Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Multi-objective aerodynamic shape optimization of small livestock trailers
NASA Astrophysics Data System (ADS)
Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.
2013-11-01
This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Reasoning about Function Objects
NASA Astrophysics Data System (ADS)
Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian
Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
A scheme is presented for realizing any function, combinational or sequential, in a single universal function scheme, termed the universal function object UF. This scheme is addressed to the problem of the proliferation of the number of parts (cards, chips) necessary for conventional implementation in an LSI technology of a computer system. The UF implementation will use about ten times more circuits than a conventional implementation regardless of the size of the design. The UF approach also includes general-purpose spares for failing circuits. The procedure could be used both at manufacture to increase yields, as well as to achieve automatic repair.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions
NASA Astrophysics Data System (ADS)
Capon, Christopher; Boyce, Russell; Brown, Melrose
2016-07-01
Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.
1994-01-01
Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
Experimental characterization of high speed centrifugal compressor aerodynamic forcing functions
NASA Astrophysics Data System (ADS)
Gallier, Kirk
The most common and costly unexpected post-development gas turbine engine reliability issue is blade failure due to High Cycle Fatigue (HCF). HCF in centrifugal compressors is a coupled nonlinear fluid-structure problem for which understanding of the phenomenological root causes is incomplete. The complex physics of this problem provides significant challenges for Computational Fluid Dynamics (CFD) techniques. Furthermore, the available literature fails to address the flow field associated with the diffuser potential field, a primary cause of forced impeller vibration. Because of the serious nature of HCF, the inadequacy of current design approaches to predict HCF, and the fundamental lack of benchmark experiments to advance the design practices, there exists a need to build a database of information specific to the nature of the diffuser generated forcing function as a foundation for understanding flow induced blade vibratory failure. The specific aim of this research is to address the fundamental nature of the unsteady aerodynamic interaction phenomena inherent in high-speed centrifugal compressors wherein the impeller exit flow field is dynamically modulated by the vaned diffuser potential field or shock structure. The understanding of this unsteady aerodynamic interaction is fundamental to characterizing the impeller forcing function. Unsteady static pressure measurement at several radial and circumferential locations in the vaneless space offer a depiction of pressure field radial decay, circumferential variation and temporal fluctuation. These pressure measurements are coupled with high density, full field measurement of the velocity field within the diffuser vaneless space at multiple spanwise positions. The velocity field and unsteady pressure field are shown to be intimately linked. A strong momentum gradient exiting the impeller is shown to extend well across the vaneless space and interact with the diffuser vane leading edge. The deterministic unsteady
Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.
NREL Unsteady Aerodynamics Experiment phase 3 test objectives and preliminary results
Simms, D.A.; Fingersh, L.J.; Butterfield, C.P.
1995-09-01
The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve a wind turbine technology. One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent install controlled HAWTs. Optimally twisted blades and innovative data acquisition systems will be used in these tests. data can now be acquired and viewed interactively during turbine operations. This paper describes the Unsteady Aerodynamics Experiment and highlights planned future research activities.
Cross-spectral recognition method of bridge deck aerodynamic admittance function
NASA Astrophysics Data System (ADS)
Zhao, Lin; Ge, Yaojun
2015-12-01
This study proposes a new identification algorithm about the admittance function, which can estimate the full set of six aerodynamic admittance functions considering cross power spectral density functions about the forces and the turbulence components. The method was first numerically validated through Monte Carlo simulations, and then adopted to estimate the aerodynamic admittance of a streamlined bridge deck. The identification method was further validated through a comparison between the numerical calculation and wind tunnel tests on a moving bridge section.
NASA Technical Reports Server (NTRS)
Morelli, E. A.; Proffitt, M. S.
1999-01-01
The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Parallel computing of overset grids for aerodynamic problems with moving objects
NASA Astrophysics Data System (ADS)
Prewitt, Nathan Coleman
When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. Therefore, store separation analysis is used to certify the safety of any proposed drop. Time accurate computational fluid dynamics (CFD) offers the option of calculating store separation trajectories from first principles. In the Chimera grid scheme, a set of independent, overlapping, structured grids are used to decompose the domain of interest. This allows the use of efficient structured grid flow solvers and associated boundary conditions, and allows for grid motion without stretching or regridding. However, these advantages are gained in exchange for the requirement to establish communication links between the overlapping grids via a process referred to as "grid assembly." Relatively little work has been done to use parallel computing for time accurate, moving body problems. Thus, new techniques are presented for the parallel implementation of the assembly of overset, Chimera grids. This work is based on the grid assembly function defined in the Beggar code, currently under development at Eglin Air Force Base, FL. The parallel performance of each implementation is analyzed and equations are presented for estimating the parallel speedup. Each successive implementation attacks the weaknesses of the previous implementation in an effort to improve the parallel performance. The first implementation achieves the solution of moving body problems on multiple processors with minimum code changes. The second implementation improves the parallel performance by hiding the execution time of the grid assembly function behind the execution time of the flow solver. The third implementation uses coarse grain data decomposition to reduce the execution time of the grid assembly function. The final implementation demonstrates the fine grain decomposition
NASA Astrophysics Data System (ADS)
Bobashev, S. V.; Mende, N. P.; Popov, P. A.; Sakharov, V. A.; Berdnikov, V. A.; Viktorov, V. A.; Oseeva, S. I.; Sadchikov, G. D.
2009-04-01
In part 1 of this paper, an algorithm for numerically solving the inverse problem of motion of a solid through the atmosphere is described that constitutes the basis for identifying the aerodynamic characteristics of an object from trajectory data and the respective identification procedure is presented. In part 2, methods evaluating the significance of desired parameters and adequacy of a mathematical model of motion, approaches to metrological certification of experimental equipment, and results of testing the algorithm are discussed.
NASA Astrophysics Data System (ADS)
Tang, Zhili
2016-06-01
This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.
Forcing function effects on unsteady aerodynamic gust response. I - Forcing functions
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The measured unsteady flow fields are compared to linear-theory gust requirements. The perforated plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. The airfoil forcing functions exhibit characteristics far from linear-theory gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. It is shown that airfoil wakes, both compressor and turbine, cannot be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Adult Roles & Functions. Objective Based Evaluation System.
ERIC Educational Resources Information Center
West Virginia State Vocational Curriculum Lab., Cedar Lakes.
This book of objective-based test items is designed to be used with the Adult Roles and Functions curriculum for a non-laboratory home economic course for grades eleven and twelve. It contains item banks for each cognitive objective in the curriculum. In addition, there is a form for the table of specifications to be developed for each unit. This…
NASA Technical Reports Server (NTRS)
Arian, Eyal; Salas, Manuel D.
1997-01-01
We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.
Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method
NASA Technical Reports Server (NTRS)
Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.
1977-01-01
The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady period flow field is generated by rotating flows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. When the forcing function did not exhibit linear-theory gust characteristics, the resulting unsteady aerodynamic response of the downstream stators was much more complex and correlated poorly with the linear-theory gust predictions. It is shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.
An introduction to generalized functions with some applications in aerodynamics and aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.
1994-01-01
In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Obara, Clifford J.
2009-01-01
This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research (HSR) program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project (CAWAP). Various flight, wind-tunnel and Computational Fluid Dynamics (CFD) data sets were generated during the CAWAP. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International (CAWAPI) and is concluded by an introduction to the results of a 5-year CFD predictive study of data.
THE OBJECT-PRESERVING FUNCTION OF SADOMASOCHISM.
Grossman, Lee
2015-07-01
The terms sadism, masochism, and sadomasochism seem to have become increasingly, if loosely, associated with aggression in psychoanalytic discourse. This is due in part to the fact that Freud's changing ideas generated confusion about the relative contributions of libido and aggression. The author reviews Freud's variable usage and offers a clinical vignette to illustrate the importance of noticing how sadomasochism may maintain a tie to the object by controlling it. The author offers a developmental speculation for the role reversibility typical of sadomasochistic manifestations. He closes with a comment on the role of sadomasochistic aims in adult sexual perversion. PMID:26198604
Object Function Facilitates Infants' Object Individuation in a Manual Search Task
ERIC Educational Resources Information Center
Kingo, Osman S.; Krojgaard, Peter
2012-01-01
This study investigates the importance of object function (action-object-outcome relations) on object individuation in infancy. Five experiments examined the ability of 9.5- and 12-month-old infants to individuate simple geometric objects in a manual search design. Experiments 1 through 4 (12-month-olds, N = 128) provided several combinations of…
Chen, Sheng Hwa; Hsiao, Tzu-Yu; Hsiao, Li-Chun; Chung, Yu-Mei; Chiang, Shu-Chiung
2007-07-01
Teachers have a high percentage of voice problems. For voice disordered teachers, resonant voice therapy is hypothesized to reduce voice problems. No research has been done on the physiological, acoustic, and aerodynamic effects of resonant voice therapy for school teachers. The purpose of this study is to investigate resonant voice therapy outcome from perceptual, physiological, acoustic, aerodynamic, and functional aspects for female teachers with voice disorders. A prospective study was designed for this research. The research subjects were 24 female teachers in Taipei. All subjects received resonant voice therapy in groups of 4 subjects, 90 minutes per session, and 1 session per week for 8 weeks. The outcome of resonant voice therapy was assessed from auditory perceptual judgment, videostroboscopic examination, acoustic measurements, aerodynamic measurements, and functional measurements before and after therapy. After therapy the severity of roughness, strain, monotone, resonance, hard attack, and glottal fry in auditory perceptual judgments, the severity of vocal fold pathology, mucosal wave, amplitude, and vocal fold closure in videostroboscopic examinations, phonation threshold pressure, and the score of physical scale in the Voice Handicap Index were significantly reduced. The speaking Fo, maximum range of speaking Fo, and maximum range of speaking intensity were significantly increased after therapy. No significant change was found in perturbation and breathiness measurements after therapy. Resonant voice therapy is effective for school teachers and is suggested as one of the therapy approaches in clinics for this population. PMID:16581227
Conflict between object structural and functional affordances in peripersonal space.
Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann
2016-10-01
Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. PMID:27327864
Pan, Bing; Jiang, Tianyun; Wu, Dafang
2014-11-01
In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed. PMID:25430144
Preschoolers' and Adults' Reliance on Object Shape and Object Function for Lexical Extension.
ERIC Educational Resources Information Center
Graham, Susan A.; Williams, Lisa D.; Huber, Joelene F.
1999-01-01
Three experiments investigated the developmental progression of reliance on object function versus object shape to extend novel words among 3- and 5-year olds and adults. Findings indicated that children focused on shape, whereas adults focused on function when extending novel words, suggesting a developmental change in the consideration of these…
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight. PMID:19762645
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
Not Available
1993-01-01
In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.
NASA Astrophysics Data System (ADS)
Bol'basov, E. N.; Lapin, I. N.; Tverdokhlebov, S. I.; Svetlichnyi, V. A.
2014-07-01
For applications in tissue engineering, three-dimensional biodegradable polymeric matrices, whose surface is functionalized by nanoparticles obtained in the liquid phase by the method of laser ablation from bulk metal (Ag or Zn) targets, are synthesized by the method of aerodynamic synthesis from a solution of poly-l-lactide acid. Their properties are investigated. It is demonstrated that the matrices represent a very porous spatial fibrous structure consisting of polymorphic fibers with diameters from 0.25 to 2.5 μm. It is established that functional coatings consisting of agglomerates of semiconductor (ZnO) or metal (Ag) nanoparticles can be produced on the surface of structural matrix elements by repeated matrix impregnation.
Career Exploration Program: A Composite Systematic Functional Objective Model.
ERIC Educational Resources Information Center
Mohamed, Othman
The composite systematic functional objective career exploration program model integrates various career development theoretical approaches. These approaches emphasize self-concept, life values, personality, the environment, and academic achievement and training as separate functions in explaining career development. Current social development in…
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds
Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers
2015-01-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
Classical methods for interpreting objective function minimization as intelligent inference
Golden, R.M.
1996-12-31
Most recognition algorithms and neural networks can be formally viewed as seeking a minimum value of an appropriate objective function during either classification or learning phases. The goal of this paper is to argue that in order to show a recognition algorithm is making intelligent inferences, it is not sufficient to show that the recognition algorithm is computing (or trying to compute) the global minimum of some objective function. One must explicitly define a {open_quotes}relational system{close_quotes} for the recognition algorithm or neural network which identifies the: (i) sample space, (ii) the relevant sigmafield of events generated by the sample space, and (iii) the {open_quotes}relation{close_quotes} for that relational system. Only when such a {open_quotes}relational system{close_quotes} is properly defined, is it possible to formally establish the sense in which computing the global minimum of an objective function is an intelligent, inference.
Neurocognitive insight and objective cognitive functioning in schizophrenia.
Burton, Cynthia Z; Harvey, Philip D; Patterson, Thomas L; Twamley, Elizabeth W
2016-03-01
Neurocognitive impairment is a core component of schizophrenia affecting everyday functioning; the extent to which individuals with schizophrenia show awareness of neurocognitive impairment (neurocognitive insight) is unclear. This study investigated neurocognitive insight and examined the cross-sectional relationships between neurocognitive insight and objective neurocognition and functional capacity performance in a large outpatient sample. 214 participants with schizophrenia-spectrum disorders completed measures of neurocognition, functional capacity, and self-reported neurocognitive problems. Latent profile analysis classified participants with regard to neuropsychological performance and self-report of neurocognitive problems. The resulting classes were then compared on executive functioning performance, functional capacity performance, and psychiatric symptom severity. More than three quarters of the sample demonstrated objective neurocognitive impairment (global deficit score≥0.50). Among the participants with neurocognitive impairment, 54% were classified as having "impaired" neurocognitive insight (i.e., reporting few neurocognitive problems despite having objective neurocognitive impairment). Participants with impaired vs. intact neurocognitive insight did not differ on executive functioning measures or measures of functional capacity or negative symptom severity, but those with intact neurocognitive insight reported higher levels of positive and depressive symptoms. A substantial portion of individuals with schizophrenia and objectively measured neurocognitive dysfunction appear unaware of their deficits. Patient self-report of neurocognitive problems, therefore, is not likely to reliably assess neurocognition. Difficulty self-identifying neurocognitive impairment appears to be unrelated to executive functioning, negative symptoms, and functional capacity. For those with intact neurocognitive insight, improving depressive and psychotic symptoms may be
Objective and automated measurement of dynamic vision functions
NASA Technical Reports Server (NTRS)
Flom, M. C.; Adams, A. J.
1976-01-01
A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.
Evolution of the luminosity function of extragalactic objects
NASA Technical Reports Server (NTRS)
Petrosian, V.
1985-01-01
A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).
Entrainment of radio frequency chaff by wind as a function of surface aerodynamic roughness.
Gillies, John A; Nickling, William G
2003-02-01
Radio frequency (RF) chaff (approximately 2-cm x 25-microm diameter aluminum-coated glass silicate cylinders) released by military aircraft during testing and training activities has the potential to become entrained by wind upon settling to the Earth's surface. Once entrained from the surface there is the potential for RF chaff to be abraded and produce PM10 and PM2.5, which are regulated pollutants and pose health concerns. A series of portable wind tunnel tests were carried out to examine the propensity of RF chaff to become entrained by wind by defining the relationship between the threshold friction velocity of RF chaff (u(*t RF chaff)) and aerodynamic roughness (z(o)) of surfaces onto which it may deposit. The test surfaces were of varying roughness including types near the Naval Air Station (NAS), Fallon, NV, where RF chaff is released. The u(*t) of this fibrous material ranged from 0.14 m/sec for a smooth playa to 0.82 m/sec for a rough crusted playa surface with larger cobble-sized (approximately 6-26-cm diameter) rocks rising above the surface. The u(*t RF chaff) is dependent on the z(o) of the surface onto which it falls as well as the physical characteristics of the roughness. The wind regime of Fallon would allow for chaff suspension events to occur should it settle on typical surfaces in the area. However, the wind climatology of this area makes the probability of such events relatively low. PMID:12617294
The functional neuroanatomy of object agnosia: A case study
Konen, Christina S.; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine
2016-01-01
Summary Cortical re-organization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. PMID:21745637
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Nozzle Aerodynamic Stability During a Throat Shift
NASA Technical Reports Server (NTRS)
Kawecki, Edwin J.; Ribeiro, Gregg L.
2005-01-01
An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.
NASA Technical Reports Server (NTRS)
Morino, L.
1980-01-01
Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.
A novel objective evaluation method for trunk function
Kinoshita, Kazuaki; Hashimoto, Masashi; Ishida, Kazunari; Yoneda, Yuki; Naka, Yuta; Kitanishi, Hideyuki; Oyagi, Hirotaka; Hoshino, Yuichi; Shibanuma, Nao
2015-01-01
[Purpose] To investigate whether an objective evaluation method for trunk function, namely the “trunk righting test”, is reproducible and reliable by testing on different observers (from experienced to beginners) and by confirming the test-retest reliability. [Subjects] Five healthy subjects were evaluated in this correlation study. [Methods] A handheld dynamometer was used in the assessments. The motor task was a trunk righting motion by moving the part with the sensor pad 10 cm outward from the original position. During measurement, the posture was held at maximum effort for 5 s. Measurement was repeated three times. Interexaminer reproducibility was examined in two physical therapists with 1 year experience and one physical therapist with 7 years of experience. The measured values were evaluated for reliability by using intraclass correlation coefficients (ICC 1.1) and interclass correlation coefficients (ICC 2.1). [Results] The test-retest reliability ICC 1.1 and ICC 2.1 were all high. The ICC 1.1 was >0.90. The ICC 2.1 was 0.93. [Conclusion] We developed the trunk righting test as a novel objective evaluation method for trunk function. As the study included inexperienced therapists, the results suggest that the trunk righting test could be used in the clinic, independent of the experience of the therapists. PMID:26157279
Unsteady aerodynamics modeling for flight dynamics application
NASA Astrophysics Data System (ADS)
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
NASA Astrophysics Data System (ADS)
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
Models for predicting objective function weights in prostate cancer IMRT
Boutilier, Justin J. Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.
2015-04-15
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR
Probabilistic objective functions for margin-less IMRT planning
NASA Astrophysics Data System (ADS)
Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel
2013-06-01
We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical
Gamma-ray luminosity function of BL Lac objects
NASA Astrophysics Data System (ADS)
Zeng, Houdun; Yan, Dahai; Zhang, Li
2014-06-01
The gamma-ray luminosity function (GLF) of BL Lac objects is constructed by using a sample of BL Lac objects with redshifts selected from the Second LAT AGN catalog. The GLFs of BL Lacs in the frame of the pure density evolution (PDE), the pure luminosity evolution (PLE), and the luminosity-dependent density (LDDE) models are determined by using the Markov Chain Monte Carlo (MCMC) technique, respectively. Our results suggest that the PDE model can give best description for BL Lac GLF based on the combination of constraints of model parameters and good fits to the observed data of Fermi-Large Area Telescope (LAT) BL Lacs, but other two models (PLE and LDDE) cannot be excluded. Based on our constructed GLFs, the contribution to the extragalactic diffuse gamma-ray background (EGRB) from BL Lacs is estimated, and ˜1-5 per cent of the EGRB in the 0.1-100 GeV band is found to come from unresolved BL Lacs (including the cascade emission). In addition, it is found that the BL Lac GLF is very different from flat spectrum radio quasar GLF and then the contribution of blazars to the EGRB should be estimated separately.
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
FUNCTION FOLLOWS FORM: ACTIVATION OF SHAPE & FUNCTION FEATURES DURING OBJECT IDENTIFICATION
Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.
2011-01-01
Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function follows form. We used eye movements to explore whether activating one object’s concept leads to the activation of others that share perceptual (shape) or abstract (function) features. Participants viewed four-picture displays and clicked on the picture corresponding to a heard word. In critical trials, the conceptual representation of one of the objects in the display was similar in shape or function (i.e., its purpose) to the heard word. Importantly, this similarity was not apparent in the visual depictions (e.g., for the target “frisbee,” the shape-related object was a triangular slice of pizza – a shape that a frisbee cannot take); preferential fixations on the related object were therefore attributable to overlap of the conceptual representations on the relevant features. We observed relatedness effects for both shape and function, but shape effects occurred earlier than function effects. We discuss the implications of these findings for current accounts of the representation of semantic memory. PMID:21417543
Pawar, Sachin S.; Garcia, Guilherme J.M.; Kimbell, Julia S.; Rhee, John S.
2011-01-01
The outcomes of aesthetic and functional nasal surgery are difficult to assess objectively due to the intricate balance between nasal form and function. Despite historical emphasis on patient-reported subjective measures, objective measures are gaining importance in both research and the current outcomes-driven healthcare environment. Objective measures presently available have several shortcomings which limit their routine clinical use. In particular, the low correlation between objective and subjective measures poses a major challenge. However, advances in computer, imaging, and bioengineering technology are now setting the stage for the development of innovative objective assessment tools for nasal surgery that can potentially address some of the current limitations. Assessment of nasal form following aesthetic surgery is evolving from two-dimensional analysis to more sophisticated three-dimensional analysis. Similarly, assessment of nasal function is evolving with the introduction of computational fluid dynamics techniques, which allow for a detailed description of the biophysics of nasal airflow. In this paper, we present an overview of objective measures in both aesthetic and functional nasal surgery and discuss future trends and applications that have the potential to change the way we assess nasal form and function. PMID:20665410
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Probe and object function reconstruction in incoherent stem imaging
Nellist, P.D.; Pennycook, S.J.
1996-09-01
Using the phase-object approximation it is shown how an annular dark- field (ADF) detector in a scanning transmission electron microscope (STEM) leads to an image which can be described by an incoherent model. The point spread function is found to be simply the illuminating probe intensity. An important consequence of this is that there is no phase problem in the imaging process, which allows various image processing methods to be applied directly to the image intensity data. Using an image of a GaAs<110>, the probe intensity profile is reconstructed, confirming the existence of a 1.3 {Angstrom} probe in a 300kV STEM. It is shown that simply deconvolving this reconstructed probe from the image data does not improve its interpretability because the dominant effects of the imaging process arise simply from the restricted resolution of the microscope. However, use of the reconstructed probe in a maximum entropy reconstruction is demonstrated, which allows information beyond the resolution limit to be restored and does allow improved image interpretation.
Expertise Increases the Functional Overlap between Face and Object Perception
ERIC Educational Resources Information Center
McKeeff, Thomas J.; McGugin, Rankin W.; Tong, Frank; Gauthier, Isabel
2010-01-01
Recent studies indicate that expertise with objects can interfere with face processing. Although competition occurs between faces and objects of expertise, it remains unclear whether this reflects an expertise-specific bottleneck or the fact that objects of expertise grab attention and thereby consume more central resources. We investigated the…
Reducing uncertainty about objective functions in adaptive management
Williams, B.K.
2012-01-01
This paper extends the uncertainty framework of adaptive management to include uncertainty about the objectives to be used in guiding decisions. Adaptive decision making typically assumes explicit and agreed-upon objectives for management, but allows for uncertainty as to the structure of the decision process that generates change through time. Yet it is not unusual for there to be uncertainty (or disagreement) about objectives, with different stakeholders expressing different views not only about resource responses to management but also about the appropriate management objectives. In this paper I extend the treatment of uncertainty in adaptive management, and describe a stochastic structure for the joint occurrence of uncertainty about objectives as well as models, and show how adaptive decision making and the assessment of post-decision monitoring data can be used to reduce uncertainties of both kinds. Different degrees of association between model and objective uncertainty lead to different patterns of learning about objectives. ?? 2011.
Embedding objects during 3D printing to add new functionalities.
Yuen, Po Ki
2016-07-01
A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication
An Eavesdropping Game with SINR as an Objective Function
NASA Astrophysics Data System (ADS)
Garnaev, Andrey; Trappe, Wade
We examine eavesdropping over wireless channels, where secret communication in the presence of an eavesdropper is formulated as a zero-sum game. In our problem, the legitimate receiver does not have complete knowledge about the environment, i.e. does not know the exact values of the channels gains, but instead knows just their distribution. To communicate secretly, the user must decide how to transmit its information across subchannels under a worst-case condition and thus, the legal user faces a max-min optimization problem. To formulate the optimization problem, we pose the environment as a secondary player in a zero-sum game whose objective is to hamper communication by the user. Thus, nature faces a min-max optimization problem. In our formulation, we consider signal-to-interference ratio (SINR) as a payoff function. We then study two specific scenarios: (i) the user does not know the channels gains; and (ii) the user does not know how the noise is distributed among the main channels. We show that in model (i) in his optimal behavior the user transmits signal energy uniformly across a subset of selected channels. In model (ii), if the user does not know the eavesdropper’s channel gains he/she also employs a strategy involving uniformly distributing energy across a subset of channels. However, if the user acquires extra knowledge about environment, e.g. the eavesdropper’s channel gains, the user may better tune his/her power allocation among the channels. We provide criteria for selecting which channels the user should transmit on by deriving closed-form expressions for optimal strategies for both players.
How You Use It Matters: Object Function Guides Attention During Visual Search in Scenes.
Castelhano, Monica S; Witherspoon, Richelle L
2016-05-01
How does one know where to look for objects in scenes? Objects are seen in context daily, but also used for specific purposes. Here, we examined whether an object's function can guide attention during visual search in scenes. In Experiment 1, participants studied either the function (function group) or features (feature group) of a set of invented objects. In a subsequent search, the function group located studied objects faster than novel (unstudied) objects, whereas the feature group did not. In Experiment 2, invented objects were positioned in locations that were either congruent or incongruent with the objects' functions. Search for studied objects was faster for function-congruent locations and hampered for function-incongruent locations, relative to search for novel objects. These findings demonstrate that knowledge of object function can guide attention in scenes, and they have important implications for theories of visual cognition, cognitive neuroscience, and developmental and ecological psychology. PMID:27022016
Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon
2016-03-01
According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. PMID:26827163
Obtaining Functional Results: Relating Needs Assessment, Needs Analysis, and Objectives.
ERIC Educational Resources Information Center
Kaufman, Roger
1986-01-01
An algorithm or decision chart is presented which provides basic decision steps to help management decide what data should be collected to derive valid and correct objectives, and to determine what levels of objectives will be selected relative to products, outputs, or outcomes of an organization. (MBR)
Boronat, Consuelo B; Buxbaum, Laurel J; Coslett, H Branch; Tang, Kathy; Saffran, Eleanor M; Kimberg, Daniel Y; Detre, John A
2005-05-01
A prominent account of conceptual knowledge proposes that information is distributed over visual, tactile, auditory, motor and verbal-declarative attribute domains to the degree to which these features were activated when the knowledge was acquired [D.A. Allport, Distributed memory, modular subsystems and dysphagia, In: S.K. Newman, R. Epstein (Eds.), Current perspectives in dysphagia, Churchill Livingstone, Edinburgh, 1985, pp. 32-60]. A corollary is that when drawing upon this knowledge (e.g., to answer questions), particular aspects of this distributed information is re-activated as a function of the requirements of the task at hand [L.J. Buxbaum, E.M. Saffran, Knowledge of object manipulation and object function: dissociations in apraxic and non-apraxic subjects. Brain and Language, 82 (2002) 179-199; L.J. Buxbaum, T. Veramonti, M.F. Schwartz, Function and manipulation tool knowledge in apraxia: knowing 'what for' but not 'how', Neurocase, 6 (2000) 83-97; W. Simmons, L. Barsalou, The similarity-in-topography principle: Reconciling theories of conceptual deficits, Cognitive Neuropsychology, 20 (2003) 451-486]. This account predicts that answering questions about object manipulation should activate brain regions previously identified as components of the distributed sensory-motor system involved in object use, whereas answering questions about object function (that is, the purpose that it serves) should activate regions identified as components of the systems supporting verbal-declarative features. These predictions were tested in a functional magnetic resonance imaging (fMRI) study in which 15 participants viewed picture or word pairs denoting manipulable objects and determined whether the objects are manipulated similarly (M condition) or serve the same function (F condition). Significantly greater and more extensive activations in the left inferior parietal lobe bordering the intraparietal sulcus were seen in the M condition with pictures and, to a lesser
Configuration Aerodynamics: Past - Present - Future
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.
1999-01-01
The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.
Sound symbolic naming of novel objects is a graded function.
Thompson, Patrick D; Estes, Zachary
2011-12-01
Although linguistic traditions of the last century assumed that there is no link between sound and meaning (i.e., arbitrariness), recent research has established a nonarbitrary relation between sound and meaning (i.e., sound symbolism). For example, some sounds (e.g., /u/ as in took) suggest bigness whereas others (e.g., /i/ as in tiny) suggest smallness. We tested whether sound symbolism only marks contrasts (e.g., small versus big things) or whether it marks object properties in a graded manner (e.g., small, medium, and large things). In two experiments, participants viewed novel objects (i.e., greebles) of varying size and chose the most appropriate name for each object from a list of visually or auditorily presented nonwords that varied incrementally in the number of "large" and "small" phonemes. For instance, "wodolo" contains all large-sounding phonemes, whereas "kitete" contains all small-sounding phonemes. Participants' choices revealed a graded relationship between sound and size: The size of the object linearly predicted the number of large-sounding phonemes in its preferred name. That is, small, medium, and large objects elicited names with increasing numbers of large-sounding phonemes. The results are discussed in relation to cross-modal processing, gesture, and vocal pitch. PMID:21895561
Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
s2: Object oriented wrapper for functions on the sphere
NASA Astrophysics Data System (ADS)
McEwen, Jason C.
2016-06-01
The s2 package can represent any arbitrary function defined on the sphere. Both real space map and harmonic space spherical harmonic representations are supported. Basic sky representations have been extended to simulate full sky noise distributions and Gaussian cosmic microwave background realisations. Support for the representation and convolution of beams is also provided. The code requires HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001).
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems
Stipanovic, Dusan M.; Tomlin, Claire J.; Leitmann, George
2012-12-15
In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.
Quantitative objective assessment of peripheral nociceptive C fibre function.
Parkhouse, N; Le Quesne, P M
1988-01-01
A technique is described for the quantitative assessment of peripheral nociceptive C fibre function by measurement of the axon reflex flare. Acetylcholine, introduced by electrophoresis, is used to stimulate a ring of nociceptive C fibre endings at the centre of which the increase in blood flow is measured with a laser Doppler flowmeter. This flare (neurogenic vasodilatation) has been compared with mechanically or chemically stimulated non-neurogenic cutaneous vasodilation. The flare is abolished by local anaesthetic and is absent in denervated skin. The flare has been measured on the sole of the foot of 96 healthy subjects; its size decreases with age in males, but not in females. Images PMID:3351528
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.
ERIC Educational Resources Information Center
Setzler, Hubert H., Jr.; And Others
The conceptual tools used in the communication/language objectives-based system (C/LOBS), which supports the front-end analysis efforts of the Defense Language Institute Foreign Language Center, are examined. The C/LOBS project, which is described in 13 volumes and an executive summary, functions as a subsystem of the instructional systems…
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-01-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
An Adaptive Objective Function for Evaporation Duct Estimations from Radar Sea Echo
NASA Astrophysics Data System (ADS)
Zhang, Jin-Peng; Wu, Zhen-Sen; Wang, Bo
2011-03-01
In the process of atmospheric refractivity estimation from radar sea echo, the objective function that calculates the match between the predicted and observed field plays an important role. To reduce the effect of noises from long ranges on the objective function, we present a selection method of final ranges for inversion. An adaptive objective function is introduced with a linear distance weight added to the least squares error function (LSEF). Through an evaporation duct height (EDH) retrieving process, the performance of the adaptive objective function is evaluated. The result illustrates that the present method performs better than the LSEF in EDH inversions from clutters with different clutter-to-noise ratios.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.
Aerodynamic Loads Induced by a Rotor on a Body of Revolution
NASA Technical Reports Server (NTRS)
Smith, Charles A.; Betzina, Mark D.
1986-01-01
A wind-tunnel investigation was conducted in which aerodynamic loads were measured on a small-scale helicopter rotor and a body of revolution located close to it as an idealized model of a fuselage. The objective was to study the aerodynamic interactions as a function of forward speed, rotor thrust, and rotor/body position. Results show that body loads, normalized by rotor thrust, are functions of the ratio between free-stream velocity and the hover-induced velocity predicted by momentum theory.
Evaluation and modeling of aerodynamic properties of mung bean seeds
NASA Astrophysics Data System (ADS)
Shahbazi, Feizollah
2015-01-01
Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.
Active Control of Aerodynamic Noise Sources
NASA Technical Reports Server (NTRS)
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster
NASA Astrophysics Data System (ADS)
Chiba, Kazuhisa; Obayashi, Shigeru; Nakahashi, Kazuhiro
The wing shape of flyback booster for a Two-Stage-To-Orbit reusable launch vehicle has been optimized considering four objectives. The objectives are to minimize the shift of aerodynamic center between supersonic and transonic conditions, transonic pitching moment and transonic drag coefficient, as well as to maximize subsonic lift coefficient. The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras one-equation model is used in aerodynamic evaluation accounting for possible flow separations. Adaptive range multi-objective genetic algorithm is used for the present study because tradeoff can be obtained using a smaller number of individuals than conventional multi-objective genetic algorithms. Consequently, four-objective optimization has produced 102 non-dominated solutions, which represent tradeoff information among four objective functions. Moreover, Self-Organizing Maps have been used to analyze the present non-dominated solutions and to visualize tradeoffs and influence of design variables to the four objectives. Self-Organizing Maps contoured by the four objective functions and design variables are found to visualize tradeoffs and effects of each design variable.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
Aerodynamic effects of flexibility in flapping wings
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.
2010-01-01
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic
An Analysis of the Relationship Between the Form and Function of Educational Objectives.
ERIC Educational Resources Information Center
Langley, Lorita
The purposes of the study were to determine what relationships between form and function of educational objectives can be identified in curriculum literature, and what philosophical beliefs in terms of the axiology of curriculum design are compatible with various combinations of form and function of objectives. A search of the literature yielded…
The Slippery Road from Actions on Objects to Functions and Variables
ERIC Educational Resources Information Center
Paz, Tamar; Leron, Uri
2009-01-01
Functions are all around us, disguised as actions on concrete objects. Composition of functions, too, is all around us, because these actions can be performed in succession, the output of one serving as the input for the next. In terms of Gray and Tall's (2001) "embodied objects" or Lakoff and Nunez's (2000) "mathematical idea analysis," this…
Function Follows Form: Activation of Shape and Function Features during Object Identification
ERIC Educational Resources Information Center
Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.
2011-01-01
Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function…
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
(Aerodynamic focusing of particles and heavy molecules)
de la Mora, J.F.
1990-01-08
By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
Computation of dragonfly aerodynamics
NASA Astrophysics Data System (ADS)
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela
2016-01-01
Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects
Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela
2016-01-01
Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects
The impact of objective function selection on the influence of individual data points
NASA Astrophysics Data System (ADS)
Wright, David; Thyer, Mark; Westra, Seth; McInerney, David
2016-04-01
Across the field of hydrology practitioners apply a range of objective functions which are selected based upon the intended model application and suitability of the objective function assumptions to the data in question. Despite most objective functions providing fundamentally different calibration results there are currently limited methods for comparison of alternatives. Influence diagnostics quantify the impact of individual data points on model performance, parameters and predictions. The goal of this study is to use compare four commonly applied objective functions in hydrology using influence diagnostics to provide insights on how objective function selection changes the influence of individual data points on model calibration. The specific aims are to: 1) explore the impact on magnitude of influence of objective functions, 2) investigate similarities between influential points identified by objective functions and, 3) categorise flows that are influential under objective functions. We use case-deletion influence diagnostics to examine four objective functions: Standard Least Squares (SLS), Weighted Least Squares (WLS), Log transformed flows (LOG) and the Kling-Gupta Efficiency (KGE). We apply these objective functions to six scenarios: two conceptual hydrological models (GR4J and IHACRES) across three catchment case studies with varying runoff coefficients (0.14 to 0.57). We quantify influence using the case-deletion relative change in flow metrics: mean flow prediction, maximum flow prediction, and the 10th percentile low flow prediction. The results show that when using objective functions SLS and KGE influential data points have larger magnitude influence (maximum of 10% change in the flow metrics across all data points for both objective functions) than heteroscedastic WLS and LOG (WLS maximum of 8% and LOG maximum of 6% change in the flow metrics). SLS and KGE identify similar influential points (75% of the most influential points are common to both
NASA Technical Reports Server (NTRS)
Trosset, Michael W.
1999-01-01
Comprehensive computational experiments to assess the performance of algorithms for numerical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear objective functions. We propose a procedure that is based on the convenient fiction that objective functions are realizations of stochastic processes. This report details the calculations necessary to implement our procedure for the case of certain stationary Gaussian processes and presents a specific implementation in the statistical programming language S-PLUS.
Matching and Naming Objects by Shape or Function: Age and Context Effects in Preschool Children.
ERIC Educational Resources Information Center
Deak, Gedeon O.; Ray, Shanna D.; Pick, Anne D.
2002-01-01
Three experiments tested 3- and 4-year-olds' use of abstract principles to classify and label objects by shape or function. Findings indicated that 4-year-olds readily adopted either rule when instructed to match objects by shape or function, but 3-year-olds followed only the shape rule. Without a rule, 4-year-olds tended to match by shape unless…
Functionality of Objectives in the Program and Education Plans of Persons with Mental Retardation.
ERIC Educational Resources Information Center
Keyes, Joseph B.; Karst, Ralph R.
This study examined the relationship between the functionality of training objectives established in Individual Program Plans (IPPs) and Individual Education Plans (IEPs) of persons with severe and profound mental retardation and different service delivery environments. Each training objective in the IPPs and IEPs of 78 individuals was classified…
Action Semantic Knowledge about Objects Is Supported by Functional Motor Activation
ERIC Educational Resources Information Center
van Elk, Michiel; van Schie, Hein T.; Bekkering, Harold
2009-01-01
The present study assessed the functional organization of action semantics by asking subjects to categorize pictures of an actor holding objects with a correct or incorrect grip at either a correct or incorrect goal location. Overall, reaction times were slower if the object was presented with an inappropriate posture, and this effect was stronger…
ERIC Educational Resources Information Center
Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.
2010-01-01
We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…
Madan, Christopher R; Chen, Yvonne Y; Singhal, Anthony
2016-01-01
It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224
Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony
2016-01-01
It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224
A two-level parallel direct search implementation for arbitrarily sized objective functions
Hutchinson, S.A.; Shadid, N.; Moffat, H.K.
1994-12-31
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
The aerodynamics of propellers
NASA Astrophysics Data System (ADS)
Wald, Quentin R.
2006-02-01
The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
ERIC Educational Resources Information Center
Setzler, Hubert H., Jr.; And Others
An English function catalog and rolebooks are presented as part of the communication/language objectives-based system (C/LOBS) that supports the front-end analysis efforts of the Defense Language Institute Foreign Language Center. The C/LOBS project, which is described in 13 volumes and an executive summary, functions as a subsystem of the…
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
Launch vehicle aerodynamic data base development comparison with flight data
NASA Technical Reports Server (NTRS)
Hamilton, J. T.; Wallace, R. O.; Dill, C. C.
1983-01-01
The aerodynamic development plan for the Space Shuttle integrated vehicle had three major objectives. The first objective was to support the evolution of the basic configuration by establishing aerodynamic impacts to various candidate configurations. The second objective was to provide continuing evaluation of the basic aerodynamic characteristics in order to bring about a mature data base. The third task was development of the element and component aerodynamic characteristics and distributed air loads data to support structural loads analyses. The complexity of the configurations rendered conventional analytic methods of little use and therefore required extensive wind tunnel testing of detailed complex models. However, the ground testing and analyses did not predict the aerodynamic characteristics that were extracted from the Space Shuttle flight test program. Future programs that involve the use of vehicles similar to the Space Shuttle should be concerned with the complex flow fields characteristics of these types of complex configurations.
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Aerodynamics of Heavy Vehicles
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Lee, Jungil; Park, Hyungmin
2014-01-01
We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.
Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Cruz, Juna R.; Lingard, J. Stephen
2006-01-01
In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.
Objective functions of online weight noise injection training algorithms for MLPs.
Ho, Kevin; Leung, Chi-Sing; Sum, John
2011-02-01
Injecting weight noise during training has been a simple strategy to improve the fault tolerance of multilayer perceptrons (MLPs) for almost two decades, and several online training algorithms have been proposed in this regard. However, there are some misconceptions about the objective functions being minimized by these algorithms. Some existing results misinterpret that the prediction error of a trained MLP affected by weight noise is equivalent to the objective function of a weight noise injection algorithm. In this brief, we would like to clarify these misconceptions. Two weight noise injection scenarios will be considered: one is based on additive weight noise injection and the other is based on multiplicative weight noise injection. To avoid the misconceptions, we use their mean updating equations to analyze the objective functions. For injecting additive weight noise during training, we show that the true objective function is identical to the prediction error of a faulty MLP whose weights are affected by additive weight noise. It consists of the conventional mean square error and a smoothing regularizer. For injecting multiplicative weight noise during training, we show that the objective function is different from the prediction error of a faulty MLP whose weights are affected by multiplicative weight noise. With our results, some existing misconceptions regarding MLP training with weight noise injection can now be resolved. PMID:21189237
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Aerodynamic optimum design of transonic turbine cascades using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Jun; Feng, Zhenping; Chang, Jianzhong; Shen, Zuda
1997-06-01
This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation. The Genetic Algorithms control the evolution of a population of cascades towards an optimum design. The fitness value of each string is evaluated using the flow solver. The design procedure has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.
Niamul Islam, Naz; Hannan, M. A.; Shareef, Hussain; Mohamed, Azah; Salam, M. A.
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability. PMID:24977210
An objective function for Hebbian self-limiting synaptic plasticity rules
NASA Astrophysics Data System (ADS)
Gros, Claudius; Eckmann, Samuel; Echeveste, Rodrigo
Objective functions, formulated in terms of information theoretical measures with respect to the input and output probability distributions, provide a useful framework for the formulation of guiding principles for information processing systems, such as neural networks. In the present work, a guiding principle for neural plasticity is formulated in terms of an objective function expressed as the Fisher information with respect to an operator that we denote as the synaptic flux. By minimization of this objective function, we obtain Hebbian self-limiting synaptic plasticity rules, avoiding unbounded weight growth. Furthermore, we show how the rules are selective to directions of maximal negative excess kurtosis, making them suitable for independent component analysis. As an application, the non-linear bars problem is studied, in which each neuron is presented with a non-linear superposition of horizontal and vertical bars. We show that, under the here presented rules, the neurons are able to find the independent components of the input.
NASA Astrophysics Data System (ADS)
Jiménez Tejero, C. E.; Dagnino, D.; Sallarès, V.; Ranero, C. R.
2015-10-01
Ongoing works on full waveform inversion (FWI) are yielding an increasing number of objective functions as alternative to the traditional L2-waveform. These studies aim at designing more robust functions and inversion strategies to reduce the intrinsic dependence of the FWI results on (1) the initial model and (2) the lowest frequency present in field data. In this work, we perform a comparative study of five objective functions in time domain under a common 2-D-acoustic FWI scheme using the Marmousi model as benchmark. In particular, we compare results obtained with L2-based functions that consider the minimization of different wave attributes; the waveform-based, non-integration-method; instantaneous envelope; a modified version of the wrapped instantaneous phase and an improved version of the cross-correlation travel time (CCTT) method; and hybrid strategies combining some of them. We evaluate the robustness of these functionals as a function of their performance with and without low frequencies in the data and the presence of random white Gaussian noise. Our results reveal promising strategies to invert noisy data with limited low-frequency content (≥4 Hz), which is the single strategy using the instantaneous phase objective function followed by the hybrid strategies using the instantaneous phase or CCTT as initial models, in particular the combinations [I. Phase + Waveform], [CCTT + Waveform] and [CCTT + I. Phase].
Calculation of the twilight visibility function of near-sun objects
NASA Technical Reports Server (NTRS)
Kastner, S. O.
1976-01-01
The visibility function, defined here as the magnitude difference between the excess brightness of a given object and that of the background sky, of near-sun objects during twilight is obtained from a general calculation which considers the twilight sky background, atmospheric extinction, and night glow. Visibility curves are computed for a number of cases in which observations have been recorded, particularly that of comet Kohoutek. For this object, the computed visibility maxima agree well in time with the reported times of observation.
NASA Astrophysics Data System (ADS)
Buendía, M.; Salvador, R.; Cibrián, R.; Laguia, M.; Sotoca, J. M.
1999-01-01
The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Yee, Eiling; Drucker, Daniel M; Thompson-Schill, Sharon L
2010-04-01
Sensorimotor-based theories of semantic memory contend that semantic information about an object is represented in the neural substrate invoked when we perceive or interact with it. We used fMRI adaptation to test this prediction, measuring brain activation as participants read pairs of words. Pairs shared function (flashlight-lantern), shape (marble-grape), both (pencil-pen), were unrelated (saucer-needle), or were identical (drill-drill). We observed adaptation for pairs with both function and shape similarity in left premotor cortex. Further, degree of function similarity was correlated with adaptation in three regions: two in the left temporal lobe (left medial temporal lobe, left middle temporal gyrus), which has been hypothesized to play a role in mutimodal integration, and one in left superior frontal gyrus. We also found that degree of manipulation (i.e., action) and function similarity were both correlated with adaptation in two regions: left premotor cortex and left intraparietal sulcus (involved in guiding actions). Additional considerations suggest that the adaptation in these two regions was driven by manipulation similarity alone; thus, these results imply that manipulation information about objects is encoded in brain regions involved in performing or guiding actions. Unexpectedly, these same two regions showed increased activation (rather than adaptation) for objects similar in shape. Overall, we found evidence (in the form of adaptation) that objects that share semantic features have overlapping representations. Further, the particular regions of overlap provide support for the existence of both sensorimotor and amodal/multimodal representations. PMID:20034582
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
Using Form and Function Analogy Object Boxes to Teach Human Body Systems
ERIC Educational Resources Information Center
Rule, Audrey C.; Furletti, Charles
2004-01-01
This study compares the use of form and function analogy object boxes to more traditional lecture and worksheet instruction during a 10th-grade unit on human body systems. The study was conducted with two classes (N = 32) of mixed ability students at a high-needs rural high school in central New York State. The study used a pretest/posttest…
Yee, Eiling; Drucker, Daniel M.; Thompson-Schill, Sharon L.
2010-01-01
Sensorimotor-based theories of semantic memory contend that semantic information about an object is represented in the neural substrate invoked when we perceive or interact with it. We used fMRI adaptation to test this prediction, measuring brain activation as participants read pairs of words. Pairs shared function (flashlight–lantern), shape (marble–grape), both (pencil–pen), were unrelated (saucer–needle), or were identical (drill–drill). We observed adaptation for pairs with both function and shape similarity in left premotor cortex. Further, degree of function similarity was correlated with adaptation in three regions: two in the left temporal lobe (left medial temporal lobe, left middle temporal gyrus), which has been hypothesized to play a role in mutimodal integration, and one in left superior frontal gyrus. We also found that degree of manipulation (i.e., action) and function similarity were both correlated with adaptation in two regions: left premotor cortex and left intraparietal sulcus (involved in guiding actions). Additional considerations suggest that the adaptation in these two regions was driven by manipulation similarity alone; thus, these results imply that manipulation information about objects is encoded in brain regions involved in performing or guiding actions. Unexpectedly, these same two regions showed increased activation (rather than adaptation) for objects similar in shape. Overall, we found evidence (in the form of adaptation) that objects that share semantic features have overlapping representations. Further, the particular regions of overlap provide support for the existence of both sensorimotor and amodal/multimodal representations. PMID:20034582
Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes
ERIC Educational Resources Information Center
Rule, Audrey C.; Baldwin, Samantha; Schell, Robert
2008-01-01
This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…
Fuzzy Multi-Objective Transportation Planning with Modified S-Curve Membership Function
NASA Astrophysics Data System (ADS)
Peidro, D.; Vasant, P.
2009-08-01
In this paper, the S-Curve membership function methodology is used in a transportation planning decision (TPD) problem. An interactive method for solving multi-objective TPD problems with fuzzy goals, available supply and forecast demand is developed. The proposed method attempts simultaneously to minimize the total production and transportation costs and the total delivery time with reference to budget constraints and available supply, machine capacities at each source, as well as forecast demand and warehouse space constraints at each destination. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in TPD problems, with linear membership functions.
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.
2013-01-01
In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.
Wilcox, Teresa; Woods, Rebecca; Chapa, Catherine
2008-01-01
There is evidence for developmental hierarchies in the type of information to which infants attend when reasoning about objects. Investigators have questioned the origin of these hierarchies and how infants come to identify new sources of information when reasoning about objects. The goal of the present experiments was to shed light on this debate by identifying conditions under which infants’ sensitivity to color information, which is slow to emerge, could be enhanced in an object individuation task. The outcome of Experiment 1 confirmed and extended previous reports that 9.5-month-olds can be primed, through exposure to events in which the color of an object predicts its function, to attend to color differences in a subsequent individuation task. The outcomes of Experiments 2 to 4 revealed age-related changes in the nature of the representations that support color priming. This is exemplified by three main findings. First, the representations that are formed during the color-function events are relatively specific. That is, infants are primed to use the color difference seen in the color-function events to individuate objects in the test events, but not other color differences. Second, 9.5-month-olds can be led to form more abstract event representations, and then generalize to other colors in the test events if they are shown multiple pairs of colors in the color-function events. Third, slightly younger 9-month-olds also can be led to form more inclusive categories with multiple color pairs, but only when they are allowed to directly compare the exemplars in each color pair during the present events. These results shed light on the development of categorization abilities, cognitive mechanisms that support color-function priming, and the kinds of experiences that can increase infants’ sensitivity to color information. PMID:18378222
NASA Astrophysics Data System (ADS)
Mise, Olegs; Bento, Stephen
2013-05-01
This paper proposes an object detection algorithm and a framework based on a combination of Normalized Central Moment Invariant (NCMI) and Normalized Geometric Radial Moment (NGRM). The developed framework allows detecting objects with offline pre-loaded signatures and/or using the tracker data in order to create an online object signature representation. The framework has been successfully applied to the target detection and has demonstrated its performance on real video and imagery scenes. In order to overcome the implementation constraints of the low-powered hardware, the developed framework uses a combination of image moment functions and utilizes a multi-layer neural network. The developed framework has been shown to be robust to false alarms on non-target objects. In addition, optimization for fast calculation of the image moments descriptors is discussed. This paper presents an overview of the developed framework and demonstrates its performance on real video and imagery scenes.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Supersonic airplane design optimization method for aerodynamic performance and low sonic boom
NASA Technical Reports Server (NTRS)
Cheung, Samson H.; Edwards, Thomas A.
1992-01-01
This paper presents a new methodology for the optimization of supersonic airplane designs to meet the dual design objectives of low sonic boom and high aerodynamic performance. Two sets of design parameters are used on an existing High Speed Civil Transport (HSCT) configuration to maximize the aerodynamic performance and minimize the sonic boom under the flight track. One set of the parameters perturbs the camber line of the wing sections to maximize the lift-over-drag ratio (L/D). A preliminary optimization run yielded a 3.75 percent improvement in L/D over a baseline low-boom configuration. The other set of parameters modifies the fuselage area to achieve a target F-function. Starting from an initial configuration with strong bow, wing, and tail shocks, a modified design with a flat-top signature is obtained. The methods presented can easily incorporate other design variables and objective functions. Extensions to the present capability in progress are described.
Hubble Space Telescope Faint Object Camera calculated point-spread functions.
Lyon, R G; Dorband, J E; Hollis, J M
1997-03-10
A set of observed noisy Hubble Space Telescope Faint Object Camera point-spread functions is used to recover the combined Hubble and Faint Object Camera wave-front error. The low-spatial-frequency wave-front error is parameterized in terms of a set of 32 annular Zernike polynomials. The midlevel and higher spatial frequencies are parameterized in terms of set of 891 polar-Fourier polynomials. The parameterized wave-front error is used to generate accurate calculated point-spread functions, both pre- and post-COSTAR (corrective optics space telescope axial replacement), suitable for image restoration at arbitrary wavelengths. We describe the phase-retrieval-based recovery process and the phase parameterization. Resultant calculated precorrection and postcorrection point-spread functions are shown along with an estimate of both pre- and post-COSTAR spherical aberration. PMID:18250862
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
Learning Activities: Students and Recycling. [and] Automobile Aerodynamics.
ERIC Educational Resources Information Center
McLaughlin, Charles H., Jr.; Schieber, Rich
1994-01-01
The first learning activity is intended to heighten students' awareness of the need for recycling, reuse, and reduction of materials; the second explores the aerodynamics of automobiles. Both include context, concept, objectives, procedure, and materials needed. (SK)
Functional Activation in the Ventral Object Processing Pathway during the First Year
Wilcox, Teresa; Biondi, Marisa
2016-01-01
Infants' capacity to represent objects in visual working memory changes substantially during the first year of life. There is a growing body of research focused on identifying neural mechanisms that support this emerging capacity, and the extent to which visual object processing elicits different patterns of cortical activation in the infant as compared to the adult. Recent studies have identified areas in temporal and occipital cortex that mediate infants' developing capacity to track objects on the basis of their featural properties. The current research (Experiments 1 and 2) assessed patterns of activation in posterior temporal cortex and occipital cortex using fNIRS in infants 3–13 months of age as they viewed occlusion events. In the occlusion events, either the same object or featurally distinct objects emerged to each side of a screen. The outcome of these studies, combined, revealed that in infants 3–6 months, posterior temporal cortex was activated to all events, regardless of the featural properties of the objects and whether the event involved one object or two (featurally distinct) objects. Infants 7–8 infants months showed a waning posterior temporal response and by 10–13 months this response was negligible. Additional analysis showed that the age groups did not differ in their visual attention to the events and that changes in HbO were better explained by age in days than head circumference. In contrast to posterior temporal cortex, robust activation was obtained in occipital cortex across all ages tested. One interpretation of these results is that they reflect pruning of the visual object-processing network during the first year. The functional contribution of occipital and posterior temporal cortex, along with higher-level temporal areas, to infants' capacity to keep track of distinct entities in visual working memory is discussed. PMID:26778979
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
Method for Determining the Weight of Functional Objectives on Manufacturing System
Zhang, Qingshan; Xu, Wei; Zhang, Jiekun
2014-01-01
We propose a three-dimensional integrated weight determination to solve manufacturing system functional objectives, where consumers are weighted by triangular fuzzy numbers to determine the enterprises. The weights, subjective parts are determined by the expert scoring method, the objective parts are determined by the entropy method with the competitive advantage of determining. Based on the integration of three methods and comprehensive weight, we provide some suggestions for the manufacturing system. This paper provides the numerical example analysis to illustrate the feasibility of this method. PMID:25243203
Time Domain Identification of an Optimal Control Pilot Model with Emphasis on the Objective Function
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1982-01-01
A method for the identification of the pilot's control compensation using time domain techniques is proposed. From this information we hope to infer a quadratic cost function, supported by the data, that represents a reasonable expression for the pilot's control objective in the task being performed, or an inferred piloting strategy. The objectives for this method are: (1) obtain a better understanding of the fundamental piloting techniques in complex tasks, such as landing approach; (2) the development of a metric measurable in simulations and flight test that correlate with subjective pilot opinion; and (3) to further validate pilot models and pilot vehicle analysis methods.
Predicting objective function weights from patient anatomy in prostate IMRT treatment planning
Lee, Taewoo Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.
2013-12-15
Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl{sub 2} distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899
Influence of objective function selection on modeling high and low flows in a changing climate
NASA Astrophysics Data System (ADS)
Vaze, J.; Petheram, C.; Chiew, F. H.; Teng, J.; Wang, B.; Post, D. A.
2012-12-01
This study evaluates the ability of commonly used hydrological models at simulating streamflow under variable climate conditions for different streamflow characteristics. The models are calibrated using three objective functions that weight high and low flow characteristics differently. The models are calibrated using data from ten unregulated catchments in southeast Australia. The results show that when the GR4J model is calibrated against low flows, it performs better in simulating low flows over an independent period compared to the simulation when using a high-flow objective function but this improvement in simulating low flows comes at the cost of poor simulations of high flows. The simulation results for the Sacramento model are different to GR4J and show that the Sacramento model calibrated specifically against low flows does not necessarily perform better in simulating low flows for an independent period not used in model calibration. The results for the two models also show that a model calibrated specifically against low flows does not necessarily perform better in simulating the bias of the lower 30% of fdc for an independent period not used in model calibration. The simulation results for both of the models indicate that model parameters calibrated using an objective function which gives more weight to high and medium flows are suitable for simulating streamflow for an independent period with reasonably high daily NSE values. The results also show that objective functions which puts more weight on low flows or similar weight to all flows is not suitable for simulating streamflow for an independent period if the metric of interest is daily NSE. The simulation-bias results indicate that there is no clear under or overestimation of flows when model parameters calibrated against wet or dry periods are used to simulate streamflow for an independent dry or wet period. The overall results from this study indicate that there is no single objective function that
Unsteady Aerodynamics - Subsonic Compressible Inviscid Case
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1999-01-01
This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.
A functional investigation of RAN letters, digits, and objects: how similar are they?
Cummine, Jacqueline; Szepesvari, Eszter; Chouinard, Brea; Hanif, Wahab; Georgiou, George K
2014-12-15
Although rapid automatized naming (RAN) of letters, digits, and objects are popular tasks and have been used interchangeably to predict academic performance, it remains unknown if they tap into the same neural regions. Thus, the purpose of this study was to examine the neural overlap across different RAN tasks. Fifteen university students were assessed on RAN digits, letters, and objects using functional magnetic resonance imaging (fMRI). Results showed a common neural pattern that included regions related to motor planning (e.g., cerebellum), semantic access (middle temporal gyrus), articulation (supplementary motor association, motor/pre-motor, anterior cingulate cortex), and grapheme-phoneme mapping (ventral supramarginal gyrus). However, RAN digits and letters showed many unique regions of activation over and above RAN objects particularly in semantic and articulatory regions, including precuneus, bilateral supramarginal gyrus, nucleus accumbens and thalamus. The only region unique to RAN objects included bilateral fusiform, a region commonly implicated in object processing. Overall, our results provide the first neural evidence for a stronger relationship between RAN letters and digits than when either task is compared to RAN objects. PMID:25172183
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
Summary analysis of the Gemini entry aerodynamics
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Howes, D. B.
1972-01-01
The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
NASA Astrophysics Data System (ADS)
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Aerodynamics Improve Wind Wheel
NASA Technical Reports Server (NTRS)
Ramsey, V. W.
1982-01-01
Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.
Recent Experiments at the Gottingen Aerodynamic Institute
NASA Technical Reports Server (NTRS)
Ackeret, J
1925-01-01
This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).
Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang
2012-12-20
We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system. PMID:23262604
On the use of the OCM's quadratic objective function as a pilot rating metric
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1981-01-01
A correlation between the magnitude of the quadratic objective function from an optimal control pilot model and the subjective rating of the vehicle and task provides a valuable tool for handling qualities research and flight control synthesis. An analysis of simulation results for fourteen aircraft configurations flight tested earlier was conducted. A fixed set of pilot model parameters, are found for all cases in modeling the simulated regulation task. The agreement obtained between performance statistics is shown and a strong correlation was obtained between the cost function and rating.
Simulation and fitting of complex reaction network TPR: The key is the objective function
Savara, Aditya Ashi
2016-07-07
In this research, a method has been developed for finding improved fits during simulation and fitting of data from complex reaction network temperature programmed reactions (CRN-TPR). It was found that simulation and fitting of CRN-TPR presents additional challenges relative to simulation and fitting of simpler TPR systems. The method used here can enable checking the plausibility of proposed chemical mechanisms and kinetic models. The most important finding was that when choosing an objective function, use of an objective function that is based on integrated production provides more utility in finding improved fits when compared to an objective function based onmore » the rate of production. The response surface produced by using the integrated production is monotonic, suppresses effects from experimental noise, requires fewer points to capture the response behavior, and can be simulated numerically with smaller errors. For CRN-TPR, there is increased importance (relative to simple reaction network TPR) in resolving of peaks prior to fitting, as well as from weighting of experimental data points. Using an implicit ordinary differential equation solver was found to be inadequate for simulating CRN-TPR. Lastly, the method employed here was capable of attaining improved fits in simulation and fitting of CRN-TPR when starting with a postulated mechanism and physically realistic initial guesses for the kinetic parameters.« less
Aerodynamic heated steam generating apparatus
Kim, K.
1986-08-12
An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.
Objectively Measured Physical Activity is Related to Cognitive Function in Older Adults
Kerr, Jacqueline; Marshall, Simon J.; Patterson, Ruth E.; Marinac, Catherine R.; Natarajan, Loki; Rosenberg, Dori; Wasilenko, Kari; Crist, Katie
2013-01-01
Background/Objectives To explore the relationship between cognitive functioning and the time spent at different intensities of physical activity (PA) in free-living older adults. Design, Setting Cross sectional analyses of participants enrolled in a randomized controlled trial set in continuing care retirement communities. Participants 215 older adults residing in 7 continuing care retirement communities in San Diego County: average age 83 years, 70% female and 35% with graduate level education. Measurements PA was measured objectively by hip worn accelerometers with data aggregated to the minute level. Three cut points were used to assess low-light, high-light, and moderate-to-vigorous intensity PA (MVPA). Trail Making Tests A and B were completed and time for each test (sec) and test B-minus- A time (sec) were used as measures of cognitive functioning. Variables were log transformed and entered into linear regression models adjusting for demographic factors (age, education, gender) and other PA intensity variables. Results Low-light PA was not related to any Trails test score. High-light PA was significantly related to Trails A, B and B-minus-A; but only in unadjusted models. MVPA was related to Trails B and B-minus-A after adjusting for demographic variables. Conclusion These data suggest there may be a dose response between PA intensity and cognitive functioning in older adults. The stronger findings supporting a relationship between MVPA and cognitive functioning are consistent with previous observational and intervention studies. PMID:24219194
ERIC Educational Resources Information Center
Krause, Christina Miles
2008-01-01
Preschool children's (N = 64) ability to use tactile information and function cues on less-realistic and more-realistic food-appearing, deceptive objects was examined before and after training on the function of deceptive objects. They also responded to appearance and reality questions about deceptive objects. Half of the children (F-S:…
Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou
2008-10-01
A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N). PMID:18830332
ERIC Educational Resources Information Center
Field, Charlotte; Allen, Melissa L.; Lewis, Charlie
2016-01-01
We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
Baker, Daniel H.; Simard, Mathieu; Saint-Amour, Dave; Hess, Robert F.
2015-01-01
Purpose. Visual deficits in amblyopia are neural in origin, yet are difficult to characterize with functional magnetic resonance imagery (fMRI). Our aim was to develop an objective electroencephalography (EEG) paradigm that can be used to provide a clinically useful index of amblyopic deficits. Methods. We used steady-state visual evoked potentials (SSVEPs) to measure full contrast response functions in both amblyopic (n = 10, strabismic or mixed amblyopia, mean age: 44 years) and control (n = 5, mean age: 31 years) observers, both with and without a dichoptic mask. Results. At the highest target contrast, the ratio of amplitudes across the weaker and stronger eyes was highly correlated (r = 0.76) with the acuity ratio between the eyes. We also found that the contrast response function in the amblyopic eye had both a greatly reduced amplitude and a shallower slope, but that surprisingly dichoptic masking was weaker than in controls. The results were compared with the predictions of a computational model of amblyopia and suggest a modification to the model whereby excitatory (but not suppressive) signals are attenuated in the amblyopic eye. Conclusions. We suggest that SSVEPs offer a sensitive and objective measure of the ocular imbalance in amblyopia and could be used to assess the efficacy of amblyopia therapies currently under development. PMID:25634977
Objective Function and Learning Algorithm for the General Node Fault Situation.
Xiao, Yi; Feng, Rui-Bin; Leung, Chi-Sing; Sum, John
2016-04-01
Fault tolerance is one interesting property of artificial neural networks. However, the existing fault models are able to describe limited node fault situations only, such as stuck-at-zero and stuck-at-one. There is no general model that is able to describe a large class of node fault situations. This paper studies the performance of faulty radial basis function (RBF) networks for the general node fault situation. We first propose a general node fault model that is able to describe a large class of node fault situations, such as stuck-at-zero, stuck-at-one, and the stuck-at level being with arbitrary distribution. Afterward, we derive an expression to describe the performance of faulty RBF networks. An objective function is then identified from the formula. With the objective function, a training algorithm for the general node situation is developed. Finally, a mean prediction error (MPE) formula that is able to estimate the test set error of faulty networks is derived. The application of the MPE formula in the selection of basis width is elucidated. Simulation experiments are then performed to demonstrate the effectiveness of the proposed method. PMID:26990391
An objective measure of physical function of elderly outpatients. The Physical Performance Test.
Reuben, D B; Siu, A L
1990-10-01
Direct observation of physical function has the advantage of providing an objective, quantifiable measure of functional capabilities. We have developed the Physical Performance Test (PPT), which assesses multiple domains of physical function using observed performance of tasks that simulate activities of daily living of various degrees of difficulty. Two versions are presented: a nine-item scale that includes writing a sentence, simulated eating, turning 360 degrees, putting on and removing a jacket, lifting a book and putting it on a shelf, picking up a penny from the floor, a 50-foot walk test, and climbing stairs (scored as two items); and a seven-item scale that does not include stairs. The PPT can be completed in less than 10 minutes and requires only a few simple props. We then tested the validity of PPT using 183 subjects (mean age, 79 years) in six settings including four clinical practices (one of Parkinson's disease patients), a board-and-care home, and a senior citizens' apartment. The PPT was reliable (Cronbach's alpha = 0.87 and 0.79, interrater reliability = 0.99 and 0.93 for the nine-item and seven-item tests, respectively) and demonstrated concurrent validity with self-reported measures of physical function. Scores on the PPT for both scales were highly correlated (.50 to .80) with modified Rosow-Breslau, Instrumental and Basic Activities of Daily Living scales, and Tinetti gait score. Scores on the PPT were more moderately correlated with self-reported health status, cognitive status, and mental health (.24 to .47), and negatively with age (-.24 and -.18). Thus, the PPT also demonstrated construct validity. The PPT is a promising objective measurement of physical function, but its clinical and research value for screening, monitoring, and prediction will have to be determined. PMID:2229864
Sedentary behavior and physical function: Objective Evidence from the Osteoarthritis Initiative
Lee, Jungwha; Chang, Rowland W.; Ehrlich-Jones, Linda; Kwoh, C. Kent; Nevitt, Michael; Semanik, Pamela A.; Sharma, Leena; Sohn, Min-Woong; Song, Jing; Dunlop, Dorothy D.
2014-01-01
Objective Investigate the relationship between sedentary behavior and physical function in adults with knee osteoarthritis (OA), controlling for moderate-vigorous physical activity () levels. Methods Sedentary behavior was objectively measured by accelerometer on 1,168 participants in the Osteoarthritis Initiative aged 49–83 years with radiographic knee OA at the 48 month clinic visit. Physical function was assessed using 20-meter walk and chair stand testing. Sedentary behavior was identified by accelerometer activity counts/minute <100. The cross-sectional association between sedentary quartiles and physical function was examined by multiple linear regression adjusting for demographic factors (age, sex, race/ethnicity, education level), health factors (comorbidity, body mass index, knee pain, knee OA severity, presence of knee symptoms) and average daily MVPA minutes. Results Adults with knee OA spent 2/3 their daily time in sedentary behavior. The average gait speed among the most sedentary quartile was 3.88 feet/second, which was significantly slower than the speed of the less sedentary groups (4.23, 4.33, 4.33 feet/second, respectively). The average chair stand rate among the most sedentary group was significantly lower (25.9 stands/minute) than the rates of the less sedentary behavior groups (28.9, 29.1, 31.1 stands/minute, respectively). These trends remained significant in multivariable analyses adjusted for demographic factors, health factors and average daily MVPA minutes. Conclusion Being less sedentary was related to better physical function in adults with knee OA independent of MVPA time. These findings support guidelines to encourage adults with knee OA to decrease time spent in sedentary behavior in order to improve physical function. PMID:25155652
Aerodynamic characteristics of aerofoils I
NASA Technical Reports Server (NTRS)
1921-01-01
The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
NASA Astrophysics Data System (ADS)
Sykes, J. F.; Kang, M.; Thomson, N. R.
2007-12-01
The TCE release from The Lockformer Company in Lisle Illinois resulted in a plume in a confined aquifer that is more than 4 km long and impacted more than 300 residential wells. Many of the wells are on the fringe of the plume and have concentrations that did not exceed 5 ppb. The settlement for the Chapter 11 bankruptcy protection of Lockformer involved the establishment of a trust fund that compensates individuals with cancers with payments being based on cancer type, estimated TCE concentration in the well and the duration of exposure to TCE. The estimation of early arrival times and hence low likelihood events is critical in the determination of the eligibility of an individual for compensation. Thus, an emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of possible arrival times at a well. The estimation of TCE arrival time, using a three-dimensional analytical solution, involved parameter estimation and uncertainty analysis. Parameters in the model included TCE source parameters, groundwater velocities, dispersivities and the TCE decay coefficient for both the confining layer and the bedrock aquifer. Numerous objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and M-estimators), penalty functions, and dead zones, were incorporated in the parameter estimation process to treat insufficiencies in both the model and observational data due to errors, biases, and limitations. The concept of equifinality was adopted and multiple maximum likelihood parameter sets were accepted if pre-defined physical criteria were met. The criteria ensured that a valid solution predicted TCE concentrations for all TCE impacted areas. Monte Carlo samples are found to be inadequate for uncertainty analysis of this case study due to its inability to find parameter sets that meet the predefined physical criteria. Successful results are achieved using a Dynamically-Dimensioned Search sampling
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Chin, Suei; Lan, C. Edward
1990-01-01
Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.
Rarefield-Flow Shuttle Aerodynamics Flight Model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1994-01-01
A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
A Generic Nonlinear Aerodynamic Model for Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2014-01-01
A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
Improvements in the sensibility of MSA-GA tool using COFFEE objective function
NASA Astrophysics Data System (ADS)
Amorim, A. R.; Zafalon, G. F. D.; Neves, L. A.; Pinto, A. R.; Valêncio, C. R.; Machado, J. M.
2015-01-01
The sequence alignment is one of the most important tasks in Bioinformatics, playing an important role in the sequences analysis. There are many strategies to perform sequence alignment, since those use deterministic algorithms, as dynamic programming, until those ones, which use heuristic algorithms, as Progressive, Ant Colony (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), among others. In this work, we have implemented the objective function COFFEE in the MSA-GA tool, in substitution of Weighted Sum-of-Pairs (WSP), to improve the final results. In the tests, we were able to verify the approach using COFFEE function achieved better results in 81% of the lower similarity alignments when compared with WSP approach. Moreover, even in the tests with more similar sets, the approach using COFFEE was better in 43% of the times.
GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2015-11-01
Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GENASIS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.
GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations
Cardall, Christian Y.; Budiardja, Reuben D.
2015-06-11
Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.
GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations
Cardall, Christian Y.; Budiardja, Reuben D.
2015-06-11
Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less
Davids, Roeliena C D; Groen, Yvonne; Berg, Ina J; Tucha, Oliver M; van Balkom, Ingrid D C
2016-09-01
Although deficits in Executive Functioning (EF) are reported frequently in young individuals with Autism Spectrum Disorders (ASD), they remain relatively unexplored later in life (>50 years). We studied objective performance on EF measures (Tower of London, Zoo map, phonetic/semantic fluency) as well as subjective complaints (self- and proxy reported BRIEF) in 36 ASD and 36 typically developed individuals (n = 72). High functioning older adults with ASD reported EF-impairments in metacognition, but did not deviate in EF task performance, except for a longer execution time of the Tower of London. The need for additional time to complete daily tasks may contribute to impairments in daily life and may be correlated to a higher level of experienced EF-difficulties in ASD. PMID:27278313
NASA Astrophysics Data System (ADS)
Perona, P.; Burlando, P.
2009-12-01
Environmental flows can result from the economical competition for water allocation between traditional and non-traditional water uses. This requires the definition of convenient benefit functions (bf) associated with the use of the resource. Since the use of water by the riparian ecosystem is an intangible good, common ways based for instance on the “willingness to pay” have the dramatic weakness of not being objective with regard to the environmental rights. That is, water withdrawal from a given stream environment would depend on the importance and, in turn, on the economical value that people assign to this environment. In this work we discuss a possible objective criterion to establish benefit functions for the environmental uses of the water resource. Our approach is based on studying the optimal water allocation between the users as resulting from marginal economic analysis. That is, we show that the parameters of the marginal demand curve for the riparian ecosystem are intrinsically defined by knowing: (a) the ecological status of the riverine system in pristine conditions, and (b) the marginal benefit function of the potential competitor (e.g., exploitation activity). We solve analytically the water allocation problem for the simple case of water withdrawal from a fluvial system. We show the link between the parameters of the marginal benefit functions and the minimal environmental flow arising from classic engineering analysis, as well as their ecological meaning. This approach allows to restore a more natural variability of the streamflow regime in impounded reaches, to the cost of a profit reduction for the resource exploitation. However, on the long term, the overall idea is that the benefit for having preserved more natural environmental flow conditions since exploitation began would balance the future cost for potential restoration of the riverine corridor and the missing revenues.
Malagelada, Carolina; Drozdzal, Michal; Seguí, Santi; Mendez, Sara; Vitrià, Jordi; Radeva, Petia; Santos, Javier; Accarino, Anna; Malagelada, Juan-R; Azpiroz, Fernando
2015-09-15
We have previously developed an original method to evaluate small bowel motor function based on computer vision analysis of endoluminal images obtained by capsule endoscopy. Our aim was to demonstrate intestinal motor abnormalities in patients with functional bowel disorders by endoluminal vision analysis. Patients with functional bowel disorders (n = 205) and healthy subjects (n = 136) ingested the endoscopic capsule (Pillcam-SB2, Given-Imaging) after overnight fast and 45 min after gastric exit of the capsule a liquid meal (300 ml, 1 kcal/ml) was administered. Endoluminal image analysis was performed by computer vision and machine learning techniques to define the normal range and to identify clusters of abnormal function. After training the algorithm, we used 196 patients and 48 healthy subjects, completely naive, as test set. In the test set, 51 patients (26%) were detected outside the normal range (P < 0.001 vs. 3 healthy subjects) and clustered into hypo- and hyperdynamic subgroups compared with healthy subjects. Patients with hypodynamic behavior (n = 38) exhibited less luminal closure sequences (41 ± 2% of the recording time vs. 61 ± 2%; P < 0.001) and more static sequences (38 ± 3 vs. 20 ± 2%; P < 0.001); in contrast, patients with hyperdynamic behavior (n = 13) had an increased proportion of luminal closure sequences (73 ± 4 vs. 61 ± 2%; P = 0.029) and more high-motion sequences (3 ± 1 vs. 0.5 ± 0.1%; P < 0.001). Applying an original methodology, we have developed a novel classification of functional gut disorders based on objective, physiological criteria of small bowel function. PMID:26251472
NASA Astrophysics Data System (ADS)
Khatir, S.; Belaidi, I.; Serra, R.; Benaissa, B.; Ait Saada, A.
2015-07-01
The detection techniques based on non-destructive testing (NDT) defects are preferable because of their low cost and operational aspects related to the use of the analyzed structure. In this study, we used the genetic algorithm (GA) for detecting and locating damage. The finite element was used for diagnostic beams. Different structures considered may incur damage to be modelled by a loss of rigidity supposed to represent a defect in the structure element. Identification of damage is formulated as an optimization problem using three objective functions (change of natural frequencies, Modal Assurance Criterion MAC and MAC natural frequency). The results show that the best objective function is based on the natural frequency and MAC while the method of the genetic algorithm present its efficiencies in indicating and quantifying multiple damage with great accuracy. Three defects have been created to enhance damage depending on the elements 2, 5 and 8 with a percentage allocation of 50% in the beam structure which has been discretized into 10 elements. Finally the defect with noise was introduced to test the stability of the method against uncertainty.
Preverbal Functional Communication and the Role of Object Play in Children with Cerebral Palsy.
ERIC Educational Resources Information Center
Olswang, Lesley B.; Pinder, Gay Lloyd
1995-01-01
Object play and communication development were studied with four infants with cerebral palsy, involving time spent with objects, types of object play, and object selection. As coordinated looking between object and adult emerged, children demonstrated increased interest in objects and sophistication in their play behaviors. (SW)
A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2001-01-01
An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.
Aerodynamics of a Cryogenic Semi-Tanker
NASA Astrophysics Data System (ADS)
Ortega, Jason; Salari, Kambiz
2009-11-01
The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS. VII. THE SUBSTELLAR MASS FUNCTION REVISITED
Scholz, Alexander; Geers, Vincent; Clark, Paul; Jayawardhana, Ray; Muzic, Koraljka
2013-10-01
The abundance of brown dwarfs (BDs) in young clusters is a diagnostic of star formation theory. Here we revisit the issue of determining the substellar initial mass function (IMF) based on a comparison between NGC 1333 and IC348, two clusters in the Perseus star-forming region. We derive their mass distributions for a range of model isochrones, varying distances, extinction laws, and ages with comprehensive assessments of the uncertainties. We find that the choice of isochrone and other parameters have significant effects on the results, thus we caution against comparing IMFs obtained using different approaches. For NGC 1333, we find that the star/BD ratio R is between 1.9 and 2.4 for all plausible scenarios, consistent with our previous work. For IC348, R is found to be between 2.9 and 4.0, suggesting that previous studies have overestimated this value. Thus the star-forming process generates about 2.5-5 substellar objects per 10 stars. The derived star/BD ratios correspond to a slope of the power-law mass function of α = 0.7-1.0 for the 0.03-1.0 M{sub ☉} mass range. The median mass in these clusters—the typical stellar mass—is between 0.13 and 0.30 M{sub ☉}. Assuming that NGC 1333 is at a shorter distance than IC348, we find a significant difference in the cumulative distribution of masses between the two clusters, resulting from an overabundance of very low mass objects in NGC 1333. Gaia astrometry will constrain the cluster distances better and will lead to a more definitive conclusion. Furthermore, the star/BD ratio is somewhat larger in IC348 compared with NGC 1333, although this difference is still within the margins of error. Our results indicate that environments with higher object density may produce a larger fraction of very low mass objects, in line with predictions for BD formation through gravitational fragmentation of filaments falling into a cluster potential.
Using Object Boxes to Teach the Form, Function, and Vocabulary of the Parts of the Human Eye
ERIC Educational Resources Information Center
Rule, Audrey C.; Welch, Genne
2008-01-01
These science activities for elementary students focus on the external structures and functions of the human eye with hands-on object box activities based on the Montessori theory (1966) of concrete learning through manipulation of objects and focus of attention through touch. Object boxes are sets of items and corresponding cards housed in a box.…
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
NASA Astrophysics Data System (ADS)
Woodley, Robert; Lindahl, Eric; Barker, Joseph
2007-04-01
A culturally diverse group of people are now participating in military multinational coalition operations (e.g., combined air operations center, training exercises such as Red Flag at Nellis AFB, NATO AWACS), as well as in extreme environments. Human biases and routines, capabilities, and limitations strongly influence overall system performance; whether during operations or simulations using models of humans. Many missions and environments challenge human capabilities (e.g., combat stress, waiting, fatigue from long duty hours or tour of duty). This paper presents a team selection algorithm based on an evolutionary algorithm. The main difference between this and the standard EA is that a new form of objective function is used that incorporates the beliefs and uncertainties of the data. Preliminary results show that this selection algorithm will be very beneficial for very large data sets with multiple constraints and uncertainties. This algorithm will be utilized in a military unit selection tool.
Proposal of Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA
NASA Astrophysics Data System (ADS)
Hamada, Naoki; Tanaka, Masaharu; Sakuma, Jun; Kobayashi, Shigenobu; Ono, Isao
This paper presents a Genetic Algorithm (GA) for multi-objective function optimization. To find a precise and widely-distributed set of solutions in difficult multi-objective function optimization problems which have multimodality and curved Pareto-optimal set, a GA would be required conflicting behaviors in the early stage and the last stage of search. That is, in the early stage of search, GA should perform local-Pareto-optima-overcoming search which aims to overcome local Pareto-optima and converge the population to promising areas in the decision variable space. On the other hand, in the last stage of search, GA should perform Pareto-frontier-covering search which aims to spread the population along the Pareto-optimal set. NSGA-II and SPEA2, the most widely used conventional methods, have problems in local-Pareto-optima-overcoming and Pareto-frontier-covering search. In local-Pareto-optima-overcoming search, their selection pressure is too high to maintain the diversity for overcoming local Pareto-optima. In Pareto-frontier-covering search, their abilities of extrapolation-directed sampling are not enough to spread the population and they cannot sample along the Pareto-optimal set properly. To resolve above problems, the proposed method adaptively switches two search strategies, each of which is specialized for local-Pareto-optima-overcoming and Pareto-frontier-covering search, respectively. We examine the effectiveness of the proposed method using two benchmark problems. The experimental results show that our approach outperforms the conventional methods in terms of both local-Pareto-optima-overcoming and Pareto-frontier-covering search.
Kendall, Katherine A; Ellerston, Julia; Heller, Amanda; Houtz, Daniel R; Zhang, Chong; Presson, Angela P
2016-08-01
Quantitative, reliable measures of swallowing physiology can be made from an modified barium swallowing study. These quantitative measures have not been previously employed to study large dysphagic patient populations. The present retrospective study of 139 consecutive patients with dysphagia seen in a university tertiary voice and swallowing clinic sought to use objective measures of swallowing physiology to (1) quantify the most prevalent deficits seen in the patient population, (2) identify commonly associated diagnoses and describe the most prevalent swallowing deficits, and (3) determine any correlation between objective deficits and Eating Assessment Tool (EAT-10) scores and body mass index. Poor pharyngeal constriction (34.5 %) and airway protection deficits (65.5 %) were the most common swallowing abnormalities. Reflux-related dysphagia (36 %), nonspecific pharyngeal dysphagia (24 %), Parkinson disease (16 %), esophageal abnormality (13 %), and brain insult (10 %) were the most common diagnoses. Poor pharyngeal constriction was significantly associated with an esophageal motility abnormality (p < 0.001) and central neurologic insult. In general, dysphagia symptoms as determined by the EAT-10 did not correlate with swallowing function abnormalities. This preliminary study indicates that reflux disease is common in patients with dysphagia and that associated esophageal abnormalities are common in dysphagic populations and may be associated with specific pharyngeal swallowing abnormalities. However, symptom scores from the EAT-10 did not correspond to swallowing pathophysiology. PMID:27106909
Analysis of grasping strategies and function in hemiparetic patients using an instrumented object.
Jarrassé, Nathanaël; Kühne, Markus; Roach, Nick; Hussain, Asif; Balasubramanian, Sivakumar; Burdet, Etienne; Roby-Brami, Agnès
2013-06-01
This paper validates a novel instrumented object, the iBox, dedicated to the analysis of grasping and manipulation. This instrumented box can be grasped and manipulated, is fitted with an Inertial Measurement Unit (IMU) and can sense the force applied on each side and transmits measured force, acceleration and orientation data wirelessly in real time. The iBox also provides simple access to data for analysing human motor control features such as the coordination between grasping and lifting forces and complex manipulation patterns. A set of grasping and manipulation experiments was conducted with 6 hemiparetic patients and 5 healthy control subjects. Measures made of the forces, kinematics and dynamics are developed, which can be used to analyse grasping and contribute to assessment in patients. Quantitative measurements provided by the iBox reveal numerous characteristics of the grasping strategies and function in patients: variations in the completion time, changes in the force distribution on the object and grasping force levels, difficulties to adjust the level of applied forces to the task and to maintain it, along with movement smoothness decrease and pathological tremor. PMID:24187198
Pesin, Yakov B.; Niu, Xun; Latash, Mark L.
2010-01-01
We consider the problem of what is being optimized in human actions with respect to various aspects of human movements and different motor tasks. From the mathematical point of view this problem consists of finding an unknown objective function given the values at which it reaches its minimum. This problem is called the inverse optimization problem. Until now the main approach to this problems has been the cut-and-try method, which consists of introducing an objective function and checking how it reflects the experimental data. Using this approach, different objective functions have been proposed for the same motor action. In the current paper we focus on inverse optimization problems with additive objective functions and linear constraints. Such problems are typical in human movement science. The problem of muscle (or finger) force sharing is an example. For such problems we obtain sufficient conditions for uniqueness and propose a method for determining the objective functions. To illustrate our method we analyze the problem of force sharing among the fingers in a grasping task. We estimate the objective function from the experimental data and show that it can predict the force-sharing pattern for a vast range of external forces and torques applied to the grasped object. The resulting objective function is quadratic with essentially non-zero linear terms. PMID:19902213
Incremental Aerodynamic Coefficient Database for the USA2
NASA Technical Reports Server (NTRS)
Richardson, Annie Catherine
2016-01-01
In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.
Oliver, Michael; Gagne, Isabelle; Popescu, Carmen; Ansbacher, Will; Beckham, Wayne A
2010-01-01
RapidArc is a novel treatment planning and delivery system that has recently been made available for clinical use. Included within the Eclipse treatment planning system are a number of different optimization strategies that can be employed to improve the quality of the final treatment plan. The purpose of this study is to systematically assess three categories of strategies for four phantoms, and then apply proven strategies to clinical head and neck cases. Four phantoms were created within Eclipse with varying shapes and locations for the planning target volumes and organs at risk. A baseline optimization consisting of a single 359.8 degrees arc with collimator at 45 degrees was applied to all phantoms. Three categories of strategies were assessed and compared to the baseline strategy. They include changing the initialization parameters, increasing the total number of control points, and increasing the total optimization time. Optimization log files were extracted from the treatment planning system along with final dose-volume histograms for plan assessment. Treatment plans were also generated for four head and neck patients to determine whether the results for phantom plans can be extended to clinical plans. The strategies that resulted in a significant difference from baseline were: changing the maximum leaf speed prior to optimization ( p < 0.05), increasing the total number of segments by adding an arc ( p < 0.05), and increasing the total optimization time by either continuing the optimization ( p < 0.01) or adding time to the optimization by pausing the optimization ( p < 0.01). The reductions in objective function values correlated with improvements in the dose-volume histogram (DVH). The addition of arcs and pausing strategies were applied to head and neck cancer cases, which demonstrated similar benefits with respect to the final objective function value and DVH. Analysis of the optimization log files is a useful way to intercompare treatment plans that
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Hooks, I.; Homan, D.; Romere, P. O.
1985-01-01
The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
The design of missile's dome that fits both optical and aerodynamic needs
NASA Astrophysics Data System (ADS)
Wei, Qun; Zhang, Xin; Jia, Hongguang
2010-10-01
Optical guidance missiles requires a dome which fits both optical and aerodynamic needs when they attack at 3 Ma. In this study, ellipse is the figure chosen to be the dome's shape. The ellipticity ɛ is the main variable should to be decided. The optimized function was built by optical and aerodynamic performance function multiply by their weights. The optical and aerodynamic functions were all obtained by computational fluid dynamic (CFD) simulation's results after normalization. In this study, the optical and aerodynamic performances have equal weights, after optimzing the ellipticity ɛis 2 for the missile.
CFD research, parallel computation and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.
The aerodynamic challenges of SRB recovery
NASA Technical Reports Server (NTRS)
Bacchus, D. L.; Kross, D. A.; Moog, R. D.
1985-01-01
Recovery and reuse of the Space Shuttle solid rocket boosters was baselined to support the primary goal to develop a low cost space transportation system. The recovery system required for the 170,000-lb boosters was for the largest and heaviest object yet to be retrieved from exoatmospheric conditions. State-of-the-art design procedures were ground-ruled and development testing minimized to produce both a reliable and cost effective system. The ability to utilize the inherent drag of the boosters during the initial phase of reentry was a key factor in minimizing the parachute loads, size and weight. A wind tunnel test program was devised to enable the accurate prediction of booster aerodynamic characteristics. Concurrently, wind tunnel, rocket sled and air drop tests were performed to develop and verify the performance of the parachute decelerator subsystem. Aerodynamic problems encountered during the overall recovery system development and the respective solutions are emphasized.
Sharp Hypervelocity Aerodynamic Research Probe
NASA Technical Reports Server (NTRS)
Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)
1996-01-01
The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
Reciprocity relations in aerodynamics
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Kennedy, Eric A; Ng, Tracy P; McNally, Craig; Stitzel, Joel D; Duma, Stephan M
2006-11-01
Eye ruptures are among the most devastating eye injuries and can occur in automobile crashes, sporting impacts, and military events, where blunt projectile impacts to the eye can be encountered. The purpose of this study was to develop injury risk functions for globe rupture of both human and porcine eyes from blunt projectile impacts. This study was completed in two parts by combining published eye experiments with new test data. In the first part, data from 57 eye impact tests that were reported in the literature were analyzed. Projectile characteristics such as mass, cross-sectional area, and velocity, as well as injury outcome were noted for all tests. Data were sorted by species type and areas were identified where a paucity of data existed, based on the kinetic and normalized energy of assaulting objects. For the second part, a total of 126 projectile tests were performed on human and porcine eyes. Projectiles used for these tests included blunt aluminum projectiles, BBs, foam pellets, Airsoft pellets, and paintballs. Data for each projectile were recorded prior to testing and high-speed video was used to determine projectile velocity prior to striking the eye. In part three the data were pooled for a total of 183 eye impact tests, 83 human and 100 porcine, and were analyzed to develop the injury risk criteria. Binary logistic regression was used to develop injury risk functions based on kinetic and normalized energy. Probit analysis was used to estimate confidence intervals for the injury risk functions. Porcine eyes were found to be significantly stronger than human eyes in resisting globe rupture (p=0.01). For porcine eyes a 50% risk of globe rupture was found to be 71,145 J/m2, with a confidence interval of 63,245 J/m2 to 80,390 J/m2. Human eyes were found to have a 50% risk of globe rupture at a lower, 35,519 J/m2, with confidence intervals of 32,018 J/m2 to 40,641 J/m2. The results presented in this paper are useful in estimating the risk of globe
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Rarefied-flow Shuttle aerodynamics model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1993-01-01
A rarefied-flow shuttle aerodynamic model spanning the hypersonic continuum to the free molecule-flow regime was formulated. The model development has evolved from the High Resolution Accelerometer Package (HiRAP) experiment conducted on the Orbiter since 1983. The complete model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as functions of angle-of-attack, body flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle-of-attack are presented, along with flight derived rarefied-flow transition bridging formulae. Comparisons are made with data from the Operational Aerodynamic Design Data Book (OADDB), applicable wind-tunnel data, and recent flight data from STS-35 and STS-40. The flight-derived model aerodynamic force coefficient ratio is in good agreement with the wind-tunnel data and predicts the flight measured force coefficient ratios on STS-35 and STS-40. The model is not, however, in good agreement with the OADDB. But, the current OADDB does not predict the flight data force coefficient ratios of either STS-35 or STS-40 as accurately as the flight-derived model. Also, the OADDB differs with the wind-tunnel force coefficient ratio data.
ERIC Educational Resources Information Center
Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma
2011-01-01
Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…
ERIC Educational Resources Information Center
Lee, Chia-lin; Middleton, Erica; Mirman, Daniel; Kalenine, Solene; Buxbaum, Laurel J.
2013-01-01
Previous studies suggest that action representations are activated during object processing, even when task-irrelevant. In addition, there is evidence that lexical-semantic context may affect such activation during object processing. Finally, prior work from our laboratory and others indicates that function-based ("use") and structure-based…
Freight Wing Trailer Aerodynamics Final Technical Report
Sean Graham
2007-10-31
Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products
Skylon Aerodynamics and SABRE Plumes
NASA Technical Reports Server (NTRS)
Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir
2015-01-01
An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.
Aerodynamics of a hybrid airship
NASA Astrophysics Data System (ADS)
Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.
2012-06-01
The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.
Aerodynamic flight control to increase payload capability of future launch vehicles
NASA Technical Reports Server (NTRS)
Cochran, John E., Jr.
1995-01-01
The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.
Aerodynamic flight control to increase payload capability of future launch vehicles
NASA Astrophysics Data System (ADS)
Cochran, John E., Jr.
1995-02-01
The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.
Povinelli, Daniel J; Frey, Scott H
2016-09-01
Many species exploit immediately apparent dimensions of objects during tool use and manufacture and operate over internal perceptual representations of objects (they move and reorient objects in space, have rules of operation to deform or modify objects, etc). Humans, however, actively test for functionally relevant object properties before such operations begin, even when no previous percepts of a particular object's qualities in the domain have been established. We hypothesize that such prospective diagnostic interventions are a human specialization of cognitive function that has been entirely overlooked in the neuropsychological literature. We presented chimpanzees with visually identical rakes: one was functional for retrieving a food reward; the other was non-functional (its base was spring-loaded). Initially, they learned that only the functional tool could retrieve a distant reward. In test 1, we explored if they would manually test for the rakes' rigidity during tool selection, but before using it. We found no evidence of such behavior. In test 2, we obliged the apes to deform the non-functional tool's base before using it, in order to evaluate whether this would cause them to switch rakes. It did not. Tests 3-6 attempted to focus the apes' attention on the functionally relevant property (rigidity). Although one ape eventually learned to abandon the non-functional rake before using it, she still did not attempt to test the rakes for rigidity prior to use. While these results underscore the ability of chimpanzees to use novel tools, at the same time they point toward a fundamental (and heretofore unexplored) difference in causal reasoning between humans and apes. We propose that this behavioral difference reflects a human specialization in how object properties are represented, which could have contributed significantly to the evolution of our technological culture. We discuss developing a new line of evolutionarily motivated neuropsychological research on
1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
Romero, Javier; Luzón-González, Raúl; Nieves, Juan L; Hernández-Andrés, Javier
2011-10-01
We have analyzed the changes in the color of objects in natural scenes due to atmospheric scattering according to changes in the distance of observation. Hook-shaped curves were found in the chromaticity diagram when the object moved from zero distance to long distances, where the object chromaticity coordinates approached the color coordinates of the horizon. This trend is the result of the combined effect of attenuation in the direct light arriving to the observer from the object and the airlight added during its trajectory. Atmospheric scattering leads to a fall in the object's visibility, which is measurable as a difference in color between the object and the background (taken here to be the horizon). Focusing on color difference instead of luminance difference could produce different visibility values depending on the color tolerance used. We assessed the cone-excitation ratio constancy for several objects at different distances. Affine relationships were obtained when an object's cone excitations were represented both at zero distance and increasing distances. These results could help to explain color constancy in natural scenes for objects at different distances, a phenomenon that has been pointed out by different authors. PMID:22016233
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Li, Jun
2002-09-01
In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.
1984-01-01
Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
García Sánchez, Carlos Eduardo; Vargas García, César Augusto; Torres Sáez, Rodrigo Gonzalo
2012-01-01
Background The main objective of flux balance analysis (FBA) is to obtain quantitative predictions of metabolic fluxes of an organism, and it is necessary to use an appropriate objective function to guarantee a good estimation of those fluxes. Methodology In this study, the predictive performance of FBA was evaluated, using objective functions arising from the linear combination of different cellular objectives. This approach is most suitable for eukaryotic cells, owing to their multiplicity of cellular compartments. For this reason, Saccharomyces cerevisiae was used as model organism, and its metabolic network was represented using the genome-scale metabolic model iMM904. As the objective was to evaluate the predictive performance from the FBA using the kind of objective function previously described, substrate uptake and oxygen consumption were the only input data used for the FBA. Experimental information about microbial growth and exchange of metabolites with the environment was used to assess the quality of the predictions. Conclusions The quality of the predictions obtained with the FBA depends greatly on the knowledge of the oxygen uptake rate. For the most of studied classifications, the best predictions were obtained with “maximization of growth”, and with some combinations that include this objective. However, in the case of exponential growth with unknown oxygen exchange flux, the objective function “maximization of growth, plus minimization of NADH production in cytosol, plus minimization of NAD(P)H consumption in mitochondrion” gave much more accurate estimations of fluxes than the obtained with any other objective function explored in this study. PMID:22912775
Dynamic soaring: aerodynamics for albatrosses
NASA Astrophysics Data System (ADS)
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
NASA Astrophysics Data System (ADS)
Fusi, F.; Congedo, P. M.
2016-03-01
In this work, a strategy is developed to deal with the error affecting the objective functions in uncertainty-based optimization. We refer to the problems where the objective functions are the statistics of a quantity of interest computed by an uncertainty quantification technique that propagates some uncertainties of the input variables through the system under consideration. In real problems, the statistics are computed by a numerical method and therefore they are affected by a certain level of error, depending on the chosen accuracy. The errors on the objective function can be interpreted with the abstraction of a bounding box around the nominal estimation in the objective functions space. In addition, in some cases the uncertainty quantification methods providing the objective functions also supply the possibility of adaptive refinement to reduce the error bounding box. The novel method relies on the exchange of information between the outer loop based on the optimization algorithm and the inner uncertainty quantification loop. In particular, in the inner uncertainty quantification loop, a control is performed to decide whether a refinement of the bounding box for the current design is appropriate or not. In single-objective problems, the current bounding box is compared to the current optimal design. In multi-objective problems, the decision is based on the comparison of the error bounding box of the current design and the current Pareto front. With this strategy, fewer computations are made for clearly dominated solutions and an accurate estimate of the objective function is provided for the interesting, non-dominated solutions. The results presented in this work prove that the proposed method improves the efficiency of the global loop, while preserving the accuracy of the final Pareto front.
Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.
2001-12-01
The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.
Naming as a Function of Linguistic Form-Class and Object Categories.
ERIC Educational Resources Information Center
Akiyama, M. Michael; Wilcox, Sharon A.
1993-01-01
Experiments with groups of 30 children (aged 3 through 6) and 32 children (aged 5 through 8) showed that (1) children use linguistic form-class information with familiar discrete objects, (2) children do not use linguistic form-class information with familiar food, and (3) children use only object category information with unfamiliar items.…
Growing Mathematical Objects in the Classroom--The Case of Function
ERIC Educational Resources Information Center
Nachlieli, Talli; Tabach, Michal
2012-01-01
This article is devoted to some of the educational quandaries stemming from the fact that mathematics is a discourse that creates its own objects. More specifically, we ask how the participants of classroom learning-teaching processes cope with the seemingly paradoxical situation in which they are supposed to talk about objects, of the existence…
ERIC Educational Resources Information Center
Wilcox, Teresa; Woods, Rebecca; Chapa, Catherine
2008-01-01
There is evidence for developmental hierarchies in the type of information to which infants attend when reasoning about objects. Investigators have questioned the origin of these hierarchies and how infants come to identify new sources of information when reasoning about objects. The goal of the present experiments was to shed light on this debate…
ERIC Educational Resources Information Center
Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela
2013-01-01
In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that…
ERIC Educational Resources Information Center
Dick, Anthony Steven; Overton, Willis F.; Kovacs, Stacie L.
2005-01-01
Children's developing competence with symbolic representations was assessed in 3 studies. Study 1 examined the hypothesis that the production of imaginary symbolic objects in pantomime requires the simultaneous coordination of the dual representations of a dynamic action and a symbolic object. We explored this coordination of symbolic…
ERIC Educational Resources Information Center
Tabach, Michal; Nachlieli, Talli
2015-01-01
For mathematicians, definitions are the ultimate tool for reaching agreement about the nature and properties of mathematical objects. As research in school mathematics has revealed, however, mathematics learners are often reluctant, perhaps even unable, to help themselves with definitions while categorizing mathematical objects. In the research…
The Function of Words: Distinct Neural Correlates for Words Denoting Differently Manipulable Objects
ERIC Educational Resources Information Center
Rueschemeyer, Shirley-Ann; van Rooij, Daan; Lindemann, Oliver; Willems, Roel M.; Bekkering, Harold
2010-01-01
Recent research indicates that language processing relies on brain areas dedicated to perception and action. For example, processing words denoting manipulable objects has been shown to activate a fronto-parietal network involved in actual tool use. This is suggested to reflect the knowledge the subject has about how objects are moved and used.…
Aerodynamics for the Mars Phoenix Entry Capsule
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark
2008-01-01
Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.