NASA Astrophysics Data System (ADS)
Zimbelman, J. R.; Scheidt, S. P.; de Silva, S. L.; Bridges, N. T.; Spagnuolo, M. G.; Neely, E. M.
2016-03-01
Aerodynamic roughness heights of 1-3 cm were obtained from measured wind profiles collected among fields of gravel-mantled megaripples in the high desert of the Puna region of northwestern Argentina. Roughness height appears to be relatively insensitive to the angle at which the wind was incident upon the bedforms throughout the study sites. The results represent the first wind profiling measurements for large megaripples, but they also demonstrate the importance of a careful evaluation of many potential effects that can influence the utility of wind profiling data. The same effects that influence collection of fieldwork data must also be considered in any prediction of wind profiles anticipated to occur near Transverse Aeolian Ridges and other aeolian features on Mars that are intermediate in scale between wind ripples and small sand dunes.
Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Rodriquez, Ernesto
1998-01-01
In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.
Parameterization of Vegetation Aerodynamic Roughness of Natural Regions Satellite Imagery
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard; Stewart, Pamela
1998-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. The parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
Time Series Vegetation Aerodynamic Roughness Fields Estimated from MODIS Observations
NASA Technical Reports Server (NTRS)
Borak, Jordan S.; Jasinski, Michael F.; Crago, Richard D.
2005-01-01
Most land surface models used today require estimates of aerodynamic roughness length in order to characterize momentum transfer between the surface and atmosphere. The most common method of prescribing roughness is through the use of empirical look-up tables based solely on land cover class. Theoretical approaches that employ satellite-based estimates of canopy density present an attractive alternative to current look-up table approaches based on vegetation cover type that do not account for within-class variability and are oftentimes simplistic with respect to temporal variability. The current research applies Raupach s formulation of momentum aerodynamic roughness to MODIS data on a regional scale in order to estimate seasonally variable roughness and zero-plane displacement height fields using bulk land cover parameters estimated by [Jasinski, M.F., Borak, J., Crago, R., 2005. Bulk surface momentum parameters for satellite-derived vegetation fields. Agric. For. Meteorol. 133, 55-68]. Results indicate promising advances over look-up approaches with respect to characterization of vegetation roughness variability in land surface and atmospheric circulation models.
Estimating aerodynamic roughness over complex salt pan and sandur dust emitting surfaces
NASA Astrophysics Data System (ADS)
Nield, Joanna; King, James; Wiggs, Giles; Leyland, Julian; Bryant, Robert; Chiverrell, Richard; Darby, Stephen; Eckardt, Frank; Thomas, David; Vircavs, Larisa; Washington, Richard
2014-05-01
Salt pan and sandur surfaces typically consist of complex patterns of small-scale roughness which differ to more commonly studied larger roughness elements. It is important to understand how these surfaces interact with the wind as both sandar and salt pans (or playas) are potential dust emitters, and so improving our understanding of surface-atmosphere interactions over surfaces in these areas is vital. These complexly patterned surfaces are also relative flat, lack vegetation and typically have a large fetch which makes them the ideal experimental surfaces to develop empirical estimations of aerodynamic roughness from terrestrial laser scanner (TLS) datasets. We investigated 20 surfaces with element heights ranging from 1 to 199mm during four field campaigns. Co-located anemometer towers at each location measured actual aerodynamic roughness to compare to a myriad of surface metrics derived from TLS datasets. Using cluster analysis height, shape, spacing and variability metric groups were compared to decipher which best estimated aerodynamic roughness. When height metrics were employed, it was found that over 90% of the variability was explained and height is a better predictor than both shape and spacing. This finding is in juxtaposition to wind erosion models that assume the spacing of larger-scale isolated roughness elements is most important in determining aerodynamic roughness. The study recognizes that when small-scale surface roughness is accurately quantified (with millimetre accuracy using TLS), height is most significance for estimating aerodynamic roughness, irrespective of comparator metric choice. This has very significant implications for the development of aerodynamic roughness predictors which are fundamental to the efficiency of wind erosion models, and, particularly, dust emission schemes in climate models.
NASA Astrophysics Data System (ADS)
Lee, J. H.; Timmermans, J.; Su, Z.; Mancini, M.
2012-04-01
Aerodynamic roughness height (Zom) is a key parameter required in land surface hydrological model, since errors in heat flux estimations are largely dependent on accurate optimization of this parameter. Despite its significance, it remains an uncertain parameter that is not easily determined. This is mostly because of non-linear relationship in Monin-Obukhov Similarity (MOS) and unknown vertical characteristic of vegetation. Previous studies determined aerodynamic roughness using traditional wind profile method, remotely sensed vegetation index, minimization of cost function over MOS relationship or linear regression. However, these are complicated procedures that presume high accuracy for several other related parameters embedded in MOS equations. In order to simplify a procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter via Ensemble Kalman Filter (EnKF) that affords non-linearity and that requires only single or two heat flux measurement. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while a majority of data assimilation study has paid attention to land surface state variables such as soil moisture or land surface temperature. This approach was applied to grassland in semi-arid Tibetan area and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can inversely be tracked from data assimilated heat flux analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance result and literature value. Consequently, this newly estimated input adjusted the sensible heat overestimated and latent heat flux underestimated by the original Surface Energy Balance System (SEBS) model, suggesting better heat flux estimation especially during the summer Monsoon period. The advantage of this approach over other methodologies is that aerodynamic roughness height
Mead Crater, Venus - Aerodynamic roughness of wind streaks
NASA Astrophysics Data System (ADS)
Williams, K. K.; Greeley, R.
1997-03-01
Radar backscatter images of Venus returned by the Magellan spacecraft revealed many aeolian features on the planet's surface. While much work has focused on terrestrial wind streaks, the harsh environment of Venus limits direct measurement of surface properties, such as aerodynamic roughness, that affect aeolian features on that planet. However, a correlation between radar backscatter and aerodynamic roughness (Z0) for the S-band radar system on Magellan can be used to study the aerodynamic roughnesses of areas in which Venusian wind streaks occur. The aerodynamic roughness of areas with both radar-bright and radar-dark wind streaks near Mead crater are calculated and compared to z0 values measured on Earth in order to compare the surface of Venus with known terrestrial surface textures.
Estimating aerodynamic resistance of rough surfaces from angular reflectance
Technology Transfer Automated Retrieval System (TEKTRAN)
Current wind erosion and dust emission models neglect the heterogeneous nature of surface roughness and its geometric anisotropic effect on aerodynamic resistance, and over-estimate the erodible area by assuming it is not covered by roughness elements. We address these shortfalls with a new model wh...
Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach
NASA Astrophysics Data System (ADS)
Wong, Colman Ching Chi; Liu, Chun-Ho
2013-04-01
Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient
NASA Astrophysics Data System (ADS)
Lee, J. H.; Timmermans, J.; Su, Z.; Mancini, M.
2012-11-01
Aerodynamic roughness height (Zom) is a key parameter required in several land surface hydrological models, since errors in heat flux estimation are largely dependent on optimization of this input. Despite its significance, it remains an uncertain parameter which is not readily determined. This is mostly because of non-linear relationship in Monin-Obukhov similarity (MOS) equations and uncertainty of vertical characteristic of vegetation in a large scale. Previous studies often determined aerodynamic roughness using a minimization of cost function over MOS relationship or linear regression over it, traditional wind profile method, or remotely sensed vegetation index. However, these are complicated procedures that require a high accuracy for several other related parameters embedded in serveral equations including MOS. In order to simplify this procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter from single or two heat flux measurements analyzed via Ensemble Kalman Filter (EnKF) that affords non-linearity. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while the majority of data assimilation study have paid attention to updates of other land surface state variables such as soil moisture or land surface temperature. The approach of this study was applied to grassland in semi-arid Tibetan Plateau and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can be inversely tracked from heat flux EnKF final analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance method and literature value. Through a calibration of this parameter, this adjusted the sensible heat previously overestimated and latent heat flux previously underestimated by the original Surface Energy Balance System (SEBS) model. It was considered that this improved heat flux
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.
Studies of the 3D surface roughness height
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-16
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.
Studies of the 3D surface roughness height
NASA Astrophysics Data System (ADS)
Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris
2013-12-01
Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings' surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.
NASA Astrophysics Data System (ADS)
Yang, Le; Liu, Qinhuo
2012-10-01
The aerodynamic surface roughness z0 is a key parameter for climate and land-surface models to study surfaceatmosphere exchanges of mass and energy. The roughness length is difficult to estimate without wind speed profile data, which is intractable at regional to global scale. Theoretical formulations of roughness have been developed in terms of canopy attributes such as frontal area, height, and drag coefficient. This paper discusses the potential of radar altimetry, which provides the backscatter coefficient of the land surface at nadir view, to characterise the surface roughness at km scale. The AIEM model and ProSARproSIM are employed to simulate the backscatter coefficient under different surface condition and different observation geometry at bare soil and at pine forest, respectively. The altimetry backscatter decreases with increase of geometric roughness. The microwave backscatter measured at the nadir view is more sensitive to the surface roughness than that at the oblique observation, especially for the smooth surface. The direct forest return is the dominated scattering mechanism for normal incidence at forest area. Since we failed to collect the z0 measurement at arid and semi-arid area with sparse vegetation, the backscatter measurements at Ku and C band of altimeter Jason1 were analyzed with the ground measured aerodynamic surface roughness at three vegetated sites (Da yekou, Yin ke, and Chang Baisan) of China. The relationships we found between Jason1 sigma0 and z0 is not significant, since Jason1 lost track seriously at the three sites. Further research using the altimeter data of Jason2 and Cryosat is possible to demonstrate the potential to map z0 from orbit using radar altimeters.
Influence of aerodynamic roughness length on aeolian processes: Earth, Mars, Venus
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The aerodynamic roughness length (z sub 0) is the height at which a wind profile assumes a zero velocity. The lower part of the atmospheric boundary layer will be impeded by friction with the surface. An increase in surface roughness will also increase the shear stress required to initiate particle entrainment by the wind. Bagnold (1941) estimated z sub 0 as being 1/30 of the mean particle size. In Nature, surface roughness is composed of nonerodible elements as well as sand-size erodible particles. To assess z sub 0 values as a function of terrain, field experiments were conducted to obtain wind profiles monitored over natural surfaces at 15 sites in the Mojave Desert, Death Valley, and Nye County, Nevada. These sites span a variety of arid-land terrains, including smooth playas, alluvial fans, and lava flows; z sub 0 values ranged from 0.0001 cm to 1 cm. These values were incorporated in a threshold model and a flux model to assess transport efficiency over such terrains in three planetary environments (Venus, Earth, and Mars), and for particle sizes ranging from 60-500 micron. Threshold and flux are a function of planetary environment, particle density and size (Dp), and z sub 0, and the shear velocity of 1.2 x U sub *t (for Dp = 250 micron and z sub 0 = 0.84). Results show that flux on Mars is approximately 14 g/(cm x s), on Earth it is approximately 3 g/(cm x s), and on Venus 0.5 g/(cm x s). Under all planetary environments, the results also show a dramatic decrease in the flux for particles greater than 200 microns when z sub 0 increases above 0.0085 cm (corresponding to sites consisting of alluvium). When z sub 0 approaches 0.03 cm (corresponding to a mantled pahoehoe lava), the flux diminishes.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S., Jr.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such
The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness
NASA Technical Reports Server (NTRS)
HOCKER RAY W
1933-01-01
The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.
NASA Technical Reports Server (NTRS)
Darden, Christine M.
1989-01-01
An experimental investigation was conducted to assess the effect of surface finish on the longitudinal and lateral aerodynamic characteristics of a highly-swept wing at supersonic speeds. A study of the effects of wing dihedral was also made. Included in the tests were four wing models: three models having 22.5 degrees of outboard dihedral, identical except for surface finish, and a zero-dihedral, smooth model of the same planform for reference. Of the three dihedral models, two were taken directly from the milling machine without smoothing: one having a maximum scallop height of 0.002 inches and the other a maximum scallop height of 0.005 inches. The third dihedral model was handfinished to a smooth surface. Tests were conducted in Test Section 1 of the Unitary Plan Wind Tunnel at NASA-Langley over a range of Mach numbers from 1.8 to 2.8, a range of angle of attack from -5 to 8 degrees, and at a Reynolds numbers per foot of 2 x 10(6). Selected data were also taken at a Reynolds number per foot of 6 x 10(6). Drag coefficient increases, with corresponding lift-drag ratio decreases were the primary aerodynamic effects attributed to increased surface roughness due to milling machine grooves. These drag and lift-drag ratio increments due to roughness increased as Reynolds number increased.
Technology Transfer Automated Retrieval System (TEKTRAN)
Friction velocity and aerodynamic roughness are characteristics of the soil-plant-atmosphere interface which affect wind erosion. Although exchange of momentum at the interface can be altered by land management practices, no attempts have been made to quantify the effect of tillage on friction veloc...
Experimental research of surface roughness effects on highly-loaded compressor cascade aerodynamics
NASA Astrophysics Data System (ADS)
Chen, Shao-wen; Xu, Hao; Wang, Song-tao; Wang, Zhong-qi
2014-08-01
Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.
NASA Astrophysics Data System (ADS)
Berrino, Marco; Bigoni, Fabio; Simoni, Daniele; Giovannini, Matteo; Marconcini, Michele; Pacciani, Roberto; Bertini, Francesco
2016-02-01
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels (Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers (300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested (Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.
Aerodynamic roughness measured in the field and simulated in a wind tunnel
NASA Technical Reports Server (NTRS)
Sullivan, Robert; Greeley, Ronald
1992-01-01
This study evaluates how well values of aerodynamic surface roughness, z sub 0, measured over scale models in wind tunnels correlate with values of z sub 0 measured at full scale in the field. A field experiment was conducted in which values of z sub 0 and u* (wind friction speed) were measured over three arrays of non-erodible roughness elements on a dry lake bed. Wind profiles were measured by ten anemometers on a 15 m mast under thermally neutral atmospheric conditions. Values of z sub 0 increased from .00014 m (dry lake bed only) to .026 m with increasing roughness element density. The three roughness element arrays were simulated at 1/10 and 1/20 scale in an open-circuit atmospheric boundary-layer wind tunnel. Velocities were measured with a boundary-layer pitot-tube rake from the same relative position within the scale model arrays as the anemometers were relative to the field arrays. Each array at each scale was sampled three times at five freestream velocities. Average values of z sub 0 for each model array at each scale were compared with full-scale values of z sub 0 obtained in the field. The field vs. wind tunnel correspondence of z sub 0 is found to be z sub 0 field = 0.2661 x (z sub(0 model) x scale(exp -1))exp .8159.
Aerodynamic roughness of ice surfaces derived from high resolution topographic data
NASA Astrophysics Data System (ADS)
Smith, Mark; Quincey, Duncan; Dixon, Timothy; Bingham, Robert; Carrivick, Jonathan; Irvine-Fynn, Tristram; Rippin, David
2016-04-01
The aerodynamic roughness of glacier surfaces is an important component of energy balance models and meltwater runoff estimates through its influence on turbulent fluxes of latent and sensible heat. In a warming climate these fluxes are predicted to become more significant in contributing to overall melt volumes. Ice aerodynamic roughness (z0) is commonly estimated from measurements of ice surface microtopography, typically from topographic profiles taken perpendicular to the prevailing wind direction. Recent advances in surveying permit rapid acquisition of high resolution topographic data allowing revision of assumptions underlying conventional topographic profile-based z0 measurement. This poster presents alternative methods of estimating z0 directly from Digital Elevation Models (DEMs) or three-dimensional point clouds, and examines the spatial and temporal variability of z0 across the ablation zone of a small Arctic glacier. Using Structure-from-Motion (SfM) photogrammetry to survey ice surfaces with millimeter-scale accuracy, z0 variation over three orders of magnitude was observed but was unrelated to large scale topographic variables such as elevation or slope. Different surface-types demonstrated different temporal trajectories in z0 through three days of intense melt, though the observed temporal z0 variability was lower than the spatial variability. A glacier-scale topographic model was obtained through Terrestrial Laser Scanning (TLS) and sub-grid roughness was significantly related to z0 calculated from a 2 m resolution DEM. Thus, glacier scale TLS or SfM surveys can characterize z0 variability over a glacier surface and allow distributed representations of z0 in surface energy balance models.
Aerodynamic roughness of glacial ice surfaces derived from high-resolution topographic data
NASA Astrophysics Data System (ADS)
Smith, Mark W.; Quincey, Duncan J.; Dixon, Timothy; Bingham, Robert G.; Carrivick, Jonathan L.; Irvine-Fynn, Tristram D. L.; Rippin, David M.
2016-04-01
This paper presents new methods of estimating the aerodynamic roughness (z0) of glacier ice directly from three-dimensional point clouds and digital elevation models (DEMs), examines temporal variability of z0, and presents the first fully distributed map of z0 estimates across the ablation zone of an Arctic glacier. The aerodynamic roughness of glacier ice surfaces is an important component of energy balance models and meltwater runoff estimates through its influence on turbulent fluxes of latent and sensible heat. In a warming climate these fluxes are predicted to become more significant in contributing to overall melt volumes. Ice z0 is commonly estimated from measurements of ice surface microtopography, typically from topographic profiles taken perpendicular to the prevailing wind direction. Recent advances in surveying permit rapid acquisition of high-resolution topographic data allowing revision of assumptions underlying conventional z0 measurement. Using Structure from Motion (SfM) photogrammetry with Multi-View Stereo (MVS) to survey ice surfaces with millimeter-scale accuracy, z0 variation over 3 orders of magnitude was observed. Different surface types demonstrated different temporal trajectories in z0 through 3 days of intense melt. A glacier-scale 2 m resolution DEM was obtained through terrestrial laser scanning (TLS), and subgrid roughness was significantly related to plot-scale z0. Thus, we show for the first time that glacier-scale TLS or SfM-MVS surveys can characterize z0 variability over a glacier surface potentially leading to distributed representations of z0 in surface energy balance models.
Transitional flow in the wake of a moderate to large height cylindrical roughness element
NASA Astrophysics Data System (ADS)
Plogmann, B.; Würz, W.; Krämer, E.
2015-12-01
The effect of an isolated, cylindrical roughness on the stability of an airfoil boundary layer has been studied based on particle image velocimetry and hot-wire anemometry. The investigated roughness elements range from a sub-critical to a super-critical behavior with regard to the critical roughness Reynolds number. For the sub-critical case, the nonlinear disturbance growth in the near wake is governed by oblique Tollmien-Schlichting (TS) type modes. Further downstream, these disturbance modes are, however, damped with the mean flow stabilization and no dominant modes persist in the far wake. By contrast, in the transitional configuration the disturbance growth is increased, but still associated with a TS-type instability in the near-wake centerline region of the low-aspect (height-to-diameter) ratio element. That is, the disturbances in the centerline region show a similar behavior as known for 2D elements, whereas in the outer spanwise domain a Kelvin-Helmholtz (KH) type, shear-layer instability is found, as previously reported for larger aspect ratio isolated elements. With increasing height and, thereby, aspect ratio of the roughness, the KH-type instability domain extends toward the centerline and, accordingly, the TS-type instability domain decreases. For high super-critical cases, transition is already triggered in the wall-normal and spanwise shear layers upstream and around the roughness. In the immediate wake, periodic shear-layer disturbances roll up into a—for isolated elements characteristic—shedding of vortices, which was not present at the lower roughness Reynolds number cases due to the decreased aspect ratio and, thereby, different instability mechanism.
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1978-01-01
Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.
Entrainment of radio frequency chaff by wind as a function of surface aerodynamic roughness.
Gillies, John A; Nickling, William G
2003-02-01
Radio frequency (RF) chaff (approximately 2-cm x 25-microm diameter aluminum-coated glass silicate cylinders) released by military aircraft during testing and training activities has the potential to become entrained by wind upon settling to the Earth's surface. Once entrained from the surface there is the potential for RF chaff to be abraded and produce PM10 and PM2.5, which are regulated pollutants and pose health concerns. A series of portable wind tunnel tests were carried out to examine the propensity of RF chaff to become entrained by wind by defining the relationship between the threshold friction velocity of RF chaff (u(*t RF chaff)) and aerodynamic roughness (z(o)) of surfaces onto which it may deposit. The test surfaces were of varying roughness including types near the Naval Air Station (NAS), Fallon, NV, where RF chaff is released. The u(*t) of this fibrous material ranged from 0.14 m/sec for a smooth playa to 0.82 m/sec for a rough crusted playa surface with larger cobble-sized (approximately 6-26-cm diameter) rocks rising above the surface. The u(*t RF chaff) is dependent on the z(o) of the surface onto which it falls as well as the physical characteristics of the roughness. The wind regime of Fallon would allow for chaff suspension events to occur should it settle on typical surfaces in the area. However, the wind climatology of this area makes the probability of such events relatively low. PMID:12617294
Displacement Height and Roughness Length of Forests - Are They Really Dependent on Stability?
NASA Astrophysics Data System (ADS)
Mölder, M.; Lindroth, A.
2015-12-01
Displacement height d and roughness length zo are two important parameters in a commonly used Obukhov-Monin similarity-theory wind-profile formulation. These parameters have historically been considered to be properties of the underlying surface. A few studies have pointed out that d and zo for tall vegetation, like forest, are also dependent on stability. Since d and zo are defined by the semi-logarithmic law, the most strict determination of them would be based on the upper part of the surface layer, which is free of roughness sublayer effects. Often the displacement height is determined from the wind profile inside the stand. The present study makes use of measurements with 14 3D sonic anemometers (Metek) in the Norunda forest in Sweden. This site is dominated by pine with trees up to 26 m tall. The sonics were mounted at 1.8, 4.4, 9.5, 14.8, 20.8, 26.6, 29.6, 32.7, 37.9, 44.7, 59.5, 74, 88.5 and 101.8 m heights. Data from two summer seasons, 2014 and 2015, were used in the current analysis. A serious complication was that the momentum and sensible heat fluxes were rarely constant with height. Also, during nighttime profiles appeared with nearly constant wind speed in the upper part of the profile. In our analysis, the Obukhov length was calculated from friction velocity and sensible heat flux averaged for 26.6, 29.6 and 32.7 m. The mean friction velocity and Obukhov length were then used in the profile formulation. Displacement height giving the best match to the measured data at 44.7, 59.5, 74, 88.5 and 101.8 m was searched for. This method gave extremely erratic results. Alternatively, d was estimated using the exponential law with measurement heights 9.5, 14.8, 20.8 and 26.6 m giving d close to 22 m with a tendency of slightly increasing d towards more stable situations, but with large uncertainty. We then used a constant d of 22 m in the upper part of the profile and this resulted in zo of about 2.5 m. A small tendency of lower zo could be observed for very
Cho, Jaeil; Miyazaki, Shin; Yeh, Pat J-F; Kim, Wonsik; Kanae, Shinjiro; Oki, Taikan
2012-03-01
Surface albedo (α) and aerodynamic roughness length (z(0)), which partition surface net radiation into energy fluxes, are critical land surface properties for biosphere-atmosphere interactions and climate variability. Previous studies suggested that canopy structure parameters influence both α and z(0); however, no field data have been reported to quantify their relationships. Here, we hypothesize that a functional relationship between α and z(0) exists for a vegetated surface, since both land surface parameters can be conceptually related to the characteristics of canopy structure. We test this hypothesis by using the observed data collected from 50 site-years of field measurements from sites worldwide covering various vegetated surfaces. On the basis of these data, a negative linear relationship between α and log(z(0)) was found, which is related to the canopy structural parameter. We believe that our finding is a big step toward the estimation of z(0) with high accuracy. This can be used, for example, in the parameterization of land properties and the observation of z(0) using satellite remote sensing. PMID:21562788
NASA Astrophysics Data System (ADS)
Miles, Evan; Steiner, Jakob; Brun, Fanny; Detert, Martin; Buri, Pascal; Pellicciotti, Francesca
2016-04-01
Aerodynamic surface roughness is an essential parameter in surface energy balance studies. While actual measurements on bare ice glaciers are rare, a wide range of literature values exist for ice and snow surfaces. There are very few values suggested for debris covered glaciers and actual measurements are even scarcer - studies instead optimize z0 or use a reference value. The increased use of photogrammetry on glaciers provides an opportunity to characterize the range of z0 values meaningful for debris-covered glaciers. We apply Agisoft's Structure-from-Motion process chain to produce high resolution DEMs for five 1m x 1m plots (1mm resolution) with differing grain-size distributions, as well as a large ~180m x ~180m depression (5cm) on Lirung Glacier in the Nepalese Himalayas. For each plot, we calculate z0 according to transect-based microtopographic parameterisations. We compare individual-transect z0 estimates based on profile position and direction, and develop a grid version of the algorithms aggregating height data from all bidirectional transects. This grid approach is applied to our larger DEM to characterize the variability of z0 across the study site for each algorithm. For the plot DEMs, z0 estimated by any algorithm varies by an order of magnitude based on transect position. Although the algorithms reproduce the same variability among transects and plots, z0 estimates vary by an order of magnitude between algorithms. For any algorithm, however, we find minimal difference between cross- and down-glacier profile directions. At the basin scale, results from different algorithms are strongly correlated and results are more closely clustered with the exception of the Rounce (2015) algorithm, while any algorithm's values range by two orders of magnitude across the study depression. The Rounce algorithm consistently produced the highest z0 values, while the Lettau (1969) and Munro (1989) methods produced the lowest values, and use of the Nield (2013
NASA Astrophysics Data System (ADS)
Graf, Alexander; van de Boer, Anneke; Moene, Arnold; Vereecken, Harry
2014-05-01
We applied three approaches to estimate the zero-plane displacement through the aerodynamic measurement height (with and being the measurement height above the surface), and the aerodynamic roughness length , from single-level eddy covariance data. Two approaches (one iterative and one regression-based) were based on the universal function in the logarithmic wind profile and yielded an inherently simultaneous estimation of both and . The third approach was based on flux-variance similarity, where estimation of and consecutive estimation of are independent steps. Each approach was further divided into two methods differing either with respect to the solution technique (profile approaches) or with respect to the variable (variance of vertical wind and temperature, respectively). All methods were applied to measurements above a large, growing wheat field where a uniform canopy height and its frequent monitoring provided plausibility limits for the resulting estimates of time-variant and . After applying, for each approach, a specific data filtering that accounted for the range of conditions (e.g. stability) for which it is valid, five of the six methods were able to describe the temporal changes of roughness parameters associated with crop growth and harvest, and four of them agreed on to within 0.3 m most of the time. Application of the same methods to measurements with a more heterogeneous footprint consisting of fully-grown sugarbeet and a varying contribution of adjacent harvested fields exhibited a plausible dependence of the roughness parameters on the sugarbeet fraction. It also revealed that the methods producing the largest outliers can differ between site conditions and stability. We therefore conclude that when determining for canopies with unknown properties from single-level measurements, as is increasingly done, it is important to compare the results of a number of methods rather than rely on a single one. An ensemble average or median of the results
Claassen, H.C.; Riggs, A.C.
1993-12-01
A somewhat unconventional technique using a tethered balloon was used to estimate the roughness length for momentum (z{sub m}) and displacement height (d) for typical Sonoran Desert vegetation. It has been suggested that measurements of the meteorological fluxes of momentum, sensible heat, and latent heat are best done at heights above ground level determined by either the roughness length (z{sub m}) or the size and shape of vegetation. Therefore, estimates of z{sub m} and vegetation characteristics are a desirable prerequisite to developing a flux-measurement protocol. Because the literature contains little information on z{sub m} for Sonoran Desert vegetation, it is desirable to measure z{sub m} and the displacement height (d) associated with Sonoran Desert vegetation.
NASA Astrophysics Data System (ADS)
Xing, Qiang; Wu, Bingfang; Zhu, Weiwei
2014-03-01
The aerodynamic roughness is one of the major parameters in describing the turbulent exchange process between terrestrial and atmosphere. Remote Sensing is recognized as an effective way to inverse this parameter at the regional scale. However, in the long time the inversion method is either dependent on the lookup table for different land covers or the Normalized Difference Vegetation Index (NDVI) factor only, which plays a very limited role in describing the spatial heterogeneity of this parameter and the evapotranspiration (ET) for different land covers. In fact, the aerodynamic roughness is influenced by different factors at the same time, including the roughness unit for hard surfaces, the vegetation dynamic growth and the undulating terrain. Therefore, this paper aims at developing an innovative aerodynamic roughness inversion method based on multi-source remote sensing data in a semiarid region, within the upper and middle reaches of Heihe River Basin. The radar backscattering coefficient was used to inverse the micro-relief of the hard surface. The NDVI was utilized to reflect the dynamic change of vegetated surface. Finally, the slope extracted from SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) was used to correct terrain influence. The inversed aerodynamic roughness was imported into ETWatch system to validate the availability. The inversed and tested results show it plays a significant role in improving the spatial heterogeneity of the aerodynamic roughness and related ET for the experimental site.
NASA Astrophysics Data System (ADS)
Nield, Joanna; Bryant, Robert; Wiggs, Giles; King, James; Thomas, David; Eckardt, Frank; Washington, Richard
2015-04-01
Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development on part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant dust), based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. Ridge development can change surface topography as much as 30 mm/week on fresh pan areas that have recently been reset by flooding. The corresponding change aerodynamic roughness can be as much as 3 mm/week. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R
2008-11-01
A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds
NASA Technical Reports Server (NTRS)
Ware, G. M.; Spencer, B., Jr.
1986-01-01
An investigation has been conducted to determine the effects of surface roughness on two Space Shuttle Orbiter models. The tests were conducted over a Mach number range from 0.2 to 6.0 in the Langley Low Turbulance Pressure Tunnel, 8-foot Transonic Pressure Tunnel, Unitary Plan Wind Tunnel, 20-Inch Mach 6 Tunnel, and the Vought High Speed Tunnel. Analytical estimates of the degradation of the subsonic performance resulting from the roughness were made and are presented. The investigation also included tests to explore the possibility of asymmetric flow separation or attachment over the wings during transition from high to low angles of attack that might cause roll divergence.
NASA Astrophysics Data System (ADS)
Sun, Genhou; Hu, Zeyong; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang
2016-07-01
The aerodynamic roughness length (z0m) is a crucial parameter in quantifying momentum, sensible and latent heat fluxes between land surface and atmosphere, and it depends greatly on spatial scales. This paper presents a tentative study on the upscaling analysis of z0m in the north Tibetan Plateau based on in situ data from eddy covariance (EC) and large aperture scintillometer (LAS) and leaf area index (LAI) of MODerate-resolution Imaging Spectroradiometer (MODIS) with 250 m and 2 km spatial resolutions. The comparison of z0m calculated from EC (z0m_EC) and LAS (z0m _LAS) data indicates that z0m at both scales has apparent seasonal variations and is in good agreement with the LAI result. However, z0m_LAS is higher than z0m_EC, which is attributed to the differences in roughness elements in their footprints. An upscaling relationship for z0m is developed with z0m_EC, z0m _LAS and LAI with 250 m spatial resolution of MODIS. In addition, an altitude correction factor is introduced into the vegetation height estimation equation because the cold environment in the north Tibetan Plateau, which is due to its high altitude, has a strong influence on vegetation height. The z0m retrieval with 250 m spatial resolution in the rain season is validated with z0m_EC at sites Nagqu/Amdo, Nagqu/MS3478 and Nagqu/NewD66, and the agreement is acceptable. The spatial distribution of z0m retrievals at small spatial scale in the north Tibetan Plateau from June to September 2012 shows that the z0m values are less than 0.015 m in most areas, with the exception of the area in the southeast part, where z0m reaches 0.025 m owing to low altitudes. The z0m retrievals at large spatial scale in the north Tibetan Plateau from June to September 2012 range from 0.015 to 0.065 m, and high values appear in the area with low altitudes. The spatial distribution and frequency statistics of z0m retrievals at both spatial scales reveal the influence of altitude and LAI on the z0m in the north Tibetan
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.
1977-01-01
An experimental investigation was conducted to determine the effects of roughness size on the position of boundary layer transition and on the aerodynamic characteristics of a 55 deg swept delta wing model. Results are presented and discussed for wind tunnel tests conducted at free stream Mach numbers from 1.50 to 4.63, Reynolds numbers per meter from 3,300,000 to 1.6 x 10 to the 7th power, angles of attack from -8 to 16 deg, and roughness sizes ranging from 0.027 cm sand grit to 0.127 cm high cylinders. Comparisons were made with existing flat plate data. An approximate method was derived for predicting the drag of roughness elements used in boundary layer trips.
NASA Astrophysics Data System (ADS)
Basart, Sara; Jorba, Oriol; Pérez García-Pando, Carlos; Prigent, Catherine; Baldasano, Jose M.
2014-05-01
Aeolian aerodynamic roughness length in arid regions is a key parameter to predict the vulnerability of the surface to wind erosion, and, as a consequence, the related production of mineral aerosol (e.g. Laurent et al., 2008). Recently, satellite-derived roughness length at the global scale have emerged and provide the opportunity to use them in advanced emission schemes in global and regional models (i.e. Menut et al., 2013). A global map of the aeolian aerodynamic roughness length at high resolution (6 km) is derived, for arid and semi-arid regions merging PARASOL and ASCAT data to estimate aeolian roughness length. It shows very good consistency with the existing information on the properties of these surfaces. The dataset is available to the community, for use in atmospheric dust transport models. The present contribution analyses the behaviour of the NMMB/BSC-Dust model (Pérez et al., 2011) when the ASCAT/PARASOL satellite-derived global roughness length (Prigent et al, 2012) and the State Soil Geographic database Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) is used. We explore the sensitivity of the drag partition scheme (a critical component of the dust emission scheme) and the dust vertical fluxes (intensity and spatial patterns) to the roughness length. An annual evaluation of NMMB/BSC-Dust (for the year 2011) over Northern Africa and the Middle East using observed aerosol optical depths (AODs) from Aerosol Robotic Network sites and aerosol satellite products (MODIS and MISR) will be discussed. Laurent, B., Marticorena, B., Bergametti, G., Leon, J. F., and Mahowald, N. M.: Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database, J. Geophys. Res., 113, D14218, doi:10.1029/2007JD009484, 2008. Menut, L., C. Pérez, K. Haustein, B. Bessagnet, C. Prigent, and S. Alfaro, Impact of surface roughness and soil texture on mineral dust emission
NASA Astrophysics Data System (ADS)
Simonsen, I.; Hetland, Ø. S.; Kryvi, J. B.; Maradudin, A. A.
2016-04-01
An expression is obtained on the basis of phase perturbation theory for the contribution to the mean differential reflection coefficient from the in-plane co-polarized component of the light scattered diffusely from a two-dimensional randomly rough dielectric surface when the latter is illuminated by s -polarized light. This result forms the basis for an approach to inverting experimental light-scattering data to obtain the normalized-surface-height autocorrelation function of the surface. Several parametrized forms of this correlation function, and the minimization of a cost function with respect to the parameters defining these representations, are used in the inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant of the dielectric substrate if it is not known in advance. The input data used in validating this inversion consist of computer simulation results for surfaces defined by exponential and Gaussian surface-height correlation functions, without and with the addition of multiplicative noise, for a single or multiple angles of incidence. The reconstructions obtained by this approach are quite accurate for weakly rough surfaces, and the proposed inversion scheme is computationally efficient.
Krynkin, A; Horoshenkov, K V; Nichols, A; Tait, S J
2014-11-01
In this paper, the directivity of the airborne sound field scattered by a dynamically rough free flow surface in a flume is used to determine the mean roughness height for six hydraulic conditions in which the uniform depth of the turbulent flow. The nonlinear curve fitting method is used to minimize the error between the predicted directivity and directivity data. The data fitting algorithm is based on the averaged solution for the scattered sound pressure as a function of angle which is derived through the Kirchhoff integral and its approximations. This solution takes into account the directivity of the acoustic source. For the adopted source and receiver geometry and acoustic frequency it is shown that the contribution from the stationary phase point (single specular point on the rough surface) yields similar results to those which can be obtained through the full Kirchhoff's integral. The accuracy in the inverted mean roughness height is comparable to that achieved with an array of conductive wave probes. This method enables non-invasive estimation of the flow Reynolds number and uniform flow depth. PMID:25430137
NASA Technical Reports Server (NTRS)
Lockwood, Vernard E.
1961-01-01
A wind-tunnel investigation has been made to determine the ground effect on the aerodynamic characteristics of a lifting circular cylinder using tangential blowing from surface slots to generate high lift coefficients. The tests were made on a semispan model having a length 4 times the cylinder diameter and an end plate of 2.5 diameters. The tests were made at low speeds at a Reynolds number of approximately 290,000, over a range of momentum coefficients from 0.14 to 4.60, and over a range of groundboard heights from 1.5 to 10 cylinder diameters. The investigation showed an earlier stall angle and a large loss of lift coefficient as the groundboard was brought close to the cylinder when large lift coefficients were being generated. For example, at a momentum coefficient of 4.60 the maximum lift coefficient was reduced from a value of 20.3 at a groundboard height of 10 cylinder diameters to a value of 8.7 at a groundboard height of 1.5 cylinder diameters. In contrast to this there was little effect on the lift characteristics of changes in groundboard height when lift coefficients of about 4.5 were being generated. At a height of 1.5 cylinder diameters the drag coefficients generally increased rapidly when the slot position angle for maximum lift was exceeded. Slightly below the slot position angle for maximum lift, the groundboard had a beneficial effect, that is, the drag for a given lift was less near the groundboard than away from the groundboard. The variation of maximum circulation lift coefficient (maximum lift coefficient minus momentum coefficient) obtained in this investigation is in general agreement with a theory developed for a jet-flap wing which assumes that the loss in circulation is the result of blockage of the main stream beneath the wing.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; Yi, Donghui
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
NASA Astrophysics Data System (ADS)
Durand, M. T.; Andreadis, K.; Smith, L. C.; Alsdorf, D. E.; Mersel, M. K.
2011-12-01
The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. SWOT represents a fundamentally new approach to characterizing fluvial processes, especially river discharge. However, because SWOT will observe water surface elevations, but not river bathymetric elevations, the cross-sectional flow area will only be observed above the lowest observed river depth. The so-called SWOT hydrology "virtual mission" (VM) has explored several approaches to depth estimation. Simplistic treatment of river depth spatial variability has been a key limitation of most existing VM work; put simply, geomorphology matters. The challenge for SWOT is how to perform the inverse problem of characterizing bathymetry and river flow given SWOT water surface elevation (WSE) measurements. This task falls at the intersection of two disciplines, engineering open channel hydraulics and fluvial geomorphology. In hydraulic formulations the physical form of the channel combined with conservation of mass and momentum dictate a complex spatiotemporal response of WSE to spatial changes in river bathymetry (i.e. changes in bed slope and cross-section) and temporal changes of flow propagating downstream. By combining prior information on river conditions and fluvial geomorphology with SWOT observations, it is essentially possible to do hydraulic modeling backwards, estimating river discharge, bathymetry, and roughness. Here, we present synthetic SWOT observations of water elevations over the Ohio River based on a dynamic simulation of approximately six months. Second, we present a simple Bayesian approach to simultaneously estimate river bathymetry, roughness and discharge. Prior estimates of bathymetry and roughness are generated based on a simple depth estimate, multiplied by random errors with an exponential autocorrelation function. We then implement a Monte Carlo Markov Chain algorithm to
NASA Astrophysics Data System (ADS)
Crunteanu, D. E.; Constantinescu, S. G.; Niculescu, M. L.
2013-10-01
The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. In contrast to these wind turbines, the Darrieus wind turbines are simpler and their price is lower. Unfortunately, their blades run at high variations of angles of attack, in stall and post-stall regimes, which can induce significant vibrations, fatigue and even the wind turbine failure. For this reason, the present paper deals with a blade with sine variation of chord length along the height because it has better behavior in stall and post-stall regimes than the classic blade with constant chord length.
NASA Astrophysics Data System (ADS)
Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz
2016-04-01
Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a = 24 nm, R RMS = 28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.
A New Aerodynamic Parametrization for Real Urban Surfaces
NASA Astrophysics Data System (ADS)
Kanda, Manabu; Inagaki, Atsushi; Miyamoto, Takashi; Gryschka, Micha; Raasch, Siegfried
2013-08-01
This study conducted large-eddy simulations (LES) of fully developed turbulent flow within and above explicitly resolved buildings in Tokyo and Nagoya, Japan. The more than 100 LES results, each covering a 1,000 × 1,000 m2 area with 2-m resolution, provide a database of the horizontally-averaged turbulent statistics and surface drag corresponding to various urban morphologies. The vertical profiles of horizontally-averaged wind velocity mostly follow a logarithmic law even for districts with high-rise buildings, allowing estimates of aerodynamic parameters such as displacement height and roughness length using the von Karman constant = 0.4. As an alternative derivation of the aerodynamic parameters, a regression of roughness length and variable Karman constant was also attempted, using a displacement height physically determined as the central height of drag action. Although both the regression methods worked, the former gives larger (smaller) values of displacement height (roughness length) by 20-25 % than the latter. The LES database clearly illustrates the essential difference in bulk flow properties between real urban surfaces and simplified arrays. The vertical profiles of horizontally-averaged momentum flux were influenced by the maximum building height and the standard deviation of building height, as well as conventional geometric parameters such as the average building height, frontal area index, and plane area index. On the basis of these investigations, a new aerodynamic parametrization of roughness length and displacement height in terms of the five geometric parameters described above was empirically proposed. The new parametrizations work well for both real urban morphologies and simplified model geometries.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at
Gliding swifts attain laminar flow over rough wings.
Lentink, David; de Kat, Roeland
2014-01-01
Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089
Gliding Swifts Attain Laminar Flow over Rough Wings
Lentink, David; de Kat, Roeland
2014-01-01
Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089
Maurer, K. D.; Bohrer, G.; Ivanov, V. Y.
2014-11-27
Surface roughness parameters are at the core of every model representation of the coupling and interactions between land-surface and atmosphere, and are used in every model of surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and do not vary them in response to spatial or temporal changes to canopy structure. In part, this is due to the difficulty of reducing the complexity of canopy structure and its spatiotemporal dynamic and heterogeneity to less than a handful of parameters describing its effects of atmosphere–surface interactions. In this study we use large-eddy simulationsmore » to explore, in silico, the effects of canopy structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than
NASA Astrophysics Data System (ADS)
Zhu, Xiaowei; Anderson, William
2015-11-01
The inherent spatial heterogeneity exhibited by real urban environments complicates a priori estimation of the roughness height needed to parameterize the inertial layer mean streamwise velocity. A large-eddy simulation study of turbulent flow over 3-D random urban-like topographies is conducted to explore the effects of surface geometry on bulk aerodynamic characterization. In a mean sense, we find that statistical attributes including surface height root mean square and skewness can adequately capture the spatial heterogeneities and randomness of real urban geometries. We find, however, that higher-order statistical moments have a negligible affect on aerodynamic drag (i.e. kurtosis may be omitted). The results enable exploration of applicability of some recently-proposed roughness parameterizations that are relevant to complex, urban-like roughness (including the model proposed by Flack and Schultz, 2010: J. Fluids Eng. 132, 041203-1). We evaluate empirical parameters needed in these models for the present urban-like cases. We find that two empirical parameters (relevant to height rms and skewness) can characterize the bulk aerodynamic roughness of topographies with statistical attributes comparable to dense urban environments. This work was supported by the Army Research Office, Atmospheric Sciences Program (PM: Dr. S. Collier) under Grant # W911NF-13-1-0474. Computational resources were provided by the Texas Advanced Computing Center at the University of Texas.
Comparison of selected approaches for urban roughness determination based on voronoi cells
NASA Astrophysics Data System (ADS)
Ketterer, Christine; Gangwisch, Marcel; Fröhlich, Dominik; Matzarakis, Andreas
2016-07-01
Wind speed is reduced above urban areas due to their high aerodynamic roughness. This not only holds for above the urban canopy. The local vertical wind profile is modified. Aerodynamic roughness (both roughness length and displacement height) therefore is relevant for many fields within human biometeorology, e.g. for the identification of ventilation paths, the concentration and dispersion of air pollutants at street level or to simulate wind speed and direction in urban environments and everything depending on them. Roughness, thus, also shows strong influence on human thermal comfort. Currently, roughness parameters are mostly estimated using classifications. However, such classifications only provide limited assessment of roughness in urban areas. In order to calculate spatially resolved roughness on the micro-scale, three different approaches were implemented in the SkyHelios model. For all of them, the urban area is divided into reference areas for each of the obstacles using a voronoi diagram. The three approaches are based on building and [+one of them also on] vegetation (trees and forests) data. They were compared for the city of Stuttgart, Germany. Results show that the approach after Bottema and Mestayer (J Wind Eng Ind Aerodyn 74-76:163-173 1998) on the spatial basis of a voronoi diagram provides the most plausible results.
Hosni, M.H. . Dept. of Mechanical Engineering); Coleman, H.W. . Mechanical Engineering Dept.); Taylor, R.P. . Mechanical and Nuclear Engineering Dept.)
1993-09-01
Experimental measurements of profiles of mean velocity and distributions of boundary-layer thickness and skin friction coefficient from aerodynamically smooth, transitionally rough, and fully rough turbulent boundary-layer flows are presented for four surfaces-three rough and one smooth. The rough surfaces are composed of 1.27 mm diameter hemispheres spaced in staggered arrays 2, 4, and 10 base diameters apart, respectively, on otherwise smooth walls. The current incompressible turbulent boundary-layer rough-wall air flow data are compared with previously published results on another, similar rough surface. It is shown that fully rough mean velocity profiles collapse together when scaled as a function of momentum thickness, as was reported previously. However, this similarity cannot be used to distinguish roughness flow regimes, since a similar degree of collapse is observed in the transitionally rough regimes, since a similar degree of collapse is observed in the transitionally rough data. Observation of the new data shows that scaling on the momentum thickness alone is not sufficient to produce similar velocity profiles for flows over surfaces of different roughness character. The skin friction coefficient data versus the ratio of the momentum thickness to roughness height collapse within the data uncertainty, irrespective of roughness flow regime, with the data for each rough surface collapsing to a different curve. Calculations made using the previously published discrete element prediction method are compared with data from the rough surfaces with well-defined roughness elements, and it is shown that the calculations are in good agreement with the data.
Determination of aerodynamic parameters of urban surfaces: methods and results revisited
NASA Astrophysics Data System (ADS)
Mohammad, A. F.; Zaki, S. A.; Hagishima, A.; Ali, M. S. M.
2015-11-01
Estimates of aerodynamic parameters, in particular roughness length z 0 and displacement height d, are important for the analysis of the roughness of an urban surface, which affects processes that occur within the urban boundary layer such as pollutant dispersion and urban ventilation. Findings regarding the aerodynamic effects of various configurations of urban arrays were compiled from various studies. Several experimental, numerical and semi-empirical studies to estimate z 0 and d were reviewed and compared with each other. The results can be summarized as follows: (1) the influence of the frontal area index ( λ f ) on z 0 is significant and their relationship has been confirmed by both experimental and numerical data; (2) compared to one-parameter and two-parameter fitting methods, the three-parameter fitting method is the least accurate; (3) the physical meaning of d remains vague because its definition as the height where surface drag acts may not be accurate for sharp-edged roughness blocks and (4) the peak values of z 0 for uniform and heterogeneous block heights indicate presence of skimming or wake-interference flow effects, which may influence surface roughness. Finally, the semi-empirical models were found to be limited to cases derived from available experimental data, which normally involve uniform arrays of cubes.
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
Implementation of spaceborne lidar-retrieved canopy height in the WRF model
NASA Astrophysics Data System (ADS)
Lee, Junhong; Hong, Jinkyu
2016-06-01
Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.
The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation
NASA Astrophysics Data System (ADS)
Varquez, Alvin Christopher G.; Nakayoshi, Makoto; Kanda, Manabu
2015-03-01
We consider the effects of detailed urban roughness parameters on a sea-breeze simulation. An urban roughness database, constructed using a new aerodynamic parametrization derived from large-eddy simulations, was incorporated as a surface boundary condition in the advanced Weather Research and Forecasting model. The zero-plane displacement and aerodynamic roughness length at several densely built-up urban grids were three times larger than conventional values due to the consideration of building-height variability. A comparison between simulations from the modified model and its default version, which uses uniform roughness parameters within a conventional method, was conducted for a 2-month period during summer. Results showed a significant improvement in the simulation of surface wind speed but not with temperature. From the 2-month study period, a day with an evident sea-breeze penetration was selected and simulated at higher temporal resolution. Sea-breeze penetration weakened and was more delayed over urbanized areas. The slow sea-breeze penetration also lessened heat advection downwind allowing stronger turbulent mixing and a deeper boundary layer above urban areas. Horizontal wind-speed reduction due to the increased urban surface drag reached heights of several hundreds of metres due to the strong convection.
Not Available
1993-01-01
In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.
Experimental study of full-scale iced-airfoil aerodynamic performance using sub-scale simulations
NASA Astrophysics Data System (ADS)
Busch, Greg T.
Determining the aerodynamic effects of ice accretion on aircraft surfaces is an important step in aircraft design and certification. The goal of this work was to develop a complete sub-scale wind tunnel simulation methodology based on knowledge of the detailed iced-airfoil flowfield that allows the accurate measurement of aerodynamic penalties associated with the accretion of ice on an airfoil and to validate this methodology using full-scale iced-airfoil performance data obtained at near-flight Reynolds numbers. In earlier work, several classifications of ice shape were developed based on key aerodynamic features in the iced-airfoil flowfield: ice roughness, streamwise ice, horn ice, and tall and short spanwise-ridge ice. Castings of each of these classifications were acquired on a full-scale NACA 23012 airfoil model and the aero-dynamic performance of each was measured at a Reynolds number of 12.0 x 106 and a Mach number = 0.20. In the current study, sub-scale simple-geometry and 2-D smooth simulations of each of these castings were constructed based on knowledge of iced-airfoil flowfields. The effects of each simulation on the aerodynamic performance of an 18-inch chord NACA 23012 airfoil model was measured in the University of Illinois 3 x 4 ft. wind tunnel at a Reynolds number of 1.8 x 106 and a Mach number of 0.18 and compared with that measured for the corresponding full-scale casting at high Reynolds number. Geometrically-scaled simulations of the horn-ice and tall spanwise-ridge ice castings modeled C l,maxto within 2% and Cd,min to within 15%. Good qualitative agreement in the Cp distributions suggests that important geometric features such as horn and ridge height, surface location, and angle with respect to the airfoil chordline were appropriately modeled. Geometrically-scaled simulations of the ice roughness, streamwise ice, and short-ridge ice tended to have conservative C l,max and Cd. The aerodynamic performance of simulations of these types of
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
Fault Roughness Records Strength
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.
2014-12-01
Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the
Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers
NASA Astrophysics Data System (ADS)
Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni
2016-03-01
We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.
Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers
NASA Astrophysics Data System (ADS)
Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni
2016-08-01
We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.
Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2013-05-01
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Astrophysics Data System (ADS)
Pennypacker, Sam; Baldocchi, Dennis
2016-02-01
Canopy height is an important and dynamic site variable that affects the mass and energy exchanges between vegetation and the atmosphere. We develop a method to estimate canopy height routinely, using surface-layer theory and turbulence measurements made from a collection of flux towers. This tool is based on connecting the logarithmic wind profile generally expected in a neutral surface layer with direct measurements of friction velocity and assumptions about canopy height's relationships with zero-plane displacement and aerodynamic roughness length. Tests over a broad range of canopy types and heights find that calculated values are in good agreement with direct measurements of canopy height, including in a heterogeneous landscape. Based on the various uncertainties associated with our starting assumptions about canopy micrometeorology, we present a blueprint for future work that is necessary for expanding and improving these initial calculations.
Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail
NASA Astrophysics Data System (ADS)
Alansatan, Sait
-grit roughness to the LEWICE shapes produced greater losses than corresponding smooth ice shapes. Spoiler-ice with constant spanwise height caused larger performance losses than spoiler-ice with height scaled as a function of local chord length. Aerodynamic performance degradation due to the variable height spoiler-ice was similar to that obtained with the corresponding LEWICE shapes.
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Could crop height affect the wind resource at agriculturally productive wind farm sites?
Vanderwende, Brian; Lundquist, Julie K.
2015-11-07
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.
Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, Brian; Lundquist, Julie K.
2016-03-01
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.
Roughness of stable, armored gravel beds
NASA Astrophysics Data System (ADS)
Gomez, Basil
1993-11-01
The grain roughness of stable armored beds that formed in a laboratory flume under a range of steady flow conditions on rounded, flat and angular gravel is analyzed. Gravel roughness geometry is determined from bed surface profiles and vertical photographs. These techniques have been employed in field situations. Thus the methodology is potentially applicable to the analysis of grain roughness in natural gravel bed channels. The description of representative roughness geometry is also analogous to that used to characterize artificial roughness arrays. Armor roughness increases with increasing flow. Armored surfaces composed of angular gravel are roughest, and surfaces formed of flat gravel offer least resistance to the flow. Stable armored beds may exhibit a tendency to maximize the ratio of the shear due to drag on representative roughness elements to total shear. Roughness concentration is strongly correlated with the energy slope, and there is a linear increase in equivalent roughness height with increasing roughness concentration. The friction factor for an armored surface varies in a linear manner with representative roughness geometry. The equation defining this relation is probably similar to that used to characterize variations in the friction factor with artificial roughness geometry at low roughness concentrations. However, to reconcile the relations for artificial and natural roughness completely, it may be necessary to explicitly consider the contribution to flow resistance made by roughness shape, background roughness, and blocking in shallow flows.
ERIC Educational Resources Information Center
POTTER, LOUIS A.
THE "HEIGHTS" PROGRAM, AS PART OF THE GREAT CITIES SCHOOL IMPROVEMENT PROGRAM, IS BASED ON THE BELIEF THAT MUCH CAN BE DONE TO CHANGE THE PATTERNS OF ASPIRATION, ACHIEVEMENT, AND ADJUSTMENT WHICH CULTURALLY DEPRIVED YOUTH TEND TO FOLLOW. TRADITIONAL GOALS OF EDUCATION WILL BE FOLLOWED, BUT THE TEACHERS AND STAFF WILL HAVE AT THEIR DISPOSAL A GROUP…
NASA Astrophysics Data System (ADS)
Lee, Sang Woo; Kim, Seon Ung
2010-11-01
Tip gap height effects on the flow structure over a cavity squealer tip have been investigated in a linear turbine cascade for power generation, in comparison with the corresponding plane tip results. Oil film flow visualizations are conducted on the tip surface and casing wall for tip gap height-to-chord ratios of h/c = 1.0, 2.0, and 3.0%. The squealer tip has a recessed cavity enclosed by a full length squealer with its rim height-to-chord ratio of 5.51%. The results show that most of in-coming fluid entering the tip gap inlet for the cavity squealer tip is entrapped by the suction-side squealer rim, and the cavity fluid is discharged into the blade flow passage over the suction-side squealer rim in the region from the mid-chord to the trailing edge. Regardless of h/c, the cavity squealer tip makes the leakage flow zone narrower than the plane tip, and is superior to the plane tip in reducing the tip leakage mass flow rate. A qualitative flow model describing full flow features over the cavity squealer tip is suggested. In this flow model, the tip gap exit area is classified into four different regions, and the tip gap height effects on the discharge characteristics in each region are discussed in detail.
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.
2015-01-01
Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.
Aerodynamics and performance testing of the VAWT
Klimas, P.C.
1981-01-01
Early investigations suggest that reductions in cost of energy (COE) and increases in reliability for VAWT systems may be brought about through relatively inexpensive changes to the current aerodynamic design. This design uses blades of symmetrical cross-section mounted such that the radius from the rotating tower centerline is normal to the blade chord at roughly the 40% chord point. The envisioned changes to this existing design are intended to: (1) lower cut-in windspeed; (2) increase maximum efficiency; (3) limit maximum aerodynamic power; and (4) limit peak aerodynamic torques. This paper describes certain experiments designed to both better understand the aerodynamics of a section operating in an unsteady, curvilinear flowfield and achieve some of the desired changes in section properties. The common goal of all of these experiments is to lower VAWT COE and increase system reliability.
Rough surface improves stability of air- sounding balloons
NASA Technical Reports Server (NTRS)
Scoggins, J. R.
1965-01-01
Aerodynamic stability of balloons used for measuring the intensity and direction of atmospheric winds at various elevations is improved by incorporating a rough surface on the balloons. The rough-surfaced balloon is useful for collecting wind profiles and other meteorological data.
Simplified Approach to Predicting Rough Surface Transition
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Stripf, M.
2009-01-01
Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.
Simplified Approach to Predicting Rough Surface Transition
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Stripf, Matthias
2009-01-01
Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.
Some aerodynamic considerations related to wind tunnel model surface definition
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1980-01-01
The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.
Roughness of Weddell Sea Ice and Estimates of the Air-Ice Drag Coefficient
NASA Astrophysics Data System (ADS)
Andreas, Edgar L.; Lange, Manfred A.; Ackley, Stephen F.; Wadhams, Peter
1993-07-01
The roughness of a sheet of sea ice encodes its deformational history and determines its aerodynamic coupling with the overlying air and underlying water. Here we report snow surface, ice surface, and ice underside roughness computed from 47 surface elevation profiles collected during a transect of the Weddell Sea. The roughness for each surface, parameterized as the standard deviation of the surface elevation, segregates according to whether or not a floe has been deformed: deformed ice has greater roughness than undeformed ice. Regardless of deformational history, the underside roughness is almost always greater than the snow surface and ice surface roughnesses, which are nearly equal. Roughness spectra for all three surfaces and for both deformed and undeformed ice roll off roughly as k-1 when the wavenumber k is between 0.1 and 3 rad m-1. The snow surface and underside spectra roll off somewhat faster than k-1, and the ice surface spectra roll off somewhat slower than k-1. Both top and underside Arctic ice roughness spectra, on the other hand, have been reported to roll off faster than k-2. We speculate that the excess spectral intensity at high wavenumbers in the Antarctic ice surface spectra results from the small-scale roughness that the ice sheet had on consolidation. This excess high-wavenumber spectral intensity persists in the ice surface spectra of second-year ice. Evidently, once formed, the ice surface remains unchanged on the microscale until the entire ice sheet melts. With a remote measurement of roughness, we should be able to decide whether an ice floe is deformed or undeformed. Our spectral analysis hints that remote sensing may also be able to differentiate between first-year and second-year ice. From the snow surface spectra, we compute a roughness scale ξ that parameterizes the air-ice momentum coupling and lets us estimate the neutral stability drag coefficient referenced to a height of 10 m, CDN10. Typical CDN10 values are 1.1-1.4 × 10
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
NASA Astrophysics Data System (ADS)
Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn
2003-11-01
A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.
Quantifying surface roughness over debris covered ice
NASA Astrophysics Data System (ADS)
Quincey, Duncan; Rounce, David; Ross, Andrew
2016-04-01
Aerodynamic roughness length (z0) remains a major uncertainty when determining turbulent heat fluxes over glacier surfaces, and can vary by an order of magnitude even within a small area and through the melt season. Defining z0 over debris-covered ice is particularly complex, because the surface may comprise clasts of greatly varying size, and the broader-scale surface relief can be similarly heterogeneous. Several recent studies have used Structure from Motion to data model debris-covered surfaces at the centimetric scale and calculate z0 based on measurements of surface microtopography. However, few have validated these measurements with independent vertical wind profile measurements, or considered how the measurements vary over a range of different surface types or scales of analysis. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post-monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed measured over both sites enable us to derive measurements of aerodynamic roughness that are similar in magnitude, with z0 at the second site exceeding that at the first by < 1 cm. During our observation period, snow covered the second site for three days, but the impact on z0 is small, implying that roughness is predominantly determined by major rock size obstacles rather than the general form of the surface. To complement these aerodynamic measurements we also conducted a Structure from Motion survey across each patch and calculated z0 using microtopographic methods published in a range of recent studies. We compare the outputs of each of these algorithms with each other and with the aerodynamic measurements, assess how they perform over a range of scales, and evaluate the validity of using microtopographic methods where aerodynamic measurements
Using Large-Scale Roughness Elements to Control Sand and Dust Flux at the Keeler Dunes, Keeler, CA
NASA Astrophysics Data System (ADS)
Gillies, John; McCarley-Holder, Grace
2014-05-01
Controlling dust emission from areas that subsequently degrade air quality and threaten human and animal health and reduce the quality of life for people residing in proximity to such sources is necessary, but also challenging. Recent research has indicated that arrays of large roughness elements (height >0.3 m) can be used effectively to modulate sand transport and the associated dust emissions. Prediction of the rate of sand flux reduction as a function of downwind distance upon entering an array of roughness elements, and the equilibrium flux reduction in the interior of the array is possible using the known geometric properties of the roughness elements, their number, and published relationships. Air quality in the town of Keeler, CA (36 deg 29' 17.92" N, 117 deg 52' 24.62" W) is degraded by levels of particulate matter <10 µm aerodynamic diameter (PM10) during periods of elevated wind speeds due to sand transport and dust emissions in the nearby Keeler Dunes. A demonstration project was designed to evaluate the effectiveness of an array of roughness elements composed of solid elements and managed vegetation to meet sand and dust flux reduction criteria. This project has two major goals: 1) to demonstrate that solid roughness elements placed on areas of the Keeler Dunes immediately arrest sand movement to specified levels (target of 85% reduction), and 2) to assess whether native plant species, planted in the sheltered area of the solid roughness elements can effectively thrive and subsequently replace the solid roughness to achieve the desired sand flux reduction control efficiency. This poster describes the results related mostly to objective one, as considerable time has to pass before sufficient data will be obtained to evaluate the success of the planted and managed vegetation to achieve a control level provided by the solid element roughness array.
A climatology of formation conditions for aerodynamic contrails
NASA Astrophysics Data System (ADS)
Gierens, K.; Dilger, F.
2013-06-01
Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Characteristics of surface roughness associated with leading edge ice accretion
NASA Technical Reports Server (NTRS)
Shin, Jaiwon
1994-01-01
Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.
Aerodynamic Simulation of Ice Accretion on Airfoils
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
Could crop height affect the wind resource at agriculturally productive wind farm sites?
Vanderwende, Brian; Lundquist, Julie K.
2015-11-07
The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less
Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Cruz, Juna R.; Lingard, J. Stephen
2006-01-01
In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.
Employing terrestrial photogrammetry to determine surface roughness on a debris covered glacier
NASA Astrophysics Data System (ADS)
Steiner, J. F.; Miles, E. S.; Brun, F.; Detert, M.
2015-12-01
Aerodynamic surface roughness is an essential parameter in energy balance studies on glaciers. While actual measurements on bare ice glaciers are rare, a number of literature values exist for different types of ice and snow covers. There are only very few constant values suggested in the literature for debris covered glaciers and actual measurements are even scarcer. This is a significant shortcoming as the debris surface is often very heterogeneous, which results in variable turbulent fluxes. These fluxes, which use surface roughness as an input parameter, are also employed to derive debris thickness from surface temperature. The increased use of aerial and terrestrial photogrammetry on glaciers provides an opportunity to better account for this present shortcoming. On a number of locations of Lirung Glacier in the Nepalese Himalayas we produced high resolution DEMs from terrestrial photogrammetry, from 1 x 1 m plots to a wider basin spanning more than 100 m. These images were then downsampled to different resolutions, ranging from one millimeter to a few centimeters. Employing different equations from the literature we determine surface roughness at different scales. This way we can discuss (1) the variability of results between different commonly used approaches, (2) the variability of surface roughness in space and (3) the impact of image resolution. From a tower with wind and temperature sensors at different heights we additionally infer surface roughness locally. We can then compare these values as well as see the effect of different wind speeds on the derivation of the value. Employing a software originally developed to determine grain size distributions in river beds from optical imagery, we additionally determine rock shapes and size as well as provide an estimate for the grain size distribution of the debris cover. This could provide an initial step to a better estimation of the porous space of the debris cover, which is essential to determine energy flux
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
Computation of dragonfly aerodynamics
NASA Astrophysics Data System (ADS)
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
A climatology of formation conditions for aerodynamic contrails
NASA Astrophysics Data System (ADS)
Gierens, K.; Dilger, F.
2013-11-01
Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Effect of wall roughness on liquid oscillations damping in rectangular tanks
NASA Technical Reports Server (NTRS)
Bugg, F. M.
1970-01-01
Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.
Wetting on rough self-affine surfaces
NASA Astrophysics Data System (ADS)
Palasantzas, George
1995-05-01
In this paper, we present a general investigation of the effective potential for complete wetting on self-affine rough surfaces. The roughness effect is investigated by means of the height-height correlation model in Fourier space ~(1+aξ2q2)-1-H. The parameters H and ξ are, respectively, the roughness exponent and the substrate in-plane correlation length. It is observed that the effect of H on the free interface profile is significant for ξ
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.
2009-04-01
. The steady-state ripple spacing predicted by this model is approximately 3000 times greater than the aerodynamic roughness length of the initially flat surface, which is a function of grain size and excess shear velocity. Once steady-state ripples form, they become the dominant roughness element of the surface. The increase in roughness associated with ripple formation triggers the same bedform instability that created ripples, causing dunes to form at a larger scale. In this way, the numerical model of this paper suggests that ripples and dunes are genetically linked. Transverse dunes in this model have a steady-state height and spacing that is controlled by the effective roughness length of the rippled surface, which is shown to be on the order of 500 times greater than the original roughness length, but varies significantly with the details of ripple morphology. The model predictions for ripple and dune spacing and their controlling variables are consistent with field measurements from the published literature. The model of this paper provides a preliminary process-based understanding of the granulometric control of ripples and dunes in areas of abundant sand supply and unidirectional prevailing winds, and it argues for a genetic linkage between ripples and dunes via a scaling relationship between eolian bedform size and the aerodynamic roughness length.
Estimating surface roughness using stereophotogrammetry
NASA Astrophysics Data System (ADS)
David, V.; Krasa, J.
2009-04-01
At the Department of Drainage, Irrigation and Landscape Engineering (CTU Prague) we use several mathematical models for soil erosion, sediment transport and surface runoff assessment. Here we continuously struggle for successful models parameterizations. One of the typical coefficients usually taken from literature instead of measurements is surface roughness, eg. Manning roughness (Maidment, 1993). Roughness is a key to surface runoff velocity and surface runoff depth estimation but often it is very roughly estimated. Within the COST 22 Action research we focused on estimating actual surface roughness using stereophotogrammetry. Our aim was to set up a simple low cost system useful for roughness measurements in nature conditions - mainly on agricultural fields. Our system consists of Canon EOS 400 digital camera with angle viewfinder, two robust tripods and a horizontal bar with sliding 3D tripod head. We tested different camera heights and focal distances as well as various parallaxes to obtain reasonable results. Finally we shot the surfaces from 1600 millimeters with 24 and 35 mm lens and parallaxes close to 100 mm. For 3D scene development we use Geomatica 10 GIS and its OrthoEngine module. Testing the proper system and many variables of the 3D scene modelling was an important part of the first year of the project. For these purposes we first prepared a calibrated and known 3D surface consisting of 70 by 70 cm grid and several geometrical objects of different sizes and shapes. Preparing the correct lighting conditions, finding the resolving power of the system and solving the problems with low contrast areas of measured surfaces was a time consuming but interesting task. After the system calibration we started with the actual terrain measurements. Our setup, system testing and preliminary results of the roughness computations are presented on the poster. Acknowledgement This research was acomplished within national COST project OC189 „Flood risk and its
ERIC Educational Resources Information Center
Schwerin, Alan
1994-01-01
Describes procedures for a hands-on activity for students that involves the construction of radio-controlled model sailplane (or glider) kits, exposure to basic aerodynamic theory and concepts, and some flight school on a midsized field. (ZWH)
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.
2016-05-01
A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Aerodynamics of Heavy Vehicles
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Lee, Jungil; Park, Hyungmin
2014-01-01
We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.
NASA Astrophysics Data System (ADS)
Poole, W.; Muller, J.-P.; Gupta, S.
2012-04-01
Planetary surface roughness is critical in the selection of suitable landing sites for robotic lander or roving missions. It has also been used in the identification of terrain, for better calibration of radar returns and improved understanding of aerodynamic roughness [1]. One of the secondary science goals of the Mars Orbiter Laser Altimeter (MOLA) was the study of surface roughness at 100 m, using the backscatter pulse width of the laser pulse, which has a footprint of 168 m in diameter [2]. The pulse width values in the final release (version L) of the MOLA Precision Experiment Data Record (PEDR) have been corrected for across track slopes and the removal of 'bad points', and footprint diameter was revised to 75 m, with a 35 m response length in [3]. We look here at comparing surface roughness values derived from the MOLA pulse-width data with surface roughness estimates derived at various scales from high-resolution digital terrain models (DTMs) to determine if these theoretically derived surface roughness lengths are physically meaningful. The final four potential landing sites for Mars Science Laboratory were used in this study, as they have extensive HiRISE (1m) and HRSC (50m) DTM coverage [4]. Pulse width data from both the MOLA PEDR (version L) and the data used in [3] was collected and compared for each of the sites against surface roughness estimates at various scales from HiRISE, and HRSC, DTMs using the RMS height. This assumed a circular footprint for each MOLA footprint and that the horizontal geolocation of the PEDR MOLA footprints was sufficiently accurate to only extract those DTM points which lay inside the footprints. Results from the MOLA PEDR data were extremely poor, and show no correlation with surface roughness measurements from DTMs. Results using the corrected data in [3] were mixed. Eberswalde and Holden Craters both show significantly improved correlations for a variety of surface roughness scales. The best correlations were found to
Effect of Surface Roughness on Hydrodynamic Bearings
NASA Technical Reports Server (NTRS)
Majumdar, B. C.; Hamrock, B. J.
1981-01-01
A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
Effect of surface roughness on characteristics of spherical shock waves
NASA Technical Reports Server (NTRS)
Huber, Paul W; Mcfarland, Donald R
1955-01-01
An investigation has been conducted on a small-scale test layout in which direct observation of the shock wave movement with time could be made in order to determine the effects of surface roughness on the characteristics of spherical shock waves. Data were obtained with 15-gram pentolite charges at four heights of burst, both for a smooth surface and for a surface completely covered with pyramid-shaped roughness elements. The observations resulted in determinations of shock peak overpressure and Mach stem height as a function of distance for each test. Comparison of the smooth-surface data with those obtained for the extremely rough condition showed a small net effort of roughness on the shock peak overpressures at the surface for all burst heights, the effect being to lower the overpressures. The effect of surface roughness on the Mach stem formation and growth was to delay the formation at the greatest charge height and to lower the height of the Mach stem for all heights.Comparison of the free-air shock peak overpressures with larger scale data showed good similarity of the overpressure-distance relationships. The data did not fit a geometrical similarity parameter for the path of the triple point at different heights of burst suggested by other investigators. A simple similarity parameter (relating the horizontal distance to the theoretical point of Mach formation) was found which showed only a small influence of burst height on the path of the triple point. While the data presented provide knowledge of the effect of many surface-roughness elements on the overall shock characteristics, the data do not provide insight into the details of the air-flow characteristics along the surface, nor the relative contribution of individual roughness elements to the results obtained.
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-08-22
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Scattering of Rarefied Gas Atoms from Rough Surface Simulated with Fractals
NASA Astrophysics Data System (ADS)
Aksenova, Olga A.
2003-05-01
The fractal approach to the model of surface roughness in the problem of gas-surface interaction is developed on the base of the generalization of two-dimensional model of roughness proposed by Blackmore and Zhou. The relation between the parameters of the model and the values influencing the aerodynamic coefficients is investigated. Computed results are compared with the values obtained using statistical model of roughness — the isotropic Gaussian random field.
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Surface forces: Surface roughness in theory and experiment
Parsons, Drew F. Walsh, Rick B.; Craig, Vincent S. J.
2014-04-28
A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.
Turbulent flow in smooth and rough pipes.
Allen, J J; Shockling, M A; Kunkel, G J; Smits, A J
2007-03-15
Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400x103 (R+>9x103), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with krms/D=19.4x10-6, over a Reynolds number range of 57x103-21x106, show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for ks+ < or =3.5, which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for ReD< or =24x106. The relationship between the velocity shift, DeltaU/utau, and the roughness Reynolds number, ks+, has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness krms/D. These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves. PMID:17244585
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
Effects of height acceleration on Geosat heights
NASA Technical Reports Server (NTRS)
Hancock, David W., III; Brooks, Ronald L.; Lockwood, Dennis W.
1990-01-01
A radar altimeter tracking loop, such as that utilized by Geosat, produces height errors in the presence of persistent height acceleration h(a). The correction factor for the height error is a function of both the loop feedback parameters and the height acceleration. The correction, in meters, to the sea-surface height (SSH) derived from Geosat is -0.16 h(a), where h(a) is in m/sec per sec. The errors induced by accelerations are produced primarily by changes in along-track geoid slopes. The nearly circular Geosat orbit and dynamic ocean topography produce small h(a) values. One area studied in detail encompasses the Marianas Trench and the Challenger Deep in the west central Pacific Ocean. Histograms of SSH corrections due to range accelerations have also been determined from 24-hour segments of Geosat global data. The findings are that 20 percent of the Geosat measurements have acceleration-induced errors of 2 cm or more, while 8 percent have errors of 3 cm or more.
Gas flow through rough microchannels in the transition flow regime.
Deng, Zilong; Chen, Yongping; Shao, Chenxi
2016-01-01
A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175
Rough surface reconstruction for ultrasonic NDE simulation
Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.
2014-02-18
The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
NASA Astrophysics Data System (ADS)
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Aerodynamics Improve Wind Wheel
NASA Technical Reports Server (NTRS)
Ramsey, V. W.
1982-01-01
Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.
NASA Astrophysics Data System (ADS)
Thomas, T. R.
2014-01-01
A function map is used to locate applications of roughness in separation-velocity space. The importance of roughness in contact mechanics is demonstrated and versions of the plasticity index are introduced and compared. Case studies of roughness and function are presented from tribology and the life sciences. Tribological examples are taken from the automotive industry and include the manufacture of vehicle bodies, and drive train tribology, particularly cylinder liner, cam and gearbox friction and wear. From the life sciences, problems of prosthetic fixation and tribology are shown to depend on roughness. The interaction of haptics and surface finish is described and illustrated. A number of other areas of application are listed. Finally the likely future importance of structured surfaces is discussed.
NASA Astrophysics Data System (ADS)
HO, Yat-Kiu; LIU, Chun-Ho
2015-04-01
The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to
Aerodynamic heated steam generating apparatus
Kim, K.
1986-08-12
An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.
Wetting, spreading, and adsorption on randomly rough surfaces.
Herminghaus, S
2012-06-01
The wetting properties of solid substrates with customary (i.e., macroscopic) random roughness are considered as a function of the microscopic contact angle of the wetting liquid and its partial pressure in the surrounding gas phase. Analytic expressions are derived which allow for any given lateral correlation function and height distribution of the roughness to calculate the wetting phase diagram, the adsorption isotherms, and to locate the percolation transition in the adsorbed liquid film. Most features turn out to depend only on a few key parameters of the roughness, which can be clearly identified. It is shown that a first-order transition in the adsorbed film thickness, which we term "Wenzel prewetting", occurs generically on typical roughness topographies, but is absent on purely Gaussian roughness. It is thereby shown that even subtle deviations from Gaussian roughness characteristics may be essential for correctly predicting even qualitative aspects of wetting. PMID:22661267
Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis
NASA Technical Reports Server (NTRS)
Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.
2013-01-01
The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.
Soil surface roughness characterization for microwave remote sensing applications
NASA Astrophysics Data System (ADS)
Marzahn, P.; Rieke-Zapp, D.; Ludwig, R.
2012-04-01
With this poster we present a simple and efficient method to measure soil surface roughness in an agricultural environment. Micro scale soil surface roughness is a crucial parameter in many environmental applications. In recent studies it is strongly recognized that soil surface roughness significantly influences the backscatter of agricultural surface, especially on bare fields. Indeed, while different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscattering. In this study, we introduce a photogrammetric system which consists of a customized consumer grade Canon EOS 5d camera and a reference frame providing ground control points. With the system one can generate digital surface models (DSM) with a minimum size of 1 x 2.5 m2, extendable to any desired size, with a ground x,y- resolution of 2 mm. Using this approach, we generated a set of DSM with sizes ranging from 2.5 m2 to 22 m2, acquired over different roughness conditions representing ploughed, harrowed as well as crusted fields on different test sites. For roughness characterization we calculated in microwave remote sensing common roughness indices such as the RMS- height s and the autocorrelation length l. In an extensive statistical investigation we show the behavior of the roughness indices for different acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated out of the dataset, that using a three dimensional measuring device, the calculated roughness indices are more robust in their estimation. In addition, a strong directional dependency of the proposed roughness indices was observed which could be related to the orientation of the seedbed rows to the acqusition direction. In a geostatistical analysis, we decomposed the acquired roughness indices into different scales, yielding a roughness quantity
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Frawley, James J.
1994-01-01
The global distribution of multi-kilometer (approx. 9 km) length scale 'roughness' (hereafter mesoscale roughness or MR) on Venus can be estimated from the Magellan global altimetry dataset (GxDR) and then compared with MR data derived for Earth from 5' ETOP5 data and for Mars (from USGS Mars DTM dataset). The mesoscale roughness parameter (MR) represents the RMS variance in meters of the actual planetary surface topography relative to the best fitting tangent plane defined on the basis of a 3x3 pixel sliding window. The best-fit plane was computed using a least-squares solution which minimizes delta H, the sum of the squares of the differences between the 9 local elevation values (H(sub i)), and the elevation of best-fit plane at the same grid location. Using the best-fit plane and delta H, we have computed the RMS 'roughness' var(delta R), where this parameter is always minimized on the basis of its calculation using least squares. We have called this 'ruggedness' parameter the Mesoscale Roughness (MR) because it is directly related to the high-frequency variance of topography after mesoscale slopes and tilts (i.e., for Venus, the baseline over which MR is computed (dx) is approx. 8.8 km and dx for Earth is approx. 9.3 km) are removed. As such, MR represents the degree to which a planetary surface is more rugged than approximately 10 km scale facets or tilts. It should not be confused with the radar 'RMS Roughness' parameter computed at 0.1 to 10 m length scales on the basis of the Magellan radar altimeter echo. We will use our MR parameter to investigate the global ruggedness properties of Venus as they relate to geological provinces and in comparison with the spatial pattern of MR for Earth and Mars.
NASA Astrophysics Data System (ADS)
Campitelli, Gennaro
The study of transitional flows is considered crucial for many practical engineering applications. In fact, a comprehensive understanding of the laminar-turbulent transition phenomenon often helps to improve the overall performance of apparatuses such as airfoils, wind turbines, hulls and turbomachinery blades. In addition to understanding and prediction of transitional flows, active research continues in the area of boundary layer control, which includes control of phenomena such as flow separation and transition. For instance, optimum geometrical shaping may be followed by the adoption on the wall-surface of riblets to adjust pressure gradient and reduce drag. Further "flow control" may also be acquired by introducing active devices able to modify the flow field in order to accomplish a desired aerodynamic task. Such flow manipulation is often achieved by using time-dependent forcing mechanisms which promote natural instabilities amplifying the control effectiveness. Localized energy inputs such as Lorentz-force actuator, piezoelectric flaps and synthetic jets all produce a consistent boundary layer mixing enhancement with lift increase and drag abatement. The current numerical study attempts to demonstrate the efficacy of dynamic roughness (DR) on altering separated-reattached transitional flows under adverse pressure gradient. It has already been proven how DR, acting on the boundary sublayer perturbation, is able to suppress (partially or completely) the typical leading edge separation for an airfoil at different angles of attack. This makes DR particularly suitable for separated flow control applications where the shear layer reattaches presenting the characteristic laminar separation bubble. A numerical sensitivity study has been conducted with an efficient orthogonal design taking into account four different control parameters on three levels (actuation frequency, humps height, rows displacement, synchronization) to provide an optimum DR setup which limits
An experiemental and computational study of the aerodynamics of turbine blades with damage
NASA Astrophysics Data System (ADS)
Islam, Alamgir M. T.
1999-10-01
Investigations have been made of the aerodynamic effects of in-service damage on the performance of axial turbine blades. Two aspects of blade damage were considered: surface roughening and trailing edge damage. The work is related to gas turbine engine health monitoring. Correlations for the effects of surface roughness were developed based on a database obtained from Kind et al. (1998). The correlations account for the effects of the roughness height as well as the location and extent of the roughness patch on the blade surface. The effect of trailing edge damage at transonic flow conditions was investigated both experimentally and computationally. Computational investigation was conducted for only trailing-edge damage using a three- dimensional Navier-Stokes solver developed by Dawes (1988). The computations with trailing edge damage represent a novel application of the code and the wind tunnel measurements were therefore used to validate the computations. Results showed that surface roughening and trailing edge damage produced significantly different aerodynamic behavior of the flow. Surface roughening largely influences the profile losses and trailing edge damage has a considerable effect on the flow deviation. The effect of trailing edge damage on the loss characteristics of the blades was found to be fairly small over the full range of flow conditions. In fact, the overall measured profile losses were actually lower for 20% damage than for the undamaged blade. The measured flow deviation increased with the increase in damage size as well as cascade exit Mach number. Computational investigations were made to identify the parameters that influence flow deviation in turbines with both undamaged and damaged blades so that correlations could be developed. It was found that the deviation is primarily determined by the blade loading towards the trailing edge. The blade row parameters which influence this pressure difference were identified. The deviation
Height, health, and development
Deaton, Angus
2007-01-01
Adult height is determined by genetic potential and by net nutrition, the balance between food intake and the demands on it, including the demands of disease, most importantly during early childhood. Historians have made effective use of recorded heights to indicate living standards, in both health and income, for periods where there are few other data. Understanding the determinants of height is also important for understanding health; taller people earn more on average, do better on cognitive tests, and live longer. This paper investigates the environmental determinants of height across 43 developing countries. Unlike in rich countries, where adult height is well predicted by mortality in infancy, there is no consistent relationship across and within countries between adult height on the one hand and childhood mortality or living conditions on the other. In particular, adult African women are taller than is warranted by their low incomes and high childhood mortality, not to mention their mothers' educational level and reported nutrition. High childhood mortality in Africa is associated with taller adults, which suggests that mortality selection dominates scarring, the opposite of what is found in the rest of the world. The relationship between population heights and income is inconsistent and unreliable, as is the relationship between income and health more generally. PMID:17686991
ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE
Hunter, C.
2012-03-28
Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended
Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2003-01-01
The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.
NASA Astrophysics Data System (ADS)
Gillies, J. A.; Nickling, W. G.; King, J.
2004-12-01
Roughness elements distributed across a surface can significantly decrease the entrainment and transport of underlying fine-grained sediments by wind. The parameterization of roughness effects on wind erosion thresholds and sediment transport is critical to the development of models that can provide realistic predictions of sediment thresholds and fluxes due to wind erosion. Raupach et al. (1993) present a model for predicting the protective role of roughness elements in terms of a threshold friction velocity ratio as a function of the roughness geometry and the aerodynamic properties of the surface and roughness elements. The predictive capacity of this model remains uncertain and the work presented here represents part of an on-going effort of our group to improve the parameterization of the Raupach et al. (1993) model. To gain additional understanding of how roughness elements influence the magnitude and nature of the shear stress acting on the surface among the elements and evaluate strength and weaknesses of the roughness density parameter to characterize these effects, a wind tunnel study using model roughness arrays of similar roughness density composed of cube-shaped elements of different length dimensions was undertaken. Roughness density is defined as the total frontal area of all the elements to the total surface area that they occupy. Shear stress in the above element air flow was determined from vertical wind speed profile measurements. Point measurements of near surface shear stresses within the roughness array were made with simple omni-directional skin friction meters in order to investigate the partitioning of shear stress to the intervening surface. The results suggest that the roughness density parameter has severe limitations in describing the shear stress partitioning for these regularly arrayed rough surfaces. For surfaces with identical roughness densities, the surface composed of more and smaller elements was observed to have average and
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
Liu, Linsheng; Li, Xuefeng; Nonaka, Kazuhiro
2015-02-01
Depolarization at a rough surface relates to its roughness and irregularity (e.g., sags and crests) besides the material property. However, there is still lack of general theory to clearly describe the relationship between depolarization ratios and surface conditions, and one important reason is that the mechanism of depolarization relates to geometric parameters such as microcosmic height/particle distributions of sub-micro to nm levels. To study the mechanism in more detail, a compact laser instrument is developed, and depolarization information of a linearly polarized incident light is used for analyzing the roughness, during which a He-Ne laser source (λ = 632.8 nm) is used. Three nickel specimens with RMS roughness (Rq) less than λ/4 are fabricated and tested. Six different areas in each specimen are characterized in detail using an AFM. Rq are in the range of 34.1-155.0 nm, and the heights are non-Gaussian distribution in the first specimen and near-Gaussian distribution in the others. Off-specular inspection is carried out exactly on these 18 characterized areas, and results show that the cross-polarization ratios match quite well with Rq values of the first sample that has Rq ≤ λ/10 (or Rt ≤ λ), while they match well with maximum height, Rt, values of the other two that have Rt > λ (the maximum derivation is 11%). In addition, since this instrument is simple, portable, stable, and low-cost, it has great potential for practical online roughness testing after a linear calibration. PMID:25725823
NASA Astrophysics Data System (ADS)
Zhao, Yunfei; Liu, Wei; Xu, Dan; Gang, Dundian; Yi, Shihe
2016-01-01
The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1 mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2 mm and h=4 mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Boundary-layer receptivity of sound with roughness
NASA Technical Reports Server (NTRS)
Saric, William S.; Hoos, Jon A.; Radeztsky, Ronald H.
1991-01-01
An experimental study of receptivity was carried out using an acoustical disturbance in the freestream. The receptivity was enhanced by using a uniform two-dimensional roughness strip (tape). The roughness strip generated the local adjustment in the flow needed to couple the long-wavelength sound wave with the short-wavelength T-S wave. The method proved to be highly sensitive, with slight changes in the forcing frequency or in the height of the 2D roughness element having a strong effect on the amplitude of the observed T-S wave.
Random rough surface photofabrication
NASA Astrophysics Data System (ADS)
Brissonneau, Vincent; Escoubas, Ludovic; Flory, François; Berginc, Gérard
2011-10-01
Random rough surfaces are of primary interest for their optical properties: reducing reflection at the interface or obtaining specific scattering diagram for example. Thus controlling surface statistics during the fabrication process paves the way to original and specific behaviors of reflected optical waves. We detail an experimental method allowing the fabrication of random rough surfaces showing tuned statistical properties. A two-step photoresist exposure process was developed. In order to initiate photoresist polymerization, an energy threshold needs to be reached by light exposure. This energy is brought by a uniform exposure equipment comprising UV-LEDs. This pre-exposure is studied by varying parameters such as optical power and exposure time. The second step consists in an exposure based on the Gray method.1 The speckle pattern of an enlarged scattered laser beam is used to insolate the photoresist. A specific photofabrication bench using an argon ion laser was implemented. Parameters such as exposure time and distances between optical components are discussed. Then, we describe how we modify the speckle-based exposure bench to include a spatial light modulator (SLM). The SLM used is a micromirror matrix known as Digital Micromirror Device (DMD) which allows spatial modulation by displaying binary images. Thus, the spatial beam shape can be tuned and so the speckle pattern on the photoresist is modified. As the photoresist photofabricated surface is correlated to the speckle pattern used to insolate, the roughness parameters can be adjusted.
Feather roughness reduces flow separation during low Reynolds number glides of swifts.
van Bokhorst, Evelien; de Kat, Roeland; Elsinga, Gerrit E; Lentink, David
2015-10-01
Swifts are aerodynamically sophisticated birds with a small arm and large hand wing that provides them with exquisite control over their glide performance. However, their hand wings have a seemingly unsophisticated surface roughness that is poised to disturb flow. This roughness of about 2% chord length is formed by the valleys and ridges of overlapping primary feathers with thick protruding rachides, which make the wing stiffer. An earlier flow study of laminar-turbulent boundary layer transition over prepared swift wings suggested that swifts can attain laminar flow at a low angle of attack. In contrast, aerodynamic design theory suggests that airfoils must be extremely smooth to attain such laminar flow. In hummingbirds, which have similarly rough wings, flow measurements on a 3D printed model suggest that the flow separates at the leading edge and becomes turbulent well above the rachis bumps in a detached shear layer. The aerodynamic function of wing roughness in small birds is, therefore, not fully understood. Here, we performed particle image velocimetry and force measurements to compare smooth versus rough 3D-printed models of the swift hand wing. The high-resolution boundary layer measurements show that the flow over rough wings is indeed laminar at a low angle of attack and a low Reynolds number, but becomes turbulent at higher values. In contrast, the boundary layer over the smooth wing forms open laminar separation bubbles that extend beyond the trailing edge. The boundary layer dynamics of the smooth surface varies non-linearly as a function of angle of attack and Reynolds number, whereas the rough surface boasts more consistent turbulent boundary layer dynamics. Comparison of the corresponding drag values, lift values and glide ratios suggests, however, that glide performance is equivalent. The increased structural performance, boundary layer robustness and equivalent aerodynamic performance of rough wings might have provided small (proto) birds with
NASA Technical Reports Server (NTRS)
Hooks, I.; Homan, D.; Romere, P. O.
1985-01-01
The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.
Effect of surface roughness on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Schmugge, T. J.; Newton, R. W.; Chang, A. T. C.
1978-01-01
The effect of surface roughness on the brightness temperature of a moist terrain was studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are greatest for wet soils where the difference between smooth and rough surfaces can be as great as 50K.
Effect of surface roughness on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Schmugge, T. J.; Chang, A.; Newton, R. W.
1979-01-01
The effect of surface roughness on the brightness temperature of a moist terrain has been studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are great for wet soils where the difference between smooth and rough surfaces can be as great as 50 K.
Surface roughness scattering in multisubband accumulation layers
NASA Astrophysics Data System (ADS)
Fu, Han; Reich, K. V.; Shklovskii, B. I.
2016-06-01
Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.
Three-tier rough superhydrophobic surfaces.
Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun
2015-08-01
A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. PMID:26184512
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
Numerical Model Sensitivity to Heterogeneous Satellite Derived Vegetation Roughness
NASA Technical Reports Server (NTRS)
Jasinski, Michael; Eastman, Joseph; Borak, Jordan
2011-01-01
The sensitivity of a mesoscale weather prediction model to a 1 km satellite-based vegetation roughness initialization is investigated for a domain within the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database, specific to the domain, that was previously derived using a physically based procedure and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, and iii) a MODIS climatologic roughness database that like (i) is a function only of land cover type, but possesses domain specific mean values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations within a domain including Oklahoma, Eastern Arkansas, and Northwest Louisiana during a 4-day period within IHOP 2002. Sensitivity analysis compares the impact the three roughness initializations on time-series temperature, precipitation probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE). Overall, the results indicate that, for the current investigation, replacement of the standard look-up table values with the satellite-derived values statistically improves model performance for most observed variables. Such natural roughness heterogeneity enhances the surface wind speed, PBL height and TKE production up to 10 percent, with a lesser effect over grassland, and greater effect over mixed land cover domains.
Boltzmann active walkers and rough surfaces
NASA Astrophysics Data System (ADS)
Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.
1993-06-01
An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.
Experimental study of noise emitted by circular cylinders with large roughness
NASA Astrophysics Data System (ADS)
Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas
2014-12-01
The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.
Goldsworthy, W.W.
1958-06-01
A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.
Spatially-varying surface roughness and ground-level air quality in an operational dispersion model.
Barnes, M J; Brade, T K; MacKenzie, A R; Whyatt, J D; Carruthers, D J; Stocker, J; Cai, X; Hewitt, C N
2014-02-01
Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. PMID:24212233
Reciprocity relations in aerodynamics
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Scaling of surface roughness in perfectly plastic disordered media
Barai, Pallab; Nukala, Phani K; Sampath, Rahul S; Simunovic, Srdjan
2010-01-01
This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly plastic disordered material. We model the plastic disordered material using perfectly plastic random spring model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macroscopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials. On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents ({zeta}{sub loc} and {zeta}, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be {zeta}{sub loc} = {zeta} = 0.67 {+-} 0.03. The probability density distribution p[{Delta}h({ell})] of the height differences {Delta}h({ell}) = [h(x+{ell})-h(x)] of the crack profile follows a Gaussian distribution.
Determination of Joint Roughness Coefficients Using Roughness Parameters
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sic; Kang, Seong-Seung; Jang, Bo-An
2014-11-01
This study used precisely digitized standard roughness profiles to determine roughness parameters such as statistical and 2D discontinuity roughness, and fractal dimensions. Our methods were based on the relationship between the joint roughness coefficient (JRC) values and roughness parameters calculated using power law equations. Statistical and 2D roughness parameters, and fractal dimensions correlated well with JRC values, and had correlation coefficients of over 0.96. However, all of these relationships have a 4th profile (JRC 6-8) that deviates by more than ±5 % from the JRC values given in the standard roughness profiles. This indicates that this profile is statistically different than the others. We suggest that fractal dimensions should be measured within the entire range of the divider, instead of merely measuring values within a suitable range. Normalized intercept values also correlated with the JRC values, similarly to the fractal dimension values discussed above. The root mean square first derivative values, roughness profile indexes, 2D roughness parameter, and fractal dimension values decreased as the sampling interval increased. However, the structure function values increased very rapidly with increasing sampling intervals. This indicates that the roughness parameters are not independent of the sampling interval, and that the different relationships between the JRC values and these roughness parameters are dependent on the sampling interval.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Broeren, Andy; Diebold, Jeff; Bragg, Mike
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice, and spanwise-ridge ice. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Aerodynamic properties of agricultural and natural surfaces in northwestern Tarim Basin
Technology Transfer Automated Retrieval System (TEKTRAN)
Friction velocity (u*) and aerodynamic roughness (z0) are important parameters that influence soil erosion, but no attempts have been made to quantify these parameters as affected by different land use types in the northwestern Tarim Basin. Wind velocity profiles were measured and used to determine ...
Characteristics of density currents over regular and irregular rough surfaces
NASA Astrophysics Data System (ADS)
Bhaganagar, K.
2013-12-01
Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).
DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR
Test, L.D.
1958-11-11
Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels. PMID:23005537
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.
1984-01-01
Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Dynamic soaring: aerodynamics for albatrosses
NASA Astrophysics Data System (ADS)
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Optical roughness measurements on specially designed roughness standards
NASA Astrophysics Data System (ADS)
Danzl, R.; Helmli, F.; Rubert, P.; Prantl, M.
2008-09-01
The measurement of surface texture is one of the most common and important ways to judge the quality of a technical surface. In order to verify whether a metrology device is able to measure certain types of roughness accurately, various roughness standards with calibrated roughness values are available. While almost all roughness standards produced so far have been designed for tactile systems we demonstrate how the optical metrology device InfiniteFocus can be applied to special roughness standards that have been artificially roughened. Experiments are performed on standards with periodic structure and the results of the optical system are compared to the calibrated values obtained by tactile systems with different tip radius. Additionally the profile-based measurements are compared to area-based measurements conform to a recently developed ISO standard draft. Finally roughness measurements on real surfaces are presented.
Turbulence analysis of rough wall channel flows based on direct numerical simulation
Mishra, A. V.; Bolotnov, I. A.
2012-07-01
Direct numerical simulation (DNS) of rough wall channel flows was performed for various surface roughnesses. The goal of the presented research is to investigate the effect of nucleating bubbles in subcooled boiling conditions on the turbulence. The nucleating bubbles are represented by hemispherical roughness elements at the wall. The stabilized finite element based code, PHASTA, is used to perform the simulations. Validation against theoretical, experimental and numerical data is performed for smooth channel flow and rectangular rod type of roughness. The presence of roughness elements affects the flow structure within the roughness sublayer, which is estimated to be 5 times the height of roughness elements. DNS observations are consistent with this result and demonstrate the flow homogeneity above 50 viscous units. The influence of roughness elements layout and density on the turbulence parameters is also demonstrated and analyzed. (authors)
Aerodynamics of badminton shuttlecocks
NASA Astrophysics Data System (ADS)
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
The aerodynamics of propellers
NASA Astrophysics Data System (ADS)
Wald, Quentin R.
2006-02-01
The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.
NASA Astrophysics Data System (ADS)
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
Aerodynamics of puffball mushroom spore dispersal
NASA Astrophysics Data System (ADS)
Amador, Guillermo; Barberie, Alex; Hu, David
2012-11-01
Puffball mushrooms Lycoperdon are spherical fungi that release a cloud of spores in response to raindrop impacts. In this combined experimental and theoretical study, we elucidate the aerodynamics of this unique impact-based spore-dispersal. We characterize live puffball ejections by high speed video, the geometry and elasticity of their shells by cantilever experiments, and the packing fraction and size of their spores by scanning electron microscope. We build a dynamically similar puffball mimic composed of a tied-off latex balloon filled with baby powder and topped with a 1-cm slit. A jet of powder is elicited by steady lateral compression of the mimic between two plates. The jet height is a bell-shaped function of force applied, with a peak of 18 cm at loads of 45 N. We rationalize the increase in jet height with force using Darcy's Law: the applied force generates an overpressure maintained by the air-tight elastic membrane. Pressure is relieved as the air travels through the spore interstitial spaces, entrains spores, and exits through the puffball orifice. This mechanism demonstrates how powder-filled elastic shells can generate high-speed jets using energy harvested from rain.
Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2015-01-01
To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.
Roughness characteristics of natural channels
Barnes, Harry Hawthorne
1967-01-01
Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .
Solvation forces between rough surfaces
Frink, L.J.; van Swol, F.
1998-04-01
We investigate the role of surface roughness on solvation forces and solvation free energies. Roughness is introduced by dividing a surface into an array of square tiles that are then randomly displaced in the direction perpendicular to the wall. The integrated wall strength of these tiled surfaces is independent of the surface roughness and hence this class of rough walls is ideally suited for isolating roughness effects. We use grand canonical Monte Carlo simulations of a Lennard-Jones fluid confined in a slit pore with rough walls to generate the solvation interactions as a function of roughness, tile size, and surface area. The simulation data are compared to a simple superposition approximation of smooth wall solvation interactions (obtained from simulation or density functional theory), based on a distribution of wall separations. We find that this approximation provides a surprisingly accurate route to the solvation interaction of rough surfaces. In general, increased roughness leads to a reduction of oscillations in the solvation forces and surface free energies. However, nonmonotonic behavior of the oscillation amplitude with roughness can be observed for finite surfaces. The washing out of the oscillations found for large surface roughness produces a solvation force that exhibits a broad repulsive peak with separation. The broad repulsion is a consequence of the resistance to squeezing out fluid from the smallest gaps between two opposing rough surfaces. It is as much a reflection of packing effects as are the solvation oscillations for perfectly smooth pores. In addition, we present results for patterned and undulating surfaces produced by an analogous modification of the one-body external field for smooth walls. Finally, we discuss the implications of our results for a number of experimental systems including self-assembled monolayers, microporous materials, protein solutions, and DNA crystals. {copyright} {ital 1998 American Institute of Physics.}
Surface roughness scattering of electrons in bulk mosfets
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO_{2} interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented on both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The
Roughness Measurement of Dental Materials
NASA Astrophysics Data System (ADS)
Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo
2016-06-01
This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
Application of 3D printing technology in aerodynamic study
NASA Astrophysics Data System (ADS)
Olasek, K.; Wiklak, P.
2014-08-01
3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.
Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows
NASA Astrophysics Data System (ADS)
Blanchard, Danny; Ligrani, Phil
2007-06-01
Accommodation coefficients are determined from experimental results and analysis based on the Navier-Stokes equations for rotation-induced flows in C-shaped fluid chamber passages formed between a rotating disk and a stationary surface. A first-order boundary condition is used to model the slip flow. The fluid chamber passage height ranges from 6.85to29.2μm to give Knudsen numbers from 0.0025 to 0.031 for air and helium. In all cases, roughness size is large compared to molecular mean free path. The unique method presented for deducing tangential momentum accommodation coefficients gives values with less uncertainty compared to procedures that rely on flows in stationary tubes and channels. When channel height is defined at the tops of the roughness elements, slip velocity magnitudes and associated accommodation coefficients are a result of rarefaction at solid-gas interfaces and shear at the gas-gas interfaces. With this arrangement, tangential accommodation coefficients obtained with this approach decrease, and slip velocity magnitudes increase, at a particular value of Knudsen number, as the level of surface roughness increases. At values of the mean roughness height greater than 500nm, accommodation coefficients then appear to be lower in air flows than in helium flows, when compared for a particular roughness configuration. When channel height is defined midway between the crests and troughs of the roughness elements, nondimensional pressure rise data show little or no dependence on the level of disk surface roughness and working fluid. With this arrangement, slip is largely independent of surface roughness magnitude and mostly due to rarefaction, provided the appropriate channel height is chosen to define the roughness height.
Predicting bed form roughness: the influence of lee side angle
NASA Astrophysics Data System (ADS)
Lefebvre, Alice; Winter, Christian
2016-04-01
Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.
Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Structural contribution to the roughness of supersmooth crystal surface
Butashin, A. V.; Muslimov, A. E. Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E.
2013-05-15
Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.
Influence of non-Gaussian roughness on sputter depth profiles
NASA Astrophysics Data System (ADS)
Liu, Y.; Jian, W.; Wang, J. Y.; Hofmann, S.; Kovac, J.
2013-07-01
Surface/interface roughness has a significant influence on the shape of the depth profile measured by any depth profiling technique. Such an influence is particularly significant for thin delta layers and at sharp interfaces of single- and multilayers. In the mixing-roughness-information (MRI) model for quantification of measured depth profiles, the influence of roughness is usually taken into account by a Gaussian height distribution function (HDF). If the roughness cannot be represented by a Gaussian HDF, a non-Gaussian HDF has to be implemented into the MRI model. Deviations of simulated depth profiles using the MRI model with Gaussian and with several well-defined non-Gaussian HDFs are evaluated quantitatively. The results indicate that a realistic non-Gaussian HDF has to be taken into account if high accuracy in quantification of sputter depth profiles is required. Of particular importance is the case of a roughness given by an asymmetrical HDF. Application of an asymmetrical triangle height distribution function in the MRI model yields an excellent fit for the measured AES depth profiling data of a polycrystalline Al film.
Configuration Aerodynamics: Past - Present - Future
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.
1999-01-01
The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point
Slip due to surface roughness for a Newtonian liquid in a viscous microscale disk pump
NASA Astrophysics Data System (ADS)
Ligrani, Phil; Blanchard, Danny; Gale, Bruce
2010-05-01
In the present study, hydrophobic roughness is used to induce near-wall slip in a single rotating-disk micropump operating with Newtonian water. The amount of induced slip is altered by employing different sizes of surface roughness on the rotating disk. The magnitudes of slip length and slip velocities increase as the average size of the surface roughness becomes larger. In the present study, increased slip magnitudes from roughness are then associated with reduced pressure rise through the pump and lower radial-line-averaged shear stress magnitudes (determined within slip planes). Such shear stress and pressure rise variations are similar to those which would be present if the slip is induced by the intermolecular interactions which are associated with near-wall microscale effects. The present slip-roughness effects are quantified experimentally over rotational speeds from 50 to 1200 rpm, pressure increases from 0 to 312 kPa, net flow rates of 0-100 μl/min, and fluid chamber heights from 6.85 to 29.2 μm. Verification is provided by comparisons with analytic results determined from the rotating Couette flow forms of the Navier-Stokes equations, with different disk rotational speeds, disk roughness levels, and fluid chamber heights. These data show that slip length magnitudes show significant dependence on radial-line-averaged shear stress for average disk roughness heights of 404 and 770 nm. These slip length data additionally show a high degree of organization when normalized using by either the average roughness height or the fluid chamber height. For the latter case, such behavior provides evidence that the flow over a significant portion of the passage height is affected by the roughness, and near-wall slip velocities, especially when the average roughness height amounts to 11% of the h =6.86 μm passage height of the channel. Such scaling of the disk slip length bdisk with fluid chamber height h is consistent with d-type roughness scaling in macroscale
Turbulence in rough-wall boundary layers: universality issues
NASA Astrophysics Data System (ADS)
Amir, Mohammad; Castro, Ian P.
2011-08-01
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number ( Re θ) range of 1,300-28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 ≤ h/δ ≤ 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend's wall similarity hypothesis at low h/δ and also suggest that a single critical roughness
New technology in turbine aerodynamics.
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Recent advances in computational aerodynamics
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh K.; Desse, Jerry E.
1991-04-01
The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
Aerodynamics Research Revolutionizes Truck Design
NASA Technical Reports Server (NTRS)
2008-01-01
During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C
NASA Technical Reports Server (NTRS)
2005-01-01
The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM).
Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.
For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.
Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania.
The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of
A study of transient channel flow in a transitionally rough regime
NASA Astrophysics Data System (ADS)
Seddighi, Mehdi; He, Shuisheng; O'Donoghue, Tom; Pokrajac, Dubravka; Vardy, Alan
2014-11-01
DNS has been used to investigate the transient behaviour of turbulence following a rapid flow acceleration from an initially turbulent flow in a channel with a smooth top wall and a roughened bottom wall made of close-packed pyramids. Simulations have been performed at various flow conditions in the transitionally rough regime with equivalent roughness heights (ks+) ranging from 12 to 42. It is shown that the transient responses of the flow over the smooth and rough walls are practically independent of each other. Also, the nature of the process over the rough wall varies strongly as the influence of the roughness increases during the early stages of the acceleration. Whereas the transient flow over the smooth-wall undergoes a process strikingly similar to laminar-turbulent bypass transition, the corresponding behaviour over the rough wall depends on the wall condition. When the equivalent roughness height of the final flow condition is below ~30, bypass-like transition dominates, although the roughness induces early transition. When ks+ > 30 , however, the rough-wall flow undergoes a highly transient process resembling roughness induced transition.
Modelling roughness and acceleration effects with application to the flow in a hydraulic turbine
NASA Astrophysics Data System (ADS)
Yuan, J.; Nicolle, J.; Piomelli, U.; Giroux, A.-M.
2014-03-01
This study reports the numerical predictions of flows over turbine blades, which include flow acceleration and deceleration. Two issues are addressed: (1) accurately predicting roughness effects, and (2) evaluating the performance of Reynolds-Averaged Navier-Stokes (RANS) simulations on moderately accelerating flows. For the present turbine surfaces, it is found that roughness correlations based on roughness surface slope better predict the roughness effects than both the correlations based on the moments of roughness height statistics and the IEC standard approach. It is shown that RANS simulations reproduce the flow evolution over rough-wall accelerating turbulent boundary layers, although, on a smooth wall, they fail to capture strong non-equilibrium flow behaviours. Finally, a hydraulic turbine simulation is performed to show the significant roughness impact on the total losses.
Aerodynamics Of Missiles: Present And Future
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1991-01-01
Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.
Johnstone, C.W.
1958-01-21
An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.
The Aerodynamic Aspect of Wing-fuselage Fillets
NASA Technical Reports Server (NTRS)
Muttray, H
1935-01-01
Model tests prove the feasibility of enhancing the aerodynamic qualities of wing-fuselage fillets by appropriate design of fuselage and wing roots. Abrupt changes from maximum fuselage height to wing chord must be avoided and every longitudinal section of fuselage and wing roots must be so faired and arranged as to preserve the original lift distribution of the continuous wing. Adapting the fuselage to the curvilinear circulation of the wing affords further improvement. The polars of such arrangements are almost the same as those of the "wing alone," thus voiding the superiority of the high-wing type airplane known with conventional design.
Unsteady aerodynamics modeling for flight dynamics application
NASA Astrophysics Data System (ADS)
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Langley Symposium on Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Stack, Sharon H. (Compiler)
1986-01-01
The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.
2016-02-01
Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely, clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.
Surface roughness effect on finite oil journal bearings
NASA Technical Reports Server (NTRS)
Majumdar, B. C.; Hamrock, B. J.
1981-01-01
A theoretical study of the performance of finite oil journal bearings is made, considering the surface roughness effect. The total load supporting ability under such a condition derives from the hydrodynamic as well as asperity contact pressure. These two components of load are calculated separately. The average Reynolds equation for partially lubricated surfaces is used to evaluate hydrodynamic pressure. An analytical expression for average film thickness is obtained and introduced to modify the average Reynolds equation. The resulting differential equation is then solved numerically by finite difference methods for mean hydrodynamic pressure, which in turn gives the hydrodynamic load. Assuming the surface height distribution as Gaussian, the asperity contact pressure is found. The effect of surface roughness parameter, surface pattern, eccentricity ratio, and length to diameter ratio on hydrodynamic load and on side leakage is investigated. It is shown that hydrodynamic load increases with increasing surface roughness when both journal and bearing surfaces have identical roughness structures or when the journal only has a rough surface. The trend of hydrodynamic load is reversed if the journal surface is smooth and the bearing surface is rough.
Optical system design of surface roughness photoelectric inspection instrument
NASA Astrophysics Data System (ADS)
Xiao, Ze-xin; Li, Peng; Cao, Jie; Xiao, Ran
2010-11-01
The light-section method for roughness measurement is one of the most classical measuring methods. According to light-section method which combine visual observation with photomicrography for testing surface roughness, domestic type of 9J is a traditional device. The surface roughness photoelectric inspection instrument which designed by the authors are also based on the theory of light-section, which integrates subjects of optics, mechanical, electronics and calculation. Surface roughness of object image can be obtained on the CCD sensor through the optical system. Using the autonomous software in the computer, the average height of workpiece unevenness Ra value can be measured and read in the monitor. Therefor, surface roughness level can be obtained. In order to design the optical system of device, there are three main aspects which should be finished: 1.Start with requirements of detective object, according to the detective range from Ra12.5 to Ra0.04 ruled by CNS(China National Standards) GB3505-83 the Surface Roughness Term Surface and the Parameters ,parameters on β(magnify power), NA(numerical aperture), WD(work distance), filed of object etc are defined and optimized. Meanwhile, good complementation and compatibility are noticed among three kinds magnification objectives. 2. Special type infinity image distance double telecentricity optical system is constructed. The main point is to design a set of objectives of long WD and infinity image distance flat field semi-apochromat. 3. How to match and optimize the CCD image sensor and lens.
The RHESSI Microflare Height Distribution
NASA Technical Reports Server (NTRS)
Christe, P.; Krucker, S.; Saint-Hilaire, P.
2011-01-01
We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6-10 keV count-rate when RHESSI's full sensitivity was available in order to find the smallest events (Christe et al., 2008). Between March 2002 and March 2007, a total of 25,006 events were found. Source locations were determined in the 4-10 keV, 10-15 keV, and 15-30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g (h) oc exp(-h/lambda) where lambda = 6.1 plus or minus 0.3 Mm is the scale height. A power law height distribution with a negative power law index, gamma = 3.1 plus or minus 0.3 is also consistent with the data. Interpreted as thermal loop top sources, these heights are compared to loops generated by a potential field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential field loop height distribution which may be a signature of the flare energization process.
Sensitivity analysis in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1984-01-01
Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.
Semianalytic modeling of aerodynamic shapes
NASA Technical Reports Server (NTRS)
Barger, R. L.; Adams, M. S.
1985-01-01
Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation.
Aerodynamic laboratory at Cuatro Vientos
NASA Technical Reports Server (NTRS)
JUBERA
1922-01-01
This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.
New technology in turbine aerodynamics
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Dynamic Soaring: Aerodynamics for Albatrosses
ERIC Educational Resources Information Center
Denny, Mark
2009-01-01
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…
POEMS in Newton's Aerodynamic Frustum
ERIC Educational Resources Information Center
Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita
2010-01-01
The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…
Aerodynamic design via control theory
NASA Technical Reports Server (NTRS)
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Shuttle reentry aerodynamic heating test
NASA Technical Reports Server (NTRS)
Pond, J. E.; Mccormick, P. O.; Smith, S. D.
1971-01-01
The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.
Rotary wing aerodynamically generated noise
NASA Technical Reports Server (NTRS)
Schmitz, F. J.; Morse, H. A.
1982-01-01
The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.
Nostril Aerodynamics of Scenting Animals
NASA Astrophysics Data System (ADS)
Settles, G. S.
1997-11-01
Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)
Enhancing capillary rise on a rough surface
NASA Astrophysics Data System (ADS)
Chow, Melissa; Wexler, Jason; Jacobi, Ian; Stone, Howard
2014-11-01
Liquid-infused surfaces have been proposed as a robust alternative to traditional air-cushioned superhydrophobic surfaces. However, if these surfaces are held vertically the lubricating oil can drain from the surface, and cause the surface to lose its novel properties. To examine this failure mode, we measure the drainage from a surface with model roughness that is scaled-up to allow for detailed measurements. We confirm that the bulk fluid drains from the surface until it reaches the level of the capillary rise height, although the detailed dynamics vary even in simple surface geometries. We then test different substrate architectures to explore how the roughness can be designed to retain greater amounts of oil. Supported under MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja), PREM CSUN Prime # NSF 1205734 and ONR MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr. Ki-Han Kim).
Aerodynamic penalties of heavy rain on a landing aircraft
NASA Technical Reports Server (NTRS)
Haines, P. A.; Luers, J. K.
1982-01-01
The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions.
Determination of the height of the "meteoric explosion"
NASA Astrophysics Data System (ADS)
Shuvalov, V. V.; Popova, O. P.; Svettsov, V. V.; Trubetskaya, I. A.; Glazachev, D. O.
2016-01-01
When cosmic bodies of asteroidal and cometary origin, with a size from 20 to approximately 100 m, enter dense atmospheric layers, they are destroyed with a large probability under the action of aerodynamic forces and decelerated with the transfer of their energy to the air at heights from 20-30 to several kilometers. The forming shock wave reaches the Earth's surface and can cause considerable damage at great distances from the entry path similar to the action of a high-altitude explosion. We have performed a numerical simulation of the disruption (with allowance for evaporation of fragments) and deceleration of meteoroids having the aforesaid dimensions and entering the Earth's atmosphere at different angles and determined the height of the equivalent explosion point generating the same shock wave as the fall of a cosmic body with the given parameters. It turns out that this height does not depend on the velocity of the body and is approximately equal to the height at which this velocity is reduced by half. The obtained results were successfully approximated by a simple analytical formula allowing one to easily determine the height of an equivalent explosion depending on the dimensions of the body, its density, and angle of entry into the atmosphere. A comparison of the obtained results with well-known approximate analytical (pancake) models is presented and an application of the obtained formula to specific events, in particular, to the fall of the Chelyabinsk meteorite on February 15, 2013, and Tunguska event of 1908, is discussed.
Parametric Flow Visualization of Dynamic Roughness Effects
NASA Astrophysics Data System (ADS)
Jakkali, Vinay
The ever growing need in the aircraft industry to enhance the performance of a flight vehicle has led to active areas of research which focus on the control of the local boundary layer by both passive and active methods. An effective flow control mechanism can improve the performance of a flight vehicle in various ways, one of which is eliminating boundary layer separation. To be effective the mechanism not only needs to control the boundary layer as desired, but also use less energy than the resulting energy savings. In this study, the effectiveness of an active flow control technique known as dynamic roughness (DR) has been explored to eliminate the laminar separation bubble near the leading edge and also to eliminate the stall on a NACA 0012 airfoil wing. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with displacement amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency. A flow visualization study was conducted on a 2D NACA 0012 airfoil model at different angles of attack, and also varying the Reynolds number and DR actuation frequency with fixed maximum DR amplitude. The experimental results from this study suggests that DR is an effective method of reattaching a totally separated boundary layer. In addition, this study discusses some of the fundamental physics behind the working of DR and proposes some non-dimensional terms that may help to explain the driving force behind the mechanism.
Does surface roughness amplify wetting?
Malijevský, Alexandr
2014-11-14
Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
Thermal slip for liquids at rough solid surfaces
NASA Astrophysics Data System (ADS)
Zhang, Chengbin; Chen, Yongping; Peterson, G. P.
2014-06-01
Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).
Ghost imaging for a reflected object with a rough surface
Wang Chunfang; Zhang Dawei; Chen Bin; Bai Yanfeng
2010-12-15
Ghost imaging for the reflected object with rough surface is investigated. The surface height variance {sigma}{sub h}{sup 2} and the correlation length l{sub c} have been introduced to characterize the rough surface. Based on a simple scattering model, we derive the analytical expressions which are used to describe the effects of {sigma}{sub h}{sup 2} and l{sub c} on ghost imaging. The results show that both {sigma}{sub h}{sup 2} and l{sub c} have no influence on the image resolution, while the convergence of the correlation decreases as {sigma}{sub h}{sup 2} increases. Additionally, the bucket detector used in the test arm can dramatically improve the visibility of ghost images. The results are backed up by numerical simulations, in which a Monte Carlo approach to generate a rough surface has been used.
Radar-aeolian roughness project
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.
1991-01-01
The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.
Audiotactile interactions in roughness perception.
Guest, Steve; Catmur, Caroline; Lloyd, Donna; Spence, Charles
2002-09-01
The sounds produced when we touch textured surfaces frequently provide information regarding the structure of those surfaces. It has recently been demonstrated that the perception of the texture of the hands can be modified simply by manipulating the frequency content of such touch-related sounds. We investigated whether similar auditory manipulations change people's perception of the roughness of abrasive surfaces (experiment 1). Participants were required to make speeded, forced-choice discrimination responses regarding the roughness of a series of abrasive samples which they touched briefly. Analysis of discrimination errors verified that tactile roughness perception was modulated by the frequency content of the auditory feedback. Specifically, attenuating high frequencies led to a bias towards an increased perception of tactile smoothness. In experiment 2, we replicated the rubbing-hands manipulation of previous experimenters while participants rated either the perceived roughness or wetness of their hands. The wetness scale data replicated the results in the literature, while the roughness scale data replicated the result from experiment 1. A final experiment showed that delaying the auditory feedback from the hand-rubbing reduced the magnitude of this parchment-skin illusion. These experiments demonstrate the dramatic effect that auditory frequency manipulations can have on the perceived tactile roughness and moistness of surfaces, and are consistent with the proposal that different auditory perceptual dimensions may have varying salience for different surfaces. PMID:12195518
Roughness reduction on aspheric surfaces
NASA Astrophysics Data System (ADS)
Kiontke, S.; Kokot, Sebastian
2015-02-01
For a lot of applications like spectrometer and high power laser roughness as an important parameter has been discussed over and over again. Especially for high power systems the surface quality is crucial for determining the damage threshold and therefore the field of application. Above that, it has often been difficult to compare roughness measurements because of different measurement methods and the usage of filters and surface fits. Measurement results differ significantly depending on filters and especially on the measured surface size. Insights will be given how values behave depending on the quality of surface and the size of measured area. Many applications require a high quality of roughness in order to reduce scattering. Some of them in order to prevent from damage like high power laser applications. Others like spectrometers seek to increase the signal-to-noise ratio. Most of them have already been built with spherical surfaces. With higher demands on efficiency and more sophisticated versions aspherical surfaces need to be employed. Therefore, the high requirement in roughness known from spherical surfaces is also needed on aspherical surfaces. For one thing, the constant change of curvature of an aspherical surface accounts for the superior performance, for another thing, it prevents from using classical polishing technics, which guarantied this low roughness. New methods need to be qualified. In addition, also results of a new manufacturing process will be shown allowing low roughness on aspheric even with remarkable departure from the best fit sphere.
Unified height systems after GOCE
NASA Astrophysics Data System (ADS)
Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger
2015-04-01
The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of nominally 3D or highly 3D horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Aerodynamics of a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1990-01-01
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph
2010-01-01
Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
Large-scale motions in the logarithmic region of turbulent boundary layers amplitude modulate the viscous sublayer (Marusic et al., 2010: Science; Mathis et al., 2009: J. Fluid Mech.). This finding has promising implications for large-eddy simulation of wall-bounded turbulence at high Reynolds number (wherein the turbulence integral length exhibits linear proportionality with wall-normal elevation). Existing amplitude modulation studies have addressed smooth wall flows, though high Reynolds number rough wall flows are ubiquitous. Under such conditions, roughness-scale vortices ablate the viscous sublayer and result in the roughness sublayer. The roughness sublayer depth scales with aggregate element height, k, and is typically 2k ~ 3k. Above this, Townsend's Hypothesis dictates that the logarithmic layer is unaffected by the roughness sublayer. Here, we present large-eddy simulation results of turbulent channel flow over rough walls. We follow the decoupling procedure of Mathis et al., 2009: J. Fluid Mech., and present evidence that outer-layer dynamics amplitude modulate the roughness sublayer. Below the roughness element height, we report enormous sensitivity to element proximity. Above the elements, but within the roughness sublayer, topography dependence rapidly declines. This work was supported by the Air Force Office of Scientific Research, Turbulence and Transition Program (PM: Dr. R. Ponnoppan) under Grant # FA9550-14-1-0101. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.
Miller, S L
1996-02-01
An experimental investigation was undertaken to further evaluate and enhance the performance of an aerodynamic device for wind turbine overspeed protection and power modulation applications. The trailing-edge device, known as the Spoiler-Flap, was examined in detail during wind tunnel tests. The impact of hp length, vent angle, pivot point and chord variations on aerodynamic and hinge moment characteristics were evaluated and a best overall configuration was identified. Based on this effort, a 40% chord device with a 1% hp length and 40 degree vent angle offers improved performance potential for wind turbine applications. This specific configuration appears to offer good suction coefficient performance for both turbine power modulation and overspeed (i.e., aerodynamic braking) applications. Device hinge moment loads improved (compared to other devices investigated) in magnitude and the impact of surface roughness was found to be minimal.