Science.gov

Sample records for aerodyne aerosol mass

  1. Overview of submicron aerosol characterization in China using an Aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.; He, L.; Gong, Z.; Hu, M.; Zhang, Y.

    2011-12-01

    China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. Most previous aerosol studies in China were based on filter sampling followed by laboratory analysis, which provided datasets at a coarse time resolution like a day. The coarse time resolution of the aerosol datasets cannot match the actual faster variation of aerosol properties in the real atmosphere, which strongly favors highly time-resolved on-line measurement techniques. In recent years, our group deployed an Aerodyne high-resolution aerosol mass spectrometer (AMS) in different ambient atmospheres in China, including Beijing (urban), Shanghai (urban), Shenzhen (urban), Jiaxing (suburban), and Kaiping (rural). In this presentation, we will overview these on-line AMS measurement results to characterize the properties of submicron particles in China atmosphere, such as chemical composition, size distribution, diurnal variation, elemental composition, primary and secondary organic aerosol constitution, etc. The newly-developed AMS-PMF modeling techniques were utilized to quantitatively differentiate the contributions from fossil fuel combustion, cooking emissions, biomass burning, as well as secondary organic aerosol to ambient organic aerosol loadings in China. These AMS results have provided new outlook of the formation mechanisms of high aerosol pollution in China.

  2. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  3. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  4. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  5. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  6. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  7. A new application of hierarchical cluster analysis to investigate organic peaks in bulk mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  8. DEVELOPMENT AND APPLICATION OF A MASS SPECTRA-VOLATILITY DATABASE OF COMBUSTION AND SECONDARY ORGANIC AEROSOL SOURCES FOR THE AERODYNE AEROSOL MASS SPECTROMETER

    EPA Science Inventory

    1. Thermodenuder Development:

    Two TD systems were designed, constructed, and tested at Aerodyne. In this design, the vaporizer consists of a 50 cm long, 1 inch OD stainless steel tube wrapped with three heating tapes and fiberglass insulation and then mounted in a sta...

  9. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  10. HIGHLY TIME-RESOLVED SOURCE APPORTIONMENT TECHNIQUES FOR ORGANIC AEROSOLS USING THE AERODYNE AEROSOL MASS SPECTROMETER

    EPA Science Inventory

    This project had two major components: (1) the development and application of receptor model techniques to AMS OA data, and (2) the field deployment and field data analysis for several new technique...

  11. Cluster analysis on mass spectra of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Spindler, C.; Kiendler-Scharr, A.; Kleist, E.; Mensah, A.; Mentel, T.; Tillmann, R.; Wildt, J.

    2009-04-01

    Biogenic secondary organic aerosols (BSOA) are of high importance in the atmosphere. The formation of SOA from the volatile organic compound (VOC) emissions of selected trees was investigated in the JPAC (Jülich Plant Aerosol Chamber) facility. The VOC (mainly monoterpenes) were transferred into a reaction chamber where vapors were photo-chemically oxidized and formed BSOA. The aerosol was characterized by aerosol mass spectrometry (Aerodyne Quadrupol-AMS). Inside the AMS, flash-vaporization of the aerosol particles and electron impact ionization of the evaporated molecules cause a high fragmentation of the organic compounds. Here, we present a classification of the aerosol mass spectra via cluster analysis. Average mass spectra are produced by combination of related single mass spectra to so-called clusters. The mass spectra were similar due to the similarity of the precursor substances. However, we can show that there are differences in the BSOA mass spectra of different tree species. Furthermore we can distinguish the influence of the precursor chemistry and chemical aging. BSOA formed from plants exposed to stress can be distinguished from BSOA formed under non stressed conditions. Significance and limitations of the clustering method for very similar mass spectra will be demonstrated and discussed.

  12. Tropopsheric Aerosol Chemistry via Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Worsnop, Douglas

    2008-03-01

    A broad overview of size resolved aerosol chemistry in urban, rural and remote regions is evolving from deployment of aerosol mass spectrometers (AMS) throughout the northern hemisphere. Using thermal vaporization and electron impact ionization as universal detector of non-refractory inorganic and organic composition, the accumulation of AMS results represent a library of mass spectral signatures of aerosol chemistry. For organics in particular, mass spectral factor analysis provides a procedure for classifying (and simplifying) complex mixtures composed of the hundreds or thousands of individual compounds. Correlations with parallel gas and aerosol measurements (e.g. GC/MS, HNMR, FTIR) supply additional chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and subsequent - transformations of aerosol chemistry and microphysics.

  13. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  14. Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.; Furutani, H.; Prather, K. A.; Coe, H.; Allan, J. D.

    2005-10-01

    During August 2004 an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS Model 3800-100) and an Aerodyne Aerosol Mass Spectrometer (AMS) were deployed at Mace Head during the NAMBLEX campaign. Single particle data (size, positive and negative mass spectra) from the ATOFMS were imported into ART 2a, a neural network algorithm, which assigns individual particles to clusters on the basis of their mass spectral similarities. Results are very consistent with previous time consuming manual classifications (Dall'Osto et al., 2004). Three broad classes were found: sea-salt, dust and carbon-containing particles, with a number of sub-classes within each. The Aerodyne (AMS) instrument was also used during NAMBLEX, providing online, real time measurements of the mass of non-refractory components of aerosol particles as function of their size. The ATOFMS detected a type of particle not identified in our earlier analysis, with a strong signal at m/z 24, likely due to magnesium. This type of particle was detected during the same periods as pure unreacted sea salt particles and is thought to be biogenic, originating from the sea surface. AMS data are consistent with this interpretation, showing an additional organic peak in the corresponding size range at times when the Mg-rich particles are detected. The work shows the ATOFMS and AMS to be largely complementary, and to provide a powerful instrumental combination in studies of atmospheric chemistry.

  15. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  16. AeroDyn Theory Manual

    SciTech Connect

    Moriarty, P. J.; Hansen, A. C.

    2005-01-01

    AeroDyn is a set of routines used in conjunction with an aeroelastic simulation code to predict the aerodynamics of horizontal axis wind turbines. These subroutines provide several different models whose theoretical bases are described in this manual. AeroDyn contains two models for calculating the effect of wind turbine wakes: the blade element momentum theory and the generalized dynamic-wake theory. Blade element momentum theory is the classical standard used by many wind turbine designers and generalized dynamic wake theory is a more recent model useful for modeling skewed and unsteady wake dynamics. When using the blade element momentum theory, various corrections are available for the user, such as incorporating the aerodynamic effects of tip losses, hub losses, and skewed wakes. With the generalized dynamic wake, all of these effects are automatically included. Both of these methods are used to calculate the axial induced velocities from the wake in the rotor plane. The user also has the option of calculating the rotational induced velocity. In addition, AeroDyn contains an important model for dynamic stall based on the semi-empirical Beddoes-Leishman model. This model is particularly important for yawed wind turbines. Another aerodynamic model in AeroDyn is a tower shadow model based on potential flow around a cylinder and an expanding wake. Finally, AeroDyn has the ability to read several different formats of wind input, including single-point hub-height wind files or multiple-point turbulent winds.

  17. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  18. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  19. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  20. Contribution of methane to aerosol carbon mass

    NASA Astrophysics Data System (ADS)

    Bianchi, F.; Barmet, P.; Stirnweis, L.; El Haddad, I.; Platt, S. M.; Saurer, M.; Lötscher, C.; Siegwolf, R.; Bigi, A.; Hoyle, C. R.; DeCarlo, P. F.; Slowik, J. G.; Prévôt, A. S. H.; Baltensperger, U.; Dommen, J.

    2016-09-01

    Small volatile organic compounds (VOC) such as methane (CH4) have long been considered non-relevant to aerosol formation due to the high volatility of their oxidation products. However, even low aerosol yields from CH4, the most abundant VOC in the atmosphere, would contribute significantly to the total particulate carbon budget. In this study, organic aerosol (OA) mass yields from CH4 oxidation were evaluated at the Paul Scherrer Institute (PSI) smog chamber in the presence of inorganic and organic seed aerosols. Using labeled 13C methane, we could detect its oxidation products in the aerosol phase, with yields up to 0.09

  1. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  2. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  3. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  4. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; PréVôT, A. S. H.; Baltensperger, U.

    2008-05-01

    Wood-burning for domestic heating purposes is becoming more important owing to the increasing use of wood as a renewable fuel. Particle emissions from residential wood combustion contribute substantially to particulate matter during winter. An Aerodyne quadrupole aerosol mass spectrometer was used to study the variability of the mass spectra of organic aerosol particles emitted from the burning of different wood types as a function of burning conditions and burning technologies. Previously found wood-burning mass fragment markers in ambient air and for levoglucosan such as m/z 60, 73, and 29 were confirmed as a feature of wood-burning aerosol. They were enhanced during the flaming phase and reduced in the smoldering phase when burning was conducted in a small wood stove. The mass spectra during the smoldering phase were dominated by oxygenated species and exhibited a strong resemblance to the mass spectrum of fulvic acid which is used as a model compound for highly oxidized aerosol. A strong resemblance between the mass spectra of fulvic acid and organic particles emitted during wood-burning in an automatic furnace was found. In general, we found larger differences in the mass spectra between flaming and smoldering phases of one wood type than between different wood types within the same phase. Furthermore it was observed that during one experiment where white fir bark was burned the contribution of polycyclic aromatic hydrocarbons to the total organic matter was very high (˜30%) compared to other wood-burning experiments (0.4-2.2%).

  5. Implications of the In-Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry

    SciTech Connect

    Dix, B.; Volkamer, R.; Barnard, J. C.

    2009-03-11

    The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA-2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300-870 nm) by combining irradiance measurements from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition, organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross-section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5 m{sup 2}/g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC, and present first in-situ observations of this quantity.

  6. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2012-02-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  7. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  8. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  9. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  10. Dry Deposition of Fine Aerosol Nitrogen to an Agricultural Field Measured by Eddy-Correlation Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Allen, J. O.

    2005-12-01

    In urban areas high emissions of reactive nitrogen species cause an increase in atmospheric aerosol nitrogen formation and deposition. This nitrogen is eventually removed from the atmosphere by wet or dry deposition, with dry deposition often accounting for more than half of the total deposition of particulate nitrate. Total N deposition is not adequately characterized, in part because dry deposition is difficult to measure or model. For example measured fine particle deposition to a forest canopy differs from predicted values by an order of magnitude. The eddy-correlation technique is a micrometeorological method used to directly measure fluxes from measurements made above the surface. Eddy-correlation mass spectrometry (ECMS) has been developed to directly measure aerosol particle deposition velocities from fast response aerosol concentration and wind velocity measurements. Using an Aerodyne Aerosol Mass Spectrometer (AMS), the size and composition of ambient aerosols were measured at 10~Hz. The AMS signal is proportional to non-refractory PM1.0 mass. Aerosol deposition fluxes for a given averaging period are then calculated directly as the covariance of the vertical wind velocity with the AMS signal (F = -\\overline{w'S'}). A field study was conducted to measure aerosol nitrogen dry deposition to an agricultural field immediately downwind of the Phoenix metropolitan area using eddy-correlation mass spectrometry. The study was supplemented with aerosol composition measurements including bulk deposition collectors and filter bank samplers. Here we compare the results of the flux estimates from bulk collection with inferential measurements (filter samples and modeled deposition velocities) and direct micrometeorological measurements (ECMS) in order to improve nitrogen deposition estimates.

  11. Dry Deposition of Fine Aerosol Nitrogen to an Agricultural Field Measured by Eddy-Correlation Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Allen, J. O.; Smith, K. A.; Hope, D.

    2004-12-01

    In urban areas high emissions of reactive nitrogen species cause an increase in atmospheric aerosol nitrogen formation and deposition. This nitrogen is eventually removed from the atmosphere by wet or dry deposition, with dry deposition often accounting for more than half of the total deposition of particulate nitrate (Lovett, 1994). Total N deposition is not adequately characterized, in part because dry deposition is difficult to measure or model. For example measured fine particle deposition to a forest canopy differs from predicted values by an order of magnitude (Gallagher et al., 1997). The eddy-correlation technique is a micrometeorological method used to directly measure fluxes from measurements made above the surface (Wesely and Hicks, 2000). Eddy-correlation mass spectrometry (ECMS) has been developed to directly measure aerosol particle deposition velocities from fast response aerosol concentration and wind velocity measurements. Using an Aerodyne Aerosol Mass Spectrometer (AMS) (Jayne et al., 2000), the size and composition of ambient aerosols is measured at a high frequency. The AMS signal is proportional to non-refractory PM1.0 mass. Aerosol deposition fluxes for a given averaging period are then calculated directly as the covariance of the vertical wind velocity with the AMS signal (F = -/line{w'S'}). A field study was conducted to measure aerosol nitrogen dry deposition to an agricultural field immediately downwind of the Phoenix metropolitan area using eddy-correlation mass spectrometry. The study was supplemented with aerosol composition measurements including bulk deposition collectors and filter bank samplers. Bulk deposition samples and 24-hour filter samples were analyzed for ammonia and nitrogen. Here we compare the results of the flux estimates from bulk collection with inferential measurements (filter samples and modeled deposition velocities) and direct micrometeorological measurements (ECMS) in order to improve N deposition estimates.

  12. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  13. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  14. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  15. AMS Measurements in National Parks of Aerosol Mass, Size and Composition, Comparison with Filter Samples and Correlation with Particle Hygroscopicity and Optical Extinction Properties

    NASA Astrophysics Data System (ADS)

    Alexander, M.; Taylor, N. F.; Collins, D. R.; Kumar, N.; Allen, J.; Newburn, M.; Lowenthal, D. H.; Zielinska, B.

    2011-12-01

    We report a comparison of results from aerosol studies at Great Smoky Mountain National Park (2006), Mt. Rainier National Park (2009) and Acadia National Park (2011), all class I visibility areas associated with IMPROVE (Interagency Monitoring of Protected Visual Environments) sites. This collaborative study was sponsored by the Electric Power Research Institute (EPRI) and was done with the cooperation of the National Park Service and the EPA. The atmospheric aerosol composition in these sites is influenced by a number of anthropogenic as well as biogenic sources, providing a rich environment for fundamental aerosol studies. The primary purpose of these studies was to add state-of-the-art aerosol instrumentation to the standard light extinction and aerosol measurements at the site, used to determine parameters for the IMPROVE light extinction reconstruction equation, adopted by the EPA to estimate light extinction from atmospheric aerosol concentrations and Rayleigh scattering. The combination of these diverse measurements also provides significant insight into fundamental aerosol properties such as aging and radiative forcing. New instrumentation included a quadrupole aerosol mass spectrometer (Aerodyne Q-AMS-Smoky Mountain Study), a high resolution aerosol time-of-flight mass spectrometer (Aerodyne HR-ToF-AMS - Mt. Rainier and Acadia studies) for real time measurements that directly address the relationship between sulfate, nitrate, and OC size and concentration, which is related to cloud and dry gas-to-particle conversion as air masses age during transport, the relationship between WSOC hygroscopic growth and oxygenated organic (OOA) composition, the OCM/OC ratio, and the chemical composition that determines the ambient hygroscopic state. The OCM/OC ratio and organic water uptake was addressed with high-volume and medium volume PM2.5 aerosol samples. Aerosols were collected daily on Teflon coated glass fiber filters (TGFF) in four high-volume PM2.5 samplers

  16. Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006 - Implications for PM compliance and planning

    NASA Astrophysics Data System (ADS)

    Wright, Monica E.; Atkinson, Dean B.; Ziemba, Luke; Griffin, Robert; Hiranuma, Naruki; Brooks, Sarah; Lefer, Barry; Flynn, James; Perna, Ryan; Rappenglück, Bernhard; Luke, Winston; Kelley, Paul

    2010-10-01

    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM 2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM 2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.

  17. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  18. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-04-01

    The Aerodyne Aerosol Mass Spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes this instrument provides robust quantitative information on various ambient aerosol components. However, when measuring close to certain anthropogenic sources or in marine environments, several of these assumptions may not be met and measurement results might easily be misinterpreted. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components, i.e. components that vaporize but do not flash vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g. chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g. NH4NO3 or (NH4)2SO4) vaporize quickly, their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in the measurements. Chemical reactions with water vapor and oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g. NH4NO3, (NH4)2SO4, organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g. WO2C2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results showing that measurements of typical continental or urban aerosols are not significantly affected while laboratory

  19. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  20. Simultaneous Factor Analysis of Coupled Aerosol and VOC Mass Spectra in Regions of Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Chang, Rachel; Hayden, Katherine; Li, Shao-Meng; Liggio, John; Sjostedt, Steven; Vlasenko, Alexander; Leaitch, Richard; Abbatt, Jonathan

    2010-05-01

    Recent studies suggest that the traditional binary treatments of atmospheric organics as either gases or particles may be inadequate, highlighting the need for analytical techniques capable of simultaneously considering particle and gas-phase species. Organic mass spectra of particles and volatile organic compounds (VOCs) were collected using an Aerodyne time-of-flight aerosol mass spectrometer (C-ToF-AMS), and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. The particle and VOC mass spectra were combined into a single dataset, which was analyzed using the positive matrix factorization (PMF) receptor modeling technique. The relative weights of the AMS and PTR-MS data were balanced in the PMF analysis according to the criteria that the scaled residuals within a solution be independent of the measuring instrument. Instrument relative weight is controlled by the application of a scaling factor to the PTR-MS uncertainties. The AMS and PTR-MS instruments were deployed from mid-May to mid-June at two sites in Canada: (1) Egbert, ON (2007), a semirural site ~70 km north of Toronto, and (2) Whistler, BC (2008), a remote site ~120 km north of Vancouver. The Egbert site is influenced by anthropogenic emissions from Toronto and populated regions to the south, biogenic emissions from boreal forests to the north, and biomass burning emissions. The Whistler site is strongly influenced by boreal forest terpene emissions, with lesser contributions from long-range transport and anthropogenic emissions.

  1. Ambient Observations of Organic Nitrogen Compounds in Submicrometer Aerosols in New York Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Ge, X.; Xu, J.; Sun, Y.; Zhang, Q.

    2015-12-01

    Organic nitrogen (ON) compounds, which include amines, nitriles, organic nitrates, amides, and N-containing aromatic heterocycles, are an important class of compounds ubiquitously detected in atmospheric particles and fog and cloud droplets. Previous studies indicate that these compounds can make up a significant fraction (20-80%) of the total nitrogen (N) content in atmospheric condensed phases and play important roles in new particle formation and growth and affecting the optical and hygroscopicity of aerosols. In this study, we report the observation of ON compounds in submicrometer particles (PM1) at two locations in New York based on measurements using Aerodyne high-resolution time-of-flight mass spectrometer (HR-ToF-AMS). One study was conducted as part of the US Department of Energy funded Aerosol Lifecyle - Intensive Operation Period (ALC-IOP) campaign at Brookhaven National Lab (BNL, 40.871˚N, 72.89˚W) in summer, 2011 and the other was conducted at the Queen's College (QC) in New York City (NYC) in summer, 2009. We observed a notable amount of N-containing organic fragment ions, CxHyNp+ and CxHyOzNp+, in the AMS spectra of organic aerosols at both locations and found that they were mainly associated with amino functional groups. Compared with results from lab experiments, the C3H8N+ at m/z = 58 was primarily attributed to trimethylamine. In addition, a significant amount of organonitrates was observed at BNL. Positive matrix factorization (PMF) analysis of the high resolution mass spectra (HRMS) of organic aerosols identified a unique nitrogen-enriched OA (NOA) factor with elevated nitrogen-to-carbon (N/C) at both BNL and QC. Analysis of the size distributions, volatility profiles, and correlations with external tracer indicates that acid-base reactions of amino compounds with sulfate and acidic gas were mainly responsible for the formation of amine salts. Photochemical production was also observed to play a role in the formation of NOA. Bivariate polar

  2. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2012-09-01

    A series of smog chamber (SC) experiments was conducted to identify driving factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of organic mass measured at m/z 44 (f44), a surrogate for carboxylic/organic acids as well as the atomic oxygen-to-carbon ratio (O : C), vs. f43, a surrogate for aldehydes, alcohols and ketones. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. On average, an OH exposure of 2.9 ± 1.3 × 107 cm-3 h is needed to increase f44 by 1% during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.5 and 15 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days oxidation time in the atmosphere, based on a global mean OH concentration of ∼1 × 106 cm-3. Not only is the α-pinene SOA more oxygenated at low organic mass loadings, but the functional dependence of oxygenation on mass loading is enhanced at atmospherically-relevant precursor concentrations. Since the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near

  3. DESIGN AND PERFORMANCE OF AN AEROSOL MASS DISTRIBUTION MONITOR

    EPA Science Inventory

    An aerosol mass monitor has been built to measure the masses of non-volatile aerosols in the range of 0.05 to 5 micrometers aerodynamic particle diameter. The instrument consists of a newly designed spiral duct aerosol centrifuge equipped with highly sensitive quartz sensors for ...

  4. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  5. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2013-07-01

    A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm-3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm-3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate

  6. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  7. Mass Spectrometric Analysis of Pristine Aerosol Particles During the wet Season of Amazonia - Detection of Primary Biological Particles?

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Zorn, S. R.; Freutel, F.; Borrmann, S.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Flores, M.; Roldin, P.; Artaxo, P.; Martin, S. T.

    2008-12-01

    The contribution of primary biological aerosol (POA) particles to the natural organic aerosol is a subject of current research. Estimations of the POA contribution to the total aerosol particle concentration range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that POA is a major source of supermicron, possibly also of submicron particles. During AMAZE (Amazonian Aerosol CharacteriZation Experiment), a field project near Manaus, Brazil, in February/March 2008, an Aerodyne ToF-AMS was equipped with a high pressure aerodynamic lens. This high pressure lens (operating pressure 14.6 torr) is designed with the objective to extend the detectable size range of the AMS into the supermicron size range where primary biological particles are expected. Size distribution measured by the AMS were compared with size distribution from an optical particle counter and indicate that the high pressure lens has a 50% cut-off at a vacuum aerodynamic diameter of about 1 μm, but still has significant transmission up to a vacuum aerodynamic diameter of about 2 μm, thus extending the detectable size range of the AMS into the coarse mode. The measuring instruments were situated in a container at ground level. The aerosol was sampled through a 40 m vertical, laminar inlet, which was heated and dried to maintain a relative humidity between 30 and 40%. The inlet was equipped with a 7 μm cut-off cyclone. Size distributions recorded with an optical particle counter parallel to the AMS show that the inlet transmitted aerosol particles up to an optically detected diameter of 10 μm. POA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. Laboratory experiments have been performed in order to identify typical mass spectral patterns of these compounds. These laboratory data were compared to size resolved particle

  8. Combined volatility and mass spectrometric measurements of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E.; Buchholz, A.; Hallquist, M.; Kiendler-Scharr, A.; Mentel, T.; Spindler, C.

    2009-04-01

    The volatility of secondary organic aerosol (SOA) from the oxidation of mixtures of biogenic Volatile Organic Compounds (VOC) has been investigated in the SAPHIR facility in Forschungszentrum Jülich, Germany, by using a Volatility Tandem Differential Mobility Analyser (VTDMA). The standard VTDMA setup comprises three main parts: 1) An initial DMA, where a nearly monodisperse size fraction of the aerosol particles is selected (typically 100 or 150 nm), 2) the oven unit, i.e. four ovens in parallel where each oven includes a heating and adsorption section where the evaporation and adsorption of the volatile fraction occurs and 3) a final SMPS (Scanning Mobility Particle Sizer) system where the residual particle number distribution is measured. For this measurement campaign the set-up also contained a Quadrupole Aerosol Mass Spectrometer (Aerodyne QAMS). The temperature of the ovens can be varied between 298 and well above 573 K. In parallel to the final SMPS the AMS was used for chemical composition and density measurements. When the system was dedicated for AMS measurements the initial DMA was bypassed to improve the aerosol concentration. However, the produced SOA has a narrow size distribution still making it possible to follow small changes in the aerosol peak diameter. A general feature of the thermo-denuder system is that a less volatile SOA gives a larger residual particle size distribution compared to more volatile SOA. The experiments conducted were based on photochemical oxidation of selected terpene mixtures. A reference boreal mixture of terpenes, consisting of α-pinene, β-pinene, limonene, ^-3-carene, and ocimene was used as base case. Secondary organic aerosol was formed from the precursor compounds by reaction with O3/H2O/OH in SAPHIR on the first day. The particles were kept in the chamber for up to two further days and were exposed to natural sunlight and OH radicals to initiate close to natural chemical ageing. The VTDMA results show that SOA

  9. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  10. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  11. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with a scanning mobility particle sizer (SMPS) and a multi-angle absorption photometer (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of submicron particulate matter (PM1) in Lanzhou, northwest China, during 11 July-7 August 2012. The average (PM1 mass concentration including non-refractory (PM1 (NR-(PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105 μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. Organic aerosol (OA) on average consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution organic mass spectra identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns, both with peak at ~ 07:00-11:00 (BJT: UTC +8), corresponding to the morning rush hours, while cooking-emission related OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ~ 07:00 and 15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak between ~ 08:00-13:00. The later morning and early afternoon maximum in the diurnal profiles of secondary aerosol species was likely caused by downward mixing of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during nighttime. The mass spectrum of SV-OOA was

  12. Characterization of ambient aerosols during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL with a high-resolution time-of-flight aerosol mass spectrometer Basak Karakurt Cevik1, Yu Jun Leong1, Carlos Hernandez1, Robert Griffin1 1 Rice University, CEE Department, 6100 Main St., Houston, TX 77005, USA

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y.; Hernandez, C.; Griffin, R. J.

    2013-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a Brechtel Manufacturing, Inc. particle-into-liquid sampler (PILS) were deployed at a rural location in Centreville, AL, from 1 June to 15 July 2013 as a part of the Southern Oxidant and Aerosol Study (SOAS). PILS samples were analyzed with Dionex ion chromatographs. The data will allow us to characterize the temporal characteristics of the concentrations and size distributions of non-refractory (NR) chemical species in the ambient submicron particles. Preliminary analysis of the data indicates that the sub-micron particulate matter is highly dominated by organic matter with a relatively high state of oxidation and it is followed by smaller contributions from sulfate and ammonium. In order to investigate the processes and sources that lead to observed aerosol concentrations at the site, the time series will be analyzed in conjunction with additional trace gas, aerosol, and meteorological measurements. The region is known to have high biogenic volatile organic compounds (VOCs) emissions and many of these biogenic VOCs (BVOCs) are important secondary organic aerosol (SOA) precursors. Preliminary data from the HR-ToF-AMS indicates the importance of oxidized organic aerosol during SOAS. The study will also focus on the importance of the SOA in the total organic fraction and the effect of atmospheric processing on the chemical composition of the organic fraction.

  13. Estimation of the Mass Absorption Cross Section of the Organic Carbon Component of Aerosols in the Mexico City Metropolitan Area

    SciTech Connect

    Barnard, James C.; Volkamer, Rainer M.; Kassianov, Evgueni I.

    2008-11-19

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from an Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer, we find aerosol single scattering albedo, ω-0,λ, as a function of wavelength, λ. We find that in near-UV spectral range (defined here as 250 nm to 400 nm) ω-0,λ is much lower compared to ω-0,λ at 500 nm suggesting enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving only the organic part of the aerosol to account for it. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS) along with the inferred ω-0,λ to estimate the Mass Absorption Cross-section (MAC) for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as “radiatively correct” because when used in radiative transfer calculations the calculated irradiances match the measured irradiances at the wavelengths considered here. The uncertainties of individual estimates are quite large, ±30% at 300 nm for the random error, and even larger for a worst-case estimate of the systematic error, ±80%. The error represents the unusual circumstance where no error cancellation is permitted, and is unlikely ever to be realized.

  14. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  15. Non-Refractory Submicron Aerosol Mass Loadings during NEAQS

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Matthew, B. M.; Canagaratna, M. R.; Worsnop, D. R.; Quinn, P. K.; Degouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; McKeen, S. A.

    2003-12-01

    During the New England Air Quality Study (NEAQS) in July-August 2002, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN and collected 2-minute averaged data. The AMS, which measures non-refractory components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm, produced particle mass spectra as well as aerosol organic, sulfate, ammonium, and nitrate mass distributions. A wide variety of air masses were sampled, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of ammonium and nitrate and the mass loadings typically peaked around 400-600 nm in vacuum aerodynamic diameter. Although the AMS sulfate and ammonium concentrations were highly correlated with the sulfate and ammonium concentrations from the Particle into Liquid (PILS) instrument also deployed on the ship, the AMS and PILS nitrate concentrations were not correlated and at times anti-correlated. In contrast, the AMS nitrate and organic concentrations as well as the AMS nitrate and gas phase alkyl nitrate concentrations were highly correlated. These results suggest that organic nitrate was present in the submicron aerosol phase. The AMS organic concentrations were generally higher than the AMS sulfate concentrations, consistent with other shipboard measurements. Whenever the sulfate concentration increased, the organic concentration also increased, indicating that sulfate and organic aerosol growth are influenced by the same processes or that sulfate may play a role in organic aerosol growth. The exception to this pattern occurred during a sea fog event where the sulfate concentration increased and the organic concentration decreased, probably due to rapid aqueous phase sulfur oxidation and relatively less oxidation of organic compounds. Furthermore, the organic concentration often increased without concurrent increases in

  16. Development of a Metastable Atom Bombardment (MAB) Source for Penning Ionization Time-of-flight Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Kimmel, J. R.; David, D.; Jayne, J. T.; Trimborn, A.; Worsnop, D. R.; Jimenez, J. L.

    2009-12-01

    The Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) utilizes thermal vaporization followed by electron ionization (EI) to convert aerosol components to gas-phase ions. The method enables quantification of chemical classes, but the extensive fragmentation caused by EI limits the specificity of both chemical analysis and source identification by factor analysis. To better identify the molecular components of aerosols, we have constructed a metastable atom bombardment (MAB) ionization source that can be interfaced to standard ToF-AMS hardware. A beam of metastable rare gas atoms is produced by a low-voltage DC discharge and focused toward the vaporization plume, yielding Penning Ionization of the analyte molecules. By changing gases, the excited energies of the metastables can be adjusted between 20.61 eV (He) and 9.92 eV (Kr). Source parameters, including pressures, current, geometry, and materials, were optimized for He, Ar, and Kr. Instrument sensitivity and induced fragmentation was characterized for each using lab-generated oleic acid particles. The demonstrated sensitivities are 0.1% of EI (3% of the SNR of EI in the V-mode, comparable to the Q-AMS SNR), which is sufficient for ambient monitoring. A metastable flux of 2.6e14 sr-1sec-1 has been achieved. The MAB-AMS has been deployed to the FLAME-3 campaign at the USDA Fire Sciences Laboratory in Missoula, MT, and used to sample smoke from open burning of different biomass samples. Preliminary results from FLAME-3 will be presented.

  17. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  18. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.A.; Liu, D.Y.; Silva, P.J.; Fergenson, D.F.

    1996-10-01

    We have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the aerodynamic size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight mass spectrometry are combined in a single instrument. ATOFMS is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. Currently, measurements are being made to establish potential links between the presence of particular types of particles with such factors as the time of day, weather conditions, and concentration levels of gaseous smog components such as NO{sub x} and ozone. This data will be used to help establish a better understanding of tropospheric gas-aerosol processes. This talk will discuss the operating principles of ATOFMS as well as present the results of ambient analysis studies performed in our laboratory.

  19. Separating refractory and non-refractory particulate chloride and estimating chloride depletion by aerosol mass spectrometry in a marine environment

    NASA Astrophysics Data System (ADS)

    Nuaaman, I.; Li, S.-M.; Hayden, K. L.; Onasch, T. B.; Massoli, P.; Sueper, D.; Worsnop, D. R.; Bates, T. S.; Quinn, P. K.; McLaren, R.

    2015-01-01

    Aerosol composition and concentration measurements along the coast of California were obtained using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) onboard the research vessel Atlantis during the CalNex study in 2010. This paper focuses on the measurement of aerosol chloride using the HR-AMS that can be ambiguous in regions with significant quantities of sea salt aerosols. This ambiguity arises due to large differences in the sensitivity of the HR-AMS to refractory chloride species (i.e., NaCl) and non refractory chloride species (i.e., NH4Cl, HCl, etc.). Using the HR-AMS, the aerosol chloride signal is typically quantified using ion signals for 35Cl+, H35Cl+, 37Cl+ and H37Cl+ (HxCl+). During this study, the highest aerosol chloride signal was observed during sea sweep experiments when the source of the aerosol chloride was NaCl present in artificially generated sea salt aerosols even though the HR-AMS has significantly lower sensitivity to such refractory species. Other prominent ion signals that arise from NaCl salt were also observed at m/z 22.99 for Na+ and m/z 57.96 for Na35Cl+ during both sea sweep experiments and during periods of ambient measurements. Thus, refractory NaCl contributes significantly to the HxCl+ signal, interfering with attempts to quantify non sea salt chloride (nssCl). It was found that during ambient aerosol measurements, the interference in the HxCl+ signal from sea salt chloride (ssCl) was as high as 89%, but with a study wide average of 10%. The Na35Cl+ ion signal was found to be a good tracer for NaCl. We outline a method to establish nssCl in the ambient aerosols by subtracting the sea salt chloride (ssCl) signal from the HxCl+ signal. The ssCl signal is derived from the Na35Cl+ ion tracer signal and the HxCl+ to Na35Cl+ ratio established from the sea sweep experiments. Ambient submicron concentrations of ssCl were also established using the Na35Cl

  20. Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Schwarz, Jaroslav; Cafmeyer, Jan; Chi, Xuguang

    2002-04-01

    The field work for the AEROSOL Intercomparison 2000 took place from 4 to 14 April 2000 at Melpitz, Germany. One objective was to assess to which extent aerosol chemical mass closure could be obtained for the site. For this purpose, we operated four filter samplers in parallel (mostly using 12-h collections): two Gent PM10 stacked filter unit (SFU) samplers (one with coarse and fine Nuclepore polycarbonate filters, the other with a Gelman Teflo filter as fine filter) and two single filter holders (one with PM2.5 inlet, the other with PM10 inlet) with Whatman QM-A quartz fibre filters. All samples were analysed for the particulate mass (PM) by weighing; the samples from the first SFU were analysed for 42 elements by a combination of particle-induced X-ray emission spectroscopy and instrumental neutron activation analysis, those from the other SFU for major anions and cations by ion chromatography. All quartz filters were analysed for organic carbon and elemental carbon by a thermal-optical transmission technique. Aerosol chemical mass closure calculations were done for the separate fine (PM2) and coarse (2-10 μm) size fractions. As gravimetric PM data we used the averages from the parallel SFU collections. For reconstituting this PM, nine aerosol types (or components) were considered. Crustal matter, organic aerosol and nitrate were the major aerosol types in the coarse size fraction; the dominant aerosol types in the fine fraction were organic aerosol, nitrate and sulphate. The included components explained 116% and 86% of the gravimetric PM in the coarse and fine size fractions, respectively.

  1. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Huang, Xiao-Feng; Xue, Lian; Hu, Min; Lin, Yun; Zheng, Jun; Zhang, Renyi; Zhang, Yuan-Hang

    2011-06-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China while also noted for its severe air pollution, especially in the urban environments. In order to understand in depth the aerosol chemistry and the emission sources in PRD, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in the Hong Kong-Shenzhen metropolitan area between 25 October and 2 December 2009. Ten minute-resolved measurement data were analyzed, and an average mass concentration of 44.5 ± 34.0 μg m-3 was calculated for the entire campaign. On average, organic matter was the most abundant PM1 component accounting for 39.7% of the total mass, followed by sulfate (24.5%), black carbon (measured by aethalometer, 14.0%), ammonium (10.2%), nitrate (10.0%), and chloride (1.6%). Moreover, organic matter comprised an increasing fraction of the PM1 loading as the PM1 loading increased, denoting its key role in particulate pollution in this region. Calculations of organic elemental composition based on the high-resolution organic mass spectra obtained indicated that C, H, O, and N on average contributed 33.8%, 55.1%, 10.2%, and 0.9%, respectively, to the total atomic numbers of organic aerosol (OA), which corresponded to an OM/OC ratio (the ratio of organic matter mass/organic carbon mass) of 1.57 ± 0.08. Positive matrix factorization analysis was then conducted on the high-resolution organic mass spectral data set. Four OA components were identified, including a hydrocarbon-like (HOA), a biomass burning (BBOA), and two oxygenated (LV-OOA and SV-OOA) components, which on average accounted for 29.5%, 24.1%, 18.8%, and 27.6%, respectively, of the total organic mass. The HOA was found to have contributions from both fossil fuel combustion and cooking emissions, while the BBOA was well correlated with acetonitrile, a known biomass burning marker. The LV-OOA and SV-OOA corresponded to more aged and

  2. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGESBeta

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  3. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  4. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  5. Determination of particulate lead during MILAGRO/MCMA-2006 using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-02-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at T0 (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating Pb

  6. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-06-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the

  7. Determination of particulate lead during MILAGRO / MCMA-2006 using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Salcedo, Dara; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-05-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) / Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600oC. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ < 0.1 s) and ~75% exhibiting slow evaporation (τ ~2.4 min) at T0 and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX32 site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 urban supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 minutes with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the

  8. Cookstove Emissions Quantified with the Aerodyne Mobile Laboratory During the Short Lived Climate Forcing (SLCF) 2013 Campaign in Pátzcuaro Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Abraham, R.; Zavala, M.; Molina, L. T.; Fortner, E.; Wormhoudt, J.; Knighton, B.; Herndon, S.; Roscioli, J. R.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Masera, O.; Berrueta, V.

    2013-12-01

    Black carbon emissions are a major contributor to climate change, with cookstoves being one of the top sources. The SLCF cookstove study was conducted in March 2013 at the Interdisciplinary Group for Appropriate Rural Technology (GIRA) in Pátzcuaro, Mexico. Seven different types of wood-burning cookstoves were measured giving insight to the effects of different designs and operating conditions on particle and gas phase emissions. High-time resolution measurements of emissions were made. For most of the cookstoves, measurements were made throughout a standard water boiling test. The Aerodyne Mobile Laboratory conducted these emission measurements utilizing extractive sampling from the stove exhaust. Sample flow to the gas phase instruments was extracted directly from the stovepipe and then quickly diluted with nitrogen. Sample flows for the particulate instruments were taken at points under a meter from the exit of the stovepipe, after dilution with ambient air. The key particulate instrument was the Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which provided measurements of black carbon, divided into several sub-components, along with other classes of particulate matter classified by chemical composition. Gas phase measurements conducted included CO, CO2, NO, NOx, SO2, CH4, C2H2, C2H6, and a variety of VOCs (including benzene, methanol, acetaldehyde, toluene, acetone, acetonitrile, and terpene) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different cookstove types and different stove operating conditions. Comparisons will be made to previous measurements of cookstove emissions in the literature, with a focus on the variety of particulate measurements reported.

  9. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  10. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  11. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  12. ANALYSIS OF ATMOSPHERIC ORGANIC AEROSOLS BY MASS SPECTROSCOPY

    EPA Science Inventory

    High resolution mass spectroscopy has been found to be a useful means of characterizing the organic fraction of urban aerosols. Quantitative accuracy, however, was limited, particularly for compounds of low abundance. Some ambiguities were found in the assignment of origins of io...

  13. Characterization of near-highway submicron aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2011-11-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g., HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. The particulate organics varied dramatically during periods with highest traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations - with minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA being the major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ~120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  14. Aerosol mass spectrometry systems and methods

    SciTech Connect

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  15. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.

    2015-06-01

    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the

  16. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  17. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  18. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  19. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data. PMID:24131283

  20. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  1. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station. PMID:21141836

  2. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  3. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for < 10% of the total OA mass at rural/remote sites. The comparisons between the concentrations of HOA and primary OA (POA) that would be predicted according to inert

  4. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  5. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  6. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  7. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  8. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGESBeta

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  9. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGESBeta

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  10. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  11. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  12. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  13. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Dommen, J.; Weingartner, E.; Richter, R.; Wehrle, G.; Prévôt, A. S. H.; Baltensperger, U.

    2011-06-01

    A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19-0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a

  14. Aerosol chemical elemental mass concentration at lower free troposphere

    NASA Astrophysics Data System (ADS)

    do Carmo Freitas, Maria; Dionísio, Isabel; Fialho, Paulo; Barata, Filipe

    2007-08-01

    This paper shows the use of Instrumental neutron activation analysis (INAA) technique to determine elemental masses collected by a seven-wavelength Aethalometer instrument at the summit of Pico mountain in the Azorean archipelago, situated in the Central North Atlantic Ocean. Each sample corresponds to air particulate matter measured continuously for periods of approximately 24 h taken from 14th July 2001 through 14th July 2002. The statistical analysis of the coefficients of correlation between all the elements identified, permitted to establish six groups that could potentially be associated with the type of source responsible for the aerosol sampled in the lower free troposphere at the Azorean archipelago. Calculation of the synoptic back trajectories helped to corroborate the use of the iron/cesium relation as a tracer for the Saharan dust aerosol. It was demonstrated that INAA constituted an important tool to identify these events.

  15. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-03-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C). Heald et al. (2010) suggested that the bulk composition of OA line up in the Van Krevelen diagram with a slope ~ -1; such slope can potentially arise from the physical mixing of HOA and OOA, and/or from chemical aging of these components. In this study, we find that the OOA components from all sites occupy an area in the Van Krevelen space, with the evolution of OOA following a shallower slope of ~ -0.5, consistent with the additions of both acid and alcohol functional groups without fragmentation, and/or the addition of acid groups with C-C bond breakage. The importance of acid formation in OOA evolution is consistent with increasing f44 in the triangle plot with photochemical age. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  16. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-05-01

    The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for

  17. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  18. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  19. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-07-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f44 of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ -0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  20. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  1. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  2. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  3. Secondary Organic Aerosol from biogenic VOCs over West Africa during AMMA

    NASA Astrophysics Data System (ADS)

    Capes, G.; Murphy, J. G.; Reeves, C. E.; McQuaid, J. B.; Hamilton, J. F.; Hopkins, J. R.; Crosier, J.; Williams, P. I.; Coe, H.

    2009-01-01

    This paper presents measurements of organic aerosols above subtropical West Africa during the wet season using data from the UK Facility for Airborne Atmospheric Measurements (FAAM) aircraft. Measurements of biogenic volatile organic compounds (BVOC) at low altitudes over these subtropical forests were made during the African Monsoon Multidisciplinary Analysis (AMMA) field experiment during July and August 2006 mainly above Benin, Nigeria and Niger. Data from an Aerodyne Quadrupole Aerosol Mass Spectrometer show a median organic aerosol loading of 1.08 μg m-3 over tropical West Africa, which represents the first regionally averaged assessment of organic aerosol mass (OM) in this region during the wet season. This is in good agreement with predictions based on aerosol yields from isoprene and monoterpenes during chamber studies and model predictions based on partitioning schemes, contrasting markedly with the large under representations of OM in similar models when compared with data from mid latitudes.

  4. Evolution of the Physicochemical and Activation Properties of Aerosols within Smoke Plumes during the Biomass Burning Observation Project (BBOP)

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. M.; Mei, F.; Wang, J.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Shilling, J. E.; Fortner, E.; Chand, D.; Sedlacek, A. J., III; Kleinman, L. I.; Senum, G.; Schmid, B.

    2014-12-01

    Biomass burning from wildfires and controlled agricultural burns are known to be a major source of fine particles and organic aerosols at northern temperate latitudes during the summer months. However, the evolution of the physicochemical properties of the aerosol during transport and the potential impact of this evolution on cloud condensation nuclei (CCN) activity has rarely been studied for these events. During the DOE-sponsored Biomass Burning Observation Project (BBOP) conducted in the summer and fall of 2013, over 30 research flights sampled biomass burning plumes from wildfires in the Northwestern United States and agricultural burns in the Mid-South region of the United States. A large suite of instruments aboard the DOE G-1 (Gulfstream-1) measured the chemical, physical, and optical properties of biomass burning aerosol with an emphasis on black carbon. A Fast Integrated Mobility Spectrometer (FIMS), Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A), and Passive Cavity Aerosol Spectrometer (PCASP) were used to measure the aerosol size distribution from 15 - 3,000 nm at 1-Hz. A dual column CCN counter measured the CCN number concentration at supersaturations of 0.25% and 0.50% at a time resolution of 1-Hz and the aerosol chemical composition was measured using a soot particle aerosol mass spectrometer (SP-AMS, Aerodyne, Inc). The SP-AMS was operated in two modes: (i) as a traditional high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.), which measured chemical composition of non-refractory aerosols and (ii) as the SP-AMS which measured chemical composition of the refractory black carbon-containing (rBC) particle coating and rBC aerosol mass. Utilizing the aforementioned measurements, a CCN closure study is used to investigate the emitted aerosol hygroscopicity, the evolution of the physicochemical properties of the aerosol, and the potential impacts on cloud microphysics from the different fuel sources.

  5. An explicit study of aerosol mass conversion and its parameterization in warm rain formation of cumulus clouds

    NASA Astrophysics Data System (ADS)

    Sun, J.; Fen, J.; Ungar, R. K.

    2013-10-01

    The life time of atmospheric aerosols is highly affected by in-cloud scavenging processes. Aerosol mass conversion from aerosols embedded in cloud droplets into aerosols embedded in raindrops is a pivotal pathway for wet removal of aerosols in clouds. The aerosol mass conversion rate in the bulk microphysics parameterizations is always assumed to be linearly related to the precipitation production rate, which includes the cloud water autoconversion rate and the cloud water accretion rate. The ratio of the aerosol mass concentration conversion rate to the cloud aerosol mass concentration has typically been considered to be the same as the ratio of the precipitation production rate to the cloud droplet mass concentration. However, the mass of an aerosol embedded in a cloud droplet is not linearly proportional to the mass of the cloud droplet. A simple linear relationship cannot be drawn between the precipitation production rate and the aerosol mass concentration conversion rate. In this paper, we studied the evolution of aerosol mass concentration conversion rates in a warm rain formation process with a 1.5-dimensional non-hydrostatic convective cloud and aerosol interaction model in the bin microphysics. We found that the ratio of the aerosol mass conversion rate to the cloud aerosol mass concentration can be statistically expressed by the ratio of the precipitation production rate to the cloud droplet mass concentration with an exponential function. We further gave some regression equations to determine aerosol conversions in the warm rain formation under different threshold radii of raindrops and different aerosol size distributions.

  6. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Dommen, J.; Weingartner, E.; Richter, R.; Wehrle, G.; Prevot, A. S. H.; Baltensperger, U.

    2011-03-01

    A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two logwood burners was found to be a factor of 4.1 ± 1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Average emission factors of BC + POA + SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g kg-1 wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. The primary organic emissions from the three different burners showed a wide range in O/C atomic ratio (0.19-0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated

  7. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  8. Online Aerosol Size and Composition Measurements in Coastal Antarctica

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Giordano, M.; Kalnajs, L.; Johnson, A.; Davis, S. M.; Deshler, T.; Toohey, D. W.

    2014-12-01

    Aerosol particles play a critical role in the chemical and radiative balance of the Antarctic atmosphere. Aerosols are both a source and sink of gas phase constituents, as well as a transport mechanism for oceanic chemical species into the continental interior. The interaction between aerosols, the gas phase, sea ice and the snow pack is complex and not well understood. Recent observations of ozone depletion events coupled with submicron aerosol mass increase highlight the interaction between the gas and particle phases. These interactions can lead to aerosol formation as well as the deposition of trace elements to the snow pack. To determine the composition and source regions of aerosols in the coastal Antarctic atmosphere, a suite of instruments was deployed in the 2014 Antarctic measurement season including a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-AMS), Ultra High Sensitivity Aerosol Spectrometer (UHSAS), Ozone analyzer, Scanning Electrical Mobility Sizer (SEMS), and Particle-into-Liquid Sampler (PILS). Measurements of gas phase constituents and aerosol composition were interpreted in the context of back trajectories and local meteorological conditions to link the measured air masses to their source regions.

  9. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    SciTech Connect

    Ludvigson, L D

    2004-03-05

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  10. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  11. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  12. Evidence for Novel Atmospheric Organic Aerosol Measured in a Bornean Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Ward, M. W.; Hewitt, C. N.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2009-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth’s atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provide a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified by GCxGC/ToFMS analysis. The aerosol component was

  13. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  14. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  15. Estimation of aerosol mass scattering efficiencies under high mass loading: case study for the megacity of Shanghai, China.

    PubMed

    Cheng, Zhen; Jiang, Jingkun; Chen, Changhong; Gao, Jian; Wang, Shuxiao; Watson, John G; Wang, Hongli; Deng, Jianguo; Wang, Buying; Zhou, Min; Chow, Judith C; Pitchford, Marc L; Hao, Jiming

    2015-01-20

    Aerosol mass scattering efficiency (MSE), used for the scattering coefficient apportionment of aerosol species, is often studied under the condition of low aerosol mass loading in developed countries. Severe pollution episodes with high particle concentration frequently happened in eastern urban China in recent years. Based on synchronous measurement of aerosol physical, chemical, and optical properties at the megacity of Shanghai for two months during autumn 2012, we studied MSE characteristics at high aerosol mass loading. Their relationships with mass concentrations and size distributions were examined. It was found that MSE values from the original US IMPROVE algorithm could not represent the actual aerosol characteristics in eastern China. It results in an underestimation of the measured ambient scattering coefficient by 36%. MSE values in Shanghai were estimated to be 3.5 ± 0.55 m(2)/g for ammonia sulfate, 4.3 ± 0.63 m(2)/g for ammonia nitrate, and 4.5 ± 0.73 m(2)/g for organic matter, respectively. MSEs for three components increased rapidly with increasing mass concentration in low aerosol mass loading, then kept at a stable level after a threshold mass concentration of 12–24 μg/m(3). During severe pollution episodes, particle growth from an initial peak diameter of 200–300 nm to a peak diameter of 500–600 nm accounts for the rapid increase in MSEs at high aerosol mass loading, that is, particle diameter becomes closer to the wavelength of visible lights. This study provides insights of aerosol scattering properties at high aerosol concentrations and implies the necessity of MSE localization for extinction apportionment, especially for the polluted regions. PMID:25495050

  16. Investigation of formation and ageing of biogenic secondary aerosols by soft ionization aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Müller, Lars; Reinnig, Marc-Christopher; Vogel, Alexander; Mentel, Thomas; Tillmann, Ralf; Schlosser, E.; Wahner, Andreas; Donahue, Neil; Saathoff, Harald; Hoffmann, Thorsten

    2010-05-01

    The knowledge of the chemical composition of secondary organic aerosol is one essential key to understand the significance and fate of SOA in the atmosphere. However, the chemical evolution of SOA, from the very first condensing/nucleating molecules to the final oxidation products is still insufficiently understood and object of current research [1-3]. Consequently, the formation and photochemical ageing of secondary organic aerosol (SOA) was investigated in a series of reaction chamber experiments by applying on-line aerosol mass spectrometry (atmospheric pressure chemical ionization mass spectrometry (APCI/MS)) as well as off-line high performance liquid chromatography mass spectrometry (HPLC-MS). In a set of experiments, performed in the large outdoor reaction chamber SAPHIR (Jülich, Germany), SOA was generated from a boreal mixture of biogenic VOCs. During a two-day experiment the generated biogenic SOA was exposed to OH-radicals and the temporal evolution of the chemical composition was characterized. The applied on-line MS method not only provides highly time resolved chemical information (such as an AMS) but also allows molecular identification/quantification of specific marker compounds. Several first and higher generation BSOA products were identified. Among the higher generation products, especially a tricarboxylic acid (3-methyl-1,2,3-butanetricarboxylic acid) [2] was observed as an eye-catching oxidative processing marker. A more detailed investigation of hydroxyl radical induced SOA aging at the AIDA chamber facility in Karlsruhe, again using terpenes as SOA precursors, clearly showed that the formation of the tricarboxylic acid takes place in the gas phase by the reaction of semivolatile first generation products and hydroxyl radicals. Actually, there were no indications for OH induced oxidation of compounds in the condensed phase. The consequences of these results will be discussed in the contribution. 1. Rudich, Y., N.M. Donahue, and T.F. Mentel

  17. Aerosol mass spectrometric analysis of the chemical composition of non-refractory PM(1) samples from school environments in Brisbane, Australia.

    PubMed

    Crilley, Leigh R; Ayoko, Godwin A; Jayaratne, E Rohan; Salimi, Farhad; Morawska, Lidia

    2013-08-01

    Long-term exposure to vehicle emissions has been associated with detrimental health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children's exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol (OA) and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. TOF-AMS enabled the chemical composition of the non-refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other OA components during school hours. The organic fraction at each school comprised the majority of NR-PM1. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. A significant source of the OA at two of the schools was aged vehicle emissions from nearby highways. More oxidised OA was observed at the remaining two schools, which also recorded strong biomass burning influences. In general, the diurnal cycle of the total OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA at all schools. Peak exposure of school children to vehicle emissions occurred during school drop-off and pick-up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during school hours in urban environments. PMID:23644356

  18. Preliminary Observations of Particulate Matter at Baeng-Yeong Island, Korea, with a High Resolution Time of Flight Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Park, J.; Lee, T.; Lee, S.; Kim, J.; Jang, S.; Lee, D.; Ahn, J.; Jeon, H.; Lee, G.; Collett, J. L.

    2010-12-01

    Rapid industrial growth in China has resulted in large emissions of anthropogenic air pollutants in the past decade. Since the predominant regional winds near the Korean Peninsula are westerly throughout the year, except for summer, transport of air pollution from eastern China is a concern to neighboring countries such as South Korea and Japan and even to more distant regions such as the western United States. In order to improve understanding of the characteristics of pollutant transport from a variety of source regions to Korea, intensive field measurements were conducted from August - October 2010 at Baeng-Yeong Island, Korea. Baeng-Yeong Island is located in the sea west of the Korean Peninsula, approximately 180 km from the Shandong Peninsula. The island is situated close to the North Korea-South Korea Border. Under varying transport conditions, therefore, the island is predominantly influenced by emissions from China, North Korea or South Korea. An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on the island to provide insight into particle size distributions and non-refractory fine particle composition, including concentrations of nitrate, sulfate, and organic carbon, with 5 minute time resolution. Many periods during the early part of the study were dominated by carbonaceous and sulfate aerosol. Increasing sulfate and organic concentrations were associated with changes in air transport patterns to the site. The presentation will provide an overview of the composition of particulate matter measured on the island and examine how changes in composition and species concentrations are related to changes in regional transport patterns as represented by the NOAA HYSPLIT model.

  19. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  20. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  1. Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Horányi, M.; Knappmiller, S.; Sternovsky, Z.; Holzworth, R.; Shimogawa, M.; Friedrich, M.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.; Latteck, R.; Rapp, M.; Hoppe, U.-P.; Hervig, M. E.

    2009-03-01

    MASS (Mesospheric Aerosol Sampling Spectrometer) is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions), 0.5-1 nm, 1-2 nm, and >3 nm (approximately). Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500-3000 cm-3 for particles with radii >3 nm from 83-88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1-2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm-3) and for smaller particles, 0.5-1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm) are observed throughout the NLC region, 83-88 km, and the smaller particles are observed primarily at the high end of the range, 86-88 km. The second flight into PMSE alone at 84-88 km, found only

  2. Brick Kiln Emissions Quantified with the Aerodyne Mobile Laboratory During the Short Lived Climate Forcing (SLCF) 2013 Campaign in Guanajuato Mexico

    NASA Astrophysics Data System (ADS)

    Fortner, E.; Knighton, W. B.; Herndon, S.; Roscioli, J. R.; Zavala, M.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Molina, L. T.

    2013-12-01

    Brick kiln emissions are suspected to be a major source of atmospheric black carbon (BC) in developing countries; and black carbon's role as a short lived climate forcing (SLCF) pollutant is widely recognized. The SLCF-Mexico brick kiln study was conducted from 12-17 March 2013 in Mexico's Guanajuato state. Three different types of brick kilns were investigated (MK2, traditional, and traditional three tier) providing data on the effects of different kiln designs on particle and gas phase emissions. The BC and gaseous combustion emissions from these kilns were measured during both the fire stage and the subsequent smoldering stage with real-time instruments deployed on the Aerodyne Mobile Laboratory, and quantified utilizing flux tracer gases released adjacent to the brick kiln. This method allows examination of the brick kiln plume's evolution as it transits downwind from the source. Particulate measurements conducted by the mobile laboratory included the multi angle absorption photometer (MAAP) to measure black carbon mass, cavity attenuated phase shift (CAPSext) monitor to measure extinction and soot particle aerosol mass spectrometer (SP-AMS) measurements of black carbon. The SP-AMS instrument combines the ability to measure black carbon with the ability to determine the chemical composition of the other particulate matter (PM) components associated with black carbon particles. The variance of PM chemical composition will be examined as a function of burning stage and kiln type and compared to other black carbon PM sources. Gas phase exhaust species measured included CO, CO2, NOx, SO2, CH4, C2H6, as well as a variety of VOCs (acetonitrile, benzene etc.) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different kiln types and different firing conditions. The evolution of particulate matter and gas phase species as they transit away from the source will also be examined.

  3. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  4. Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass.

    PubMed

    Froyd, K D; Murphy, S M; Murphy, D M; de Gouw, J A; Eddingsaas, N C; Wennberg, P O

    2010-12-14

    Recent laboratory studies have demonstrated that isoprene oxidation products can partition to atmospheric aerosols by reacting with condensed phase sulfuric acid, forming low-volatility organosulfate compounds. We have identified organosulfate compounds in free tropospheric aerosols by single particle mass spectrometry during several airborne field campaigns. One of these organosulfates is identified as the sulfate ester of IEPOX, a second generation oxidation product of isoprene. The patterns of IEPOX sulfate ester in ambient data generally followed the aerosol acidity and NO(x) dependence established by laboratory studies. Detection of the IEPOX sulfate ester was most sensitive using reduced ionization laser power, when it was observed in up to 80% of particles in the tropical free troposphere. Based on laboratory mass calibrations, IEPOX added > 0.4% to tropospheric aerosol mass in the remote tropics and up to 20% in regions downwind of isoprene sources. In the southeastern United States, when acidic aerosol was exposed to fresh isoprene emissions, accumulation of IEPOX increased aerosol mass by up to 3%. The IEPOX sulfate ester is therefore one of the most abundant single organic compounds measured in atmospheric aerosol. Our data show that acidity-dependent IEPOX uptake is a mechanism by which anthropogenic SO(2) and marine dimethyl sulfide emissions generate secondary biogenic aerosol mass throughout the troposphere. PMID:21098310

  5. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  6. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions. PMID:26149110

  7. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Dall'Osto, M.; Olatunbosun, O. A.; Harrison, Roy M.

    2016-03-01

    Brake dust particles were characterised using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) operated using two inlet configurations, namely the aerodynamic lens (AFL) inlet and countersunk nozzle inlet. Laboratory studies show that dust particles are characterised by mass spectra containing ions deriving from Fe and Ba and although highly correlated to each other, the Fe and Ba signals were mostly detected using the nozzle inlet with relatively high laser desorption energies. When using the AFL, only [56Fe] and [-88FeO2] ions were observed in brake dust spectra generated using lower laser desorption pulse energies, and only above 0.75 mJ was the [138Ba] ion detected. When used with the preferred nozzle inlet configuration, the [-88FeO2] peak was considered to be the more reliable tracer peak, because it is not present in other types of dust (mineral, tyre, Saharan etc). As shown by the comparison with ambient data from a number of locations, the aerodynamic lens is not as efficient in detecting brake wear particles, with less than 1% of sampled particles attributed to brake wear. Five field campaigns within Birmingham (background, roadside (3) and road tunnel) used the nozzle inlet and showed that dust particles (crustal and road) accounted for between 3.1 and 65.9% of the particles detected, with the remaining particles being made up from varying percentages of other constituents.

  8. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  9. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  10. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  11. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  12. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  13. Unraveling the Complexity of Atmospheric Aerosol: Insights from Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Lynn R.; Zhao, Yunzhu; Samburova, Vera; Gannet Hallar, A.; Lowenthal, Douglas

    2016-04-01

    Atmospheric aerosol organic matter (AOM) is a complex mixture of thousands of organic compounds, which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of AOM is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas, aqueous and particle phase reactions contribute to the aerosol organic mass. Thus, ambient aerosols carry a complex array of AOM components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize ambient aerosol AOM collected at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Thousands of molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. Using multivariate statistical analysis, correlations between the site meteorological conditions and specific molecular compositions were identified. For example, days with strong UV radiation and high temperature were found to contain large numbers of biogenic SOA molecular formulas. Similarly, days with high relative humidity and high sulfate concentrations were found to contain many sulfur-containing compounds, suggesting their aqueous phase formation.

  14. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

    NASA Astrophysics Data System (ADS)

    Hariyama, Tatsuo; Takaya, Yasuhiro; Miyoshi, Takashi

    2005-11-01

    Aerosol particles with sub-micro meter size inhaled into respiratory systems cause serious damage to human body. In order to evaluate the health effects of the particles, classification methods of the particles with size and mass are needed. Several measurement methods of the particle size are established. However, conventional mass measurement methods are not enough to measure the particles with sub- pico gram. We propose a new mass measurement method of the aerosol particles based on laser trapping. In this method, an optically trapped silica particle is used as a measuring probe particle. The probe particle is trapped at a beam waist of the focused laser light and is forced to vibrate by deflecting the beam waist using AOD. The vibrating probe particle has a resonance frequency because it is governed by the spring-mass-damper system. When an aerosol particle is attached to the probe particle, the resonance frequency shifts according to the increase of the total mass. The mass of the aerosol particle can be measured from the shift of the resonance frequency. Experimentally, it is confirmed that the probe particle is governed by the spring-mass-damper system and has a resonance frequency. When a silica fine particle of 3pg in mass used as an aerosol particle is attached to the probe particle, the resonance frequency shift occurs as expected in the dynamic system and the fine particle mass can be measured based on the proposed method.

  15. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  16. Mass Independent Isotopic Compositions of Aerosol Sulfate and Nitrates

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.

    2001-12-01

    For nearly a half-century stable isotope ratio measurements have been utilized as a tool to understand sources, fates, and transformation mechanisms of atmospheric molecules. Carbon and oxygen (δ 13C and δ 18O) measurements of CO2 have been instrumental in providing specific details of the carbon cycle. Without these measurements, understanding of the carbon cycle and transfer rates between reservoirs would be considerably diminished. Deuterium and oxygen isotopic measurements of atmospheric water has similarly enhanced the ability to model the atmospheric and geochemical recycling of the hydrologic cycle. Other molecules investigated include, for example, CO, CH4, N2O, SO4, NH, and Cl. The ability to interpret these high precision isotope ratio measurements relies upon a fundamental understanding of the basic physical-chemical processes which produce the alteration of the stable isotope ratio. Such processes typically include thermodynamics (viz a viz isotope exchange), kinetics, and evaporation-condensation. Though the mechanism by which these alterations occur, they all depend in some fashion upon mass differences in the isotopically substituted atoms. In 1983, Thiemens and Heidenreich (1) demonstrated that a chemical process is capable of producing an alteration of stable isotopes which was independent of mass. Subsequent to that time, it has been shown that measurements of mass independent isotopic compositions provide a new view of atmospheric process which may not be derived from single isotope ratio measurements (reviews by (2), (3)). In the past few years, mass independent isotopic compositions have been utilized to understand ancient atmospheres on both Earth and Mars (review by (4)). It has been known for decades that atmospheric sulfate is an extraordinary species. It participates in climate change in its capacity as a cloud condensation nuclei and it is a human and environmental health hazard. By the same token, aerosol nitrate is an environmental

  17. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances

    SciTech Connect

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2012-06-29

    This manuscript presents an overview of the most recent instrument developments for the field and laboratory applications of mass spectrometry (MS) to investigate the chemistry and physics of atmospheric aerosols. A range of MS instruments, employing different sample introduction methods, ionisation and mass detection techniques are used both for ‘online’ and ‘offline’ characterisation of aerosols. Online MS techniques enable detection of individual particles with simultaneous measurement of particle size distributions and aerodynamic characteristics and are ideally suited for field studies that require high temporal resolution. Offline MS techniques provide a means for detailed molecular-level analysis of aerosol samples, which is essential to gain fundamental knowledge regarding aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols – data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins and atmospheric evolution. Over the last few years, developments and applications of MS techniques in aerosol research have expanded remarkably as evident by skyrocketing publication statistics. Finally, the goal of this review is to present the most recent developments in the field of aerosol mass spectrometry for the time period of late 2010 to early 2012, which have not been conveyed in previous reviews.

  18. Determination of aromatic tracer compounds for environmental tobacco smoke aerosol by two step laser mass spectrometry

    NASA Astrophysics Data System (ADS)

    Morrical, Brad D.; Zenobi, Renato

    Cigarette smoking is a major cause of indoor aerosol pollution. Determination of exposure to environmental tobacco smoke (ETS) aerosol is critical to understanding health effects. Sizing studies have shown that ETS has a size distribution that is efficiently deposited into the lungs and can therefore provide effective delivery of carcinogenic compounds into the human body. Two-step laser mass spectrometry is used to analyze aromatic compounds on aerosols collected from a smoking lobby. The determination and suitability of ETS tracers on aerosols is examined. Additionally, the transport of aerosol from the smoking lobby is examined to determine what effect deposition and dilution have on the mass spectrum observed. Results from the analysis of ETS, both from lobby samples and direct cigarette sampling, show that several unique peaks are present in the mass spectrum when compared to other combustion sources, such as automobiles and diesel trucks. In particular, ions at m/ z 118, 132, 146, and 160 are consistently present and are not found in other combustion sources. For the indoor environment, where chemical transformation is much less rapid than in the outdoor environment, these ions were found to be present as soon as the first smokers appeared and persisted over the course of the day. Aerosol samples taken in the morning prior to the presence of smokers in the lobby reveal the presence of skeletal PAHs, indicative of outdoor urban traffic aerosol penetration into the building.

  19. Determination of organic compounds from wood combustion aerosol nanoparticles by different gas chromatographic systems and by aerosol mass spectrometry.

    PubMed

    Laitinen, Totti; Martín, Sara Herrero; Parshintsev, Jevgeni; Hyötyläinen, Tuulia; Hartonen, Kari; Riekkola, Marja-Liisa; Kulmala, Markku; Pavón, José Luis Pérez

    2010-01-01

    Organic compounds in atmospheric nanoparticles have an effect on human health and the climate. The determination of these particles is challenged by the difficulty of sampling, the complexity of sample composition, and the trace-level concentrations of the compounds. Meeting the challenge requires the development of sophisticated sampling systems for size-resolved particles and the optimization of sensitive, accurate and simple analytical techniques and methods. A new sampling system is proposed where particles are charged with a bipolar charger and size-segregated with a differential mobility analyzer. This system was successfully used to sample particles from wood pyrolysis with particle sizes 30-100nm. Particles were analyzed by four techniques: comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, gas chromatography-time-of-flight mass spectrometry, gas chromatography-quadrupole mass spectrometry, and aerosol mass spectrometry (aerosol MS). In the chromatographic techniques, particles were collected on a filter and analyzed off-line after sample preparation, whereas in the aerosol MS, particle analysis was performed directly from the particle source. Target compounds of the samples were polyaromatic hydrocarbons and n-alkanes. The analytical techniques were compared and their advantages and disadvantages were evaluated. The sampling system operated well and target compounds were identified in low concentrations. PMID:19945113

  20. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  1. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  2. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  3. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.

    2011-03-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from diffusivity within the αP particles being sufficiently slow that they do not exhibit the expected liquid-like behavior and perhaps exist in a glassy state. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that, although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  4. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.

    2010-11-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the αP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  5. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  6. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  7. Biogenic Contributions to Summertime Arctic Aerosol: Observations of Aerosol Composition from the Netcare 2014 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Brauner, R.; Herber, A. B.; Leaitch, W. R.; Abbatt, J.

    2014-12-01

    The Arctic is a complex and poorly studied aerosol environment, impacted by strong anthropogenic contributions during winter months and by regional sources in cleaner summer months. In order to gain a predictive understanding of the changing climate in this region, it is necessary to understand the balance between these two aerosol sources to clarify how aerosol might be altered by or contribute to climate change. We present results of vertically resolved, submicron aerosol composition from an Aerodyne high-resolution aerosol mass spectrometer (AMS) during the NETCARE 2014 Polar6 aircraft campaign. The campaign was based in the high Arctic, at Resolute, NU (74°N), allowing measurements from 60 to 2900 meters over ice, open water and near the ice-edge. Concurrent measurements aboard the Polar6 included ultrafine and accumulation mode particle number and size, cloud condensation nuclei concentrations, trace gas concentrations and single particle composition. Aerosol vertical profiles measured by the AMS can be broadly characterized into two regimes corresponding to different meteorological conditions: the first with very low aerosol loading (<0.1 μg/m3) at low altitudes compared to that aloft and high numbers of nucleation mode particles, and the second with higher concentrations at lower levels. This second regime was associated with low concentrations of nucleation mode particles, and higher observable levels of methane sulphonic acid (MSA) from AMS measurements at low altitudes. MSA, produced during the oxidation of dimethyl sulphide, is a marker for the contribution of ocean-derived biogenic sulphur to particulate sulphur and could be identified and quantified using the high-resolution AMS. MSA to sulphate ratios were observed to increase towards lower altitudes, suggesting a contribution to aerosol loading from the ocean. In addition, we present measurements of aerosol neutralization and the characteristics of organic aerosol that relate to the growth of

  8. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  9. Single Particle Fluorescence & Mass Spectrometry for the Detection of Biological Aerosols

    SciTech Connect

    Coffee, K; Riot, V; Woods, B; Steele, P; Gard, E E

    2005-04-25

    Biological Aerosol Mass Spectrometry (BAMS) is an emerging technique for the detection of biological aerosols, which is being developed at Lawrence Livermore National Laboratory. The current system uses several orthogonal analytical methods to improve system selectivity, sensitivity and speed in order to maximize its utility as a biological aerosol detection system with extremely low probability of false alarm and high probability of detection. Our approach is to pre-select particles of interest by size and fluorescence prior to mass spectral analysis. The ability to distinguish biological aerosols from background and to discriminate bacterial spores, vegetative cells, viruses and toxins from one another will be shown. Data from particle standards of known chemical composition will be discussed. Analysis of ambient particles will also be presented.

  10. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols.

    PubMed

    Gallimore, Peter J; Kalberer, Markus

    2013-07-01

    Organic compounds comprise a major fraction of tropospheric aerosol and understanding their chemical complexity is a key factor for determining their climate and health effects. We present and characterize here a new online technique for measuring the detailed chemical composition of organic aerosols, namely extractive electrospray ionization mass spectrometry (EESI-MS). Aerosol particles composed of soluble organic compounds were extracted into and ionized by a solvent electrospray, producing molecular ions from the aerosol with minimal fragmentation. We demonstrate here that the technique has a time resolution of seconds and is capable of making stable measurements over several hours. The ion signal in the MS was linearly correlated with the mass of aerosol delivered to the EESI source over the range tested (3-600 μg/m(3)) and was independent of particle size and liquid water content, suggesting that the entire particle bulk is extracted for analysis. Tandem MS measurements enabled detection of known analytes in the sub-μg/m(3) range. Proof-of-principle measurements of the ozonolysis of oleic acid aerosol (20 μg/m(3)) revealed the formation of a variety of oxidation products in good agreement with previous offline studies. This demonstrates the technique's potential for studying the product-resolved kinetics of aerosol-phase chemistry at a molecular level with high sensitivity and time resolution. PMID:23710930

  11. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  12. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  13. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    Soils contain approximately half of Earth's terrestrial carbon. As such, it is important to understand the factors that control the cycling of this soil organic carbon between the land and the atmosphere. Models that attribute the persistence of soil organic carbon to the intrinsic properties of the molecules themselves are inconsistent with recent observations— for example, materials that are more thermodynamically stable have been found to have a shorter lifetime in soils than ones that are less stable, and vice versa. A new explanation has therefore been posited that invokes ecosystem properties as a whole, and not just intrinsic molecular properties, as the kinetic factor controlling soil carbon dynamics. Because soil dynamics occur on a small scale, techniques with high spatial resolution are required for their study. Existing techniques such as TOF-SIMS require preparation of the sample and introduction into a high vacuum system, and do not address the need to examine large numbers of sample systems without perturbation of chemical and physical properties. To address this analytical challenge, we have coupled a laser ablation (LA) module to an Aerodyne aerosol mass spectrometer (AMS), thereby enabling sample introduction and subsequent measurement of small amounts of soil organic matter by the laser ablation aerosol mass spectrometer (LA-AMS). Due to the adjustable laser beam width, the LA-AMS can probe spot sizes ranging from 1-150 μm in diameter, liberating from 10-100 ng/pulse. With a detection limit of 1 pM, the AMS allows for chemical characterization of the ablated material in terms of elemental ratios, compound classes, and TOC/TOM ratios. Furthermore, the LA-AMS is capable of rapid, in-situ sampling under ambient conditions, thereby eliminating the need for sample processing or transport before analysis. Here, we will present the first results from systematic studies aimed at validating the LA-AMS method as well as results from initial measurements

  14. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  15. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  16. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Telle, H. H.

    2005-08-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (˜ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made.

  17. Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.

    2015-12-01

    Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.

  18. Time-of-flight aerosol mass spectrometry: Measuring gaseous iodine species after selective uptake in lab-generated aerosols

    NASA Astrophysics Data System (ADS)

    Kundel, Michael; Ries, Marco; Schott, Mathias; Hoffmann, Thorsten

    2010-05-01

    Reactive iodine species play an important role in the marine atmospheric chemistry. Recent studies show that iodine containing compounds (e.g. I2 and ICl) are involved in the tropospheric ozone depletion, the enrichment of iodine in marine aerosols and the formation of new particles in the marine boundary layer (MBL). Various laboratory and field measurements report that molecular iodine (I2) and organoiodine compounds (e.g. CH3I, CH2I2) are the most important precursors for reactive iodine in the MBL[1],[2]. However, the identification and quantification of reactive iodine containing compounds are still analytical challenges. Here, we present a new application of the time-of-flight aerosol mass spectrometer (ToF-AMS) for the quantification of gaseous I2 and ICl in real-time. Time-of-flight aerosol mass spectrometry enables the real-time analysis of the particle size, the particle mass and the chemical composition of non-refractory aerosols[3]. The aerosol enters the ToF-AMS through a critical orifice of 100 μm inner diameter. An aerodynamic lens system focuses the particles in a size range of 50-600 nm as a narrow beam into the vacuum system. While most of the air is removed by a skimmer, the particle beam is transmitted into the particle-sizing chamber. After passing the particle-sizing chamber, the non-refractory particles are flash-vaporized on a heated tungsten surface (500-600 °C) and then ionized by electron impact. The generated ions are extracted by an orthogonal extractor into the time-of-flight mass spectrometer, where the time resolved particle mass detection is performed. Since gaseous compounds are removed inside the ToF-AMS, a direct measurement of gaseous iodine species is not possible. Therefore gaseous iodine species have to be transferred from the gas phase to the particle phase before entering the ToF-AMS. For this purpose α-cyclodextrin (α-CD) particles were used as selective sampling probes for I2 and 1,3,5-trimethoxybenzene (1,3,5-TMB

  19. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  20. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2015-01-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species - semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) - prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to

  1. Seasonal characteristics of fine particulate matter (PM) based on high resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2014-08-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for four months, with one in each season of the year. The average NR-PM1 concentration of ~15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%) and the surrogates of secondary organic species, semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA), prevailed (~80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local

  2. A rocket-borne mass analyzer for charged aerosol particles in the mesosphere

    SciTech Connect

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Friedrich, Martin

    2008-10-15

    An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number density of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges.

  3. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-04-01

    The functional group composition of various organic aerosols (OA) is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups) and precursor ion (nitro groups) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular) to 13.5% (o-xylene photo-oxidation) of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass spectra of all

  4. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 2: Analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2008-09-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit mass resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, the volatility and the level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the primary contribution after a few hours of aging under typical summertime conditions. Aging decreased the OA volatility of the total OA as measured with a thermodenuder; it also made the OA progressively more oxygenated in every experiment. With explicit knowledge of the condensed-phase mass spectrum (MS) of the primary emissions from each fire, each MS can be decomposed into primary and residual spectra throughout the experiment. The residual spectra provide an estimate of the composition of the photochemically produced OA. These spectra are also very similar to those of the oxygenated OA that dominates ambient AMS datasets. In addition, aged wood smoke spectra are shown to be similar to those from OA created by photo-oxidized dilute diesel exhaust and aged biomass-burning OA measured in urban and remote locations. This demonstrates that the oxygenated OA observed in the atmosphere can be produced by photochemical aging of dilute emissions from combustion of fuels containing both modern and fossil carbon.

  5. Primary and secondary organic aerosols in urban air masses intercepted at a rural site

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Vlasenko, Alexander; Sjostedt, Steve; Chang, Rachel; Shantz, Nicole; Abbatt, Jonathan; Slowik, J. G.; Bottenheim, J. W.; Brickell, P. C.; Stroud, C.; Leaitch, W. Richard

    2010-11-01

    Measurements made at a rural site in central Ontario during May-June 2007 are used to investigate the composition of organic aerosol (OA) downwind of an urban region. Observations of aerosol organic carbon and oxygen containing fragments from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are combined with toluene to benzene ratios to estimate the relative importance of secondary organic aerosol (SOA) and primary organic aerosol (POA) to the total OA at the site during periods of significant urban influence. We estimate that SOA formed within 1-2 days of the anthropogenic source regions was 40-50% of the measured OA and that POA was 5-16% of the OA. The remaining 35-45% of the OA is assumed to have been present in the aerosol upwind of the source regions prior to entering the study domain as defined by trajectories and estimates of the potential photochemical aging time. The apportionment results were also compared to that of positive matrix factorization analysis. In addition, the measurements of the molar oxygen to carbon ratio (O/C) in the OA demonstrates that SOA becomes progressively more oxygenated with increasing photochemical age and at low total OA mass.

  6. Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade).

    PubMed

    Đorđević, D; Buha, J; Stortini, A M; Mihajlidi-Zelić, A; Relić, D; Barbante, C; Gambaro, A

    2016-01-01

    This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin. Graphical abstract ᅟ. PMID:26347417

  7. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-10-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O/C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O/C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the organic mass fragments at m/z 55, 57, and 44 is developed here and

  8. Analysis of secondary organic aerosols from ozonolysis of isoprene by proton transfer reaction mass spectrometry

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Sato, Kei; Hirokawa, Jun; Sakamoto, Yosuke; Tanimoto, Hiroshi; Okumura, Motonori; Tohno, Susumu; Imamura, Takashi

    2014-11-01

    To understand the mechanism of formation of the secondary organic aerosols (SOAs) produced by the ozonolysis of isoprene, proton transfer reaction mass spectrometry (PTR-MS) was used to identify the semi-volatile organic compounds (SVOCs) produced in both the gaseous and the aerosol phases and to estimate the gas-aerosol partitioning of each SVOC in chamber experiments. To aid in the identification of the SVOCs, the products were also studied with negative ion-chemical ionization mass spectrometry (NI-CIMS), which can selectively detect carboxylic acids and hydroperoxides. The gaseous products were observed by on-line PTR-MS and NI-CIMS, whereas the SVOCs in SOAs collected on a filter were vaporized by heating the filter and were then analysed by off-line PTR-MS and NI-CIMS. The formation of oligomeric hydroperoxides involving a Criegee intermediate as a chain unit was observed in both the gaseous and the aerosol phases by NI-CIMS. PTR-MS also detected oligomeric hydroperoxides as protonated molecules from which a H2O molecule was eliminated, [M-OH]+. In the aerosol phase, oligomers involving formaldehyde and methacrolein as chain units were observed by PTR-MS in addition to oligomeric hydroperoxides. The gas-aerosol partitioning of each component was calculated from the ion signals in the gaseous and aerosol phases measured by PTR-MS. From the gas-aerosol partitioning, the saturated vapour pressures of the oligomeric hydroperoxides were estimated. Measurements by a fast-mobility-particle-sizer spectrometer revealed that the increase of the number density of the particles was complete within a few hundred seconds from the start of the reaction.

  9. Effects of Ageing on Aerosol Composition and Size Distribution Based on Regional Scale Aircraft Observations During the 2002 and 2004 ICARTT Campaigns

    NASA Astrophysics Data System (ADS)

    Kleinman, L.; Daum, P.; Springston, S.; Lee, Y.; Wang, J.

    2005-12-01

    In the summers of 2002 and 2004 the DOE G-1 aircraft was used to sample aerosols and aerosol precursors in the Midwest and Eastern U.S. We present data on the spatial distribution of aerosols and their physical and chemical properties. Most of the sub-micron size aerosol consists of organics and sulfate. Only a minor fraction of the organic aerosol can be attributed to primary emissions. Formation of secondary organic aerosol is observed as an increase in the organic to CO ratio as a function of photochemical age. Organic aerosol is measured using an Aerodyne Aerosol Mass Spectrometer (AMS). We present comparisons between the AMS and a PCASP, DMA, and nephelometer - as this bears upon our conclusions. Production of aerosol sulfate can likewise be observed as a change in the sulfate to CO ratio but is more easily studied by following the time evolution of a point source plume such as was done for the Homer and Keystone power plants, located east of Pittsburgh. Concomitant with the addition of aerosol mass are changes in size spectra and optical properties.

  10. Detailed mass size distributions of elements and species, and aerosol chemical mass closure during fall 1999 at Gent, Belgium

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Cafmeyer, Jan; Dubtsov, Sergei; Chi, Xuguang

    2002-04-01

    A 10-stage microorifice uniform deposit impactor (MOUDI) and a 12-stage small deposit area low pressure impactor (SDI) were operated at Gent from 6 September to 30 October 1999. Thirty-four parallel samples (of typically 24 h) were collected. The MOUDI samples were analysed for the particulate mass (PM) by weighing, and for organic carbon (OC) and elemental carbon (EC) by a thermal-optical transmission technique. The SDI samples were analysed for 27 elements by PIXE. PM and OC exhibited typically a rather similar bimodal size distribution, with most of their mass in the submicrometer size range. EC was predominantly associated with fine particles, with maximum typically at around 0.2 μm equivalent aerodynamic diameter (EAD). Sulphur was also mainly in the fine size range, but with maximum at 0.5 μm EAD. Other elements with mainly a fine mode were V, Ni, As, Se and Pb. The crustal elements (Al, Si, Ti, Fe, Zr) exhibited mostly a unimodal coarse mode size distribution, with maximum at about 4 μm EAD. Other elements with mainly a coarse mode were Na, Mg, P, Ca, Cr, Mn, Cu, Ga and Sr. The elements K, Zn and Rb were generally bimodal. Aerosol chemical mass closure calculations indicated that organic aerosol and crustal matter were the major aerosol types in the supermicrometer size range, and that the dominant aerosol types in the submicrometer fraction were organic aerosol and sulphate. On average, 74% of the gravimetric PM was accounted for by the aerosol types considered.

  11. The Aerosol Research and Inhalation Epidemiology Study (ARIES): PM2.5 mass and aerosol component concentrations and sampler intercomparisons.

    PubMed

    Van Loy, M; Bahadori, T; Wyzga, R; Hartsell, B; Edgerton, E

    2000-08-01

    The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-). PMID:11002607

  12. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  13. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  14. Submicron aerosol mass balance at urban and semirural sites in the Milan area (Italy)

    NASA Astrophysics Data System (ADS)

    Putaud, J. P.; van Dingenen, Rita; Raes, Frank

    2002-11-01

    During the Pianura Padana Produzione di Ozono (PIPAPO) field campaign (May-June 1998), aerosol measurements were performed at an urban site and a semirural site to determine the particulate matter chemical composition in the Milan area. Aerosol samples were collected on filters for subsequent chemical analysis using virtual impactors. Possible sampling artifacts for semivolatile particulate species were addressed. Our NH4NO3 measurements were successfully compared with artifact free wet denuder-wet aerosol collector sampler data. Positive sampling artifacts for organic species were corrected using the back-to-back filter technique, allowing us to assess the lower limit for particulate organic carbon (POC) concentrations. Aerosol size distributions were measured on-line with differential mobility analyzers (DMA). The variations in the submicron aerosol mass concentration estimated from chemical analyses compared well with the variations in the submicron particle volume calculated from number size distributions. At both sites, 70% of the PM10 mass was found in the submicron fraction. The mean submicron aerosol mass concentrations were 28 μg m-3 and 20 μg m-3 at the urban site and the semirural site, respectively. The correlations between NH4+ and NO3- + 2SO4= indicate that strong acids were fully neutralized at both sites. At the urban site the submicron concentrations of NH4NO3, (NH4)2SO4, and POC were 8.1 μg m-3, 6.3 μg m-3, and 6.4 μgC m-3, respectively. At the semi-rural site, these concentrations were 4.9 μg m-3, 4.0 μg m-3, and 5.6 μgC m-3, respectively. These results show that sulfate and nitrate contribute about the same amount to submicron aerosol mass concentration, and that particulate organic matter (POM) could be the major component of the aerosol submicron mass in the Milan region, especially in semirural areas. The correlation between normalized concentrations of POM and O3 observed at the semirural site suggests that POM results at least

  15. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  16. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.; Smith, J. D.; Kolesar, K.

    2010-12-01

    VUV mass spectra for two distinct aerosol types as they are passed through a thermodenuder at different temperatures have been measured. The two aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct, T-dependent changes in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In stark contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in good agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP particles is not governed by partitioning theory. We postulate that this difference arises from the αP particles existing as a glass instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth experiments, which indicate that OA formation is describable through equilibrium partitioning, we put forward a sequential partitioning model wherein secondary OA is rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable through equilibrium partitioning theory, the thermodynamic properties of formed OA particles may differ significantly from the properties determined in the equilibrium framework.

  17. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  18. Evolution of Asian aerosols during transpacific transport in INTEX-B

    SciTech Connect

    Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

    2009-10-01

    Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

  19. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2009-03-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit-mass-resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, volatility and level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the OA mass after a few hours of aging under typical summertime conditions. Aging also decreased the volatility of the OA and made it progressively more oxygenated. The results also illustrate strengths of, and challenges with, using AMS data for source apportionment analysis. For example, the mass spectra of fresh and aged BBOA are distinct from fresh motor-vehicle emissions. The mass spectra of the secondary OA produced from aging wood smoke are very similar to those of the oxygenated OA (OOA) that dominates ambient AMS datasets, further reinforcing the connection between OOA and OA formed from photo-chemistry. In addition, aged wood smoke spectra are similar to those from OA created by photo-oxidizing dilute diesel exhaust. This demonstrates that the OOA observed in the atmosphere can be produced by photochemical aging of dilute emissions from different types of combustion systems operating on fuels with modern or fossil carbon. Since OOA is frequently the dominant component of ambient OA, the similarity of spectra of aged emissions from different sources represents an important challenge for AMS-based source apportionment studies.

  20. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2012-02-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the markers m/z 55, 57, and 44 is

  1. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  2. Non-refractory Submicron Aerosol Aging Processes in the Rural Southeastern United States

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y. J.; Hernandez, C.; Griffin, R. J.

    2014-12-01

    The Southern Oxidant and Aerosol Study (SOAS) took place over a six-week period and included ground and elevated measurements that aimed to improve the understanding of biosphere-atmosphere interactions and their impacts on air quality and climate. As part of SOAS, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the rural ground site in Centreville, AL, from 1 June to 15 July 2013. The HR-ToF-AMS provided quantitative measurement of non-refractory submicron aerosol composition and size distribution with high temporal resolution. Time series of mass concentrations of organic material, sulfate, ammonium, and nitrate (in order of average relative importance) and the changes in the concentrations of each component with respect to a photochemical airmass age metric (based on oxidation of nitrogen oxides) are reported. The relative importance of secondary ammonium and sulfate increases with values of the airmass age metric. While the contributions of organic and nitrate aerosol to total particle concentration decrease with increasing airmass age, organic aerosol concentration normalized by carbon monoxide (CO) constantly increases with age. However, the nitrate concentration normalized by CO appears relatively independent of the age metric. For a better understanding of organic aerosol processing, atomic ratio (oxygen/carbon and hydrogen/carbon) and carbon oxidation state (OSc) analyses of bulk organic aerosol are investigated.

  3. Online Aerosol Mass Spectrometry of Single Micrometer-Sized Particles Containing Poly(ethylene glycol)

    SciTech Connect

    Bogan, M J; Patton, E; Srivastava, A; Martin, S; Fergenson, D; Steele, P; Tobias, H; Gard, E; Frank, M

    2006-10-25

    Analysis of poly(ethylene glycol)(PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight <500 generated mass spectra reminiscent of mass spectra of PEG collected by other MS schemes including the characteristic distribution of positive ions (Na{sup +} adducts) separated by the 44 Da of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight >500 were detected from particles that also contained t the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.

  4. Determination of minimum mass and spatial location of initiator for detonation of propylene oxide aerosols

    NASA Astrophysics Data System (ADS)

    Apparao, A.; Saji, J.; Balaji, M.; Devangan, A. K.; Rao, C. R.

    2016-06-01

    The mishandling of liquid fuels during production, processing or transportation can lead to the formation of combustible two-phase mixtures. These mixtures, with the availability of a suitable energy source, may be ignited generating a deflagration, or even a detonation wave. For military applications, unconfined fuel aerosols are created and detonated with the help of a strong shock generated by a powerful energy source. The minimum energy requirement is expressed in terms of the shock strength, or mass of the high-explosive-based initiator. In this study, the detonability of unconfined aerosols of 4.3 kg propylene oxide was studied by positioning different quantities of cylindrical-shaped initiators of RDX/wax (95/5) at a fixed spatial location in the aerosol cloud, and the minimum mass of the initiator required for detonation initiation was determined. The effect of spatial location and the requirement of initiator mass, especially at farther locations where the fuel concentration is likely to be lower and closer to the lower explosive limit, was also investigated. The experimental findings help identify the detonable zone in unconfined propylene oxide aerosol clouds for different combinations of spatial location and mass of initiator.

  5. HUMIDITY EFFECTS ON THE MASS SPECTRA OF SINGLE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line laser desorption ionization mass spectrometry has developed into a widely used method for chemical characterization of individual aerosol particles. In the present study, the spectra of laboratory-generated particles were obtained as a function of relative humidity to elu...

  6. Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Shen, Z. X.; Cao, J. J.; Li, X. X.; Okuda, T.; Wang, Y. Q.; Zhang, X. Y.

    2006-03-01

    Measurements were performed in spring 2001 and 2002 to determine the characteristics of soil dust in the Chinese desert region of Dunhuang, one of the ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The mean mass concentrations of total suspended particle matter during the spring of 2001 and 2002 were 317 mu g m(-3) and 307 mu g m(-3) respectively. Eleven dust storm events were observed with a mean aerosol concentration of 1095 mu g m(-3), while the non-dusty days with calm or weak wind speed had a background aerosol loading of 196 mu g m(-3) on average in the springtime. The main minerals detected in the aerosol samples by X-ray diffraction were illite, kaolinite, chlorite, quartz, feldspar, calcite and dolomite. Gypsum, halite and amphibole were also detected in a few samples. The mineralogical data also show that Asian dust is characterized by a kaolinite to chlorite (K/C) ratio lower than 1 whereas Saharan dust exhibits a K/C ratio larger than 2. Air mass back- trajectory analysis show that three families of pathways are associated with the aerosol particle transport to Dunhuang, but these have similar K/C ratios, which further demonstrates that the mineralogical characteristics of Asian dust are different from African dust.

  7. Detection of cw-related species in complex aerosol particles deposited on surfaces with an ion trap-based aerosol mass spectrometer

    SciTech Connect

    Harris, William A; Reilly, Pete; Whitten, William B

    2007-01-01

    A new type of aerosol mass spectrometer was developed by minimal modification of an existing commercial ion trap to analyze the semivolatile components of aerosols in real time. An aerodynamic lens-based inlet system created a well-collimated particle beam that impacted into the heated ionization volume of the commercial ion trap mass spectrometer. The semivolatile components of the aerosols were thermally vaporized and ionized by electron impact or chemical ionization in the source. The nascent ions were extracted and injected into the ion trap for mass analysis. The utility of this instrument was demonstrated by identifying semivolatile analytes in complex aerosols. This study is part of an ongoing effort to develop methods for identifying chemical species related to CW agent exposure. Our efforts focused on detection of CW-related species doped on omnipresent aerosols such as house dust particles vacuumed from various surfaces found in any office building. The doped aerosols were sampled directly into the inlet of our mass spectrometer from the vacuumed particle stream. The semivolatile analytes were deposited on house dust and identified by positive ion chemical ionization mass spectrometry up to 2.5 h after deposition. Our results suggest that the observed semivolatile species may have been chemisorbed on some of the particle surfaces in submonolayer concentrations and may remain hours after deposition. This research suggests that identification of trace CW agent-related species should be feasible by this technique.

  8. Evidence for a High Proportion of Atmospheric Organic Aerosol from Isoprene

    NASA Astrophysics Data System (ADS)

    Robinson, Niall H.; Hamilton, Jacqueline F.; Langford, Ben; Oram, David E.; Barley, Mark H.; Jenkin, Michael E.; Rickard, Andrew R.; Coe, Hugh; McFiggans, Gordon

    2010-05-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provides a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified as being isoprenoid in origin by GCxGC/ToFMS analysis

  9. Laboratory and Field Characterizations of a Filter Inlet for Gases and AEROsols (FIGAERO) Collector Module for a Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) Instrument

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Vogel, A.; Massoli, P.; Lambe, A. T.; Stark, H.; Kimmel, J.; Isaacman-VanWertz, G. A.; Kroll, J. H.; Canagaratna, M. R.; Worsnop, D. R.; Jayne, J. T.

    2015-12-01

    The Aerodyne Research, Inc. (ARI) Filter Inlet for Gases and AEROsols (FIGAERO) collector module is an add-on for Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) instruments. The FIGAERO enables simultaneous real-time chemical analysis of trace gases and particles in ambient air. The collector module described here is modelled after the University of Washington (UW) design of Lopez-Hilfikeret al., 2014. The collector module mounts directly to the front of the CI-TOFMS ion molecule reactor, replacing the standard gas phase inlet. Automated operation follows a two-step sequence alternating between gas and particle sampling. Gas and particle flows are sampled through separate inlet lines. Software provides automated control of the ARI FIGAERO and determines which inlet line is sampled into ion molecule reaction region. While in the gas phase measuring position particles are separately collected on a filter. After sufficient particle collection, heated clean nitrogen is passed over the filter to desorb the particles on the filter. The thermally desorbed material is then measured with the CI-TOFMS. Though conceptually similar, the ARI FIGAERO is mechanically different enough from the UW design that it requires its own performance assessment. Presented here is the characterization of the ARI FIGAERO collector module. The FIGAERO performance is assessed by using laboratory, chamber, and field data collected using iodide as the reagent ion to examine detection sensitivity, quantification limits, and time response. Lopez-Hilfiker et al., "A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)", Atmos. Meas. Tech., 7, 983-1001 (2014)

  10. Aerosol Charge Model Consistent with Flight Data from the ECOMA/MASS Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S. H.; Rapp, M.; Gumbel, J.; Horanyi, M.; Sternovsky, Z.; Friedrich, M.; Baumgarten, G.; Latteck, R.

    2009-12-01

    In August of 2007 two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the MASS instrument (Mesospheric Aerosol Sampling Spectrometer). The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into PMSE and NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83-89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1-2 nm in radius with both positive and negative polarity were detected between 86-88 km. Positively charged particles <1 nm in radius were detected at the same altitude. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment. Natanson’s rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during night time conditions, the solar flux was still significant to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: 1) Icy NLC particles, 2) Hematite particles of meteoric origin as condensation nuclei, and 3) Hematite particles coated with ice. The charge model results are consistent with the MASS rocket data, displaying both positively and negatively charged aerosols for small radii and only negatively charged particles for large radii.

  11. Secondary Organic Aerosol from Biogenic VOCs over West Africa during AMMA

    NASA Astrophysics Data System (ADS)

    Capes, G. L.; Murphy, J. G.; Reeves, C. E.; McQuaid, J. B.; Hamilton, J. F.; Hopkins, J. R.; Coe, H.

    2008-12-01

    As part of the international AMMA (African Monsoon Multidisciplinary Analyses) project a large field experiment took place in West Africa during July and August 2006. This involved a number of ground-based facilities and 5 aircraft, including the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146, which was based in Niamey, Niger and made 21 flights. The 146 was equipped with instruments measuring parameters relevant to dynamics, gas phase composition, radiation, aerosols and clouds. The flights made were designed to examine a range of multidisciplinary scientific questions. This paper presents measurements of organic aerosol above subtropical West Africa during the monsoon season using data from the FAAM aircraft. Measurements of biogenic volatile organic compounds (BVOC) at low altitudes over these subtropical forests were made during July and August 2006 mainly above Benin, Nigeria and Niger. In air masses characterised by high BVOC concentrations, data from an Aerodyne Quadrupole Aerosol Mass Spectrometer show an organic aerosol loading of 0.58 μgm-3 over tropical West Africa. In contrast, organic aerosol mass (OM) concentrations were negligible when BVOC concentrations were low. This represents the first regionally averaged assessment of OM in this region during the wet season. This is in good agreement with predictions based on aerosol yields from isoprene and monoterpenes during chamber studies and model predictions based on partitioning schemes, contrasting markedly with the large under representations of OM in similar models when compared with data from mid latitudes.

  12. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  13. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  14. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  15. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  16. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  17. Dust and Pollution Aerosol Air Mass Mapping from Satellite Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.; Nelson, D. L.; Yau, K. S.; Martonchik, J.; Diner, D. J.; Gaitley, B. J.; Russell, P.; Livingston, J.; Redemann, J.; Quinn, P. R.; Clarke, A. R.; Howell, S.; McNaughton, C.; Reid, J.; Holben, B.; Wendisch, M.; Petzold, A.

    2006-12-01

    One objective of the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) is to map aerosol air mass types, based on retrieved column-average particle microphysical properties. Early results demonstrated the ability to distinguish three-to-five bins over the 0.1 to 2.5 micron aerosol size range, about two-to-four groupings of single-scattering albedo, and to separate spherical from randomly oriented non- spherical particles, under good but not ideal viewing conditions. These results relied heavily on the MISR Research Aerosol Retrieval algorithm, which allows flexibility in choosing retrieval patch size and location, component aerosol properties and mixtures, and mixture acceptance criteria, compared to early versions of the MISR Standard algorithm, designed to routinely process the entire global data set. Early mid-visible column aerosol optical depth results were validated against surface-based sun photometer measurements. The corresponding particle property results appeared qualitatively promising, but formal validation requires quantitative constraints on component particle properties and mixtures in a range of natural settings, available mainly from the combination of height-resolved and total column data collected by surface and airborne instruments during field campaigns. This presentation will highlight the latest detailed, multi-platform case studies, as well as MISR regional mapping, of smoke, Saharan dust, and mixtures of pollution aerosol and desert dust collected during the INTEX, SAMUM, and UAE-2 campaigns, respectively. The broader implications of these results for global, and especially regional, aerosol climate and air quality studies will also be discussed. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  19. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  20. Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements.

    PubMed

    Qin, Xueying; Bhave, Prakash V; Prather, Kimberly A

    2006-09-01

    Aerosol time-of-flight mass spectrometry (ATOFMS) measurements provide continuous information on the aerodynamic size and chemical composition of individual particles. In this work, we compare two approaches for converting unscaled ATOFMS measurements into quantitative particle mass concentrations using (1) reference mass concentrations from a co-located micro-orifice uniform deposit impactor (MOUDI) with an accurate estimate of instrument busy time and (2) reference number concentrations from a co-located aerodynamic particle sizer (APS). Aerodynamic-diameter-dependent scaling factors are used for both methods to account for particle transmission efficiencies through the ATOFMS inlet. Scaling with APS data retains the high-resolution characteristics of the ambient aerosol because the scaling functions are specific for each hourly time period and account for a maximum in the ATOFMS transmission efficiency curve for larger-sized particles. Scaled mass concentrations obtained from both methods are compared with co-located PM(2.5) measurements for evaluation purposes. When compared against mass concentrations from a beta attenuation monitor (BAM), the MOUDI-scaled ATOFMS mass concentrations show correlations of 0.79 at Fresno, and the APS-scaled results show correlations of 0.91 at Angiola. Applying composition-dependent density corrections leads to a slope of nearly 1 with 0 intercept between the APS-scaled absolute mass concentration values and BAM mass measurements. This paper provides details on the methodologies used to convert ATOFMS data into continuous, quantitative, and size-resolved mass concentrations that will ultimately be used to provide a quantitative estimate of the number and mass concentrations of particles from different sources. PMID:16944899

  1. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-08-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-Ŕ respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  2. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. A suite of supporting aerosol and gas phase measurements were made, including size resolved number concentration measurements with Differential Mobility Particle Sizer (DMPS), as well as absorption measurements made with a Multi-Angle Absorption Photometer (MAAP). The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Airborne hygroscopicity was measured using a Droplet Measurement Technology Cloud Condensation Nuclei counter (DMT CCN counter) in

  3. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  4. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  5. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  6. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  7. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    PubMed

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and <0.003 to 0.78 mg/g, respectively. These results were used to estimate daily exposure to formaldehyde, acetaldehyde, and acrolein from EC aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. PMID:26743740

  8. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  9. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  10. Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Wang, Xinning; Li, Jingyan; Xu, Tingting; Chen, Hong; Yang, Xin; Chen, Jianmin

    2015-12-01

    Submicron aerosol volatility, chemical composition, and mixing state were simultaneously measured using a thermodenuder (TD) in-line with a single particle aerosol mass spectrometry (SPAMS) during Nov.12 to Dec. 11 of 2014 in Shanghai. By heating up to 250 °C, the signals of refractory species such as elemental carbon, metallic compounds, and mineral dust in aerosols were enhanced in the mass spectra. At 250 °C, the main particle types present in the size range of 0.2-1.0 μm were biomass burning (37% by number) and elemental carbon (20%). From 1.0 to 2.0 μm, biomass burning (30%), dust (19%) and metal-rich (18%) were the primary particle types. CN- signal remained in the mass spectra of the heated biomass burning particles suggests the existence of some extremely low-volatility nitrogen-containing organics. Laboratory experiments were conducted by burning rice straws, the main source material of biomass burning particles in Southern China, to confirm the less volatile composition contributed by biomass burning. Strong CN- with relative area >0.21 was observed in most of the laboratory-made biomass burning particles when heated above 200 °C and was selected as a new marker to identify the biomass burning particles in the field. The TD-SPAMS measured the size-resolved chemical composition of the individual particle residues at different temperatures and offered more information on the aging processes of primary particles and their sources.

  11. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  12. Analysis of charged aerosols in the mesosphere during the MASS/ECOMA rocket campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott Robert

    In the polar summer mesosphere ice particles grow sufficiently large to scatter sunlight, giving rise to visible cloud displays called Noctilucent Clouds (NLC). In August of 2007, two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the newly developed MASS instrument (Mesospheric Aerosol Sampling Spectrometer) to study NLC. The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into a Polar Mesospheric Summer echo (PMSE) and into a NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83--89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1--2 nm in radius with both positive and negative polarity were detected between 86--88 km. Positively charged particles <1 nm in radius were detected at the same altitude. This is the first time the charge number densities of positive and negative NLC particles have been measured simultaneously. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment as measured by the MASS instrument. Natanson's rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during twilight conditions, the solar UV flux was still sufficient to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: (1) Icy NLC particles, (2) Hematite particles of meteoric origin as

  13. Detection of biological particles in ambient air using bio-aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    McJimpsey, Erica L.; Steele, Paul T.; Coffee, Keith R.; Fergenson, David P.; Riot, Vincent J.; Woods, Bruce W.; Gard, Eric E.; Frank, Matthias; Tobias, Herbert J.; Lebrilla, Carlito

    2006-05-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  14. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  15. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  16. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart. PMID:27281540

  17. Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report

    SciTech Connect

    Timothy B. Onasch

    2011-10-20

    We have successfully developed and commercialized a soot particle aerosol mass spectrometer (SP-AMS) instrument to measure mass, size, and chemical information of soot particles in ambient environments. The SP-AMS instrument has been calibrated and extensively tested in the laboratory and during initial field studies. The first instrument paper describing the SP-AMS has been submitted for publication in a peer reviewed journal and there are several related papers covering initial field studies and laboratory studies that are in preparation. We have currently sold 5 SP-AMS instruments (either as complete systems or as SP modules to existing AMS instrument operators).

  18. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  19. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  20. Chemical Nature Of Titan’s Organic Aerosols Constrained from Spectroscopic and Mass Spectrometric Observations

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Cruikshank, D. P.

    2012-10-01

    The Cassini-Huygens observations greately extend our knowledge about Titan’s organic aerosols. The Cassini INMS and CAPS observations clearly demonstrate the formation of large organic molecules in the ionosphere [1, 2]. The VIMS and CIRS instruments have revealed spectral features of the haze covering the mid-IR and far-IR wavelengths [3, 4, 5, 6]. This study attempts to speculate the possible chemical nature of Titan’s aerosols by comparing the currently available observations with our laboratory study. We have conducted a series of cold plasma experiment to investigate the mass spectrometric and spectroscopic properties of laboratory aerosol analogs [7, 8]. Titan tholins and C2H2 plasma polymer are generated with cold plasma irradiations of N2/CH4 and C2H2, respectively. Laser desorption mass spectrum of the C2H2 plasma polymer shows a reasonable match with the CAPS positive ion mass spectrum. Furthermore, spectroscopic features of the the C2H2 plasma polymer in mid-IR and far-IR wavelegths qualitatively show reasonable match with the VIMS and CIRS observations. These results support that the C2H2 plasma polymer is a good candidate material for Titan’s aerosol particles at the altitudes sampled by the observations. We acknowledge funding supports from the NASA Cassini Data Analysis Program, NNX10AF08G, and from the NASA Exobiology Program, NNX09AM95G, and the Cassini Project. [1] Waite et al. (2007) Science 316, 870-875. [2] Crary et al. (2009) Planet. Space Sci. 57, 1847-1856. [3] Bellucci et al. (2009) Icarus 201, 198-216. [4] Anderson and Samuelson (2011) Icarus 212, 762-778. [5] Vinatier et al. (2010) Icarus 210, 852-866. [6] Vinatier et al. (2012) Icarus 219, 5-12. [7] Imanaka et al. (2004) Icarus 168, 344-366. [8] Imanaka et al. (2012) Icarus 218, 247-261.

  1. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2013-01-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid - ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary

  2. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  3. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  4. Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Jacob, Daniel J.; Logan, Jennifer A.

    We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001-2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001-2004 are 0.26 μg C m -3 in the west and 0.14 μg C m -3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m -3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m -3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m -3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m -3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7-0.9 Tg C yr -1 from open fires (climatological) and 0.4 Tg C yr -1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.

  5. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  6. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  7. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  8. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  9. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.

    PubMed

    DeCarlo, Peter F; Kimmel, Joel R; Trimborn, Achim; Northway, Megan J; Jayne, John T; Aiken, Allison C; Gonin, Marc; Fuhrer, Katrin; Horvath, Thomas; Docherty, Kenneth S; Worsnop, Doug R; Jimenez, Jose L

    2006-12-15

    The development of a new high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is reported. The high-resolution capabilities of this instrument allow the direct separation of most ions from inorganic and organic species at the same nominal m/z, the quantification of several types of organic fragments (CxHy, CxHyOz, CxHyNp, CxHyOzNp), and the direct identification of organic nitrogen and organosulfur content. This real-time instrument is field-deployable, and its high time resolution (0.5 Hz has been demonstrated) makes it well-suited for studies in which time resolution is critical, such as aircraft studies. The instrument has two ion optical modes: a single-reflection configuration offers higher sensitivity and lower resolving power (up to approximately 2100 at m/z 200), and a two-reflectron configuration yields higher resolving power (up to approximately 4300 at m/z 200) with lower sensitivity. The instrument also allows the determination of the size distributions of all ions. One-minute detection limits for submicrometer aerosol are <0.04 microg m(-3) for all species in the high-sensitivity mode and <0.4 microg m(-3) in the high-resolution mode. Examples of ambient aerosol data are presented from the SOAR-1 study in Riverside, CA, in which the spectra of ambient organic species are dominated by CxHy and CxHyOz fragments, and different organic and inorganic fragments at the same nominal m/z show different size distributions. Data are also presented from the MIRAGE C-130 aircraft study near Mexico City, showing high correlation with independent measurements of surrogate aerosol mass concentration. PMID:17165817

  10. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1-2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes, especially those with relatively low carbon numbers (C4-15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  11. Multiday production of condensing organic aerosol mass in urban and forest outflow

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-01

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1-2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

  12. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGESBeta

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  13. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE PAGESBeta

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  14. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  15. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-02-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA) aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  16. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  17. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    SciTech Connect

    Ning, S. A.; Hayman, G.; Damiani, R.; Jonkman, J.

    2014-12-01

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of users and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.

  18. Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dickinson, R. E.; Su, L.; Trenberth, K. E.

    2012-07-01

    Atmospheric aerosols impact both human health and climate. PMX is the mass concentration of aerosol particles that have aerodynamic diameters less than X μm, PM10 was initially selected to measure the environmental impact of aerosols. Recently, it was realized that fine particles are more hazardous than larger ones and should be measured. Consequently, observational data for PM2.5 have been obtained but only for a much shorter period than that of PM10. Optical extinction of aerosols, the inverse of meteorological visibility, is sensitive to particles less than 1.0 μm. These fine particles only account for a small part of total mass of aerosols although they are very efficient in light extinction. Comparisons are made between PM10 and PM2.5 over the period when the latter is available and with visibility data for a longer period. PM10 has decreased by 44% in Europe from 1992 to 2009, 33% in the US from 1993 to 2010, 10% in Canada from 1994 to 2009, and 26% in China from 2000 to 2010. However, in contrast, aerosol optical extinction increased 7% in the US, 10% in Canada, and 18% in China during the above study periods. The reduction of optical extinction over Europe of 5% is also much less than the 44% reduction in PM10. Over its short period of record PM2.5 decreased less than PM10. Hence, PM10 is neither a good measure of changes in smaller particles or of their long-term trends, a result that has important implications for both climate impact and human health effects. The increased fraction of anthropogenic aerosol emission, such as vehicle exhaust, to total atmospheric aerosols partly explains this contrasting trend of optical and mass properties of aerosols.

  19. Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Dickinson, R. E.; Su, L.; Trenberth, K. E.

    2012-10-01

    Atmospheric aerosols affect both human health and climate. PMX is the mass concentration of aerosol particles that have aerodynamic diameters less than X μm, PM10 was initially selected to measure the environmental impact of aerosols. Recently, it was realized that fine particles are more hazardous than larger ones and should be measured. Consequently, observational data for PM2.5 have been obtained but only for a much shorter period than that of PM10. Optical extinction of aerosols, the inverse of meteorological visibility, is sensitive to particles less than 1.0 μm. These fine particles only account for a small part of total mass of aerosols although they are very efficient in light extinction. Comparisons are made between PM10 and PM2.5 over the period when the latter is available and with visibility data for a longer period. PM10 has decreased by 44% in Europe from 1992 to 2009, 33% in the US from 1993 to 2010, 10% in Canada from 1994 to 2009, and 26% in China from 2000 to 2011. However, in contrast, aerosol optical extinction has increased 7% in the US, 10% in Canada, and 18% in China during the above study periods. The reduction of optical extinction over Europe of 5% is also much less than the 44% reduction in PM10. Over its short period of record PM2.5 decreased less than PM10. Hence, PM10 is neither a good measure of changes in smaller particles nor of their long-term trends, a result that has important implications for both climate impact and human health effects. The increased fraction of anthropogenic aerosol emission, such as from vehicle exhaust, to total atmospheric aerosols partly explains this contrasting trend of optical and mass properties of aerosols.

  20. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  1. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  2. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  3. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z. PMID:19452899

  4. Mass Spectral Observations of Submicron Aerosol Particles and Production of Secondary Organic Aerosol at an Anthropogenically Influenced Site during the Wet Season of GoAmazon2014

    NASA Astrophysics Data System (ADS)

    de Sá, S. S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Newburn, M. K.; Ferreira De Brito, J.; Artaxo, P.; Shilling, J. E.; Souza, R. A. F. D.; Manzi, A. O.; Alexander, M. L.; Jimenez, J. L.; Martin, S. T.

    2014-12-01

    As part of GoAmazon2014, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed to characterize the composition, size, and spectral markers present in submicron atmospheric aerosol particles at a site downwind of Manaus, Brazil, in the central Amazon basin. The focus was on the influence of biogenic-anthropogenic interactions on the measured aerosol particles, especially as related to the formation of secondary organic aerosol (SOA). Through a combination of meteorology, emissions, and chemistry, the research site was affected by biogenic emissions from the tropical rainforest that were periodically mixed with urban outflow from the Manaus metropolitan area. Results from the first intensive operation period, from 1 February to 31 March 2014, show that for the wet season the PM1 mass concentration had typical values on order of 1 to 2 μg/m3. The organic species were dominant, followed by sulfate. The mass-diameter distribution of the particle population had a prevailing mode between 300 and 400 nm (vacuum aerodynamic diameter, dva), and at times a smaller mode at finer size was also present. Highly oxidized organic material was frequently observed, characterized by a dominant peak at m/z 44. There was a diel trend in the elemental oxygen-to-carbon (O:C) ratio peaking in the afternoon. The analysis of the results aims at delineating the anthropogenic impact on the measurements. Multivariate statistical analysis by positive-matrix factorization (PMF) is applied to the time series of organic particle mass spectra. The factors and their loadings provide information on the relative and time-varying contributions of different sources and processes affecting the organic component of the aerosol particle phase. Relationships between AMS results and measurements from co-located instruments that provide information on anthropogenic and biogenic gas and particle tracers are investigated, toward the goal of improving the understanding of

  5. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  6. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices.

    PubMed

    Ooi, Jesslynn; Gill, Charlotte; Young, Paul M; Traini, Daniela

    2015-01-01

    Previous studies have suggested that particle-particle impaction may influence aerosolization properties in carrier-based dry powder inhalers, through transfer of kinetic energy from large carriers to surface-deposited active drug. The importance of particle-particle collision has yet to be compared against other mechanisms that could lead to drug liberation, such as particle-wall impaction and turbulence. In particular, particle-particle collisions are difficult to model in silico due to computational restrictions. This study investigated the effects of dry powder inhaler particle-particle collisions in vitro using an established carrier-drug model dry powder inhalation formulation. Spherical polystyrene beads of median size 82.80 μm were chosen as a model carrier as they were of uniform size, shape, surface area, density, porosity and hardness and thus eliminated potential variables that would have conflicted with the study. This model carrier was geometrically blended with micronized salbutamol sulphate (loaded blend). The correlation between the mass of loaded blend (5-40 mg) in the Rotahaler® DPI device and resulting fine particle fraction (FPF) was examined at a constant flow rate of 60 L.min(-1). In a second experiment, the mass of loaded blend was kept constant and a variable amount of blank carrier particles were added to the Rotahaler® device to ascertain if additional "blank" carrier particles affected the final FPF. The efficiency of aerosolization remained constant with varying amounts of blank carrier particles as determined by the fine particle fraction of the emitted dose (FPFED) and fine particle fraction of the loaded dose (FPFLD). No statistical difference in FPFED and FPFLD values were observed for increasing masses of blank carrier. In addition, no statistical difference in FPFED and FPFLD between the two experiments was obtained. These observations suggest that particle-particle collisions are not a driving mechanism responsible for

  7. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  8. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low. PMID:15950041

  9. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  10. Analysis of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Smith, J. S.; Laskin, J.

    2009-05-01

    Chemical characterization of atmospheric aerosols presents a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study the chemical composition of the nitrogen containing organic (NOC) constituents of biomass burning aerosol (BBA) samples is characterized by high-resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA may play a significant role in dry and wet deposition of fixed nitrogen in this region. Atmospheric processing and chemical transformations of alkaloids in the particulate phase will be discussed.

  11. The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-08-29

    Solvent-analyte reactions in organic aerosol (OA) extracts prepared for analysis by electrospray ionization mass spectrometry (ESI-MS) were examined. Secondary organic aerosol (SOA) produced by ozonation of d-limonene as well as several test organic chemicals with functional groups typical for OA constituents were dissolved and stored in methanol, d3-methanol, acetonitrile, and d3-acetonitrile to investigate the extent and relative rates of reactions between analyte and solvent. High resolution ESI-MS showed that reactions of carbonyls with methanol produce significant amounts of hemiacetals and acetals on time scales ranging from several minutes to several days, with the reaction rates increasing in acidified solutions. Carboxylic acid groups were observed to react with methanol resulting in the formation of esters. In contrast, acetonitrile extracts showed no evidence of reactions with analyte molecules, suggesting that acetonitrile is the preferred solvent for SOA extraction. The use of solvent-analyte reactivity as an analytical chemistry tool for the improved characterization of functional groups in complex organic mixtures was also demonstrated. Direct comparison between ESI mass spectra of the same SOA samples extracted in reactive (methanol) versus non-reactive (acetonitrile) solvents was used to estimate the relative fractions of ketones (≥38%), aldehydes (≥6%), and carboxylic acids (≥55%) in d-limonene SOA.

  12. Performance of an improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry

    SciTech Connect

    Winkler, P.C.; Perkins, D.D.; Williams, W.K.; Browner, R.F.

    1988-03-01

    An improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry interfacing (MAG-IC-LC/MS) is described. The interface has an aerodynamically superior momentum separator, which results in decreased analyte loss in passing through the interface. The interface is shown to perform well with a quadrupole mass spectrometer, in addition to earlier studies with a magnetic sector instrument. A new method of forming aerosol has been developed, which reduces the dead volume significantly over earlier designs. The performance of the interface has been evaluated by studying its capabilities for (1) generating electron impact spectra of searchable quality for selected compounds of interest, (2) operating with typical liquid chromatographic separation conditions, including reverse phase and gradient elution, and (3) providing low detection limits for both full scan and selective ion monitoring detection of a range of compounds. Studies include identification of the components of a mixture of cis and trans isomers of the thermally labile compound retinol (vitamin A) acetate. Full scan (m/z 80-350) electron impact spectra were readily obtained with 50-ng injection on-column. Detection limits for this compound were 10 ng full scan and 1 ng with selected ion monitoring. Identification of a free (nonderivatized) fatty acid mixture was also readily obtained, using a reversed-phase separation in gradient mode.

  13. Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry.

    PubMed

    Dall'Osto, Manuel; Harrison, Roy M; Charpantidou, E; Loupa, G; Rapsomanikis, S

    2007-10-01

    An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS; TSI 3800) was deployed to Athens (Greece) during August 2003. The instrument provides information on a polydisperse aerosol, acquiring precise aerodynamic diameter (+/-1%) within the range 0.3 to 3 mum and individual particle positive and negative mass spectral data in real time. Sampling was carried out indoors and outdoors at an office in a building on a minor road in the city centre and various outdoor and indoor sources were identified. Specific outdoor particles such as dust and carbon particles were detected in indoor air. The generation of particles from indoor sources was studied and several different types of particle were found to be present in environmental tobacco smoke (ETS): three were potassium-rich (with differing proportions of carbon) emitted directly in the exhaled mainstream smoke. Two other types arose mainly when the cigarette was left smouldering on an ash-tray. Another particle type exhibited a strong signal at m/z 84, most likely due to a nicotine fragment. The temporal trend of this specific particle type showed likely condensation of semi-volatile constituents on existing potassium-rich particles. A release of insect repellent in the room was also successfully monitored. PMID:17628640

  14. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry.

    PubMed

    Fang, Wenzheng; Gong, Lei; Zhang, Qiang; Cao, Maoqi; Li, Yuquan; Sheng, Liusi

    2012-04-01

    Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments. Thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) was used in conjunction with the environmental chamber to study SOA formation. The mass spectra obtained at different photon energies and the photoionization efficiency (PIE) spectra of the SOA products can be obtained in real time. Aided by the ionization energies (IE) either from the ab initio calculations or the literatures, a number of SOA products were proposed. In addition to methacrolein, methyl vinyl ketone, and 3-methyl-furan, carbonyls, hydroxycarbonyls, nitrates, hydroxynitrates, and other oxygenated compounds in SOA formed in laboratory photo-oxiadation experiments were identified, some of them were investigated for the first time. Detailed chemical identification of SOA is crucial for understanding the photo-oxidation mechanisms of VOCs and the eventual formation of SOA. Possible reaction mechanisms will be discussed. PMID:22397593

  15. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  16. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  17. The lofting of Western Pacific regional aerosol by island thermodynamics as observed around Borneo

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Trembath, J. A.; Rosenberg, P. D.; Allen, G.; Coe, H.

    2012-07-01

    Vertical profiles of aerosol chemical composition, number concentration and size were measured throughout the lower troposphere of Borneo, a large tropical island in the western Pacific Ocean. Aerosol composition, size and number concentration measurements (using an Aerodyne Aerosol Mass Spectrometer, Passive Cavity Aerosol Spectrometer Probe and Condensation Particle Counter, respectively) were made both upwind and downwind of Borneo, as well as over the island itself, on board the UK BAe-146 research aircraft as part of the OP3 project. Two meteorological regimes were identified - one dominated by isolated terrestrial convection (ITC) which peaked in the afternoon, and the other characterised by more regionally active mesoscale convective systems (MCS). Upwind profiles show aerosol to be confined to a shallow marine boundary layer below 930 ± 10 hPa (~760 m above sea level, a.s.l.). As this air mass advects over the island with the mean free troposphere synoptic flow during the ITC-dominated regime, it is convectively lofted above the terrestrial surface mixed layer to heights of between 945 ± 22 (~630 m a.s.l.) and 740 ± 44 hPa (~2740 m a.s.l.), consistent with a coupling between the synoptic steering level flow and island sea breeze circulations. Terrestrial aerosol was observed to be lofted into this higher layer through both moist convective uplift and transport through turbulent diurnal sea-breeze cells. At the peak of convective activity in the mid-afternoons, organic aerosol loadings in the lofted layer were observed to be substantially higher than in the morning (by a mean factor of three). This organic matter is dominated by secondary aerosol from processing of biogenic gas phase precursors. Aerosol number concentration profiles suggest formation of new particles aloft in the atmosphere. By the time the air mass reaches the west coast of the island, terrestrial aerosol is enhanced in the lofted layer. Such uplift of aerosol in Borneo is expected to

  18. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while

  19. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  20. Analysis of Chemical Composition of Atmospheric Aerosols Above a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Hamilton, J. F.; Chen, Q.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2008-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are not well understood or quantified. Insight into the origins and properties of these particles can be gained by analysis of their composition. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects in the rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. The aerosol's chemical origins have been further investigated by comparing these spectra to chamber experiments, mass spectral libraries and data from comparable locations in other locations. These data are also being analysed in conjunction with high complexity offline techniques applied to samples collected using filters and a Particle-Into-Liquid Sampler (PILS). Methods used include liquid chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. These techniques provide a more detailed chemical characterisation of the SOA and water soluble organic carbon, allowing direct links back to gas phase precursors.

  1. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-02-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60%, 22% and 17% of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  2. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    NASA Astrophysics Data System (ADS)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10) in ambient air. Receptor modeling was performed with positive matrix factorization (PMF) for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  3. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-02-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  4. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-08-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (< 10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  5. Primary and secondary aerosols in Beijing in winter: sources, variations and processes

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Du, Wei; Fu, Pingqing; Wang, Qingqing; Li, Jie; Ge, Xinlei; Zhang, Qi; Zhu, Chunmao; Ren, Lujie; Xu, Weiqi; Zhao, Jian; Han, Tingting; Worsnop, Douglas R.; Wang, Zifa

    2016-07-01

    Winter has the worst air pollution of the year in the megacity of Beijing. Despite extensive winter studies in recent years, our knowledge of the sources, formation mechanisms and evolution of aerosol particles is not complete. Here we have a comprehensive characterization of the sources, variations and processes of submicron aerosols that were measured by an Aerodyne high-resolution aerosol mass spectrometer from 17 December 2013 to 17 January 2014 along with offline filter analysis by gas chromatography/mass spectrometry. Our results suggest that submicron aerosols composition was generally similar across the winter of different years and was mainly composed of organics (60 %), sulfate (15 %) and nitrate (11 %). Positive matrix factorization of high- and unit-mass resolution spectra identified four primary organic aerosol (POA) factors from traffic, cooking, biomass burning (BBOA) and coal combustion (CCOA) emissions as well as two secondary OA (SOA) factors. POA dominated OA, on average accounting for 56 %, with CCOA being the largest contributor (20 %). Both CCOA and BBOA showed distinct polycyclic aromatic hydrocarbons (PAHs) spectral signatures, indicating that PAHs in winter were mainly from coal combustion (66 %) and biomass burning emissions (18 %). BBOA was highly correlated with levoglucosan, a tracer compound for biomass burning (r2 = 0.93), and made a considerable contribution to OA in winter (9 %). An aqueous-phase-processed SOA (aq-OOA) that was strongly correlated with particle liquid water content, sulfate and S-containing ions (e.g. CH2SO2+) was identified. On average aq-OOA contributed 12 % to the total OA and played a dominant role in increasing oxidation degrees of OA at high RH levels (> 50 %). Our results illustrate that aqueous-phase processing can enhance SOA production and oxidation states of OA as well in winter. Further episode analyses highlighted the significant impacts of meteorological parameters on aerosol composition, size

  6. Analytical determination of the aerosol organic mass-to-organic carbon ratio.

    PubMed

    El-Zanan, Hazem S; Zielinska, Barbara; Mazzoleni, Lynn R; Hansen, D Alan

    2009-01-01

    Particulate matter (PM) with an aerodynamic diameter < or = 2.5 microm (PM2.5) was collected daily (mid-July 1998 to the end of December 1999) over a 24-hr sampling period in a mixed light industrial-residential area in Atlanta, GA, to provide a subset of data for the Aerosol Research and Inhalation Epidemiology Study (ARIES). This study included the measurement of organic carbon (OC), elemental carbon (EC), and individual organic compounds. OC and EC average mean concentrations were 4.50 +/- 0.33 and 2.08 +/- 0.19 microg/m3, respectively. The ratio of organic matter mass (OM) to OC in PM2.5 aerosols in Atlanta was measured using three different approaches: (1) solvent extract residue gravimetric masses to individual OC concentrations of sequential apolar to polar solvent extracts (dichloromethane, acetone, and water); (2) mass balance of the PM2.5 measured gravimetric mass minus the mass concentrations of the inorganic/elemental constituents to the total OC concentration; and (3) polar organic compound speciation with the concentration weighted ratio to the total OC concentration. We found very good agreement between approach 1 and 2. The average OM/OC ratio calculated from the extract residue mass was 2.14 +/- 0.17. The average OM/OC ratio determined by mass balance was 2.16 +/- 0.43 for the whole period. The concentration weighted ratio calculated from the concentrations of polar organic compounds ranged between 1.55 and 1.72, which was likely a lower limit for the ratio because of the limited number of the polar organic compounds that can be quantified using gas chromatographic methods. We found seasonal differences with an OM/OC range of 1.77 in December 1999 to 2.39 in July 1999. These results suggest that the previously accepted value of 1.4 for the OM/OC ratio was too low even for urban locations during the winter months. Molecular-level speciation of the PM2.5-associated organic compounds showed that the concentrations of the molecular markers for wood

  7. Detection response of elemental species in single particles using aerosol time-of-flight mass spectrometry

    SciTech Connect

    Silva, P.J.; Gross, D.S.; Gaelli, M.E.; Prather, K.A.

    1998-12-31

    The introduction of real-time particle mass spectrometry(RTSPMS) techniques creates a powerful tool for the study of particulate pollution on the single particle level. One such technique, aerosol time-of-flight mass spectrometry (ATOFMS) provides the aerodynamic size and chemical composition of individual particles. By combining data on size and composition, identification of individual particle classes in ambient outdoor samples is possible. Chemical composition is obtained by performing laser desorption ionization of individual particles using a Nd:YAG laser with a wavelength of 266 nm. The power of RTSPMS techniques is due to the ability to analyze the chemical composition of a single particle. The application of these techniques to analysis of ambient data has been limited however, because few studies have been performed to assess the ability of RTSPMS techniques to detect a wide range of compounds present in the atmosphere on a quantitative rather than qualitative level. It is known that various elemental species will respond differently to laser desorption mass spectrometric detection due to characteristic absorption cross-section and ionization potentials. In order to determine the capability and biases of RTSPMS techniques for detection of elemental species, a series of in-laboratory and ambient experiments has been performed using controlled conditions. Particles of known concentration have been produced from solution using an aerosol generator and analyzed using ATOFMS to determine responses of individual elements on a single particle level. In addition, side-by-side analyses with traditional sampling methods such as MOUDI impactors provide data to show how ATOFMS measurements correlate with federal reference methods.

  8. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilde, S.; Zhang, Y.; Dall'Osto, M.

    2014-04-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction"). For the first time in Europe, six state-of-the-art techniques were used in parallel: (1) on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS), (2) on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS), (3) soot particle aerosol mass spectrometer (SP-AMS), (4) on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG), (5) off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR) spectroscopy, and (6) chemical ionization mass spectrometry (CIMS) for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS). The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC

  9. High-Resolution Mass Spectrometric Analysis of Secondary Organic Aerosol Produced by Ozonation of Limonene

    SciTech Connect

    Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-02-08

    Secondary organic aerosol (SOA) particles formed from the ozone-initiated oxidation of limonene are characterized by high-resolution electrospray ionization mass spectrometry in both the positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) products of oxidation. A combination of high resolving power (m/Δm ~60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the composition for hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O:C ratios of 0.43 and 0.50 determined from the positive and negative ion mode spectra, respectively. An extended reaction mechanism for the formation of the first generation SOA molecular components is proposed. The mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene, and numerous isomerization pathways for alkoxy radicals resulting from the decomposition of unstable carbonyl oxides. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy radicals shorten the carbon chain. Together these reactions yield a large number of isomeric products with broadly distributed masses. A qualitative agreement is found between the number and degree of oxidation of the predicted and measured reaction products in the monomer range.

  10. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of

  11. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  12. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  13. In situ vertical profiles of aerosol extinction, mass, and composition over the SEUS during the SENEX and SEAC4RS studies

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Graus, M.; Holloway, J. S.; Huey, L. G.; Jimenez, J. L.; Lack, D.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Perring, A. E.; Richardson, M.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.; Campuzano Jost, P.

    2014-12-01

    Shallow cumulus convection enhances vertical transport of trace gases and aerosol and creates a cloudy transition layer on top of the sub-cloud mixed layer. Two recent studies have proposed that an elevated layer of enhanced organic aerosol over the southeastern United States (SEUS) could explain the discrepancy in the summertime enhancement of aerosol optical depth (AOD) and summertime enhancement of surface measurements of aerosol mass. We investigate the vertical profile of aerosol over the SEUS during the summertime using in situ aircraft-based measurements of aerosol from the SENEX and SEAC4RS studies. During shallow cumulus convection over the SEUS, we found that aerosol and trace gas concentration in the transition layer are diluted by cleaner air from the free troposphere, and the absolute aerosol loading decreases with altitude in the transition layer. However, after normalizing the vertical profiles to the CO boundary layer enhancement to correct for the dilution, the aerosol mass, volume, and extinction relative to the boundary layer CO enhancement is ~20% greater in the transition layer than in the mixed layer. The enhancement of aerosol loading suggests production of aerosol mass in the transition layer, although biomass burning could also be the source of the enhancement. The median composition of the aerosol in the mixed layer is ~70% organics and ~18% sulfate, while it is 65% organics and 23% sulfate in the transition layer. The composition of the aerosol enhancement in the transition layer is roughly equal parts sulfate and organics by mass. The enhancement of aerosol extinction in the transition layer is not sufficient to explain the summertime enhancement of AOD over SEUS.

  14. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  15. Molecular Characterization of Organic Aerosols Using Nanospray Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2010-10-01

    Nanospray desorption electrospray ionization (Nano-DESI) combined with high-resolution mass spectrometry (HR/MS) is a promising approach for detailed chemical characterization of atmospheric organic aerosol (OA) collected in laboratory and field experiments. In Nano-DESI analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without special sample preparation. Stable signals achieved using Nano-DESI make it possible to obtain high-quality HR/MS data using only a small amount of material (<10 ng). Furthermore, Nano-DESI enables efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena.

  16. Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol

    NASA Astrophysics Data System (ADS)

    Plaza, J.; Pujadas, M.; Gómez-Moreno, F. J.; Sánchez, M.; Artíñano, B.

    2011-09-01

    This paper analyzes the mass size distribution of some inorganic species present in the atmospheric aerosol from a field campaign carried out in Madrid throughout a complete year (February 2007-February 2008). Samplings were performed by means of a micro-orifice uniform deposit impactor (MOUDI). Ambient air was sampled during consecutive nocturnal and diurnal periods, and diurnal/nocturnal behaviors were compared for the twenty night-day sampling pairs that were gathered. Annual and seasonal averages were obtained, and some case studies under specific atmospheric conditions are discussed in the paper. Results have shown that the sulfate and ammonium mass was concentrated in the accumulation mode, between 0.18 and 0.56 μm, so that gas-phase and condensation processes for secondary aerosol formation prevailed during the sampling periods in this area. An exception to this behavior was found during a fog event when distributions for these two species were centered in the 0.56-1 and 1-1.8 μm size stages, corresponding to the droplet mode. In most of the samples, the ammonium mass measured in these size ranges was enough or almost enough to neutralize inorganic acidity by formation of ammonium sulfate and nitrate. However, a significant sulfate mass not neutralized by ammonium was found in the impactor backup quartz filter (aerodynamic diameter < 0.056 μm). The concentration of this sulfate and its contribution to the ultrafine fraction mass was higher under good dispersive conditions, prevailing in summer, when particle growth processes are not so favored due to the higher atmospheric dilution factors. The origin of this ultrafine sulfate has been attributed to direct emissions from traffic, associated to the nucleation mode. Regarding the nitrate concentration, it was found higher in the coarse mode than in the accumulation mode on an annual basis. The highest concentrations were measured in winter episodic situations. The marked seasonal variability shown in the

  17. Chamber Study Exploring Aerosol Formation from NO3 Oxidation of α-pinene and Δ-carene under Varying HO2/RO2/NO3 Regimes

    NASA Astrophysics Data System (ADS)

    Kang, H.; Ayres, B. R.; Fry, J.; Brown, S. S.; Day, D. A.; Thompson, S.; Hu, W.; Campuzano Jost, P.; Stark, H.; Jimenez, J. L.; Ranney, A.; Ziemann, P. J.

    2014-12-01

    Although monoterpenes are pervasive in wooded environments, their reactions with nitrate radicals (NO3, a potent nighttime oxidant downwind of combustion sources) and the resulting secondary aerosol formation are not well characterized. To better understand these reactions, environmental chamber experiments have often been conducted at elevated terpene concentrations and HO2/RO2/NO3 ratios that are not representative of the real atmosphere, resulting in a range of yields. To elucidate the reasons for these varying yields, a new series of experiments were conducted with varying concentration ratios of α-pinene or Δ-carene with N2O5 (source of NO3 radical) and with/without formaldehyde in a 8000 L Teflon chamber. Formaldehyde served as a precursor for HO2 to bias the system towards HO2-RO2 reactions, elevated N2O5 caused NO3-RO2 reactions to dominate, and elevated monoterpene concentrations (but not amount reacted) favored RO2-RO2 reactions. The chamber products in the gaseous and aerosol phase were characterized using an NO3/N2O5 Cavity Ringdown Spectrometer (CRDS), an Aerodyne High-Resolution Aerosol Mass Spectrometer (AMS), a Scanning Mobility Particle Sizer (SMPS), an Ultrafine Condensation Particle Counter (UCPC), an Aerodyne High-Resolution Chemical Ionization Mass Spectrometer using Iodide ion chemistry (I- CIMS), and a chemiluminescence NOx detector. The mechanistic reasons for the starkly different SOA yield from the NO3 + α-pinene vs. NO3 + Δ-carene systems were explored in addition to differences in gas and aerosol-phase composition and yields under the varying conditions of the primary terpene RO2 radical fate.

  18. THE TAPERED ELEMENT OSCILLATING MICROBALANCE: A MONITOR FOR SHORT-TERM MEASUREMENT OF FINE AEROSOL MASS CONCENTRATION

    EPA Science Inventory

    A new instrument for short-term monitoring of ambient aerosol fine mass concentration has been developed based on a unique device called a Tapered Element Oscillating Microbalance (TEOM). The detector consists of a tapered hollow tube fixed at the wide end and holding an exchange...

  19. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  20. Analysis of laser-produced aerosols by inductively coupled plasma mass spectrometry: transport phenomena and elemental fractionation.

    PubMed

    Koch, J; Wälle, M; Dietiker, R; Günther, D

    2008-02-15

    The transport phenomena of laser-produced aerosols prior to analysis by inductively coupled plasma mass spectrometry (ICPMS) were examined. Aerosol particles were visualized over the cross section of a transport tube attached to the outlet of a conventional ablation cell by light scattering using a pulsed laser source. Experiments were carried out under laminar or turbulent in-cell flow conditions applying throughputs of up to 2.0 L/min and reveal the nature of aerosol transportation to strongly depend on both flow rate and carrier gas chosen. For instance, laser ablation (LA) using laminar in-cell flow and helium as aerosol carrier resulted in stationary but inhomogeneous dispersion patterns. In addition, aerosols appear to be separated into two coexisting phases consisting of (i) dispersed particles that accumulate at the boundary layer of several vortex channel flows randomly arranged along the tube axis and (ii) larger fragments moving inside. The occurrence of these fragments was found to affect the accuracy of Si-, Zn-, and Cd-specific ICPMS analyses of aerosols released by LA of silicate glass (SRM NIST610). Accuracy drifts of more than 10% were observed for helium flow rates of >1 L/min, most probably, due to preferential evaporation and diffusion losses of volatile constituents inside the ICP. The utilization of turbulent in-cell flow made the vortex channels collapse and resulted in an almost complete aerosol homogenization. In contrast, LA using argon as aerosol carrier generally yielded a higher degree of dispersion, which was nearly independent of the flow conditions applied. To illustrate the differences among laminar and turbulent in-cell flow, furthermore, the velocity field inside the ablation cell was simulated by computational fluid dynamics. PMID:18205331

  1. Secondary organic aerosol formation from m-xylene photooxidation: The role of the phenolic product

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Qi, L.; Clark, C.; Sato, K.; Tang, P.; Cocker, D.

    2009-12-01

    Aromatic hydrocarbons comprise a significant fraction of volatile organic compounds in the urban atmosphere and their importance as precursors to secondary organic aerosols (SOA) has been widely recognized. However, SOA formation from aromatics is one of the least understood processes among all the classes of volatile organic compounds (VOCs) due to its complex multi-generation reactions. Phenolic compounds have been identified as one of the significant products from OH-initiated reaction of aromatic hydrocarbons and are suggested to have a very high potential of SOA formation (e.g., cresol isomers having SOA yield 9~42%, Henry et al., Atmos. Environ., 2008). We examined the effect of extent of oxidation of m-xylene on chemical composition and physical properties using m-xylene and xylenol as reactants in environmental chamber experiments. Chemical composition of SOA was investigated by Liquid Chromatography / Time of Flight Mass Spectrometer (LC/ToF-MS), and Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Physical properties of SOA such as density, volatility, and hygroscopicity were investigated by Aerosol Particle Mass Analyzer - Scanning Mobility Particle Sizer (APM-SMPS), Hygroscopicity/Volatility - Tandem Differential Mobility Analyzer (H/V-TDMA), respectively. Also SOA yields were obtained to evaluate the importance of xylenol as an intermediate product.

  2. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Renjian; Huan, Ning; Zhou, Xiuji; Zhang, Yangmei; Zhou, Huaigang; Zhang, Leiming

    2012-12-01

    In the summer and winter of 2004 and 2005, size-segregated atmospheric aerosols were sampled with modified Andersen KA200 Multi-stage impactor at two regional background stations in the eastern China, the Shangdianzi station (SDZ) in the suburb of Beijing and the Lin'An station (LA) in the Yangtze river delta region, both are WMO Global Atmospheric Watch station, which represent the regional background of air pollutions of the two rapid developing economical zone of China, the Yangtze River Delta region (YRD) and Beijing-Tianjin region. The aerosol mass size distributions, ionic compositions, organic and elemental carbon (OC and EC), and elemental components were analyzed. The mass concentrations for TSP (total suspend particle), PM11 (aerodynamic diameter less than 11 μm), and PM2.1 (aerodynamic diameter less than 2.1 μm) at both sites showed obviously different between the winter and summer, with higher mass concentrations measured in the winter time. All seasonal mean mass concentrations of PM2.1 accounted for over 50% of PM11 at both sites. The aerosol mass closure study indicated that the total mass concentration reconstructed from the aerosol chemical composition agreed well with the measured gravimetric mass at the two stations. The fine aerosol particles at the two stations were composed mainly of sulfate and organic matter. In the summer, more than half of the PM2.1 mass was sulfate, suggesting a dominant contribution of secondary aerosol to the fine particles in these two regions. In the winter, the contribution of nitrate to the fine particles increased significantly due to the lower volatile losses under the cold weather. The proportions of soil type components in the PM2.1 showed similar magnitude in the winter and summer at Lin'An station but significant seasonal differences with higher fractions in the winter at Shangdianzi station. On average EC accounted for about 2%-6% of the fine particle mass (PM2.1) at both sites with proportionally lower EC

  3. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    PubMed

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  4. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  5. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  6. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  7. Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.

    2011-03-01

    As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m-3 ppmvCO-1 h-1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.

  8. Sources and composition of submicron organic mass in marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  9. High-Resolution Mass Spectroscopic Analysis of Secondary Organic Aerosol Generated by Ozonolysis of Isoprene

    SciTech Connect

    Nguyen, Tran B; Bateman, Adam P; Bones, David L; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-02-01

    The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS). The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks corresponds to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of ~0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is OM/OO ~2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 2-3 additional carbon atoms in the molecule. The prevalent oligomer building blocks are therefore carbonyls or carboxylic acids with a C2-C3 skeleton. Kendrick analysis suggests that simple aldehydes, specifically formaldehyde, acetaldehyde, and methylglyoxal can serve as monomeric building blocks in the observed oligomers. The large number of reactive functional groups, especially organic peroxides and carbonyls, suggests that isoprene/O3 SOA should be prone to chemical and photochemical aging.

  10. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research. PMID:25639078

  11. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol. PMID:24524827

  12. An Examination of Carbon Monoxide and Organic Aerosol Mass Sources in the Southeastern United States during the SENEX Project

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Angevine, W. M.; Brioude, J. F.; Brock, C. A.; De Gouw, J. A.; Gilman, J.; Graus, M.; Hanisco, T. F.; Holloway, J. S.; Horowitz, L. W.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Mao, J.; Trainer, M.; Warneke, C.; Welti, A.; Wolfe, G. M., Jr.

    2014-12-01

    The NOAA Southeast Nexus (SENEX) project occurred during the summer of 2013 over the southeastern United States and involved studying the interactions between natural and anthropogenic emissions at the nexus of climate change and air quality. As part of the project, a suite of instruments for aerosol and gas-phase species was deployed on the NOAA WP-3D aircraft and models were used to calculate trace gas and aerosol species in the region and along the aircraft flight tracks. Throughout the study, the measured non-refractory submicron aerosol mass was dominated by organic material (58% +/- 9%) with smaller contributions from sulfate (27% +/- 8%), ammonium (10% +/- 3%), nitrate (3% +/- 1%), and chloride (0.1% +/- 0.1%). Here we examine the influence of urban emissions on the organic aerosol (OA) mass in regions characterized by higher and lower biogenic emissions. For the air around and downwind of urban areas, OA mass is highly correlated with carbon monoxide (CO), a tracer of anthropogenic emissions as well as an oxidation product of isoprene, a biogenic species. The slope of this correlation is roughly 0.15 micrograms per standard cubic meter per ppbv, which is significantly higher than observed in prior studies downwind of urban areas. The enhancement in OA mass relative to the enhancement in CO is independent of the concentration of biogenic species. In contrast, formaldehyde enhancements are clearly higher in the presence of biogenic species in agreement with the NOAA GFDL AM3 model. Downwind from the urban areas, CO and OA mass were not strongly enhanced relatively to a region-wide enhancement in these species that can only be explained from the accumulation of emissions in the eastern U.S. for several days. Back-trajectories of air parcels with emissions from biogenic and anthropogenic sources will be examined to elucidate the impact of both sources on CO and OA mass.

  13. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a

  14. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Bi, Xinhui; Qiu, Ning; Han, Bingxue; Lin, Qinhao; Peng, Long; Chen, Duohong; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2016-03-01

    Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS) during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). The OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), and the Metal-rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  15. Validation of a gas chromatography/mass spectrometry method for the quantification of aerosolized Jet Propellant 8.

    PubMed

    Dietzel, Katherine D; Campbell, Jerry L; Bartlett, Michael G; Witten, Mark L; Fisher, Jeffrey W

    2005-11-01

    Jet Propellant 8 (JP-8) jet fuel is a kerosene-based fuel containing hundreds of hydrocarbons used by the military in NATO countries. Previous rodent inhalation studies carried out with aerosolized JP-8 never evaluated the exposure chamber atmosphere. For this reason, our laboratory developed an analytical method, with an accuracy of better than 80% and precision of better than 20%, for JP-8 aerosol and vapor samples using gas chromatography/mass spectrometry (GC/MS). A method was developed for quantification of selected individual components of JP-8 and for the total amount of JP-8 in aerosolized fuel. A 34 component surrogate hydrocarbon mixture (SHM) was developed and used for simultaneous analysis of the individual components. Three separate runs containing a standard curve and five replicates each at the selected concentrations were analyzed for both the SHM and neat JP-8. The resulting interday accuracy (100-percent relative error) and precision (relative standard deviation) values for the SHM were 86.5% or better and 8.0% or better, respectively. The intraday accuracy and precision values ranged from 99.29% to 84.50% and 0.97% to 12.4%, respectively. For the total amount of JP-8 in aerosol and vapor, the interday accuracy was 83.7% or better and interday precision was 7.0% or better. The intraday accuracy and precision values ranged from 94.8% to 80.4% and 2.4% to 10.5%, respectively. We then used this method to analyze samples collected from an inhalation chamber. From the data obtained, we are able to account for approximately 40-44% of the mass of the aerosol portion and 68-70% of the mass of the vapor portion. The aerosol represented 6-10% of the total mass of the aerosolized JP-8 fuel with the remaining portion being the vapor. From these experiments individual components were identified for further in vivo and in vitro toxicological testing. PMID:16233866

  16. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and

  17. Transboundary secondary organic aerosol in western Japan: An observed limitation of the f44 oxidation indicator

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Miyoshi, Takao; Arakaki, Takemitsu; Sato, Kei; Kaneyasu, Naoki; Bandow, Hiroshi; Hatakeyama, Shiro

    2015-11-01

    To obtain evidence for secondary organic aerosol formation during the long-range transport of air masses over the East China Sea, we conducted field measurements in March 2012 at the Fukue atmospheric monitoring station, Nagasaki, in western Japan. The relative abundance of m/z 44 in fine organic aerosol (f44) was measured by an Aerodyne aerosol chemical speciation monitor. The stable carbon isotope ratio (δ13C) of low-volatile water-soluble organic carbon (LV-WSOC) in the daily filter samples of total suspended particulate matter was also analyzed using an elemental-analyzer coupled with an isotope ratio mass spectrometer. Additionally, in situ measurements of NOx and NOy were performed using NOx and NOy analyzers. The measurements showed that, unlike the systematic trends observed in a previous field study, a scatter plot for δ13C of LV-WSOC versus f44 indicated a random variation. Comparison of f44 with the estimated photochemical age by the NOx/NOy ratio revealed that the random distribution of f44 values near 0.2 is likely an indication of saturation already. Such f44 values were significantly lower than the observed f44 (∼0.3) at Hedo in the previous study. These findings imply that the saturation point of f44, and the use of f44 as an oxidation indicator, is case dependent.

  18. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  19. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  20. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  1. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires

    NASA Astrophysics Data System (ADS)

    Okoshi, Rintaro; Rasheed, Abdur; Chen Reddy, Greeshma; McCrowey, Clinton J.; Curtis, Daniel B.

    2014-06-01

    Biomass burning emits large amounts of aerosol particles globally, influencing human health and climate, but the number and size of the particles is highly variable depending on fuel type, burning and meteorological conditions, and secondary reactions in the atmosphere. Ambient measurements of aerosol during wildfire events can therefore improve our understanding of particulate matter produced from biomass burning. In this study, time-resolved sub-micrometer ambient aerosol size and mass distributions of freshly emitted aerosol were measured for three biomass burning wildfire events near Northridge, California, located in the highly populated San Fernando Valley area of Los Angeles. One fire (Marek) was observed during the dry Santa Ana conditions that are typically present during large Southern California wildfires, but two smaller fires (Getty and Camarillo) were observed during the more predominant non-Santa Ana weather conditions. Although the fires were generally small and extinguished quickly, they produced particle number concentrations as high as 50,000 cm-3 and mass concentrations as large as 150 μg cm-3, well above background measurements and among the highest values observed for fires in Southern California. Therefore, small wildfires can have a large impact on air quality if they occur near urban areas. Particle number distributions were lognormal, with peak diameters in the accumulation mode at approximately 100 nm. However, significant Aitken mode and nucleation mode particles were observed in bimodal distributions for one fire. Significant variations in the median diameter were observed over time, as particles generally became smaller as the fires were contained. The results indicate that it is likely that performing mass measurements alone could systematically miss detection of the smaller particles and size measurements may be better suited for studies of ambient biomass burning events. Parameters of representative unimodal and bimodal lognormal

  2. Aerosol and Trace Gas Processing by Clouds During the Cumulus Humilis Aerosol Processing Study (CHAPS)

    NASA Astrophysics Data System (ADS)

    Yu, X.; Berg, L.; Berkowitz, C.; Alexander, L.; Lee, Y.; Ogren, J.; Andrews, B.

    2008-12-01

    Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Cumulus Humilis Aerosol Processing Study (CHAPS) aimed at characterizing freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus) in the vicinity of Oklahoma City. The experiment took place in June 2007. Evolution of aerosol and cloud properties downwind of the Oklahoma City is of particular interest in this project. These observations of a mid-size and mid-latitude city can be used in the development and evaluation of regional-scale and global climate model cumulus parameterizations that describes the transport and transformations of these aerosols by fair-weather cumulus. The Department of Energy (DOE) G-1 aircraft was one of the main platforms used in CHAPS. It carried a suite of instruments to measure properties of interstitial aerosols behind an isokinetic inlet and a set of duplicate instruments to determine properties of activated particles behind a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This presentation will focus on results related to the transformation and transport of aerosols and trace gases observed in fair-weather cumulus and compare these results with concurrent observations made outside these clouds. Our interest will focus on the differences in particle size and composition under varying conditions. The role of

  3. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y.-L.; Zhang, Q.; Schwab, J. J.; Demerjian, K. L.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Hogrefe, O.; Frank, B.; Rattigan, O. V.; Lin, Y.-C.

    2011-02-01

    Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer during the summer 2009 Field Intensive Study at Queens College in New York, NY. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of the total PM1 mass. The average mass-based size distribution of OA presents a small mode peaking at ~150 nm (Dva) and an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of both sulfate and OA peak between 01:00-02:00 p.m. EST due to photochemical production. The average (±σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012 (±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62 (±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified two primary OA (POA) sources, traffic and cooking, and three secondary OA (SOA) components including a highly oxidized, regional low-volatility oxygenated OA (LV-OOA; O/C = 0.63), a less oxidized, semi-volatile SV-OOA (O/C = 0.38) and a unique nitrogen-enriched OA (NOA; N/C = 0.053) characterized with prominent CxH2x + 2N+ peaks likely from amino compounds. Our results indicate that cooking and traffic are two distinct and mass-equivalent POA sources in NYC, together contributing ~30% of the total OA mass during this study. The OA composition is dominated by secondary species, especially during high PM events. SV-OOA and LV-OOA on average account for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC appears to progress with a continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that organic nitrogen

  4. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of

  5. Aerosol composition in a stagnant air mass impacted by dense fogs: preliminary results

    SciTech Connect

    Jacob, D.J.; Munger, J.W.; Waldman, J.M.; Hoffman, M.R.

    1984-01-01

    Over the last two winters, our research group has been investigating the chemical composition of fogwater and haze aerosol during wintertime stagnation episodes in the San Joaquin Valley of California. The valley is encompassed by mountain ranges. During the winter a strong subsidence inversion based below the natural boundaries of the valley restricts the ventilation of the air masses below the inversion. The residence time of an air parcel in the valley under these stagnation conditions is on the order of 8 days. Because the trapped air is very humid, stagnation episodes are associated with a persistent thick haze and frequent widespread nighttime fogs. During the winter 1982-1983 the authors sampled fog and haze at one site (Bakersfield); results from this preliminary study have been discussed in detail in a previous report. In the winter 1983-1984 the scale of the program was expanded in order to test hypotheses formulated as a result of first year data. The present paper first reports briefly on the 1982-1983 results and outlines the essential conclusions. They then describe the large-scale experiment conducted during the winter of 1983-1984, and discuss some preliminary fogwater data.

  6. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions. PMID:24866381

  7. Performance of the chemical mass balance model with simulated local-scale aerosols

    NASA Astrophysics Data System (ADS)

    Javitz, H. S.; Watson, J. G.; Robinson, N.

    A general methodology for performing simulations of the Chemical Mass Balance (CMB) model is developed and applied to simple and complex local scale scenarios. The simple scenario consists of crustal, coal-fired power plant, motor vehicle and vegetative burning sources; the complex scenario adds oil-fired power plant, ocean, steel mill, lead smelter, municipal incinerator and background aerosol sources. Daily receptor filter concentrations of the most commonly measured elements in the primary emissions are simulated. These simulations incorporate daily fluctuations in source strengths, daily fluctuations in source profiles (as parameterized by a coefficient of variation, or CV, of temporal source profiles) and measurement error at the receptor (as parameterized by a CV of measurement error). The CMB is applied to each daily measurement using a source library containing all sources and their long-term profiles (which, though correct on average, are incorrect on any particular day). The extent of agreement of the actual and CMBestimated primary emission source strengths is measured as an average absolute error (AAE, the absolute difference between the daily actual and estimated primary emission source strengths averaged over 100 simulated days). These moderately realistic simulations provide an encouraging picture of CMB accuracy and precision. The CMB yields acceptable accuracy and precision (an AAE of 50% or less) even when the CV of temporal source profiles is 25% and the CV of measurement error is 10%.

  8. Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles

    SciTech Connect

    Zelenyuk, Alla; Imre, D.

    2009-09-10

    The behavior of small aerosol particles depends on a number of their physical and chemical properties, many of which are strongly coupled. The size, internal composition, density, shape, morphology, hygroscopicity, index of refraction, activity as cloud condensation nuclei and ice nuclei, and other attributes of individual particles - all play a role in determining particle properties and their impacts. The traditional particle characterization approaches rely on separate parallel measurements that average over an ensemble of particles of different sizes and/or compositions and later attempt to draw correlations between them. As a result such studies overlook critical differences between particles and bulk and miss the fact that individual particles often exhibit major differences. Here we review the recently developed methods to simultaneously measure in-situ and in real time several of the attributes for individual particles using single particle mass spectrometer, SPLAT or its second generation SPLAT II. We also discuss novel approaches developed for classification, visualization and mining of large datasets produced by the multidimensional single particle characterization.

  9. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the ˜0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ˜11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  10. Modeling Gas-phase Glyoxal and Associated Secondary Organic Aerosol Formation in a Megacity using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hodzic, A.; Barth, M. C.; Jimenez, J. L.; Volkamer, R.; Ervens, B.; Zhang, Y.

    2011-12-01

    Organic aerosol (OA) as one of a major fine particulate matter in the atmosphere plays an important role in air pollution, human health, and climate forcing. OA is composed of directly emitted primary organic aerosol and chemically produced secondary organic aerosols (SOA). Despite much recent progress in understanding SOA formation, current air quality models cannot explain the magnitude and growth of atmospheric SOA, due to high uncertainties in sources, properties, and chemical reactions of precursors and formation pathways of SOA. Recent laboratory and modeling studies showed that glyoxal may serve as an important SOA precursor in the condensed solution of inorganic or organic aerosol particles (e.g., ammonium sulfate, fulvic acid, and amino acids). In this study, the Weather Research and Forecasting model with chemistry (WRF/Chem) is modified to account for the latest observed gas-phase yields of glyoxal from various volatile organic compounds (VOCs) and the associated SOA formation in the aqueous aerosol phase. The SOA formation in the aqueous aerosol phase is implemented using two approaches. In the first approach, two simplified parameterizations are used to represent the lumped particle-phase chemical processes under dark conditions and photochemical surface uptake. In the second approach, more detailed kinetic glyoxal reactions such as reversible glyoxal uptake, dimer formation of glyoxal, and oligomerization are treated and resolved explicitly. The updated WRF/Chem is assessed over the Mexico City and the surrounding region during March 2006 using the MILAGRO campaign data. Various observations such as organic matter from Aerodyne Aerosol Mass Spectrometer and VOCs from Proton-transfer Ion Trap Mass Spectrometry were compared. The preliminary results showed that the addition of the SOA formation from glyoxal in aqueous particles brings SOA predictions into a better agreement with field observations, in particular in presence of high relative humidity

  11. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  12. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  13. Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois.

    PubMed

    Green, Mark; Kondragunta, Shobha; Ciren, Pubu; Xu, Chuanyu

    2009-09-01

    Collocated Interagency Monitoring of Protected Visual Environments (IMPROVE) particulate matter (PM) less than 2.5 microm in aerodynamic diameter (PM2.5) chemically speciated data, mass of PM less than 10 microm in aerodynamic diameter (PM10), and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and size distribution at Bondville, IL, were compared with satellite-derived AOD. This was done to evaluate the quality of the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data and their potential to predict surface PM2.5 concentrations. MODIS AOD correlated better to AERONET AOD (r = 0.835) than did GOES AOD (r = 0.523). MODIS and GOES AOD compared better to AERONET AOD when the particle size distribution was dominated by fine mode. For all three AOD methods, correlation between AOD and PM2.5 concentration was highest in autumn and lowest in winter. The AERONET AOD-PM2.5 relationship was strongest with moderate relative humidity (RH). At low RH, AOD attributable to coarse mass degrades the relationship; at high RH, added AOD from water growth appears to mask the relationship. For locations such as many in the central and western United States with substantial coarse mass, coarse mass contributions to AOD may make predictions of PM2.5 from AOD data problematic. Seasonal and diurnal variations in particle size distributions, RH, and seasonal changes in boundary layer height need to be accounted for to use satellite AOD to predict surface PM2.5. PMID:19785275

  14. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  15. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.; Fortain, A.

    For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

  16. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  17. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions.

    PubMed

    Jolleys, Matthew D; Coe, Hugh; McFiggans, Gordon; Capes, Gerard; Allan, James D; Crosier, Jonathan; Williams, Paul I; Allen, Grant; Bower, Keith N; Jimenez, Jose L; Russell, Lynn M; Grutter, Michel; Baumgardner, Darrel

    2012-12-18

    Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning. PMID:23163290

  18. Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Raulin, Francois; Coll, Patrice; Cabane, Michel; GCMS Team

    2014-05-01

    The in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed.

  19. Secondary organic aerosol from biogenic VOCs over West Africa during AMMA

    NASA Astrophysics Data System (ADS)

    Capes, G.; Murphy, J. G.; Reeves, C. E.; McQuaid, J. B.; Hamilton, J. F.; Hopkins, J. R.; Crosier, J.; Williams, P. I.; Coe, H.

    2009-06-01

    This paper presents measurements of organic aerosols above subtropical West Africa during the wet season using data from the UK Facility for Airborne Atmospheric Measurements (FAAM) aircraft. Measurements of biogenic volatile organic compounds (BVOC) at low altitudes over these subtropical forests were made during the African Monsoon Multidisciplinary Analysis (AMMA) field experiment during July and August 2006 mainly above Benin, Nigeria and Niger. Data from an Aerodyne Quadrupole Aerosol Mass Spectrometer show a median organic aerosol loading of 1.07 μg m-3 over tropical West Africa, which represents the first regionally averaged assessment of organic aerosol mass (OM) in this region during the wet season. This is broadly in agreement with global model predictions based on partitioning schemes, although there are large uncertainties associated with such estimates. In contrast our own calculations based on aerosol yields from isoprene and monoterpenes during chamber studies under represent the OM measured in this region on a comparable scale to the under representations of OM by predictive models in the mid latitudes. As global models rely on similar yield calculations in their global estimates, as our calculations this points to further systematic differences between global model estimates and measurements of SOA, most likely caused by use of incorrect BVOC emission rates. The under predictions of OM by our calculations and those in the mid latitudes employ yields extrapolated from chamber data obtained at higher mass concentrations - more recent yield data for α-pinene obtained at ambient concentrations in a flow through chamber (Shilling et al., 2008) show considerably better agreement with our data.

  20. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore

  1. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  2. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  3. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  4. Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, W.; Sun, Y. L.; Xu, Y. S.; Jiang, Q.; Wang, Q. Q.; Yang, W.; Wang, F.; Bai, Z. P.; Zhao, X. D.; Yang, Y. C.

    2015-09-01

    Atmospheric aerosols exert highly uncertain impacts on radiative forcing and also have detrimental effects on human health. While aerosol particles are widely characterized in megacities in China, aerosol composition, sources and particle growth in rural areas in the Tibetan Plateau remain less understood. Here we present the results from an autumn study that was conducted from 5 September to 15 October 2013 at a national background monitoring station (3295 m a.s.l.) in the Tibetan Plateau. The submicron aerosol composition and particle number size distributions were measured in situ with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and a Scanning Mobility Particle Sizer (SMPS). The average mass concentration of submicron aerosol (PM1) is 11.4 μg m-3 (range: 1.0-78.4 μg m-3) for the entire study, which is much lower than observed at urban and rural sites in eastern China. Organics dominated PM1, accounting for 43 % on average, followed by sulfate (28 %) and ammonium (11 %). Positive Matrix Factorization analysis of ACSM organic aerosol (OA) mass spectra identified an oxygenated OA (OOA) and a biomass burning OA (BBOA). The OOA dominated OA composition, accounting for 85 % on average, 17 % of which was inferred from aged BBOA. The BBOA contributed a considerable fraction of OA (15 %) due to the burning of cow dung and straw in September. New particle formation and growth events were frequently observed (80 % of time) throughout the study. The average particle growth rate is 2.0 nm h-1 (range: 0.8-3.2 nm h-1). By linking the evolution of particle number size distribution to aerosol composition, we found an elevated contribution of organics during particle growth periods and also a positive relationship between the growth rate and the fraction of OOA in OA, which potentially indicates an important role of organics in particle growth in the Tibetan Plateau.

  5. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  6. Chemical Composition and Cloud Condensation Nuclei Properties of Marine Aerosols during the 2005 Marine Stratus Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Hudson, J.; Daum, P.; Springston, S.; Wang, J.; Senum, G.; Alexander, L.; Jayne, J.; Hubbe, J.

    2006-12-01

    Marine aerosol chemical composition and cloud condensation nuclei (CCN) spectrum were determined on board the DOE G1 aircraft during the Marine Stratus Experiment conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosol components, including sea-salt- (sodium, chloride, magnesium, methansulfonate) and terrestrial/pollution-derived (ammonium, sulfate, nitrate, organics, potassium, and calcium) were measured using the particle-into-liquid sampler-ion chromatography technique and an Aerodyne AMS at a time resolution of 4 min and 30 s, respectively, both covering the size range of ~0.08 to 1.5 micrometers. The CCN spectrum was determined at a 1-s time resolution covering a supersaturation range between 0.02% and 1%. The accumulation mode particle size- number distribution was measured using a passive cavity aerosol spectrometer probe; the cloud droplet size- number distribution was determined using a Cloud Aerosol Probe. During the campaign sulfate/organic aerosols were always present, sea-salt aerosols were observed on half of the flights, and no dust or biomass burning contribution was noted as calcium and potassium were always below their limits-of-detection. Based on CCN spectra and cloud droplet number concentrations, the typical supersaturation of the marine stratus clouds was ~0.06%, corresponding to a CCN critical diameter between 0.1 and 0.2 micrometer. This large critical diameter makes the aerosol chemical composition measured appropriate for investigating the CCN properties and marine stratus clouds. We note that while sea-salt aerosols and sulfate aerosols were most likely externally mixed, the ensemble exhibits similar CCN properties irrespective of the relative mass concentrations of these two types of aerosols, owing partly to the similar activation properties of NaCl and (NH4)2SO4 aerosols, and that sea-salt particles were larger but fewer, accounting for a small fraction of cloud

  7. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  8. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  9. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species

    DOE PAGESBeta

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; et al

    2016-07-25

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambientmore » field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of

  10. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    NASA Astrophysics Data System (ADS)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  11. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  12. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  13. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  14. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  15. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  16. Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations.

    PubMed

    Bahreini, R; Middlebrook, A M; Brock, C A; de Gouw, J A; McKeen, S A; Williams, L R; Daumit, K E; Lambe, A T; Massoli, P; Canagaratna, M R; Ahmadov, R; Carrasquillo, A J; Cross, E S; Ervens, B; Holloway, J S; Hunter, J F; Onasch, T B; Pollack, I B; Roberts, J M; Ryerson, T B; Warneke, C; Davidovits, P; Worsnop, D R; Kroll, J H

    2012-08-01

    In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted. PMID:22788666

  17. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Kückelmann, U; Warscheid, B; Hoffmann, T

    2000-04-15

    A method to investigate the chemical composition of organic aerosols formed from biogenic hydrocarbon oxidation using atmospheric pressure chemical ionization mass spectrometry (APCI/MS) is described. The method involves the direct introduction of aerosol particles into the ion source of the mass spectrometer. Using this technique, reaction monitoring experiments of alpha-pinene ozonolysis show the formation of hetero- and homomolecular cluster anions (dimers) of the primary oxidation products (multifunctional carboxylic acids). Since the formation of dimers plays a profound role in new particle formation processes by homogeneous nucleation in the atmosphere and, at the same time, is an intrinsic feature of APCI, it is essential to differentiate between both processes when on-line APCI/MS is applied. In this paper, we compare the results from the investigations of organic aerosols and artificially generated dimer cluster ions of the same compounds using identical ionization conditions. The clusters and their formation processes are characterized by varying the analyte concentration, investigating the thermal stability of dimers, and studying collisional activation properties of both ion species. The investigations show a significant difference in ion stability: dimer anions measured on-line have an estimated stability that is 20 kJ mol(-1) higher than that of the corresponding artificially generated cluster ions. Hence, the technique provides the possibility to accurately characterize dimers as ionized reaction products from biogenic hydrocarbon oxidation and allows an insight into the process of new-particle formation by homogeneous nucleation. PMID:10784160

  18. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  19. LIDAR technique: a central puzzle piece to build an integrated observation - modeling approach for air mass aerosols concentration evaluation

    NASA Astrophysics Data System (ADS)

    Tudose, Ovidiu-Gelu

    2013-04-01

    This paper presents a study of the temporal and vertical variation of mixed aerosol mass concentration near Bucharest during a dedicated observation campaign performed in summer 2012. To obtain the vertical mass concentrations profiles a combination of measured (mainly based on LIDAR technique) and modeled data was used. This method is based on the hypothesis that any mixture in the atmosphere can be described as a combination of low-depolarizing and high-depolarizing particles of a particular type. It uses the method proposed by Tesche et al. (2009), combined with forward simulations (i.e. OPAC). Based on supplementary information (e.g. preliminary assessment of aerosol source from forecast models and back trajectories) and several optical indicators (Angstrom exponent, LIDAR ratio, particle depolarization, AOD we built an approach to 2 cases of aerosol mixture, and validate the results using other information sources: sun photometry, forecasts, back trajectories. The first case was proved to be a smoke predominant layer, the second a Saharan dust predominant layer. Information from various data sources (DREAM, HYSPLIT, AERONET, MODIS) was consistent with our retrievals.

  20. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  1. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G.

    2015-12-01

    A novel in-situ, real time method for the determination of inherent absorption properties of light absorbing carbonaceous particulate matter and its possible application for source apportionment are introduced here. The method is deduced from a two-week campaign under wintry urban conditions during which strong correlation was found between aerosol number size distribution and wavelength dependent optical absorption coefficient (AOC(λ)), measured by a Single Mobility Particle Sizer (SMPS) and a multi-wavelength photoacoustic absorption spectrometer, respectively, while wood burning and traffic (i.e. fossil fuel burning) activity were identified to be the dominant sources of carbonaceous particulate. Indeed, during the whole campaign, regardless of the actual emission strength of the aerosol sources, the measured number size distributions were always dominated by two unimodal modes with Count Mean Diameter (CMD) of 20 and 100 nm, which could be correlated to traffic and wood burning activities, respectively. AAEff, AAEwb (i.e. the Aerosol Angström Exponent of traffic and wood burning aerosol, respectively), σff(266 nm), σff(1064 nm), σwb(266 nm) and σff(1064 nm) (i.e. the segregated mass specific optical absorption coefficients at two of the measurement wavelengths) were found to be 1.17 ± 0.18, 2.6 ± 0.14, 7.3 ± 0.3 m2g-1, 1.7 ± 0.1 m2g-1 3.4 ± 0.3 m2g-1 and 0.31 ± 0.08 m2g-1, respectively. Furthermore the introduced methodology can also disentangle and quantify the temporal variation of both the segregated optical absorptions and the segregated mass concentrations of traffic and wood burning aerosol. Accordingly, the contribution of wood burning to optical absorption of PM was found to be negligible at 1064 nm but increased gradually towards the shorter wavelengths and became commensurable with the optical absorption of traffic at 266 nm during the whole measurement period. Furthermore, the contribution of wood burning mass to CM (mass of carbonaceous

  2. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  3. Mass-analysis of Charged Aerosol Particles in a PMSE/NLC Layer by a Rocket-borne Spectrometer

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Horanyi, M.; Knappmiller, S.; Kohnert, R.; Sternovsky, Z.; Holzworth, R.; Shimogawa, M.; Friedrich, M.; Gumbel, J.; Khaplanov, M.; Megner, L.; Baumgarten, G.; Latteck, R.; Rapp, M.; Hoppe, U.

    2007-12-01

    The first of two "MASS" (Mesospheric Aerosol Sampling Spectrometer) rockets was launched from the Andoya Rocket Range at 22:51 UTC on 3 August 2007 into PMSE and NLC approximately 26 minutes after an AIM satellite overpass. The sun was 4 degrees below the horizon and the local riometer indicated that the ionospheric conditions were rather quiet, i.e., day time conditions as far as negative cluster ions are concerned. NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar pointed along the rocket trajectory and were detected at the same altitude by rocket-borne photometer measurements. The rocket carried an electrostatic mass analyzer for the charged fraction of the aerosol particles and both forward and aft deployable electric field booms. The mass analyzer was mounted on the tip of the payload and pointed in the ram direction. It has a forward inlet slit with area of 25 square centimeters and side vents for air exit. Aerosol particles with different ranges of charge-to-mass ratio are collected within the instrument housing on two sets of four biased collector plates, with one set for positive particles and one set for negative particles. A preliminary analysis of the data shows the density of negative particles with radius greater than 3 nm rising sharply at 83 and continuing to 89 km, collocated with PMSE detected by the ALWIN radar. Particles with 1-2 nm radii with both signs of charge and positive particles with less than1 nm radius were detected at 86-88 km. Initial charge-density estimates are several thousands per cubic centimeter for each of these size ranges. The E field booms detected significant potential variations in the PMSE/NLC region. Further analysis will examine in more detail the effects of aerodynamics, payload charging, and spurious charge generation by particle impacts.

  4. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  5. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  6. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  7. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  8. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  9. Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-09-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  10. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Williams, P. I.; Morgan, W. T.; Martin, C. L.; Flynn, M. J.; Lee, J.; Nemitz, E.; Phillips, G. J.; Gallagher, M. W.; Coe, H.

    2009-09-01

    Organic matter frequently represents the single largest fraction of fine particulates in urban environments and yet the exact contributions from different sources and processes remain uncertain, owing in part to its substantial chemical complexity. Positive Matrix Factorisation (PMF) has recently proved to be a powerful tool for the purposes of source attribution and profiling when applied to ambient organic aerosol data from the Aerodyne Aerosol Mass Spectrometer (AMS). Here we present PMF analysis applied to AMS data from UK cities for the first time. Three datasets are analysed, with the focus on objectivity and consistency. The data were collected in London during the Regent's Park and Tower Environmental Experiment (REPARTEE) intensives and Manchester. These occurred during the autumn and wintertime, such that the primary fraction would be prominent. Ambiguities associated with rotationality within sets of potential solutions are explored and the most appropriate solution sets selected based on comparisons with external data. In addition to secondary organic aerosols, three candidate sources of primary organic aerosol (POA) were identified according to mass spectral and diurnal profiles; traffic emissions, cooking and solid fuel burning. Traffic represented, on average, 40% of POA during colder conditions and exhibited a hydrocarbon-like mass spectrum similar to those previously reported. Cooking aerosols represented 34% of POA and through laboratory work, their profile was matched with that sampled from the heating of seed oils, rather than previously-published spectra derived from charbroiling. This suggests that in these locations, oil from frying may have contributed more to the particulate than the meat itself. Solid fuel aerosols represented 26% of POA during cold weather conditions but were not discernable during the first REPARTEE experiment, when conditions were warmer than the other campaigns. This factor showed features associated with biomass

  11. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Williams, P. I.; Morgan, W. T.; Martin, C. L.; Flynn, M. J.; Lee, J.; Nemitz, E.; Phillips, G. J.; Gallagher, M. W.; Coe, H.

    2010-01-01

    Organic matter frequently represents the single largest fraction of fine particulates in urban environments and yet the exact contributions from different sources and processes remain uncertain, owing in part to its substantial chemical complexity. Positive Matrix Factorisation (PMF) has recently proved to be a powerful tool for the purposes of source attribution and profiling when applied to ambient organic aerosol data from the Aerodyne Aerosol Mass Spectrometer (AMS). Here we present PMF analysis applied to AMS data from UK cities for the first time. Three datasets are analysed, with the focus on objectivity and consistency. The data were collected in London during the Regent's Park and Tower Environmental Experiment (REPARTEE) intensives and Manchester. These occurred during the autumn and wintertime, such that the primary fraction would be prominent. Ambiguities associated with rotationality within sets of potential solutions are explored and the most appropriate solution sets selected based on comparisons with external data. In addition to secondary organic aerosols, three candidate sources of primary organic aerosol (POA) were identified according to mass spectral and diurnal profiles; traffic emissions, cooking and solid fuel burning (for space heating). Traffic represented, on average, 40% of POA during colder conditions and exhibited a hydrocarbon-like mass spectrum similar to those previously reported. Cooking aerosols represented 34% of POA and through laboratory work, their profile was matched with that sampled from the heating of seed oils, rather than previously-published spectra derived from charbroiling. This suggests that in these locations, oil from frying may have contributed more to the particulate than the meat itself. Solid fuel aerosols represented 26% of POA during cold weather conditions but were not discernable during the first REPARTEE campaign, when conditions were warmer than the other campaigns. This factor showed features associated

  12. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.

    PubMed

    Perrino, Cinzia; Marcovecchio, Francesca

    2016-02-01

    Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. PMID:26680730

  13. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  14. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    NASA Astrophysics Data System (ADS)

    George, I. J.; Vlasenko, A.; Slowik, J. G.; Broekhuizen, K.; Abbatt, J. P. D.

    2007-08-01

    The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  15. Determination of the chemical composition of titan4s aerosols analogues using pyrolysis gas chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, J.; Buch, A.; Szopa, C.; Carrasco, N.

    2013-12-01

    The in situ chemical characterization of Titan's aerosols with the ACP-GCMS (Aerosol Collector and Pyrolyze-Gas Chromatograph and Mass Spectrometer) experiments onboard the Cassini-Huygens mission showed that the aerosols heated at 600°C were releasing two main gaseous compounds: NH3 and HCN. To better understand the process of production of these species at high temperature, and their relationship to the solid aerosol composition, it is possible to mimic in laboratory the Titan's atmosphere chemistry to produce analogues of Titan's aerosols (tholins), chemical and physical properties of which can be studied with laboratory instrumentation. In the present work, we studied the thermal decomposition of tholins produced with the PAMPRE cold plasma experiment[1]. For this study, pyrolysis at various temperatures, coupled to gas chromatography mass spectrometry (Pyr-GCMS), has been used in order to understand the origin and formation mechanism of the NH3 and HCN compounds. With this aim, two samples were produced using different initial CH4/N2 gaseous mixtures with different concentration ratios: (5:95) and (10:90). Pyr-GCMS was applied to characterize their chemical composition and molecule structure. In order to study the evolution of chemical compounds released as a function of temperature, the final pyrolysis temperature has been set from 100°C to 900°C with a 100°C step increment. The results show that the major compounds released are similar for the two different studied samples. They include hydrocarbon compounds, nitriles, ammonia, hydrogen cyanide, and some pyrrole isomers. Moreover, whatever the final temperature is, acetonitrile is the most abundant compound released by the samples. At 100°C only water contribution can be detected. Then the number of compounds released increases with the temperature up to 600°C. With the temperature increase the nature of the gaseous species detected does not change significantly. Pyrrole was not detected until the

  16. Impacts of Anthropogenic Emissions in the Southeastern U.S. on Heterogeneous Chemistry of Isoprene-Derived Epoxides Leading to Secondary Organic Aerosol Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Surratt, J. D.; Pye, H.; Lin, Y.; Budisulistiorini, S.; Zhang, H.; Marth, W.; Cui, T.; Arashiro, M.; Chu, K.; Zhang, Z.; Sexton, K.; Piletic, I.; Xie, Y.; Capps, S. L.; Luecken, D.; Hutzell, W. T.; Jaoui, M.; Canagaratna, M. R.; Croteau, D.; Jayne, J. T.; Worsnop, D. R.; Offenberg, J.; Kleindienst, T. E.; Lewandowski, M.; Edney, E.; Pinder, R. W.; Bartolotti, L.; Gold, A.

    2013-12-01

    Isoprene is a major source of secondary organic aerosol (SOA); however, the exact manner in which it forms SOA remains unclear. Improving our fundamental understanding of isoprene-derived SOA is key to improving existing air quality models, especially in the southeastern U.S. where models currently underestimate observations. By combining organic synthesis, computational calculations, mass spectrometry, smog chamber studies, and field measurements, we show that reactive epoxides, which include methacrylic acid epoxide (MAE) and isomeric isoprene epoxydiols (IEPOX), produced from the photochemical oxidation of isoprene are key to SOA formation. Furthermore, anthropogenic pollutants (NOx and SO2) enhance isoprene-derived epoxides as an SOA source. In the laboratory, we find that the reactive uptake of synthetic IEPOX and MAE standards onto acidified sulfate aerosol yields known isoprene-derived SOA tracers (2-methlytetrols, 2-methylglyceric acid, C5-alkene triols, 3-methyltetrahydrofuran-3,4-diols, dimers and organosulfates) that we measure in fine aerosol collected from multiple sites across the southeastern U.S. using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled to diode array detection and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (LC/DAD-ESI-QTOFMS). Notably, IEPOX- and MAE-derived SOA tracers account for ~19% of the organic aerosol mass in Yorkville, GA. Moreover, real-time continuous chemical measurements of fine aerosol made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer 2011 and summer 2013 in Atlanta, GA, and Look Rock, TN, respectively, resolved an IEPOX-oxygenated organic aerosol (IEPOX-OOA) factor when applying positive matrix factorization (PMF) to the organic mass spectral time series. In Atlanta, this factor is found to account for ~33% of the fine OA mass and is correlated with IEPOX-derived SOA tracers (r2 = 0.6), sulfate (r2 = 0.5), and to some

  17. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry.

    PubMed

    Wan, Eric Chun Hong; Yu, Jian Zhen

    2006-02-24

    We here report a method for the determination of sugar compounds of known presence in atmospheric aerosols using liquid chromatography (LC) combined with positive electrospray ionization mass spectrometry (MS). The target analytes include C(3)-C(6) monosaccharide alcohols (glycerol, erythritol, xylitol, mannitol), C(5)-C(6) monosaccharides (xylose, glucose, and levoglucosan), a disaccharide (sucrose), and a trisaccharide (melezitose). A mobile phase consisting of 20% 10 mM aqueous ammonium acetate, 8% methanol, and 72% water was found to provide abundant [M+NH(4)](+) adduct ions when coupled with electrospray ionization. Use of a polymer-based amino analytical column resolved the target compounds from the bulk solvent and provided limited separation among the target compounds. The target analytes were quantified using their [M+NH(4)](+) ions. Sample pretreatment was greatly simplified in comparison with the more commonly used gas chromatographic methods. It involved extraction of aerosol filters in methanol, evaporation of the solvent, and reconstitution with 5 mM ammonium acetate in water prior to the LC-MS analysis. The analyte recoveries were measured at the levels of 100, 500 and 1000 microg/L to be in the range of 78-102%, 94-112%, and 92-110%, respectively. The detection limits were lower than 10 pmol/injection for the tested target compounds except for xylose. Xylose had a detection limit of 95 pmol/injection. The method was applied to analyze 30 atmospheric aerosol samples to demonstrate its feasibility. The LC-MS method made possible the detection of trisaccharides as aerosol constituents for the first time. PMID:16405980

  18. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  19. High Resolution Mass Spectrometry of Seasonal Aerosol Samples From an Urban Location in the Italian Po Valley

    NASA Astrophysics Data System (ADS)

    Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus

    2016-04-01

    The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.

  20. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  1. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  2. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  3. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  4. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  5. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  6. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    NASA Astrophysics Data System (ADS)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  7. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  8. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  9. Aerosol Composition, Chemistry, and Source Characterization during the 2008 VOCALS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Springston, S.; Jayne, J. T.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L. I.; Daum, P. H.

    2009-12-01

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined on board the US DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment between October 16 and November 15, 2008. Chemical species determined included SO42-, NO3-, NH4+, and total organics (Org) using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only ~0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are believed to be externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on non-acidic sea-salt aerosols, responsible partly for the Cl- deficit. Dust particles appeared to play a minor role judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations in the study domain were substantial (~0.5 - ~3 μg/m3) with a strong gradient (highest near the shore decreasing with distance from land), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., ≤ 40 parts per trillion and <0.05 μg/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4

  10. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  11. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  12. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2014-06-01

    Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.

  13. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Christopher, Sundar A.

    2003-11-01

    We explore the relationship between column aerosol optical thickness (AOT) derived from the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satellites and hourly fine particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama for 2002. Results indicate that there is a good correlation between the satellite-derived AOT and PM2.5 (linear correlation coefficient, R = 0.7) indicating that most of the aerosols are in the well-mixed lower boundary layer during the satellite overpass times. There is excellent agreement between the monthly mean PM2.5 and MODIS AOT (R > 0.9), with maximum values during the summer months due to enhanced photolysis. The PM2.5 has a distinct diurnal signature with maxima in the early morning (6:00 ~ 8:00AM) due to increased traffic flow and restricted mixing depths during these hours. Using simple empirical linear relationships derived between the MODIS AOT and 24hr mean PM2.5 we show that the MODIS AOT can be used quantitatively to estimate air quality categories as defined by the U.S. Environmental Protection Agency (EPA) with an accuracy of more than 90% in cloud-free conditions. We discuss the factors that affect the correlation between satellite-derived AOT and PM2.5 mass, and emphasize that more research is needed before applying these methods and results over other areas.

  14. Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn M.; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high-resolution mass spectrometry (HR-MS) coupled to a nanospray desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 850 unique molecular species were detected in the mass range of 50-400 m/z using positive mode ESI of aerosol samples in the 0.18-0.32 μm size range. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO), and nitrogen-containing organic compounds (NOC). The NOC accounted for 40% (by number) of the compounds observed in the afternoon, and for 52% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O/C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.33 in the morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry may play a role in forming the compounds observed in this mixed urban-rural environment.

  15. Aging of secondary organic aerosol from small aromatic VOCs. Changes in chemical composition, mass yield, volatility and hygroscopicity

    DOE PAGESBeta

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2014-12-12

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form and transform SOA from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx. The effects of chemical aging on organic aerosol (OA) composition, mass yield, volatility and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state OSC) and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OSmore » C ranged from -0.29 to 0.45 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  16. Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season

    NASA Astrophysics Data System (ADS)

    Talbot, N.; Kubelova, L.; Makes, O.; Cusack, M.; Ondracek, J.; Vodička, P.; Schwarz, J.; Zdimal, V.

    2016-04-01

    This paper describes the use of a unique valve switching system that allowed for high temporal resolution indoor and outdoor data to be collected concurrently from online C-ToF-AMS, SMPS and OC/EC, and offline BLPI measurements. The results reveal near real-time dynamic aerosol behaviour along a migration path from an outdoor to indoor environment. An outdoor reduction in NR-PM1 mass concentration occurred daily from AM (06:00-12:00) to PM (12:00-18:00). SO4 (26%-37%) [AM/PM] increased proportionally during afternoons at the expense of NO3 (18%-7%). The influences of mixing height, temperature and solar radiation were considered against the mean mass concentration loss for each species. Losses were then calculated according to species via a basic input/output model. NO3 lost the most mass during afternoon periods, which we attribute to the accelerated dissociation of NH4NO3 through increasing temperature and decreasing relative humidity. Indoor/outdoor (I/O) ratios varied from 0.46 for <40 nm to 0.65 for >100 nm. These ratios were calculated using average SMPS PNC measurements over the full campaign and corroborated using a novel technique of calculating I/O penetration ratios through the indoor migration of particles during a new particle formation event. This ratio was then used to observe changes in indoor composition relative to those outdoors. Indoor sampling was carried out in an undisturbed room with no known sources. Indoor concentrations were found to be proportional to those outdoors, with organic matter [2.7 μg/m3] and SO4 [1.7 μg/m3] being the most prominent species. These results are indicative of fairly rapid aerosol penetration, a source-free indoor environment and small afternoon I/O temperature gradients. Fine fraction NO3 was observed indoors in both real-time AMS PM1 and off-line BLPI measurements. Greater mass concentration losses were observed from filter measurements, highlighting an important time dependency factor when investigating semi

  17. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  18. The non-destructive identification of solid over-the-counter medications using single particle aerosol mass spectrometry.

    PubMed

    Martin, Audrey N; Farquar, George R; Jones, A Daniel; Frank, Matthias

    2007-01-01

    Single over-the-counter medication tablets were analyzed in real time using Single Particle Aerosol Mass Spectrometry (SPAMS). Dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles dislodged from a single tablet without destroying the shape or markings of each tablet. The solid tablet was placed in a modified-top glass vial and shaken to dislodge and introduce micrometer-sized particles into the SPAMS system. Unique spectra from these particles were obtained in less than 1 s for single tablets of aspirin, ibuprofen, pseudoephedrine, phenylephrine, loratadine, or diphenhydramine. The signals obtained allowed the non-destructive identification of an individual tablet in seconds. SPAMS presents an ideal system for high-throughput analysis of solid drugs. PMID:17935106

  19. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, P T

    2004-07-20

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  20. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  1. Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Harrison, Roy M.; Beddows, David C. S.; Di Marco, Chiara; Nemitz, Eiko

    2012-12-01

    The Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is one of few instruments able to measure the size and mass spectra of individual airborne particles with high temporal resolution. Data analysis is challenging and in the present study, we apply three different techniques (PMF, ART-2a and K-means) to a regional ATOFMS dataset collected at Harwell, UK. For the first time, Positive Matrix Factorization (PMF) was directly applied to single particle mass spectra as opposed to clusters already generated by the other methods. The analysis was performed on a total of 56,898 single particle mass spectra allowing the extraction of 10 factors, their temporal trends and size distributions, named CNO-COOH (cyanide, oxidized organic nitrogen and carboxylic acids), SUL (sulphate), NH4-OOA (ammonium and oxidized organic aerosol), NaCl, EC+ (elemental carbon positive fragments), OC-Arom (aromatic organic carbon), EC- (elemental carbon negative fragments), K (potassium), NIT (nitrate) and OC-CHNO (organic nitrogen). The 10 factor solution from single particle PMF analysis explained 45% of variance of the total dataset, but the factors are well defined from a chemical point of view. Different EC and OC components were separated: fresh EC (factor EC-) from aged EC (factor EC+) and different organic families (factors NH4-OOA, OC-Arom, OC-CHNO and CNO-COOH). A comparison was conducted between PMF, K-means cluster analysis and the ART-2a artificial neural network. K-means and ART-2a give broadly overlapping results (with 9 clusters, each describing the full composition of a particle type), while PMF, by effecting spectral deconvolution, was able to extract and separate the different chemical species contributing to particles, but loses some information on internal mixing. Relationships were also examined between the estimated volumes of ATOFMS PMF factors and species concentrations measured independently by GRAEGOR and AMS instruments, showing generally moderate to strong

  2. On the Aerosol Particle Size Distribution Spectrum in Alaskan Air Mass Systems: Arctic Haze and Non-Haze Episodes.

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1983-05-01

    Aerosols in central Alaskan winter air mass system were classified according to size by diffusive separation and light-scattering spectrometry. Particles entering central Alaska from the Pacific Marine environment had number concentrations ranging from 300 to 2000 cm3 (geometric mean 685 cm3) and unimodal size spectra, with maximum in number concentration near 1 × 106 cm radius.Air masses entering Alaska from the Eurasian Arctic possessed a factor of two smaller aerosol number concentrations than Pacific Marine systems (e.g., 150-700 cm3; geometric mean 386 cm3) but contained a factor of two greater particle volume loading within the fine particle radius range 5 × 107 < r < 1 × 105 cm. The particles in Eurasian Arctic air masses were bimodally distributed, with maxima in the particle size spectra near r = 3 × 107 and 5 × 106 cm. Sulfur was the predominant element in all cases studied.A particle depleted region was present in the size spectra obtained for Eurasian Arctic air masses. The deficiency of particles in the 106 cm radius range is interpreted as being the result of thermal coagulation taking place between sulfur-rich nuclei (produced at a rate of 1020 to 1018 g cm3 s1 and in sizes r < 106 cm) and `large' (r 105 cm) imported primary particles. The primary particles are in the removal-resistant Greenfield Gap (r 105 cm) and seem to originate in the central Eurasian region.

  3. Understanding the Evolution of Organic Aerosols in the Mexico City Airshed in 2002, 2003 and 2006 using Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Ulbrich, I. M.; Dzepina, K.; Canagaratna, M.; Zhang, Q.; Decarlo, P.; Salcedo, D.; Aiken, A. C.; Onasch, T. B.; Allan, J.; Russell, L. M.; Grivicke, R.; Lamb, B.; Alexander, M. L.; Worsnop, D. R.; Jimenez, J.

    2008-12-01

    Aerosol mass spectrometric measurements yield spectra of ambient aerosols that are a mix of various primary and secondary sources. Organic aerosol (OA) datasets acquired using Aerodyne aerosol mass spectrometers (Q-AMS, C-ToF-AMS, and HR-ToF-AMS) deployed in 2002, 2003, and 2006 in the Mexico City Metropolitan Area (MCMA) at multiple ground locations and from aircraft flights are analyzed with Positive Matrix Factorization to deconvolve information about important sources and processes for organic aerosols. Several components are identified in each dataset. Most datasets resolve contributions from: reduced (oxidative state) hydrocarbon-like OA (HOA), which correlates well with primary combustion tracers such as CO, NOx, and BC; biomass burning OA (BBOA), which correlates with regional fire counts, potassium, levoglucosan, acetonitrile, and HCN; highly-oxidized OA (OOA-I) which shows more regional behavior; and less oxidized OA (OOA-II) which correlates with semivolatile inorganic species such as ammonium nitrate and gas-phase secondary species such as Ox (NO2 + O3) and glyoxal. These correlations are consistent across most datasets when run separately in PMF. Factor spectra are also compared to reference spectra, and ratios of factor concentrations to relevant tracers (e.g., HOA/CO, OOA/Ox) are presented. Factor spectra, time series, diurnal cycles, and ratios are compared at sampling locations across the MCMA and in different years in order to understand the evolution of OA across the airshed. The effect of running multiple datasets within a single PMF model (e.g., simultaneous measurements made at two locations in Mexico City), and the stability of PMF solutions will be described.

  4. Modeling aerosol effects on shallow cumulus convection under various meteorological conditions observed over the Indian Ocean and implications for development of mass-flux parameterizations for climate models

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; McFarquhar, Greg M.

    2008-10-01

    To determine conditions over the Indian Ocean, under which cloud fields are most susceptible to modification from aerosols, and to study how turbulent activities and shallow cumuli vary for different meteorological scenarios, a three-dimensional large-eddy simulation model was initialized using data collected during the Indian Ocean Experiment (INDOEX). Radiosonde data were used to construct six soundings encompassing the range of temperature and humidity observed. A total of 18 meteorological scenarios were then obtained by adding either an average transition layer (TL), a strong inversion layer (IL), or no stable layer to each sounding. Separate simulations were conducted for each scenario assuming pristine or polluted conditions as observed during INDOEX. For aerosol profiles measured during INDOEX, aerosol semidirect effects always dominated indirect effects, with the positive daytime net indirect forcing (semidirect plus indirect forcings) varying between 0.2 and 4.5 W m-2. Anthropogenic aerosols had a larger net indirect forcing when the environmental relative humidity (RH) was higher and in the absence of the IL and TL. Changes in meteorological factors had larger impacts on the cloud properties than did anthropogenic aerosols, indicating large uncertainties can be introduced when solely using observations to quantify aerosol effects without examining their meteorological context. Because mean lateral detrainment and entrainment rates depended on RH, aerosols, and the presence of stable layers, mass-flux parameterizations in climate models should not use single values for such rates that may not represent the range of conditions observed where trade cumuli form.

  5. Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Hedman, Curtis J.; Sheesley, Rebecca J.; Shafer, Martin M.; Schauer, James J.

    The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200-600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.

  6. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  7. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  8. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  9. Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc

    NASA Astrophysics Data System (ADS)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-01-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.

  10. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map