noise generation and radiation are presented. Data on which the study is based were obtained during a hover test at the NASA Ames Outdoor Aerodynamic Research Facility of a one-sixth-scale, four-bladed, helicopter rotor. The test site provided an open environment ideal for acquiring good acoustic data. Information is presented on the delineation between the acoustic near-field and far-field, and on the effect of a simple boundary-layer trip device. Data obtained at near-zero thrust conditions indicate that it is possible to isolate thickness noise with minimum contamination by loading noise effects. An abrupt change in the nature of the emitted noise at high-thrust conditions is investigated and is related to unsteady wake/support interaction.

Kitaplioglu, C.; Kinney, C.

1986-01-01

312

A climatology of formation conditions for aerodynamic contrails  

NASA Astrophysics Data System (ADS)

Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

Gierens, K.; Dilger, F.

2013-11-01

313

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24

314

Aerodynamic design trends for commercial aircraft  

NASA Technical Reports Server (NTRS)

Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

Hilbig, R.; Koerner, H.

1986-01-01

315

Sensor Systems Collect Critical Aerodynamics Data  

NASA Technical Reports Server (NTRS)

With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

2010-01-01

316

Aerodynamics/ACEE: Aircraft energy efficiency  

NASA Technical Reports Server (NTRS)

An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

1981-01-01

317

Dual nozzle aerodynamic and cooling analysis study  

NASA Technical Reports Server (NTRS)

Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

Meagher, G. M.

1981-01-01

318

Airframe Noise Prediction by Acoustic Analogy: Revisited  

NASA Technical Reports Server (NTRS)

The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not appear to offer any advantages over the use of FSGF at the present stage of development. It is suggested here that the applications of EGF for airframe noise analysis be continued. As an example pertinent to airframe noise prediction, the Fast Scattering Code of NASA Langley is utilized to obtain the EGF numerically on the surface of a three dimensional wing with a flap and leading edge slat in uniform rectilinear motion. The interpretation and use of these numerical Green functions are then discussed.

Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

2006-01-01

319

The Influence of Windshield on Aerodynamic Performance of VAWT  

Microsoft Academic Search

In this paper, the reason is analyzed that the vertical axis wind turbine (VAWT) is always with low efficiency, on the basis that a new type of VAWT with windshield is proposed. Geometry of windshield has great influence on aerodynamic performance. The computational fluid dynamics (CFD) technique is introduced to investigate its aerodynamic performance. The results indicate that the new

Hu Yonghai; Tong Zhengming

2009-01-01

320

Aerodynamics at the Particle Level C. A. Crummer  

E-print Network

Aerodynamics at the Particle Level C. A. Crummer Preface The purpose of this work is to examine into modern aerodynamic design but physicists have not developed a tractable mathematics to describe can be assumed incompressible and non-viscous because compression heating and viscous interactions

Belanger, David P.

321

Nonlinear aerodynamic forces on thin flat plate: Numerical study  

NASA Astrophysics Data System (ADS)

This paper first presents a numerical simulation of nonlinear aerodynamic forces on a thin flat plate through an integration of the computational fluid dynamics (CFD) method and the forced asymptotic oscillation method. The thin flat plate is forced to have either asymptotic torsional oscillation or asymptotic vertical oscillation of increasing amplitude. A multiple-domain mesh technique together with unstructured dynamic meshes is used in the CFD simulation to accommodate large amplitude oscillations of the plate. The instantaneous frequencies and amplitudes of the aerodynamic forces are then identified from the simulated asymptotic aerodynamic force time histories using the continuous wavelet transform (CWT) in terms of the CWT ridges. Extensive numerical studies are finally performed to examine the feasibility of the proposed approach. The results show that the CFD method used in this study can properly simulate nonlinear aerodynamic forces on the plate. The amplitude of the aerodynamic force depends on the amplitude of the forced oscillation and there are high-order harmonic aerodynamic forces of higher frequency than the forced oscillation frequency, both indicating the nonlinearity of aerodynamic forces. The results also show the flutter derivatives associated with self-excited aerodynamic forces depend on the amplitude of forced oscillation in addition to reduced velocity.

Huang, Lin; Xu, You-Lin; Liao, Haili

2014-01-01

322

Aerodynamic Effects in a Dropped Ping-Pong Ball Experiment*  

E-print Network

Aerodynamic Effects in a Dropped Ping-Pong Ball Experiment* MARK NAGURKA Dept. of Mechanical addresses aerodynamic modeling issues related to a simple experiment in which a ping- pong ball is dropped) between bounce sounds, after a ping-pong ball is dropped onto a hard table surface. (Musician Arthur

Nagurka, Mark L.

323

Spaceplane aerodynamic heating and thermal protection design method  

Microsoft Academic Search

At the first phase of concept design of spaceplanes, parametric studies and optimization for the various body configurations and trajectories are needed. For that purpose, the aerodynamic heating is predicted by a simple method. The wall temperature is estimated from the predicted aerodynamic heating against the various wall thickness and coolant heat transfer coefficients. A method for designing a thermal

Hirotoshi Kubota; Norihiko Itoda; Kiyoshi Yamamoto; Yukimitsu Yamamoto

1990-01-01

324

Wind turbine design codes: A preliminary comparison of the aerodynamics  

Microsoft Academic Search

The National Wind Technology Center of the National Renewable Energy Laboratory is comparing several computer codes used to design and analyze wind turbines. The first part of this comparison is to determine how well the programs predict the aerodynamic behavior of turbines with no structural degrees of freedom. Without general agreement on the aerodynamics, it is futile to try to

Marshall L. Buhl; Alan D. Wright; James L. Tangler

1997-01-01

325

Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics  

Microsoft Academic Search

The flapping equation for a rotating rigid helicopter blade is typically derived by con- sidering 1) small flap angle, 2) small induced an- gle of attack and 3) linear aerodynamics. How- ever, the use of nonlinear aerodynamics can make the assumptions of small angles suspect. A gen- eral equation describing helicopter blade flap dy- namics for large flap angle and

Jyoti Ranjan Majhi; Ranjan Ganguli

2008-01-01

326

Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner  

NASA Astrophysics Data System (ADS)

DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

Wu, Chengjun; Liu, Jiang; Pan, Jie

2014-07-01

327

Controls for Noise Exposure  

MedlinePLUS

... Maintain tools and equipment routinely (such as lubricate gears) Reduce vibration where possible Isolate the noise source ... studies for noise control and Buy-Quiet. Noise Reduction Ideas Bank Washington State Department of Labor & Industries. ...

328

Turbomachinery noise  

NASA Technical Reports Server (NTRS)

Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

1991-01-01

329

Aerodynamics of Stardust Sample Return Capsule  

NASA Technical Reports Server (NTRS)

Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.

Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A.

1997-01-01

330

Cascade flutter analysis with transient response aerodynamics  

NASA Technical Reports Server (NTRS)

Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

1991-01-01

331

Cricket Ball Aerodynamics: Myth Versus Science  

NASA Technical Reports Server (NTRS)

Aerodynamics plays a prominent role in the flight of a cricket ball released by a bowler. The main interest is in the fact that the ball can follow a curved flight path that is not always under the control of the bowler. ne basic aerodynamic principles responsible for the nonlinear flight or "swing" of a cricket ball were identified several years ago and many papers have been published on the subject. In the last 20 years or so, several experimental investigations have been conducted on cricket ball swing, which revealed the amount of attainable swing, and the parameters that affect it. A general overview of these findings is presented with emphasis on the concept of late swing and the effects of meteorological conditions on swing. In addition, the relatively new concept of "reverse" swing, how it can be achieved in practice and the role in it of ball "tampering", are discussed in detail. A discussion of the "white" cricket ball used in last year's World Cup, which supposedly possesses different swing properties compared to a conventional red ball, is also presented.

Mehta, Rabindra D.; Koga, Demmis J. (Technical Monitor)

2000-01-01

332

ExoMars Entry Demonstrator Module Aerodynamics  

NASA Astrophysics Data System (ADS)

Aerodynamics data for ExoMars Entry Demonstrator Module (EDM) are presented. The aerodynamic coefficients are generated as a function of total angle-of- attack, Knudsen number and Mach number depending on the flight regime. Bridging functions were developed from DSMC computations in transitional flow regime between free-molecular and continuum flow regimes. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions with non- equilibrium flow assumptions in hot hypersonic (M>6.3) and with an equivalent approach below. Wind-tunnel in cold hypersonic (ONERA S4Ma - M=10) and in high-enthalpy facilities (ONERA F4 and DLR-HEG) tests were conducted in order to address uncertainty model in hypersonic-supersonic flow regime. For M<3.5, wind- tunnel campaign was conducted in DLR-TMK (1.8

Tran, P.; Beck, J.

2011-08-01

333

Aerodynamic Simulation of the MEXICO Rotor  

NASA Astrophysics Data System (ADS)

CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed.

Herraez, I.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.

2014-12-01

334

Aerodynamic models for a Darrieus wind turbine  

NASA Astrophysics Data System (ADS)

Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

1982-11-01

335

Euler solutions for aerodynamic inverse shape design  

NASA Astrophysics Data System (ADS)

Contributions to the aerodynamics development have to be involved to achieve an increase in quality, reducing time and computer costs. Therefore, this work develops an optimization method based on the finite volume explicit Runge-Kutta multi-stage scheme with central spatial discretization in combination with multigrid and preconditioning. The multigrid approach includes local time-stepping and residual smoothing. Such a method allows getting the goal of compressible and almost incompressible solution of fluid flows, having a rate of convergence almost independent from the Mach number. Numerical tests are carried out for the NACA 0012 and 0009 airfoils and three-dimensional wings based on NACA profiles for Mach-numbers ranging from 0.8 to 0.002 using the Euler equations. These calculations are found to compare favorably with experimental and numerical data available in the literature. Besides, it is worth pointing out that these results build on earlier ones when finding appropriate new three-dimensional aerodynamical geometries.

de Bortoli, A. L.; de Quadros, R.

2004-01-01

336

Landing-gear noise prediction using high-order finite difference schemes  

NASA Astrophysics Data System (ADS)

Aerodynamic noise from a generic two-wheel landing-gear model is predicted by a CFD/FW-H hybrid approach. The unsteady flow-field is computed using a compressible Navier-Stokes solver based on high-order finite difference schemes and a fully structured grid. The calculated time history of the surface pressure data is used in an FW-H solver to predict the far-field noise levels. Both aerodynamic and aeroacoustic results are compared to wind tunnel measurements and are found to be in good agreement. The far-field noise was found to vary with the 6th power of the free-stream velocity. Individual contributions from three components, i.e. wheels, axle and strut of the landing-gear model are also investigated to identify the relative contribution to the total noise by each component. It is found that the wheels are the dominant noise source in general. Strong vortex shedding from the axle is the second major contributor to landing-gear noise. This work is part of Airbus LAnding Gear nOise database for CAA validatiON (LAGOON) program with the general purpose of evaluating current CFD/CAA and experimental techniques for airframe noise prediction.

Liu, Wen; Wook Kim, Jae; Zhang, Xin; Angland, David; Caruelle, Bastien

2013-07-01

337

Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.  

PubMed

We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system. PMID:23262604

Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

2012-12-20

338

The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes  

NASA Technical Reports Server (NTRS)

Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

Miller, Steven A.

2014-01-01

339

The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes  

NASA Technical Reports Server (NTRS)

Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

Miller, Steven A. E.

2014-01-01

340

Interim noise correlation for some OTW configurations using external jet-flow deflectors  

NASA Technical Reports Server (NTRS)

Jet flap interaction acoustic data obtained statically from a model-scale study of STOL-OTW configurations with a conical nozzle mounted above the wing and using various external deflectors to provide jet-flow attachment are correlated. The acoustic data are correlated in terms that consider the jet/flap interaction noise contributions associated primarily with fluctuating lift, trailing edge, and configuration wake noise sources. Variables considered include deflector geometry, flap setting and wing size. Finally, the configuration overall noise levels are related to static lift and thrust measurements in order to provide insight into possible acoustic/aerodynamic performance trade-off benefits.

Vonglahn, U. H.; Groesbeck, D. E.

1977-01-01

341

Numerical Prediction of Laminar Instability Noise for NACA 0012 Aerofoil  

NASA Astrophysics Data System (ADS)

Aerofoil self-generated noise is recognized to be of fundamental importance in the frame of applied aeroacoustics and the use of computational methods to assess the acoustic behaviour of airframe components challenges an even larger community of engineers and scientists. Several noise generation mechanisms can be found which are mainly related to the physical development of turbulence over the boundary layer. They can be classified in 3 main categories: the Turbulent Boundary Layer—Trailing Edge noise (TBL-TE), the Laminar Boundary Layer—Vortex Shedding (LBL-VS) noise and the Separation Stall (S-S) noise. The TBL-TE is mainly related to the noise generated by turbulent eddies which develop into the boundary layer and usually exhibits a broadband spectrum. The LBL-VS is related to laminar instabilities that can occur within the boundary layer which are responsible for a very late transition and generate a typical peaked tonal noise, while the S-S noise mainly results from the development of large vortices after the separation point. In this paper we propose a numerical analysis targeted to the simulation the LBL-VS noise mechanisms on a NACA 0012 aerofoil, tested at a Reynolds number of 1.1 M and Mach number of 0.2. The aerodynamic simulation is performed with a 2D transient RANS approach using the k-? transitional turbulence model, while the acoustic computations are performed with the FfowcsWilliams-Hawkings (FW-H) acoustic analogy and with a Finite Element (FE) approach solving Lighthill's wave equation. Computed noise spectra are compared with experimental data published by NASA showing a good agreement both for peak location as well as for the predicted noise level.

De Gennaro, Michele; Hueppe, Andreas; Kuehnelt, Helmut; Kaltenbacher, Manfred

2011-09-01

342

Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel  

NASA Technical Reports Server (NTRS)

Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

2011-01-01

343

Noise, Health, and Architecture.  

ERIC Educational Resources Information Center

There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…

Beranek, Leo L.

344

Aerodynamic and Aeroelastic Characteristics of a Tension Cone Inflatable Aerodynamic Decelerator  

NASA Technical Reports Server (NTRS)

The supersonic aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator were investigated by wind tunnel testing. Two sets of tests were conducted: one using rigid models and another using textile models. Tests using rigid models were conducted over a Mach number range from 1.65 to 4.5 at angles of attack from -12 to 20 degrees. The axial, normal, and pitching moment coefficients were found to be insensitive to Mach number over the tested range. The axial force coefficient was nearly constant (C(sub A) = 1.45 +/- 0.05) with respect to angle of attack. Both the normal and pitching moment coefficients were nearly linear with respect to angle of attack. The pitching moment coefficient showed the model to be statically stable about the reference point. Schlieren images and video showed a detached bow shock with no evidence of large regions of separated flow and/or embedded shocks at all Mach numbers investigated. Qualitatively similar static aerodynamic coefficient and flow visualization results were obtained using textile models at a Mach number of 2.5. Using inflatable textile models the torus pressure required to maintain the model in the fully-inflated configuration was determined. This pressure was found to be sensitive to details in the structural configuration of the inflatable models. Additional tests included surface pressure measurements on rigid models and deployment and inflation tests with inflatable models.

Clark, Ian G.; Cruz, Juan R.; Hughes, Monica F.; Ware, Joanne S.; Madlangbayan, Albert; Braun, Robert D.

2009-01-01

345

Faster Aerodynamic Simulation With Cart3D  

NASA Technical Reports Server (NTRS)

A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

2003-01-01

346

Multiprocessing on supercomputers for computational aerodynamics  

NASA Technical Reports Server (NTRS)

Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

Yarrow, Maurice; Mehta, Unmeel B.

1991-01-01

347

Aerodynamic levitation : an approach to microgravity.  

SciTech Connect

Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

2000-12-05

348

Aerodynamic characteristics of the Fiat UNO car  

SciTech Connect

The purpose of this article is to describe the work conducted in the aerodynamic field throughout the 4-year development and engineering time span required by the project of the UNO car. A description is given of all the parametric studies carried out. Through these studies two types of cars at present in production were defined and the characteristics of a possible future sports version laid down. A movable device, to be fitted in the back window, was also set up and patented. When actuated it reduces soiling of back window. A description is also provided of the measurements made in the car flow field and some considerations are outlined about the method applied. This method is still in development phase but it already permits some considerations and in-depth investigations to be made on the vehicle wake.

Costelli, A.F.

1984-01-01

349

Aerodynamics of seeing on large transport aircraft  

NASA Technical Reports Server (NTRS)

Data were obtained in the full scale flight environment of the Kuiper Airborne Observatory (KAO) on the nature of turbulent shear layer over the open cavity. These data were used to verify proposed aerodynamic scaling relationships to describe the behavior of the turbulent layers and to estimate the optical performance of systems of various wavelengths operating within the KAO environment. These data and wind tunnel data are used to scale the expected optical effects for a potential stratospheric observatory for infrared astronomy (SOFIA) in which a telescope approximately 3.5 times larger than that on the KAO is envisioned. It appears that the use of combinations of active and passive aeromechanical flow control techniques can improve the optical behavior of systems in the SOFIA environment. Experiments to verify these potential improvements can be performed on the KAO with sufficient modifications to the cavity and aero-mechanical technique installations.

Rose, W. C.

1986-01-01

350

Unsteady aerodynamic modeling and active aeroelastic control  

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

Edwards, J. W.

1977-01-01

351

Aerodynamics of advanced axial-flow turbomachinery  

NASA Technical Reports Server (NTRS)

A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

1980-01-01

352

Aerodynamic Shape Optimization using an Evolutionary Algorithm  

NASA Technical Reports Server (NTRS)

A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

Hoist, Terry L.; Pulliam, Thomas H.

2003-01-01

353

Analysis and control of computer cooling fan noise  

NASA Astrophysics Data System (ADS)

This thesis is divided into three parts: the study of the source mechanisms and their separation, passive noise control, and active noise control. The mechanisms of noise radiated by a typical computer cooling fan is investigated both theoretically and experimentally focusing on the dominant rotor-stator interaction. The unsteady force generated by the aerodynamic interaction between the rotor blades and struts is phase locked with the blade rotation and radiates tonal noise. Experimentally, synchronous averaging with the rotation signal extracts the tones made by the deterministic part of the rotor-strut interaction mechanism. This averaged signal is called the rotary noise. The difference between the overall noise and rotary noise is defined as random noise which is broadband in the spectrum. The deterministic tonal peaks are certainly more annoying than the broadband, so the suppression of the tones is the focus of this study. Based on the theoretical study of point force formulation, methods are devised to separate the noise radiated by the two components of drag and thrust forces on blades and struts. The source separation is also extended to the leading and higher order modes of the spinning pressure pattern. By using the original fan rotor and installing it in various casings, the noise sources of the original fan are decomposed into elementary sources through directivity measurements. Details of the acoustical directivity for the original fan and its various modifications are interpreted. For the sample fan, two common features account for most of the tonal noise radiated. The two features are the inlet flow distortion caused by the square fan casing, and the large strut carrying the electric wires for the motor. When the inlet bellmouth is installed and the large strut is trimmed down to size, a significant reduction of 12 dB in tonal sound power is achieved. These structural corrections constitute the passive noise control. However, the end product still features the leading mode drag noise. Further reduction of this noise is left to the active noise control. The feasibility of the active noise control technique is demonstrated for the cancellation of both thrust and drag noise radiated at their leading modes. An open loop, feed-forward system is used to maximize the simplicity of the rig in order to deliver an appropriate technology for a small ventilation fan. (Abstract shortened by UMI.)

Wong, Kam

354

Aerodynamic properties of turbulent combustion fields  

NASA Technical Reports Server (NTRS)

Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

Hsiao, C. C.; Oppenheim, A. K.

1985-01-01

355

Clean wing airframe noise modeling for multidisciplinary design and optimization  

NASA Astrophysics Data System (ADS)

A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two equation k-o turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional transport wing at realistic approach conditions. The twist distribution of the baseline wing was changed to obtain a modified wing which was used to investigate the effect of the twist on the trailing edge noise. An example study with NACA 0012 and NACA 0009 airfoils demonstrated a reduction in the trailing edge noise by decreasing the thickness ratio and the lift coefficient, while increasing the chord length to keep the same lift at a constant speed. Both two- and three-dimensional studies demonstrated that the trailing edge noise remains almost constant at low lift coefficients and gets larger at higher lift values. The increase in the noise metric can be dramatic when there is separation on the wing. Three-dimensional effects observed in the wing cases indicate the importance of calculating the noise metric with a characteristic velocity and length scale that vary along the span. The twist change does not have a significant effect on the noise at low lift coefficients, however it may give significant noise reduction at higher lift values. The results obtained in this study show the importance of the lift coefficient, CL, on the airframe noise of a clean wing and favors having a larger wing area to reduce the CL for minimizing the noise. The results also point to the fact that the noise reduction studies should be performed in a multidisciplinary design and optimization framework, since many of the parameters that change the trailing edge noise also affect the other aircraft design requirements. It's hoped that the noise metric developed here can aid in such multidisciplinary design and optimization studies.

Hosder, Serhat

356

Compendium of NASA Langley reports on hypersonic aerodynamics  

NASA Technical Reports Server (NTRS)

Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

1987-01-01

357

Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants  

NASA Technical Reports Server (NTRS)

An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

Mazumder, M. K.; Kirsch, K. J.

1977-01-01

358

Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data  

NASA Technical Reports Server (NTRS)

Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

2002-01-01

359

Hypersonic flutter of a curved shallow panel with aerodynamic heating  

NASA Technical Reports Server (NTRS)

The general equations describing the nonlinear fluttering oscillations of shallow, curved, heated orthotropic panels have been derived. The formulation takes into account the location of the panel on the surface of a generic hypersonic vehicle, when calculating the aerodynamic loads. It is also shown that third order piston theory produces unsteady aerodynamic loading which is in close agreement with that based upon direct solution of the Euler equations. Results, for simply supported panels, are obtained using Galerkin's method combined with direct numerical integration in time to compute stable limit cycle amplitudes. These results illustrate the sensitivity of the aeroelastic behavior to the unsteady aerodynamic assumptions, temperature, orthotropicity and flow orientation.

Bein, T.; Friedmann, P.; Zhong, X.; Nydick, I.

1993-01-01

360

Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage  

NASA Technical Reports Server (NTRS)

A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

Boyd, David D., Jr.

1999-01-01

361

High speed propeller acoustics and aerodynamics - A boundary element approach  

NASA Technical Reports Server (NTRS)

The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

Farassat, F.; Myers, M. K.; Dunn, M. H.

1989-01-01

362

Prediction of Hyper-X Stage Separation Aerodynamics Using CFD  

NASA Technical Reports Server (NTRS)

The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.

Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.

2000-01-01

363

Aerodynamic coefficient estimation for dynamic wind tunnel models  

NASA Technical Reports Server (NTRS)

Maximum likelihood parameter identification is used to estimate the aerodynamic coefficients of a 'flying' aircraft model which is mounted in a transonic wind tunnel by a system of cables and pulleys. The model's motion is governed by both cable and aerodynamic forces, where the parameters to be identified are functions of the aerodynamic forces but cable forces greatly predominate. The test data were successfully processed assuming a linear equation model in the identification procedure. In one instance, the procedure was able to detect a failing measurement instrument. The final parameter estimates are compared to estimates obtained in independent tests of a similar aircraft model.

Mohr, R. L.; Smith, R. G.

1977-01-01

364

Review of Integrated Noise Model (INM) Equations and Processes  

NASA Technical Reports Server (NTRS)

The FAA's Integrated Noise Model (INM) relies on the methods of the SAE AIR-1845 'Procedure for the Calculation of Airplane Noise in the Vicinity of Airports' issued in 1986. Simplifying assumptions for aerodynamics and noise calculation were made in the SAE standard and the INM based on the limited computing power commonly available then. The key objectives of this study are 1) to test some of those assumptions against Boeing source data, and 2) to automate the manufacturer's methods of data development to enable the maintenance of a consistent INM database over time. These new automated tools were used to generate INM database submissions for six airplane types :737-700 (CFM56-7 24K), 767-400ER (CF6-80C2BF), 777-300 (Trent 892), 717-200 (BR7 15), 757-300 (RR535E4B), and the 737-800 (CFM56-7 26K).

Shepherd, Kevin P. (Technical Monitor); Forsyth, David W.; Gulding, John; DiPardo, Joseph

2003-01-01

365

A velocity parameter for the correlation of axial fan noise  

NASA Astrophysics Data System (ADS)

An aerodynamic parameter that relates subsonic axial fan noise to the fundamental flow behavior in the blade row of a fan is proposed. The parameter is the peak or maximum blade surface velocity in the rotating reference frame and includes, either explicitly or implicitly, the influence of tip speed, volume flow rate, pressure rise, shaft horsepower and efficiency. Correlation of the noise associated with a very broad range of axial fans yields good agreement and collapse of data when compared to currently used correlation methods. Use of this parameter, rather than those based on overall performance, allows trade-off studies to be made within a given performance requirement so that a minimum noise configuration may be designed or selected.

Wright, T.

1982-08-01

366

A method of infrared imaging missile's aerodynamic heating modeling and simulations  

NASA Astrophysics Data System (ADS)

The infrared (IR) imaging missile's dome will be heated when fly at high speed in the atmosphere because of the friction of the air flow blocking. The detector's performance will be decline if the dome surface is heated to a certain temperature. In this paper, we find a right way to evaluate the aerothermal effects in the imaging and information processing algorithm. Which have three steps including the aerothermal radiation calculation, quantization and image reconstruction. Firstly, the aerothermal radiation is calculated by using a combination of both methods of theoretical analysis and experiment data. Secondly, the relationship between aerothermal radiation and IR images background mean gray and noise can be calculated through the analysis of the experiment data. At last, we can rebuild an aerodynamic heating effect of infrared images fusion with target and decoy, which can be used for virtual prototyping platform missile trajectory simulation. It can be found that the above constructed images have good agreements with the actual image according to comparison between the simulation data and experiment data. It is an economic method that can solve the lab aerodynamic heating simulation and modeling problems.

Cao, Chunqin; Xiang, Jingbo; Zhang, Xiaoyang; Wang, Weiqiang

2013-09-01

367

Application of empirical and linear methods to VSTOL powered-lift aerodynamics  

NASA Technical Reports Server (NTRS)

Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

Margason, Richard; Kuhn, Richard

1988-01-01

368

The radiated noise from isotropic turbulence and heated jets  

NASA Technical Reports Server (NTRS)

Our understanding of aerodynamic noise has its foundations in the work of Sir James Lighthill (1952), which was the first major advance in acoustics since the pioneering work of Lord Rayleigh in the last century. The combination of Lighthill's theory of aerodynamic noise as applied to turbulent flows and the experimental growing database from the early 1950's was quickly exploited by various jet propulsion engine designers in reducing the noise of jet engines at takeoff and landing to levels marginally acceptable to communities living in the neighborhoods of airports. The success in this noise containment led to the rapid growth of fast economical subsonic civil transport aircraft worldwide throughout the 1960's and has continued to the present day. One important factor in this success story has been the improvements in the engine cycle that have led to both reductions in specific fuel consumption and noise. The second is the introduction of Noise Certification, which specifies the maximum noise levels at takeoff and landing that all aircraft must meet before they can be entered on the Civil Aircraft Register. The growing interest in the development of a new supersonic civil transport to replace 'Concorde' in the early years of the next century has led to a resurgence of interest in the more challenging problem of predicting the noise of hot supersonic jets and developing means of aircraft noise reduction at takeoff and landing to meet the standards now accepted for subsonic Noise Certification. The prediction of aircraft noise to the accuracy required to meet Noise Certification requirements has necessitated reliance upon experimental measurements and empirically derived laws based on the available experimental data bases. These laws have their foundation in the results from Lighthill's theory, but in the case of jet noise, where the noise is generated in the turbulent mixing region with the external ambient fluid, the complexity of the turbulent motion has prevented the full deployment of Lighthill's theory from being achieved. However, the growth of the supercomputer and its applications in the study of the structure of turbulent shear flows in both unbounded and wall bounded flows, which complements and in certain cases extends the work of the few dedicated experimental groups working in this field for the past forty years, provides an opportunity and challenge to accurately predict the noise from jets. Moreover a combination of numerical and laboratory experiments offers the hope that in the not too distant future the physics of noise generation and flow interaction will be better understood and it will then be possible to not only improve the accuracy of noise prediction but also to explore and optimize schemes for noise reduction. The present challenge is to provide time and space accurate numerical databases for heated subsonic and supersonic jets to provide information on the fourth-order space-time covariance of Lighthill's equivalent stress tensor, T(ij), which governs the characteristics of the farfield radiated noise and the total acoustic power. Validation with available experimental databases will establish how close Lighthill's theory is to the accurate prediction of the directivity and spectrum of jet noise and the total acoustic power, and the need, in the applications of the theory, to include the effects of flow-acoustic interaction.

Lilley, G. M.

1995-01-01

369

Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry  

NASA Technical Reports Server (NTRS)

The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

2003-01-01

370

Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor  

NASA Technical Reports Server (NTRS)

The effect of aerodynamic detuning on the supersonic flow induced forced response behavior of a turbomachine blade row is analyzed using an aeroelastic model. The rotor is modeled as a flat plate airfoil cascade representing an unwrapped rotor annulus; the aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading on the blading, due to the convection of the transverse gust past the airfoil cascade as well as that resulting from the motion of the cascade, is developed in terms of influence coefficients. The model developed here is then used to analyze the effect of aerodynamic detuning on the flow induced forced response behavior of a twelve-bladed rotor with Verdon's Cascade B flow geometry.

Hoyniak, D.; Fleeter, S.

1985-01-01

371

Influence of hinge point on flexible flap aerodynamic performance  

NASA Astrophysics Data System (ADS)

Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.

Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.

2013-12-01

372

Single-and Multi-Point Aerodynamic Shape Optimization  

E-print Network

to solve both the flow equation and the adjoint equation. The wing geometry is parameterized by a B-spline. Both have been implemented successfully in aerodynamic design optimization. Many examples in wing

Zingg, David W.

373

Aerodynamic Effects and Modeling of Damage to Transport Aircraft  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

Shah, Gautam H.

2008-01-01

374

Aerodynamic induced vibrations on reactor containment fan coolers  

SciTech Connect

Diagnosis of problems on reactor containment fan coolers is not always straightforward. This article describes the method of investigation employed at Tennessee Valley Authority's Sequoyah Nuclear Power Station to diagnose and correct aerodynamic induced vibrations on the coolers.

Jones, R. (Tennessee Valley Authority, Soddy-Daisy, TN (US))

1989-05-01

375

Enabling Venus In Situ Missions Using Mechanically Deployed Aerodynamic Decelerator  

NASA Astrophysics Data System (ADS)

Trade study and optimal solutions for guided entry and aerocapture for Venus in situ missions using Mechanically Deployed Aerodynamic Decelerator to reduce peak deceleration loads, as well as peak heat fluxes.

Saikia, S. J.; Saranathan, H.; Grant, M. J.; Longuski, J. M.

2014-06-01

376

Aerodynamics problems of space probes in comet atmosphere  

Microsoft Academic Search

The paper deals with aerodynamic problems connected with a space probe moving in a rarefied gas-dust Halley's comet atmosphere on exposure to electromagnetic solar radiation. Their relative approach velocity will be 78 km\\/s.

Iu. A. Ryzhov; V. P. Bass; V. P. Kariagin; V. M. Kovtunenko; K. N. Kuzovkin

1985-01-01

377

Aerodynamic preliminary analysis system 2. Part 1: Theory  

NASA Technical Reports Server (NTRS)

A subsonic/supersonic/hypersonic aerodynamic analysis was developed by integrating the Aerodynamic Preliminary Analysis System (APAS), and the inviscid force calculation modules of the Hypersonic Arbitrary Body Program. APAS analysis was extended for nonlinear vortex forces using a generalization of the Polhamus analogy. The interactive system provides appropriate aerodynamic models for a single input geometry data base and has a run/output format similar to a wind tunnel test program. The user's manual was organized to cover the principle system activities of a typical application, geometric input/editing, aerodynamic evaluation, and post analysis review/display. Sample sessions are included to illustrate the specific task involved and are followed by a comprehensive command/subcommand dictionary used to operate the system.

Bonner, E.; Clever, W.; Dunn, K.

1981-01-01

378

Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation  

NASA Astrophysics Data System (ADS)

The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.

Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.

2014-06-01

379

Aerodynamic performance of slender wings with separated flows  

NASA Technical Reports Server (NTRS)

The aerodynamic performance of low aspect ratio sweptback wings with vortex flows was numerically investigated using the free vortex sheet method. The models studied included flat, cambered, strake, and leading edge flapped wings of different planforms. The theoretical results predicted by the method were compared with the existing experimental data wherever available; and the code capabilities and limitations were explored. Also the effects of the wing thickness, fuselage, leading edge flap and multiple vortex modeling on the aerodynamic characteristics were studied.

Reddy, C. S.

1982-01-01

380

On a global aerodynamic optimization of a civil transport aircraft  

NASA Technical Reports Server (NTRS)

An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

Savu, G.; Trifu, O.

1991-01-01

381

Biological and aerodynamic problems with the flight of animals  

NASA Technical Reports Server (NTRS)

Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.

Holst, E. V.; Kuchemann, D.

1980-01-01

382

Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis  

NASA Technical Reports Server (NTRS)

The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

2013-01-01

383

Bifurcations in unsteady aerodynamics-implications for testing  

NASA Technical Reports Server (NTRS)

The various forms of bifurcations that can occur between steady and unsteady aerodynamic flows are reviewed. Examples are provided to illustrate the various ways in which bifurcations may intervene to influence the outcome of dynamics tests involving unsteady aerodynamics. The presence of bifurcation phenomena in such tests must be taken into consideration to ensure the proper interpretation of results, and some recommendations are made to that end.

Chapman, Gary T.; Tobak, Murray

1988-01-01

384

The aerodynamic design of an advanced rotor airfoil  

NASA Technical Reports Server (NTRS)

An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

Blackwell, J. A., Jr.; Hinson, B. L.

1978-01-01

385

Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers  

NASA Astrophysics Data System (ADS)

The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.

Yeager, D. M.; Lauchle, G. C.

1987-11-01

386

Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor  

NASA Technical Reports Server (NTRS)

High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.

Hoyniak, D.; Fleeter, S.

1985-01-01

387

Advanced Low-Noise Research Fan Stage Design  

NASA Technical Reports Server (NTRS)

This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

1997-01-01

388

Measuring Noise Pollution  

NSDL National Science Digital Library

Through investigating the nature, sources and level of noise produced in their environment, students are introduced to the concept of noise pollution. They learn about the undesirable and disturbing effects of noise and the resulting consequences on people's health, as well as on the health of the environment. They use a sound level meter that consists of a sound sensor attached to the LEGO® NXT Intelligent Brick to record the noise level emitted by various sources. They are introduced to engineering concepts such as sensors, decibel (dB) measurements, and sound pressure used to measure the noise level. Students are introduced to impairments resulting from noise exposure such as speech interference, hearing loss, sleep disruption and reduced productivity. They identify potential noise pollution sources, and based on recorded data, they classify these sources into levels of annoyance. Students also explore the technologies designed by engineers to protect against the harmful effects of noise pollution.

AMPS GK-12 Program,

389

Propagation of Environmental Noise  

ERIC Educational Resources Information Center

Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

Lyon, R. H.

1973-01-01

390

Reduction of helicopter blade-vortex interaction noise by active rotor control technology  

NASA Astrophysics Data System (ADS)

Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade-vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations.

Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Philippe, Jean J.; Prieur, Jean; Brooks, Thomas F.

391

Development of a Prediction Scheme for High Aspect-Ratio Jet Noise  

NASA Technical Reports Server (NTRS)

Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. This jet sheet is essentially a high aspect-ratio rectangular jet. A recent study on high aspect-ratio jet noise was performed on a nozzle with aspect-ratios ranging from 100 to 3,000. In addition to the acoustic data, fluid dynamic measurements were made as well. This paper uses the results of these two studies and attempts to develop a prediction scheme for high aspect-ratio jet noise

Munro, Scott E.; Ahuja, K. K.

2003-01-01

392

Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology  

NASA Technical Reports Server (NTRS)

Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

1997-01-01

393

On the role of the radiation directivity in noise reduction for STOL aircraft.  

NASA Technical Reports Server (NTRS)

The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

Gruschka, H. D.

1972-01-01

394

Core-Noise  

NASA Technical Reports Server (NTRS)

This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

Hultgren, Lennart S.

2010-01-01

395

Rudolf Hermann, wind tunnels and aerodynamics  

NASA Astrophysics Data System (ADS)

Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

Lundquist, Charles A.; Coleman, Anne M.

2008-04-01

396

Oscillating cascade aerodynamics at large mean incidence  

SciTech Connect

The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low-aspect-ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg; the Reynolds number was 0.9 {times} 10{sup 6}. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found, with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

Buffum, D.H. [NASA Lewis Research Center, Cleveland, OH (United States); Capece, V.R.; King, A.J. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aeronautical Engineering; El-Aini, Y.M. [Pratt and Whitney, West Palm Beach, FL (United States)

1998-01-01

397

Aerodynamic Characteristics of Airfoils at High Speeds  

NASA Technical Reports Server (NTRS)

This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

Briggs, L J; Hull, G F; Dryden, H L

1925-01-01

398

Space Shuttle Plume Simulation Effect on Aerodynamics  

NASA Technical Reports Server (NTRS)

Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

Hair, L. M.

1978-01-01

399

Aerodynamic Flow Control of a Maneuvering Airfoil  

NASA Astrophysics Data System (ADS)

The unsteady aerodynamic forces and moments on a maneuvering, free-moving airfoil are varied in wind tunnel experiments by controlling vorticity generation/accumulation near the surface using hybrid synthetic jet actuators. The dynamic characteristics of the airfoil that is mounted on a 2-DOF traverse are controlled using position and attitude feedback loops that are actuated by servo motors. Bi-directional changes in the pitching moment are induced using controllable trapped vorticity concentrations on the suction and pressure surfaces near the trailing edge. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and velocity measurements that are taken phase-locked to the commanded actuation waveform. The time scales associated with the actuation process is determined from PIV measurements of vorticity flux downstream of the trailing edge. Circulation time history shows that the entire flow over the airfoil readjusts within about 1.5 TCONV, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales commensurate with the flow's convective time scale, and that the maneuver response is only limited by the inertia of the platform. Supported by AFSOR.

Brzozowski, Daniel P.; Culp, John; Glezer, Ari

2010-11-01

400

Oscillating cascade aerodynamics at large mean incidence  

NASA Technical Reports Server (NTRS)

The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

1996-01-01

401

Flow interaction and noise from a counter rotating propeller  

NASA Technical Reports Server (NTRS)

The aerodynamic interaction between the forward and rear rotors in a counter rotating propeller (CRP) system, has been examined using a conditional sampling technique applied to three-dimensional thermal anemometer data. The technique effectively freezes the rotors in any desired relative position and provides the inter-rotor flow field. Axial, radial and circumferential mean flow between rotors is shown relative to the 'fixed' forward rotor for various 'fixed' aft rotor positions. Acoustic far field noise data have also been collected for the same operating conditions. The acoustic results are presented with emphasis on the blade passing frequencies and interaction tone of the CRP.

Chung, Jin-Deog; Walls, James L.; Nagel, Robert T.

1991-01-01

402

Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method  

NASA Technical Reports Server (NTRS)

Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

Boyd, David D. Jr.

2009-01-01

403

Foraging bats avoid noise  

Microsoft Academic Search

SUMMARY Ambient noise influences the availability and use of acoustic information in animals in many ways. While much research has focused on the effects of noise on acoustic communication, here, we present the first study concerned with anthropogenic noise and foraging behaviour. We chose the greater mouse-eared bat (Myotis myotis) as a model species because it represents the especially vulnerable

Andrea Schaub; Joachim Ostwald; Björn M. Siemers

2008-01-01

404

Handbook of noise ratings  

NASA Technical Reports Server (NTRS)

The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

Pearsons, K. S.; Bennett, R. L.

1974-01-01

405

Aerodynamic sound of flow past an airfoil  

NASA Technical Reports Server (NTRS)

The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord Reynolds number of 104. The far-field noise is computed using Curle's extension to the Lighthill analogy (Curle 1955). An effective method for separating the physical noise source from spurious boundary contributions is developed. This allows an accurate evaluation of the Reynolds stress volume quadrupoles, in addition to the more readily computable surface dipoles due to the unsteady lift and drag. The effect of noncompact source distribution on the far-field sound is assessed using an efficient integration scheme for the Curle integral, with full account of retarded-time variations. The numerical results confirm in quantitative terms that the far-field sound is dominated by the surface pressure dipoles at low Mach number. The techniques developed are applicable to a wide range of flows, including jets and mixing layers, where the Reynolds stress quadrupoles play a prominent or even dominant role in the overall sound generation.

Wang, Meng

1995-01-01

406

Active vibration and noise alleviation in rotorcraft using microflaps  

NASA Astrophysics Data System (ADS)

This work presents a comprehensive analysis of active Gurney flaps, or microflaps, for on blade control of noise and vibration in rotorcraft. The initial portion of the work considered the two-dimensional unsteady aerodynamic characteristics of three different oscillating microflap configurations using a compressible computational fluid dynamics (CFD) flow solver. Among these the configuration most suitable for rotorcraft applications was chosen. An unsteady reduced order aerodynamic model (ROM) was developed for the microflap using the Rational Function Approximation approach and CFD based oscillatory aerodynamic load data. The resulting ROM is a state-space, time-domain model that accounts for unsteadiness, compressibility and time-varying freestream effects. The ROM was validated against direct CFD calculations for a wide range of flow conditions showing excellent agreement. Subsequently, the ROM was then incorporated into a comprehensive rotorcraft simulation code featuring a free-wake model, an acoustic prediction tool, and fully coupled flap-lag-torsional blade dynamics. The higher harmonic control (HHC) algorithm was used to simulate closed-loop active control with a 1.5% chord microflap on a hingeless rotor configuration resembling the MBB BO-105. Three span-wise configurations, single, dual, and a five-microflap configuration were considered. Results indicate that the microflap can achieve reductions ranging from 3-6 dB in the blade-vortex interaction (BVI) noise. Vibration reduction ranging from 70-90% was also demonstrated at both low-speed and high-speed flight conditions. It was also found that reduction in BVI noise results in an increase in vibrations and vice versa, a trend also noted in previous active control studies employing HHC and conventional partial span trailing-edge flaps. Next, simultaneous BVI noise and vibration reduction was studied. A reduction of 2-3 dB in the advancing and retreating side noise combined with a 55% reduction in the vibratory loads was achieved using the five-microflap configuration. The 1.5% chord microflap was also compared to a 20% chord plain trailing-edge flap showing similar effectiveness in reducing vibration and noise. Finally, a new approach for dealing with actuator saturation in the HHC algorithm was developed using nonlinear constrained optimization techniques. The optimization approach takes less computational time compared to the previous approaches while yielding better performance in the case of multiple control surfaces.

Padthe, Ashwani Kumar

407

The Harmonoise/IMAGINE model for traction noise of powered railway vehicles  

NASA Astrophysics Data System (ADS)

Traction noise is one of the noise sources of powered railway vehicles such as locomotives, electric- and diesel-powered multiple unit trains and high-speed trains. Especially at speeds below 60 km/h and at idling, but also at acceleration conditions for a wide range of speeds, traction noise can be dominant. This is relevant for noise in residential areas near stations and shunting yards, but in some cases also along the line. The other relevant sources are rolling noise, often dominant between 100 and 250 km/h, aerodynamic noise, which can be dominant above 300 km/h, braking noise, curve squeal and impact noise. The braking system can often technically be considered part of the overall traction system, although acoustically it will often have separate noise sources. In the Harmonoise and IMAGINE EU projects, a generalised prediction model for railway traction noise has been proposed to cover a broad range of powered railway vehicles. The model is one of the prediction modules for overall rail traffic noise, which also covers the other main sources. The traction noise model includes the main operational parameters such as driveshaft speed and power settings, and also takes individual auxiliary components and their duty cycles into account, such as compressors, valves and fans. Source height is included in the model. The level of modelling detail in the many potential traction noise sources has been kept to a minimum, as for the purpose of rail traffic noise prediction it often suffices to model only the dominant sources. Measurement methods are outlined to determine the noise emission spectra, from which extrapolations are made to obtain estimates for different operating conditions.

Dittrich, M. G.; Zhang, X.

2006-06-01

408

Flight velocity influence on jet noise of conical ejector, annular plug and segmented suppressor nozzles  

NASA Technical Reports Server (NTRS)

An F106 aircraft with a J85-13 engine was used for static and flight acoustic and aerodynamic tests of a conical ejector, an unsuppressed annular plug, and three segmented suppressor nozzles. Static 100 ft. arc data, corrected for influences other than jet noise, were extrapolated to a 300 ft. sideline for comparison to 300 ft. altitude flyover data at M = 0.4. Data at engine speeds of 80 to 100% (max dry) static and 88 to 100% flight are presented. Flight velocity influence on noise is shown on peak OASPL and PNL, PNL directivity, EPNL and chosen spectra. Peak OASPL and PNL plus EPNL suppression levels are included showing slightly lower flight than static peak PNL suppression but greater EPNL than peak PNL suppression. Aerodynamic performance was as anticipated and closely matched model work for the 32-spoke nozzle.

Brausch, J. F.

1972-01-01

409

Experimental study of tip clearance losses and noise in axial turbomachines and their reduction  

SciTech Connect

An experimental study is described to investigate the negative effects of the tip clearance gap on the aerodynamic and acoustic performance of axial turbomachines. In addition to the increased broadband levels reported in the literature when the tip clearance is enlarged, significant level increases were observed within narrow frequency bands below the blade passing frequency. Measurements of the pressure and velocity fluctuations in the vicinity of the blade tips reveal that the tip clearance noise is associated with a rotating flow instability at the blade tip, which in turn is only present under reversed flow conditions in the tip clearance gap. A turbulence generator inserted into the tip clearance gap is found to be effective in eliminating the tip clearance noise and in improving the aerodynamic performance.

Kameier, F. [BMW Rolls-Royce Aeroengines, Dahlewitz (Germany); Neise, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Berlin (Germany)

1997-07-01

410

Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems  

NASA Technical Reports Server (NTRS)

The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

Huerre, P.; Karamcheti, K.

1976-01-01

411

Aerodynamic Performance of Fan-Flow Deflectors for Jet-Noise Reduction  

E-print Network

code solved the three-dimensional Reynolds-averaged Navier­Stokes equations. A series of nozzle configurations using deflector vanes of variable number, airfoil section, azimuthal mounting, and angle of attack be feasible for practical application. Nomenclature A = area Cp = pressure coefficient Df = nozzle fan

Papamoschou, Dimitri

412

Core Noise Reduction  

NASA Technical Reports Server (NTRS)

This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

Hultgren, Lennart S.

2011-01-01

413

Application Program Interface for the Orion Aerodynamics Database  

NASA Technical Reports Server (NTRS)

The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduced

Robinson, Philip E.; Thompson, James

2013-01-01

414

Unsteady aerodynamics of fluttering and tumbling plates  

NASA Astrophysics Data System (ADS)

We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.

Andersen, A.; Pesavento, U.; Wang, Z. Jane

2005-10-01

415

Techniques for estimating Space Station aerodynamic characteristics  

NASA Technical Reports Server (NTRS)

A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

Thomas, Richard E.

1993-01-01

416

Multiprocessing on supercomputers for computational aerodynamics  

NASA Technical Reports Server (NTRS)

Very little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPs or more) in computational aerodynamics to significantly improve turnaround time. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, the improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) through multi-tasking is applied via a strategy which requires relatively minor modifications to an existing code for a single processor. Essentially, this approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. The existing single processor code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor. As a demonstration of this approach, a Multiple Processor Multiple Grid (MPMG) code is developed. It is capable of using nine processors, and can be easily extended to a larger number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. The solver is applied to generic oblique-wing aircraft problem on a four processor Cray-2 computer. A tricubic interpolation scheme is developed to increase the accuracy of coupling of overlapped grids. For the oblique-wing aircraft problem, a speedup of two in elapsed (turnaround) time is observed in a saturated time-sharing environment.

Yarrow, Maurice; Mehta, Unmeel B.

1990-01-01

417

Static Aerodynamics of the Mars Exploration Rover Entry Capsule  

NASA Technical Reports Server (NTRS)

The static aerodynamics for the Mars Exploration Rover (MER) aeroshell are presented. This aerodynamic database was an integral part of the end-to-end simulation used in pre- entry analysis for determining the MER entry design requirements for development of the MER entry system, as well as targeting the MER landing sites. The database was constructed using the same approach used for Mars Pathfinder (MPF). However, the MER aerodynamic database is of much higher fidelity and tailored to the MER entry trajectories. This set of data includes direct simulation Monte Carlo calculations covering the transitional regime of the entry trajectory and computational fluid dynamics calculations describing the aerodynamics in the hypersonic and supersonic continuum regimes. An overview of the methodology used to generate the data is given along with comparisons to important features in the MPF aerodynamics and related heritage data. The MER and MPF comparison indicates that trajectory specific data is required to properly model the flight characteristics of a.blunt entry capsule at Mars.

Schoenenberger, Mark; Cheatwood, F. McNeil; Desai, Prasun

2005-01-01

418

Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction  

NASA Technical Reports Server (NTRS)

A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

Pak, Chan-gi

2011-01-01

419

A Preliminary Axial Fan Design Method with the Considerat ion of Performance and Noise Characteristics  

Microsoft Academic Search

Presented in this paper are a fan's aero-acoustic performance method and its computation procedure which combines aerodynamic flow field data, performances and noise levels of fan. The internal flow field and the performance of fan are analyzed by the through-flow modeling, inviscid pitch-averaged quasi-3D flow analysis combined with flow deviation and pressure loss distribution models. Based on the predicted internal

Chan Lee; Hyun Gwon Kil

2010-01-01

420

Backscattering correction and further extensions of Amiet's trailing-edge noise model. Part 1: theory  

Microsoft Academic Search

A previously published analytical formulation aimed at predicting broadband trailing-edge noise of subsonic airfoils is extended here to account for all the effects due to a limited chord length, and to infer the far-field radiation off the mid-span plane. Three-dimensional gusts are used to simulate the incident aerodynamic wall pressure that is scattered as acoustic waves. A leading-edge back-scattering correction

Michel Roger; Stéphane Moreau

2005-01-01

421

Jet Noise Research at NASA  

NASA Technical Reports Server (NTRS)

A presentation outlining current jet noise work at NASA was given at the NAVAIR Noise Workshop. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.

Henderson, Brenda

2008-01-01

422

Some calculated effects of non-uniform inflow on the radiated noise of a large wind turbine  

NASA Astrophysics Data System (ADS)

Far field computations were performed for a large wind turbine to evaluate the effects of non-uniform aerodynamic loading over the rotor disk. A modified version of the Farassat/Nystrom propeller noise prediction program was applied to account for the variations in loading due to inflow interruption by the upstream support tower. The computations indicate that for the uniform inflow case, relatively low noise levels are generated and the first rotational harmonic dominated the spectrum. For cases representing wake flow deficiences due to the tower structure, subtantially increased noise levels for all harmonics are indicated, the greatest increases being associated with the higher order harmonics.

Greene, G. C.; Hubbard, H. H.

1980-05-01

423

Interim noise correlation for some OTW configurations using external jet-flow deflectors. [engine Over The Wing  

NASA Technical Reports Server (NTRS)

Jet/flap interaction acoustic data obtained statically from a model-scale study of STOL-OTW configurations with a conical nozzle mounted above the wing and using various external deflectors to provide jet-flow attachment are correlated. The acoustic data are correlated in terms that consider the jet/flap interaction noise contributions associated primarily with fluctuating lift, trailing edge, and configuration wake noise sources. Variables considered include deflector geometry, flap setting and wing size. Finally, the configuration overall noise levels are related to static lift and thrust measurements in order to provide insight into possible acoustic/aerodynamic performance trade-off benefits.

Von Glahn, U.; Groesbeck, D.

1977-01-01

424

Urban Noise Protection  

NASA Astrophysics Data System (ADS)

Noise belongs to the severest environmental impairments in towns, with road traffic being the most annoying noise source. The reduction of these impairments and the precaution against new noise impacts is an important task of the communities. However, many of the potential abatement measures are not in the responsibility of the communities. In most European countries, noise emission regulations for road and rail vehicles and outdoor machinery are nowadays enforced by the European Union. Noise reception limits are generally enforced by national laws. Therefore, efficient noise abatement in towns has to be coordinated with the regional, national and supranational, i.e. European noise policy. The most important fields of action for the urban noise abatement are the roads, railways and airports with heavy traffic. For the avoidance of health risks due to noise here short-term reductions are needed, which can generally be achieved only by a combination of measures for which different stakeholders are responsible. This underlines the importance of integrated and coordinated noise abatement concepts.

Jäcker-Cüppers, Michael

425

State of Jet Noise Prediction-NASA Perspective  

NASA Technical Reports Server (NTRS)

This presentation covers work primarily done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. To provide motivation and context, the presentation starts with a brief overview of the Airport Noise Technical Challenge. It then covers the state of NASA s jet noise prediction tools in empirical, RANS-based, and time-resolved categories. The empirical tools, requires seconds to provide a prediction of noise spectral directivity with an accuracy of a few dB, but only for axisymmetric configurations. The RANS-based tools are able to discern the impact of three-dimensional features, but are currently deficient in predicting noise from heated jets and jets with high speed and require hours to produce their prediction. The time-resolved codes are capable of predicting resonances and other time-dependent phenomena, but are very immature, requiring months to deliver predictions without unknown accuracies and dependabilities. In toto, however, when one considers the progress being made it appears that aeroacoustic prediction tools are soon to approach the level of sophistication and accuracy of aerodynamic engineering tools.

Bridges, James E.

2008-01-01

426

Noise reduction in fossil power plant draft fans  

SciTech Connect

Using a 20 in. dia fan noise testing facility, which was constructed at the University of Houston for this project, it has been demonstrated that a substantial reduction in the noise level of a centrifugal fan which has a pronounced tone can be achieved by incorporating a quarter-wavelength resonator in the fan casing near the cut-off part of the scroll. The resonator is tuned to the blade passing frequency of the fan by adjusting its length. It acts to reduce the level of the tonal component of the noise by cancelling the sound producing pressure pulses generated by the interaction of the fluid leaving the impeller blades with the solid cut-off of the fan casing. By proper tuning of the resonator and placement of the resonator's perforated mouth near the cut-off region where the pressure fluctuations are most intense, reductions of up to 20 dB in the sound pressure level of the blade passing frequency tone have been observed. Integration of the resonator into the fan casing design provides noise level reductions in both inlet and outlet ducts simultaneously. Reductions are independent of changes in duct impedance due to different end conditions. While the noise reduction method is effective over a wide range of aerodynamic loading conditions, it does not adversely affect the performance of the fan.

Koopmann, G.H.; Neise, W.

1983-10-01

427

Aerodynamic detuning for aeroelastic control of stability and forced response of supersonic rotors  

NASA Technical Reports Server (NTRS)

An unsteady aerodynamic model is developed to analyze flutter and aerodynamically forced response of aerodynamically detuned supersonic axial flow rotors. Alternate blade aerodynamic detuning is considered, accomplished by alternating the circumferential spacing of adjacent blades as small solidity variations which do not have a dominant effect on the steady performance of a rotor. The unsteady aerodynamics are determined by developing an influence coefficient technique which is appropriate for both aerodynamically tuned and detuned rotor configurations. Torsion mode rotor stability and aerodynamically forced response are then analyzed with this unsteady aerodynamic model by combining it with a single-degree-of-freedom structural model. The effects of this detuning on the flutter and forced response characteristics of supersonic axial flow rotors is then demonstrated by considering baseline twelve bladed rotors.

Spara, Karen M.; Fleeter, Sanford

1991-01-01

428

Product design and development of an aerodynamic hydration system for bicycling and triathlon  

E-print Network

Proper hydration and aerodynamic performance are both essential needs of a competitive cyclist or triathlete. Several aerodynamic systems have been developed for use on bicycles but few have been designed to be truly ...

Cote, Mark (Mark Brian)

2007-01-01

429

Advanced Aerodynamic Design of Passive Porosity Control Effectors  

NASA Technical Reports Server (NTRS)

This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

2001-01-01

430

Grid sensitivity for aerodynamic optimization and flow analysis  

NASA Technical Reports Server (NTRS)

After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

Sadrehaghighi, I.; Tiwari, S. N.

1993-01-01

431

Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight  

NASA Astrophysics Data System (ADS)

In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

Park, H.; Choi, H.

432

Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics  

NASA Technical Reports Server (NTRS)

A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

Morelli, Eugene A.

1997-01-01

433

Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics  

NASA Technical Reports Server (NTRS)

A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

Morelli, Eugene A.

1998-01-01

434

Optimization of aerodynamic designs using computational fluid dynamics  

NASA Astrophysics Data System (ADS)

An aerodynamic design optimization technique which couples direct optimization algorithms with the analysis capability provided by appropriate computational fluid dynamics (CFD) programs is presented. This technique is intended to be an aid in designing the aerodynamic shapes and test conditions required for the successful simulation of aircraft engine inlet conditions in a ground test environment. However, the method is applicable to other aerodynamic design problems. The approach minimizes a nonlinear least-squares objective function which may be defined in a region remote to the geometric surface being optimized. In this study finite-difference Euler and Navier-Stokes codes were applied to obtain the objective function evaluations, although the optimization method could be coupled with any CFD analysis technique. Results are presented for a NACA0012 airfoil, convergent/divergent nozzles, and a planar, supersonic forebody simulator design.

Huddleston, D. H.; Mastin, C. W.

1990-03-01

435

Aerodynamic characteristics of cruciform missiles at high angles of attack  

NASA Technical Reports Server (NTRS)

An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.

Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.

1987-01-01

436

Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers  

NASA Technical Reports Server (NTRS)

The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

Storms, Bruce; Salari, Kambiz; Babb, Alex

2008-01-01

437

Aerodynamic design of electric and hybrid vehicles: A guidebook  

NASA Technical Reports Server (NTRS)

A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

Kurtz, D. W.

1980-01-01

438

Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations  

NASA Technical Reports Server (NTRS)

Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

1986-01-01

439

Passive Porous Treatment for Reducing Flap Side-Edge Noise  

NASA Technical Reports Server (NTRS)

A passive porous treatment has been proposed as a means of suppressing noise generated by the airflow around the side edges of partial-span flaps on airplane wings when the flaps are extended in a high-lift configuration. The treatment proposed here does not incur any aerodynamic penalties and could easily be retrofit to existing airplanes. The treatment could also be applied to reduce noise generated by turbomachinery, including wind turbines. Innovative aspects of the proposed treatment include a minimum treatment area and physics-based procedure for treatment design. The efficacy of the treatment was confirmed during wind-tunnel experiments at NASA Ames, wherein the porous treatment was applied to a minute surface area in the vicinity of a flap edge on a 26-percent model of Boeing 777-200 wing.

Choudhari, Meelan M.; Khorrami, Mehdi R.

2008-01-01

440

Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise  

NASA Technical Reports Server (NTRS)

In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

Goldstein, Marvin E.; Envia, E.

2002-01-01

441

Propeller Study. Part 2: the Design of Propellers for Minimum Noise  

NASA Technical Reports Server (NTRS)

The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.

Ormsbee, A. I.; Woan, C. J.

1977-01-01

442

Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces  

NASA Technical Reports Server (NTRS)

An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoust